
Abstract. Results of high-Tc superconductivity studies are
analyzed using the authors' model, which assumes that the
interaction of electrons with two-site negative-U centers (due
to charged dopant localization near impurity ions) is respon-
sible for many anomalous properties, and indeed the very
superconductivity, of high-Tc superconductors. It is shown
that the basic properties of high-Tc superconductors and the
details of the superconducting and magnetic phase diagrams
of La2 ±xMxCuO4 (M=Ba, Sr) can be explained by this model.

1. Introduction

In the 17 years that have passed since the discovery of high-Tc

superconductors [1] many different and mutually exclusive
models have been suggested [2], models that to one extent or
another explain the nature of the ground state and the
anomalous properties of these compounds. However, the
absence of a crucial experiment has made it impossible to
choose the only correct model among the spectrum ofmodels.
Today, themost thoroughly studied high-Tc superconducting
compounds are La2ÿxMxCuO4 (M � Ba, Sr), whose phase
diagram exhibits many well-reproducible features and has
been thoroughly studied in the entire doping range. Hence,
the results of comparisons between the experimental phase
diagram of La2ÿxMxCuO4 and the phase diagram obtained in

this or that model may serve as the key argument in selecting
the correct mechanism responsible for the unusual properties
of high-Tc superconductors. In this article we present an
elementary model of high-Tc superconductors [3], which,
nevertheless, provides a good picture of the main properties
of such compounds and, in particular, describes all the
characteristic features of the phase diagram of
La2ÿxMxCuO4.

Here are the main ideas underlying the model:
� the doped charges in high-Tc superconductors are

localized in the immediate vicinity of an impurity ion;
� as a result of such doping, negative U centers [4] (ÿU

centers), i.e., pair states on which a pair of electrons has a
negative correlation energy, form on some pairs of neighbor-
ing cations;
� in the process of doping, the insulator ±metal transition

in high-Tc superconductors passes through the concentration
range where two-electron transitions on ÿU centers are
possible, while one-electron transitions are forbidden;
� the interaction of electrons with ÿU centers is the

mechanism responsible for many anomalous properties of
high-Tc superconductors, including, among other things,
high-Tc superconductivity proper, carrier kinetics, the pseu-
dogap, etc.
� this mechanism proves effective in the presence of

percolation along ÿU centers, facilitated by the ordering of
ions of the doping impurity (dopant) in La2ÿxMxCuO4;
� the ordering of the dopants in certain lattices leads to the

formation of an incommensurate spin texture imitating stripe
modulation [5], with the incommensurability parameter d � x
(x is the dopant concentration);
� due to the local nature of doping, a high-Tc super-

conductor is a spatially inhomogeneous system in which the
superconducting regions coexist either with insulating regions
(in underdoped samples) or with regions of a normal metal (in
overdoped samples).
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We will show that the `superconducting' and magnetic
phase diagrams of La2ÿxMxCuO4 built into our model are in
perfect agreement with the experimental data.We believe that
such agreement between theoretical and experimental phase
diagrams can be considered as proof of the validity of the
proposed model of high-Tc superconductors.

2. The electronic spectrum
of high-Tc superconductors

As is known, high-Tc superconductivity is observed in
cuprates and bismuthates. To be more definite, we will
focus on cuprates, although everything said about
cuprates is applicable to bismuthates (Ba1ÿxKxBiO3 and
BaPb1ÿxBixO3).

According to band theory, in underdoped cuprate high-Tc

superconductors the upper antibonding band s�
x 2ÿy 2 , formed

by Cu 3dx 2ÿy 2 and O2px; y states, is half-filled, which means
that we are dealing with a metal, whose band structure and
Fermi surface are those depicted in Fig. 1 (the hatched area
represents filled states) [6, 7].

However, it is a fact that these compounds in an undoped
state are insulators, and the reason for this is the strong
electron correlation on the Cu ion that obstructs the presence
of two electrons on copper (the d10 configuration). The
electronic spectrum of the insulating phases of high-Tc

superconducting compounds near the Fermi level EF can be
approximated by the model of a charge-transfer insulator [8],
i.e., an insulator with a gap Dct related to charge transfer. In
this model (Fig. 2a), the empty upper Hubbard band, formed
by unoccupied Cu3d10 orbitals of copper ions in the CuO2

plane, is separated from the filled lower Hubbard band by the
repulsive energy of two electrons on copper, UH. Inside the
gap there is the filled band formed by oxygen px; y-orbitals.
Hence, the gap Dct in the spectrum is related to electron
transfer from oxygen to the neighboring cation and amounts
to about 1.5 ± 2 eV for all high-Tc superconductors.

Within the simple ionic model, the size of Dct is given by
the following formula [9]:

Dct � jDEMj � Ap ÿ Id :

Here Id is the second ionization potential of copper, Ap is the
electronegativity of oxygen in relation to O2ÿ formation, and
jDEMj is the difference in the electrostatic Madelung energies
between two configurations, in one of which the given copper
and oxygen ions are in states Cu2+ andO2ÿ and in the other in
states Cu+ andOÿ. Allowing for the fact that Id � 20 eV and
Dct � 1:5ÿ2 eV, we see that the balance between these three
quantities is very delicate. This situation can be changed by
heterovalent doping, e.g., by doping La2CuO4 with bivalent
Ba (Sr) or by doping Nd2CuO4 with tetravalent Ce. What is
important is that adding electrons (to Cu orbitals) or holes (to
O orbitals) leads to the same result: a decrease in jDEMj and,
hence, in Dct. At a certain critical concentration xc the gap Dct

vanishes over the entire crystal and the substance becomes an
ordinary metal.

This is how the ionic model explains the transition of a
charge-transfer insulator into a metallic state under doping.
However, we believe that in high-Tc superconducting com-
pounds the transition from insulator to metal with increasing
x passes through a special stage in which, within a certain
concentration range x0 < x < xc, local two-electron transi-
tions from oxygen ions to certain pairs of neighboring Cu
cations are possible, while one-electron transitions are still
forbidden.

This is possible if it is more profitable energetically to
transfer two electrons from oxygen to neighboring Cu (Bi)
cations via formation of a bound state (of the Heitler ±
London type [10]) from two electrons and two holes that
emerge in the immediate vicinity of this pair of cations. In a
way we end up with an intracrystalline hydrogen molecule,
where the 3d10 electrons on copper act as nuclei and holes on
O2px; y-orbitals act as electrons, with the overlap between the
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Figure 1. (a) The electronic spectrum of the CuO2 plane predicted by band

theory, and (b) the corresponding Fermi surface (the hatched area

corresponds to filled states). The dashed line indicates the boundary of

the Fermi surface in the tight-binding model with allowance for nearest-

neighbor interaction only.
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Figure 2. (a) The electronic spectrum of the insulator phase of cuprate

high-Tc superconductors near EF; (b) the same electronic spectrum with

allowance for formation of a bound state of two electrons at neighboring

Cu cations and two holes from the surrounding px; y-orbitals of oxygen

ions; and (c) formation of a binding orbital of a singlet hole pair around a

ÿU center caused by the overlap of px; y-orbitals of oxygen (tOO is the

overlap integral).
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orbitals (tOO) creating the possibility of holes transferring
from one oxygen atom to another. The analogy with an H2

molecule is justified since the distance between cations in all
high-Tc superconductors (cuprates and bismuthates)
amounts to about 3.7 ± 4.0 A

�
and is close to R0e1, where

R0 � 0:8 A
�

is the distance between the nuclei in an H2

molecule, and e1 is the high-frequency dielectric constant,
with e1 � 4:5ÿ5 for all high-Tc superconductors [11]. That
is, nature has actually `implanted' in high-Tc superconductors
the ability to form an `intracrystalline' hydrogen molecule. A
lowering of the energy is possible, as it is in the H2 molecule,
only for the bonding orbital of a singlet hole pair. Additional
lowering of the energy, DEU, caused by the transition of two
electrons to neighboring cations, can be estimated in the case
at hand by the formula

DEU � DEH2

e21
� 0:23 eV ;

where DEH2
� 4:75 eV is the binding energy in an H2

molecule. If through E�2�, E�1�, and E�0� we denote the
energies of the ground state with, respectively, two electrons
on a given pair of copper ions, one electron, and an empty
pair, the above implies that E�2� � E�0� < 2E�1�. Thus, we
can assume that a pair of neighboring copper cations in the
CuO2 plane is a ÿU center. In other words, in the energy
spectrum of a charge-transfer insulator in the case of a high-
Tc superconductor there appears a pair level that is DEU

below the bottom of the upper Hubbard 3d10 subband
(Fig. 2b).

If we now decrease Dct to the point where the gap
disappears for two-particle transitions but remains for one-
particle transitions, we arrive at a system in which some of the
electrons belonging to the oxygen valence band effectively
interact with pair states, or ÿU centers. We believe that the
role of the doping is to activate possible ÿU centers.

3. Doping and the formation
of active ±U centers

It is usually assumed that in the same way as in ordinary
metals, in doped high-Tc superconductors the Coulomb
potential of the dopant ion is screened at a distance of about
1 A

�
, in view of which the distribution of doped charges in the

CuO2 plane is homogeneous. Thismakes it possible to assume
that on the whole the electronic structure of the crystal is
homogeneous. At the same time, the experiment demon-
strates a pattern that is just the opposite of the one above,
namely, that the doped charges are localized on a scale of an
order of the lattice constant. This conclusion follows from the
results of measurements of X-ray absorption fine-structure
(XAFS) spectra [12] andNMR spectra [13] in La2ÿxSrxCuO4.
Such strong localization is probably caused by the weak
screening of the impurity potential in the Mott insulator [14].

We base our reasoning on the assumption that in the
concentration range of interest to us (x < 0:2 for Ln214) and
at fairly low temperatures, the doped holes (electrons) are
rigidly localized in the immediate vicinity of an impurity ion.
More precisely, a hole is localized in the CuO2 plane on four
oxygen ions belonging to an oxygen octahedron adjacent to a
dopant ion [12, 13], while an electron is localized on four
copper ions closest to a Ce ion [15] (Fig. 3).

Now, let us see how doping of local charges in a charge-
transfer insulator leads to the formation of `active' ÿU

centers. To this end, we take a fragment of the crystal
structure (4a, b) that is common for all cuprates with hole
doping. One such fragment is the Cu2R2On cluster, where the
copper ions are built into the CuO2 plane, while the ion
R � Cu in the CuO2 plane for La2CuO4, R � Cu (in chains)
for YBCO, and R � Bi for BSCCO. We state that in such a
cluster active ÿU centers are formed on a pair of copper ions
in the CuO2 plane, provided that at each of the oxygen
octahedrons surrounding R-ions there is localized a doped
hole (in YBCO and BSCCO the doped carriers are localized,
respectively, aroundCu ions in CuO3 chains and aroundBi in
BiO planes).

Let us check the validity of this statement for
La2ÿx�Ba; Sr�xCuO4. Here, there can be two types of
Cu2R2On clusters satisfying our condition: with the distance
between the R-ions (and doped holes) equal to either 3a or
a
���
5
p

, where a is the lattice constant in the CuO2 plane. The
distance between the projections on the CuO2 plane of the
corresponding dopant ions is the same.

The decrease inDct for Cu ions caused by the presence of a
single hole near a given copper ion (Fig. 5a) can be estimated
by allowing only for the interaction between the nearest
neighbors and assuming that this hole is `distributed' over
the four nearest oxygen ions. The decrease in the energy of the
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Figure 3. (a) Substitution of Sr (Ba) for La in La2CuO4 results in the

appearance in theCuO2 plane of a hole localized on the four oxygen ions in

an oxygen octahedron adjacent to a dopant ion; (b) substitution of a Ce4+

ions forNd3+ inNd2CuO4 results in the appearance on the copper orbitals

of an electron localized in the vicinity of a Ce ion.
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Figure 4. Atomic Cu2R2On clusters common for all cuprate high-Tc

superconductors with hole doping. (a) In YBCO (BSCCO), the Cu ions

are built into the CuO2 plane, andR stands for Cu (Bi) ions in CuO3 chains

(BiO planes). (b) In La2ÿxMxCuO4 the entire cluster is built into the CuO2

plane, and R stands for Cu ions inside the oxygen octahedron adjacent to

an M ion. Two types of such clusters with a distance between the R-ions

equaling 3a or a
���
5
p

are possible in La2ÿxMxCuO4.
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state Cu 3d10 for copper ions (denoted by arrows in Fig. 5a) is

DE � 1

4

e2

r
� 1:8 eV

(here, it is assumed that, being on an oxygen ion at a distance
r � a=2 � 2 A

�
from the copper ion, the hole `sees' the

unscreened copper ion; e is the electron charge and a is the
lattice constant in the CuO2 plane). In other words, due to
hole doping, the energy of these states is DE � 1:8 eV below
the bottom of the upper Hubbard band, which is roughly
0.1 ± 0.2 eV smaller than the gapD 0

ct � 1:9 ± 2.0 eV in undoped
La2CuO4 (Fig. 5c).

Similarly, in Nd2ÿxCexCuO4, a doped electron localized
on copper orbitals in the vicinity of a Ce ion (Fig. 5b) elevates
the energy of 2p-orbitals of the neighboring oxygen ions
(indicated by arrows in Fig. 5b), thus lowering Dct for the
transition of an electron from these oxygen ions to the
neighboring copper ions (Fig. 5d).

Thus, in both cases (l � 3a and l � a
���
5
p

), the presence of a
doped carrier in the vicinity of eachR-ion decreasesDct for the
four neighboring copper ions and creates the conditions
needed for tunneling in the inner copper ions of two px; y-
electrons from the oxygen ions surrounding this pair and the
forming of a bound state with the energy lowered by
DE � 0:23 eV (without allowance for hybridization). Here,
the emerging singlet hole pair will be localized in the vicinity
of the ÿU center.

Thus, active ÿU centers are formed on fragments with
l � 3a and l � a

���
5
p

, and we believe such fragments to be the
nuclei of a high-Tc superconducting phase. We immediately
note that in the intermediate case, where the doped holes (or
the projections of the dopants) are at a distance l � a

���
8
p

, no
pairs of copper ions can emerge for which the vicinities of the
neighboring copper cations contain doped carriers, i.e., aÿU
center is not formed. This case corresponds to the insulating
phase.

But if the doped holes are located at a distance 2a, then for
the inner copper ion the gap Dct vanishes for one-electron
transitions, too. Such a fragment is a nucleus of the metallic
(nonsuperconducting) phase. At certain concentrations the

entire crystal becomes a normal metal. This state corresponds
to a single-band electronic spectrum in the vicinity of EF.

Thus, doped carriers in our model are localized, and they
are responsible for the formation of active ÿU centers.

These ÿU centers act as pair acceptors and generate
additional hole pairs, which are also localized in the vicinity
of theÿU center. Conduction occurs in such a system if these
regions of localization of hole pairs form a percolation cluster
in the CuO2 plane or, in other words, if the threshold of
classical percolation along ÿU centers is exceeded.

Pair hybridization of oxygen px; y-states of a percolation
cluster with ÿU centers form a hybrid band, which in many
ways determines the behavior of high-Tc superconductors.
Electron pairing in this band, responsible for high-Tc super-
conductivity, emerges because of strong renormalization of
the effective electron ± electron interaction when scattering
with intermediate virtual bound states of ÿU centers is taken
into account. �SimaÂ nek [16] was the first to propose such a
mechanism, which was then repeatedly discussed in the
literature as applied to various systems, including high-Tc

superconductors [17 ± 24].

4. Ordering of dopants

As noted earlier, the proposed mechanism of the interaction
between electrons and pair states is effective when there is
percolation along regions of localization of hole pairs. This,
in turn, is possible only if the existing ÿU centers form
percolation clusters, which are broken lines with links whose
length is l � 3a or l � a

���
5
p

. In the general case, where the
dopant ions are randomly distributed, one can hardly expect
such extended clusters to form. However, as we wish to show,
in La2ÿx�Ba; Sr�xCuO4, because of the ordering of Ba (Sr)
ions, conditions emerge for the formation of percolation
clusters within a broad range of dopant concentrations.

Due to the weak screening of impurity charge, the
impurity ions experience mutual Coulomb repulsion. More-
over, the localization of the doped charges also presupposes
the need to take into account their Coulomb repulsion at a
small distance of order a, which is the lattice constant in the
CuO2 plane. This interaction increases the potential energy of

Ce b
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Sr

Sr aì Cu

ì O

Pair
level

O 2p
(for O ions
around Ce ions)

Cu 3d9
O 2p

Cu 3d10
d

Pair level
(for Cu ions
around Sr ions)

Cu 3d10
(for Cu ions
around Sr ions)

Cu 3d9

O 2p

Cu 3d10 c

Figure 5. (a) Formation of active ÿU centers in La2ÿxSrxCuO4. The arrows point to copper ions for which the energy of the Cu 3d10 state is lowered

because of the presence of a doped hole localized within the oxygen octahedron. If the doped holes (or the projections of the dopants) are at a distance of

3a or a
���
5
p

, conditions emerge for the formation of active ÿU centers on a pair of neighboring copper ions (denoted by double circles). (b) The same for

Nd2ÿxCexCuO4. The arrows point to oxygen ions whose energy of the p-states is elevated because of the presence of a doped electron localized at four

copper ions. (c and d) Modification of the electronic spectrum (Fig. 1b) caused by doping and accompanied by formation of active ÿU centers for

La2ÿxSrxCuO4 andNd2ÿxCexCuO4, respectively. Two-electron transitions from oxygen ions to a pair of neighboring copper ions become possible, while

one-electron transitions are forbidden.
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the respective impurity ions (Ba, Sr, or Ce) and also
corresponds to their effective mutual repulsion. On the basis
of this we can assume that in Ln214 the distance between the
nearest doped charges (or, correspondingly, the projections
of the dopants on the CuO2 plane) l5 2 (in units of a). This
corresponds to the experimentally determined solubility limit
for the impurity in the parent matrix (xlim � 0:25 for Ba and
Sr in La2ÿxSrxCuO4

1 and xlim � 0:2 for Ce in
Nd2ÿxCexCuO4). At x > xlim (i.e., l < 2), the oxygen stoi-
chiometry breaks down and/or there is phase separation into
regions with different values of x [26 ± 28].

The very fact that the ionic radii of Ba and Sr
(rBa � 1:47 A

�
and rSr � 1:31 A

�
) are much larger than the

ionic radius of La (rLa � 1:21 A
�
) [29] presupposes that the

impurity ions generate a deformation field, which influences
the other impurity ions. Generally, this interaction is long-
range, anisotropic, and alternating, depending on the crystal-
lographic direction [30]. One consequence of the nature of this
interaction is the marked tendency of the ions (and their
projections on the CuO2 plane) to form ordered structures.
Such ordering of the M ions in La2ÿxMxCuO4 explains, in
particular, the high solubility limit (xlim) of Sr and Ba in
La2CuO4 compared to that of Ce in Nd2CuO4, where the Ce
distribution is random because rNd > rCe. Since the distance
between the doped carriers l5 2, the first solubility limit
(xlim � 0:25) corresponds to an ordered distribution of doped
charge and a close packing of circles of unit radius with a
packing faction of 0.785, while the second solubility limit
(xlim�0:20) corresponds to a random distribution of charges
and a packing of circles of unit radius with a packing faction
of 0.637 [31].

As is known (see Ref. [32]), the deformation interaction of
impurities is especially strong when the impurity atoms are in
interstitial positions of the lattice (interstitial impurities) and
introduce large distortions into the lattice. In interstitial solid
solutions, the ordered distribution of the impurity already
manifests itself at very small concentrations. An estimate of
the energy of the deformation interaction of impurities done
in Ref. [32] shows that their ordering at low temperatures and
at concentrations on the order of several atomic percentage
points occurs if this energy is about 1 eV.

Let us now estimate the energy V of the deformation
interaction of substitutional impurities (Ba) in the La2CuO4

matrix:

V � vlu2 � 1 eV :

This value is comparable to the energy of formation of a basal
crystal lattice (here, v � 6� 10ÿ23 cm3 is the volume occu-
pied by the crystal's unit cell, l � 2� 1012 erg cmÿ3 is the
characteristic modulus of elasticity, and u � 0:1 is the
concentration linear-expansion coefficient), which facilitates
the formation of an ordered structure of dopants, beginning
with low concentrations. The concentration at which Ba (Sr)
ions begin to be distributed in an orderly manner depends on
the way in which the crystal will be grown and thermally
treated. By carefully selecting and monitoring these para-
meters we can guarantee that, beginning with relatively small
values of x, the distribution of the dopant over La positions
will be ordered. We will assume, basing our reasoning on the

results of experiments, that the tendency of the dopant
distribution toward becoming ordered begins at x > 1=32.

In addition to the deformation interaction of substitu-
tional impurities, in antiferromagnetic (AFM) phases one
must take into account the impurity-magnetic interaction [33]
caused by the tendency of dopants to acquire a more
profitable phase (i.e., profitable from the viewpoint of
magnetic order). In high-Tc superconductors, where two-
dimensional AFM correlations are observed even at
T > 1000 K, this interaction plays an important role.
Obviously, the contribution of each dopant interaction
mechanism (deformation and impurity-magnetic) depends
on the mobility of the dopant ion. For Ba ions, which are
larger than Sr ions and hence have a lower mobility, the
deformation interaction contributes the most, while for Sr
ions the impurity ±magnetic interactions provide a sizable
contribution at fairly low concentrations, with the deforma-
tion interaction being weak.

Now let us see what ordered dopant structures (and,
therefore, doped charges in the CuO2 plane) are formed
at different dopant ion concentrations if we allow only
for deformation interaction. Figure 6a depicts the unit
cell of La2CuO4, which incorporates two formula units.
The La/Ba(Sr) ions occupy positions in two pairs of none-
quivalent LaO planes (I ± IV and II ± III in Fig. 6a) separated
by CuO2 layers. Here, the La/Ba(Sr) ions occupy the sites of
square sublattices shifted in relation to each other by a=

���
2
p

along the diagonal of the unit cell (a is the lattice constant).
First, we consider the distribution of Ba ions over the La

positions in mirror-symmetric planes I and IV, i.e., in planes
responsible for the appearance of doped charges in the central
CuO2 plane (Fig. 6a). These planes are linked by a network of
oxygen octahedrons, which can transmit deformation over
large distances.

As is known, in mirror planes, the substitutional impu-
rities with a large ionic radius occupy positions in atomic
networks in such a way that in each plane the occupied and
vacant site complement each other. Take, for example, the
picture of complete ordering at commensurate concentration
xcom � 1=16 (Fig. 6b). This corresponds to the formation in
each I and IV plane of square lattices with a lattice constant
Lcom �

�����
32
p

, and the sites of one lattice are above (below) the
centers of the squares formed by the sites of the other lattice.
As a result, the projections of the dopants on the CuO2 plane
(and hence the doped charges) form a square lattice with a
constant lcom � L=

���
2
p � 4.

As the concentration grows within the interval
1=16 < x4 1=8, the projections of the dopants may occupy
positions at the centers of the squares of the lattice with
lcom � 4, i.e., we can assume that within this concentration
interval the free sites of the square lattice with lcom �

���
8
p

(Figs 6b ± d) become occupied and that the fraction of
occupied sites varies from 0.5 (complete 4� 4 ordering) to 1
(complete

���
8
p � ���

8
p

ordering). This agrees with the results of
Hor and Kim [34], who observed in the IR reflection spectra
of La1.93Sr0.07CuO4 two different Goldstone modes which
emerge because of translational symmetry breaking and are
responsible for the formation of square lattices with the 4� 4
or

���
8
p � ���

8
p

type of order. In what follows, we characterize
the domain in which the free sites of a square lattice with a
constant lcom become occupied, by the corresponding value of
lcom. In addition to domains with lcom � 4 and

���
8
p

(Figs 6b ±
d), the formation of completely ordered square lattices with�����
13
p

,
�����
10
p

, 3,
���
5
p

, and 2, which correspond, respectively, to

1 In the case of La2ÿxSrxCuO4, special technological methods (e.g.,

thermal treatment in an oxygen atmosphere at high pressure) can be used

to grow sufficiently uniform single crystals with x � 0:3 [25], which

corresponds to a minimum distance l � ���
2
p

between the doped holes.
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the commensurate concentrations xcom � 1=13, 1/10, 1/9, 1/
5, and 1/4, is also possible. In the case of an arbitrary value of
x we assume that ordering with filling of sites of different
lattices of projections with lcom satisfying the condition

1������
2x
p < lcom 4

1���
x
p

is possible.
This presupposes that for a given x different domains can

coexist in the CuO2 plane and that in each domain lattices
with lcom satisfying the above condition become occupied.
For instance, at x � 1=9 it is possible for domains to exist in
which sites in a square lattice of projections with lcom �

���
8
p

(Fig. 6c),
���
5
p

(Fig. 6f), and lcom � 3 (Fig. 6g, complete
occupancy) become occupied. As x increases, the fraction of
occupied sites changes from 0.5 (at x � 1=2l 2com) to 1 (at
x � 1=l 2com). The existence of domains with a given lcom is
possible if the concentration satisfies the condition

1

2l 2com
< x4

1

l 2com
:

The size of ordered domains depends on the concentration
(precisely, on the proximity of x to xcom) andmay reach 200 ±
600 A

�
in the CuO2 plane [35]. Along the c axis the size of an

ordered domain is, apparently, several lattice constants due to
the existence of twomirror LaO planes for each LaO plane, in
view of which each type of ordering of doped charges is
repeated in each second CuO2 plane.

It is only natural that in addition to domains with an
ordered distribution of dopants there are regions where the
dopant distribution is disordered. As for the possibility of
implementing the different types of ordering (i.e., the
existence of domains with different values of lcom), one
should expect (see Ref. [30]) that for small values of x the
only domains that appear are those in which the dopants
become ordered in a square lattice whose sides are parallel to
the sides or diagonals of the CuO2 cell. Hence, we assume that
domains with lcom �

�����
10
p

and
�����
13
p

are not formed or, in any
case, they are very small due to the possibility of different
orientations in the CuO2 plane. In view of this, the correlation
length, which determines whether it is possible to observe the
magnetic texture (see Section 8), is small, too. We will
attribute these domains to a disordered matrix.

Thus, the La2ÿxMxCuO4 crystal should be interpreted as
a set of interpenetrating domains with different values of lcom
determined by the concentration, and the size of these
domains depends on the type of dopant and method of
preparation. 2

b

x � 1=16

c

1=16 < x < 1=8

d

x � 1=8

e

x � 1=18

f

1=18 < x < 1=9

g

x � 1=9

h

x � 1=10

i

1=10 < x < 1=5

j

x � 1=5

a

ì La/Ba(Sr)

ì Cu

ì O

ë I ( )

ë IV ( )

ë III ( )

ë II ( )

Figure 6. Types of dopant ordering in various domains. (a) The unit cell of La2CuO4. The roman numerals and symbols stand, respectively, for the plane

number (seemain text) and the ion of the dopant belonging to the given plane; (b ± j) the occupation of the positions in the lattice of the dopant projections

for domains with different values of lcom corresponding to the fraction of the occupied sites changing from 0.5 to 1; (b ± d) lcom �
���
8
p

; (e ± g) lcom � 3; (h ± j)

lcom �
���
5
p

; Figs. 6g and j show the projections of dopants from all the planes, I ± IV.

2 A different orderingmechanism is also possible. For instance, the dopant

ions may gather into chains along the c axis to minimize the elastic

deformation energy in the ab plane. This also leads to the formation of

`cylinders of deformation' elongated along the c axis, which become

ordered in a square lattice with a period depending on the dopant

concentration. In this case, the threshold of percolation along the lattice

sites with a period lcom is xp0 � 0:593 rather than 0.7, as assumed above.

Accordingly, the lower limits of the concentration ranges at which

percolation chains with l � lcom can exist decrease by a factor of 1.18 [3].
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5. Percolation and the phase diagram Tc(x)
for La2 ± xMxCu04

Let us now determine the threshold xp0 of site percolation for
a square lattice with a lattice constant lcom. Initially only half
of the sites are occupied, and such sites form a square
sublattice with a constant

���
2
p

lcom. One of the ways to solve
this problem is to resort to the Monte Carlo method. Using a
table of random numbers, we determined the percolation
threshold xp0 for a square 32� 32 lattice. Bearing in mind
that initially only half of the sites were occupied, we conclude
that the total fraction of occupied sites corresponding to the
percolation threshold amounts to xp0 � 0:70� 0:01. Table 1
lists the existence intervals and thresholds of site percolation
for domains with different values of lcom.

Figure 7 illustrates the percolation of localization regions
of singlet hole pairs along percolation clusters with lcom � 3
(Fig. 7a) and lcom �

���
5
p

(Fig. 7b). Note that, as Fig. 7a shows,
in the case where lcom � 3 the motion of carriers is mostly
along the Cu ±O bonds. This agrees with the results of
Venturini et al. [36], who used IR and Raman spectroscopy
data on the La1.9Sr0.1CuO4 crystal to come to an important
conclusion about such a type of motion.

Figure 8a shows the intervals of concentrations corre-
sponding to percolation along the sites in domains with
lcom � 3,

���
8
p

,
���
5
p

, and 2, i.e., intervals within which,
according to what we have said before, there can exist broken

percolation lines with link lengths l � ���
5
p

and l � 3 (chains of
ÿU centers) and broken lines with l � 2 corresponding to a
percolation cluster of the normal metal phase. Here, the solid
lines depict the boundaries of the regions of broken percola-
tion lines with a link length lcom. The increase in the height of
each rectangle with x is a qualitative reflection of the increase
in the number S of links with decreasing lcom. The dashed
straight lines limit the intervals of concentrations within
which the formation of small (nonpercolation) clusters with
lcom � 3 and

���
5
p

is possible. As Fig. 8a shows, bulk super-
conductivity (domains with percolation chains of ÿU centers
corresponding to lcom � 3 and

���
5
p

) exists within the intervals
0:077 < x < 0:11 and 0:14 < x < 0:20. At the same time,
traces of superconductivity related to the formation of short
fragments of broken lines with l � 3 may be observed already
at x > 0:55. In the concentration interval from 0.175 to 0.20
superconducting domains (in which there can be percolation
clusters with l � ���

5
p

) and normal metal domains, with the
number of the latter increasing with x, coexist. This
corresponds to the transition to a state in which super-
conductivity is caused solely by the proximity effect, with Tc

monotonically decreasing with increasing x.
The above arguments imply that at x > 0:55 there can be

two-electron transitions to some pairs of neighboring copper
ions (ÿU centers). The transfer of electrons from oxygen ions
to these ÿU centers leads to the formation of additional hole
carriers within a certain neighborhood of aÿU center and the

Table 1. Intervals of existence and thresholds of site percolation for
domains with different values of lcom (here, x0 and xM are the lower and
upper limits of the range of concentrations at which the existence of
domains with a given lcom is possible, and xp � xp0xM is the percolation
threshold for a lattice with a period a when the existence of percolation
chains with l � lcom becomes possible).

lcom x0 xp xM Remarks

4 0.031 0.043 0.062 Insulator, diagonal stripes

3 0.055 0.078 0.11 High-Tc superconductor in percolation
region���

8
p

0.062 0.087 0.125 Insulator, vertical stripes���
5
p

0.10 0.14 0.20 High-Tc superconductor in percolation
region

2 0.125 0.175 0.25 Normal metal in percolation region

\

ba

Figure 7. Percolation clusters of the localization regions of singlet hole

pairs. (a) lcom � 3, and (b) lcom �
���
5
p

. The small solid circles represent the

projections of the dopant ions on the CuO2 plane, open circles represent

the regions of localization of a doped hole, and the hatched rectangles

represent the localization regions of hole pairs surrounding ÿU centers.
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Figure 8. (a) Concentration intervals corresponding to percolation along

sites in domains with lcom � 3,
���
8
p

,
���
5
p

, and 2. The light solid lines depict

the boundaries of the regions of broken percolation lines with a link length

lcom. The heavy solid lines depict the limits of existence of percolation

clusters ofÿU centers (i.e., broken lines with lcom � 3 and
���
5
p

). The dashed

straight lines limit the intervals of concentrations within which the

formation of small (nonpercolation) clusters with lcom � 3 and
���
5
p

is

possible. The increase in the height of each rectangle with x is a qualitative

reflection of the increase in the number S of links in a percolation cluster

with decreasing lcom; (b, c) the experimental phase diagrams Tc�x� for
La2ÿxMxCuO4. The solid triangles indicate the compositions at which

superconductivity was not observed down to 4.2 K: (b) La2ÿxBaxCuO4

[37], and (c) La2ÿxSrxCuO4 [38].
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emergence of hole conduction of the percolation type at
dopant concentrations x > xp (Fig. 8a). The experiments by
Plackowski andMatusiak [39] corroborate this assertion very
vividly. Figure 9 shows the dependence of the hole carrier
concentration nf:u: (per formula unit) on x for La2ÿxSrxCuO4.
Clearly, beginning with x > 0:05, when, according to our
model, ÿU centers with l � 3 emerge, the function nf:u:�x�
deviates from unity, which suggests that new carriers appear
in addition to doped carriers. The rapid rise in nf:u:�x� begins
at x > 0:15, when ÿU centers with l � ���

5
p

begin to form.
Figures 8b and c show, for the sake of comparison, the

experimental phase diagrams Tc�x� for La2ÿxBaxCuO4 [37]
and La2ÿxSrxCuO4 [38]. The fact that the superconductivity
intervals in the experimental phase diagrams coincide with the
percolation intervals for lcom �

���
5
p

and 3 suggests that the
fragments in question, which include pairs of neighboring
copper ions in the CuO2 plane, are responsible for super-
conductivity in La2ÿxMxCuO4. The same fact is an argument
in favor of the proposed model of high-Tc superconductors.
Note that the `dip' in Tc�x� in the interval 0:11 < x < 0:14,
caused by the absence of percolations along chains of ÿU
centers, is superimposed on the narrow region of existence (as
x! 1=8) of a completely ordered

���
8
p � ���

8
p

lattice of doped
charges, which corresponds to the insulating phase. In
Section 8 we show that it is precisely this feature that makes
it possible to observe a static incommensurate magnetic
texture in this region [4]. The differences in the phase
diagrams Tc�x� for La2ÿxBaxCuO4 and La2ÿxSrxCuO4,
which manifest themselves primarily in the width and depth
of the `dip', are, in our opinion, caused by the weaker
deformation interaction and the higher mobility of Sr ions
in comparison to Ba ions. One consequence of this is the
weaker tendency of Sr ions toward ordering caused by
deformation interaction.

Note that, since the sizes of the Nd and Ce ions in
Nd2ÿxCexCuO4 are in the reverse relation (rNd > rCe), there
is practically no ordering of Ce. With allowance made for the
fact that the minimum distance between doped electrons
l4 2, we conclude that percolation occurs only if x5 0:14,
and that because of the absence of ordering the percolation
cluster includes both regions with l � ���

5
p

(ÿU centers) and
regions with l � 2 (normal metal). This agrees with the
experimental phase diagram of Nd2ÿxCexCuO4 [40].

Thus, we can conclude that all the features observed in
phase diagrams Tc�x� in La2ÿxMxCuO4 and Nd2ÿxCexCuO4

only reflect the geometrical relations in the square lattice and

the competition between order and disorder in the distribu-
tion of dopant ions.

As noted earlier, the microstructure of an La2ÿxMxCuO4

sample can be interpreted (for x4 0:14) as a set of clusters of
ÿU centers of different sizes immersed in an insulator matrix,
with the phase volume of the latter decreasing as x increases.
At high concentrations x > 0:175 and with the condition
l5 2 met, the only domains that can exist are those with
lcom �

���
5
p

and 2. Hence, true two-dimensional percolation is
possible only for x5 0:175, while with x < 0:175 only three-
dimensional percolation is possible (including transfer along
the c axis) in combination with quantum tunneling. This
agrees with the results of Ando et al. [41], who observed at
x < 0:17 a logarithmic divergence, as T! 0, in the resistivity
as superconductivity was suppressed by the magnetic field.

The `dip' in Tc in the concentration interval from 0.11 to
0.14 in La2ÿxBaxCuO4 is often related to a structural
transformation of the low-temperature orthorhombic (LTO)
phase to the low-temperature tetragonal (LTT) phase, which
indeed occurs in this interval at T � Td > Tc. Since in our
model the `dip' in Tc is related only to the absence in this
interval of percolation clusters of ÿU centers and the
preferable presence of domains with a

���
8
p � ���

8
p

order, it is
advisable to also relate the LTO!LTT transformation to
the `induced' tetragonalization caused by the ordering of
dopants in planes in square lattices. As shown by Phillips
and Rabe [42, 43], because the Debye ±Waller factor is
substantially larger for Ba than for Cu or O, the interaction
of Ba ions, which facilitates the formation of the LTT phase,
can at low temperatures exceed the interplanar interaction,
which is caused by the mismatch of different planes and
facilitates the formation of the LTO phase. On the other
hand, Fig. 6g shows that the given mechanism of `induced'
tetragonalization manifests itself most vividly for a comple-
tely ordered distribution of dopants at x � 1=9, when it
becomes possible to reduce the interplanar mismatch
between the BaO planes due to complete ordering of the
dopants in nonequivalent positions (the planes I and II, III
and IV in Fig. 6a). Hence the LTO!LTT transformation is
more likely to occur at x � 1:9 than at x � 1=8. In this case,
the LTT phase corresponds not to the `dip' in Tc but, on the
contrary, to a local maximum. What is interesting is that the
results of the experiments conducted by Axe et al. [44], Zhou
et al. [45], and Abe et al. [46] apparently corroborate this
conclusion. This can serve as an indirect indication of the
validity of our conclusion that the `left' maximum of Tc in the
phase diagram of La2ÿxBaxCuO4 is related to domains with
lcom � 3. Note that the next value of the concentration at
which it becomes possible to reduce the interplanar mismatch
due to the complete ordering of dopants is x � 1=5 (Fig. 6j).
And it is at this value of concentration that a transition from
an LTO phase to an HTT (high-temperature tetragonal)
phase occurs.

6. Generation of additional hole carriers
and a mechanism for their relaxation

As is known, underdoped high-Tc superconductors with a
half-filled band are insulators, although according to simple
band theory, which ignores correlation effects, they should
have been metals. Let us examine, in a qualitative manner,
how the transition from a metallic state to an insulating state
occurs when electron ± electron correlations are taken into
account.
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Figure 9. Dependence of the hole carrier concentration nf:u: (per formula

unit) on x for La2ÿxSrxCuO4 (the data was taken from Ref. [39]).
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Koster and Slater [47] examined the change in the band
structure of a crystal caused by the injection of an isolated
defect into the crystal. Their main result was that in the one-
dimensional case the injection of a single defect characterized
by an additional local potential U with respect to the
undistorted periodic potential leads to a situation in which a
single state separates from the band in question. IfU < 0, it is
the lower state that splits off, while if U > 0, it is the upper
state that splits off. The separated state is localized in the near
vicinity of the defect. Only insignificant shifts of states within
the band emerge as a result, and the wave function within the
band remains a delocalized Bloch function.

Now let us `switch on' the electron ± electron correlations
on the copper ions one after another. We begin by increasing
the potential on a single copper ion by U. Then one upper
state, corresponding to a certain k, splits off from the half-
filled band. If we `switch on' the correlations on all copper
ions, the filled states (formed primarily by oxygen orbitals)
will find themselves separated from the unoccupied states
(mainly copper orbitals) by a gap. As a result, on a certain
contour surrounding the point M(p, p) there appears a gap
Dct, i.e., the spectrum begins to resemble that of an insulator
(Fig. 10a).

If we ignore the shift of states, the electronic spectrum
nearEF can be represented in the formof two bands: one filled
O 2px; y-band, whose shape in momentum space resembles
that of a volcano, and one unoccupied band (shaped like a
hat), formed primarily from localized Cu 3d10-orbitals. When
we take into account the shift of states, theO 2px; y-band in the
insulator phase will be deformed, but the projection of the
band pattern on the (kx, ky) plane (precisely, the contour
along which the occupation number n�k� diminishes substan-
tially) for an insulator will, to a certain extent, retain the shape
of the contour of the initial Fermi surface of the conductor in
the absence of correlations, which follows from the fact that
the boundary of the region of filled states in the direction of
the point M(p, p) in the initial Fermi surface lies below the
point (p=2, p=2). This follows from the results of calculations
of the energy bands for the CuO2 plane within the three-band
Hubbard model [48], which takes into account the overlap of
p-orbitals of the nearest oxygen atoms. As a result, the
maximum band width will be in the direction of k along the
(p; p) diagonal, i.e., along the chains of oxygen atoms,
because of the overlap of oxygen 2px- and 2py-orbitals (the

overlap integral tpp), while the minimum band width of
order t 2pd=U (tpd is the overlap integral of Cu 3dx 2ÿy2 and
O2px; y-orbitals) will be in the direction (0, p). Thus, the
insulating gap will be of a d-wave nature: with a minimum
along the (p; p) direction and a maximum along (0, p) and (p,
0). The above picture agrees with the results of observations
of the remnant Fermi surface [49].

Under doping of La2ÿxSrxCuO4 (when La is replaced by
Sr), the additional doped holes are localized (at least at low
temperatures) in the vicinity of an impurity ion and occupy
states inside the gap. As a result, the region of filled electron
states diminishes as x grows, while the size of the region of
hole states increases with x as (1� x).

The formation of a percolation cluster from ÿU centers,
whose pair level descends below the top of the oxygen band,
opens the possibility for two-electron transitions to occur
between oxygen ions and the copper ions and for two-particle
hybridization of this pair level with the band states that have
the highest energy to take place. This is accompanied by the
restoration of the Fermi surface (or a part of this surface) in
the sense of the constant-energy curve E � EF in the (kx, ky)
plane, in which the occupation numbers n�E� suddenly
decrease (at T � 0) from 1 to 0 as E grows. However, in
contrast to the Fermi surface of an ordinary metal, where for
T > 0 electrons emerge in states with an energyE > EF, in the
case at hand for T > 0 the emerging electron pairs occupy
states with an energy E4EF (Fig. 11). Accordingly, holes
appear in this process along the contour of the `restored' part
of the Fermi contour.

When photoemission experiments are held for this case, a
large Fermi surface of the hole type is observed. In the
La2ÿxSrxCuO4 compound with 0:055 < x < 0:11, due to the
one-dimensional nature of the network of percolation clusters
from ÿU centers with l � 3a (Fig. 7a), the excitations in the
(p, p) direction are suppressed and the Fermi surface is
essentially one-dimensional. At x > 0:10, when there is
percolation along chains of ÿU centers with l � a

���
5
p

, the
Fermi surface acquires a shape characteristic of the two-
dimensional case (Fig. 1b).

As x increases, at x > 0:175 there form percolation
clusters from the `metallic' regions in which the distances
between the projections of the dopants are smaller than a

���
5
p

.
For the states belonging to such a cluster the gap in the one-
electron spectrumdisappears. In this case, because tetravalent
Sr replaces trivalent La, the band filling d < 1=2 and,
correspondingly, the conduction is of the n-type.

Pair level pF

G M

Figure 10. Dielectrization of the spectrum of the CuO2 plane (without

allowance for the shift of states) due to correlations. The upper unoccu-

pied states are localized in the vicinity of Cu ions. The lower filled states are

formed primarily from oxygen px; y-orbitals. The insulating gap emerges

on the contour of the Fermi surface that would have existed if there were

no correlations.

EF

a b

EF

G

Figure 11. (a) Band structure of a normal metal; (b) band structure of a

high-Tc superconductor. The holes appear in the filled band due to the

transfer of electron pairs to a pair level whose width G / T.
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Note that within the interval 0:055 < x < 0:11 we have a
state in which insulating and superconducting (along the
percolation cluster) regions coexist, while at x > 0:17 there
is a spatially inhomogeneous state in which normal-metal and
superconducting regions coexist.

The described successive transformation of the electronic
structure of La2ÿxSrxCuO4 with increasing x agrees well with
the results of the photoemission studies of Ino et al. [50].

As a consequence of hybridization of the pair level of a
ÿU center with band states, both band and localized pair
states prove to be broadened.With allowance for two-particle
hybridization, the broadening of the pair level [22, 23] can be
expressed as follows:

G � 4pkT
�

V

EF

�2

�1�

(here V� 1 eV is the hybridization constant, EF�0:5 eV is
the Fermi energy, and T is the temperature). Hence, the
broadening of the pair level G � �10ÿ50� kT. The corre-
sponding broadening of band states g / G / T.

The chemical potential of the hole pairs (measured from
the position of the pair level) is always negative: mpp � ÿT=N,
where N is the number of hole pairs on the pair level. Since
N4 1, we can assume that mpp � 0 and coincides with the
position of the pair level. Between the band and the pair level
dynamic equilibrium sets in, i.e., mpp � mp � 0, where mp is the
chemical potential of holes in the `oxygen' band. Hence, when
the pair level is at the top of the O 2p-band, the distribution of
holes in the band is nondegenerate at all temperatures.
Furthermore, because of the interaction with pair states, the
hole distribution function differs from the Fermi one. In
contrast to the latter, it varies from 1/2 to 0, not within a range
of order � kT, but within an interval of order � G / T.
However, in the photoemission spectrum, the non-Fermi
nature of the hole distribution function does not manifest
itself, since all the states with an energy below the top of the
oxygen band are occupied by electrons, which are either in the
band or on the pair level.

The occupancy Z of the pair states, as well as the
concentration n of holes in the oxygen band, is determined
by the equality of the rates of `band ± pair level' transition and
back. If N is the concentration of the ÿU centers, then
2NZ � n. The rate of `pair level ± band' transitions is
NZG / TZ. The rate of the reverse process is determined by
the electron ± electron scattering frequency and is propor-
tional to G 2�1ÿ Z� / T 2�1ÿ Z�. Thus, we arrive at the
expression

Z � T

T0 � T
; �2�

where the constant T0 is temperature-independent. Hence, at
low temperatures we have

n � 2NT

T0 � T
/ T ;

which becomes a constant (equal to 2N) at high temperatures
T. This agrees with the results of measurements of the Hall
effect [51, 52].

The heat capacity Cv and the magnetic susceptibility w in
such a system are determined by the hole concentration in the
O 2p-band, which at low temperatures is proportional to T.

For a nondegenerate (but Fermi-type) distribution,
Cv�T � � 15kn=2 and w�T � � m2Bn=kT, where n is the carrier
concentration and mB is the Bohr magneton [53]. In our case
of a non-Fermi distribution, where the holes are created not in
a layer of thickness of order � kT, measured from the top of
the O 2p-band, but in a layer of thickness of order� G�/ T �,
the numerical coefficients are different, but the dependence
on n and T is retained:

Cv�T � � d

dt

� �1
0

eD�e� f �e� de
�

� d

dt

�
hei
�1
0

D�e� f �e� de
�
� d

dt

ÿhein� / T : �3�

Here,D�e� � const is the density of states in the oxygen band,
f �e� is the hole distribution function (which varies from 1/2 at
e � m to 0 at e > G), and hei is the mean hole energy. At low
temperatures, hei � G / T and n / T. As a result,
Cv�T � / T, as in the case of a degenerate Fermi distribu-
tion. Accordingly,

w�T � � m2B

�1
0

D�e� df �e�
de

de � 1

2
m2B D � const : �4�

The deviations in the behavior of Cv�T � and w�T � at low
temperatures in underdoped and overdoped samples are
caused by the passage of the pair level (the chemical potential
level) through the top of the O 2p-band as the doping level
changes [54].

Another interesting aspect worth studying is the change in
the behavior of the temperature dependence of the rate of
relaxation of nuclear spin caused by doping. The results of
numerous experiments show that the Korringa law
1=T1T � const (where T1 is the relaxation time for a nuclear
spin in the normal state) holds in cases of underdoping and
optimal doping for 17O and does not hold for 63Cu [55]. At the
same time, in overdoped La2ÿxSrxCuO4 samples this law
holds for 63Cu, too [56]. This means that in overdoped
samples, in contrast to underdoped and optimally doped
samples, copper states contribute substantially to the density
of electron states on the Fermi surface, which agrees with the
proposed pattern of evolution of the electron states of high-Tc

superconducting compounds subjected to doping.
Superconductivity in the system is caused by the effective

electron ± electron interaction produced by scattering pro-
cesses involving intermediate virtual bound states of ÿU
centers. On the other hand, the occupancy of the ÿU centers
by electron pairs (and hence the hole concentration) decreases
with temperature. Superconductivity emerges at a tempera-
ture at which the real-electron occupancy of pair states
becomes low enough to ensure electron pairing because of
virtual transitions of band electrons to a pair level and back.
Thus, although in the normal state at T > 0 holes are the
charge carriers, superconductivity, nevertheless, is caused by
electron pairs. An indirect indication of the different signs of
charge carriers participating in the normal and superconduct-
ing transport may be the change of sign of the Hall constant
from plus to minus in the superconducting transition [57],
while according to the classical model of Stephen and
Bardeen [58], the motion of vortices should generate a Hall
voltage of the same sign as in the normal state.

Thus, due to the interaction between electrons and ÿU
centers, the hole carrier distribution proves to be nondegene-
rate in the sense that the hole chemical potential m is zero at all
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temperatures, while degeneracy requires that m be positive.
Hence, for holes all occupation numbers are less than unity.
Allowing for the nondegeneracy of the distribution (the
absence of Pauli blocking) and the high hole concentration
(1021 ± 1022 cmÿ3), we can expect that the leading contribu-
tion to relaxation processes is provided by electron ± electron
scattering (in our case, the scattering of hole carriers on each
other). However, since the interaction of two holes in a system
withÿU centers corresponds to effective attraction, this is not
the ordinary Coulomb scattering. In the case at hand, the
main electron ± electron scatteringmechanism is similar to the
one [59] that operates in metals and alloys with strong
electron ± phonon interaction. In such substances, for elec-
trons that are inside a layer of thickness kYD (YD is theDebye
temperature) on the Fermi surface, the effective electron ±
electron interaction corresponding to attraction and related
to the exchange of virtual phonons is much stronger than the
screened Coulomb repulsion. Hence, the principal channel of
electron ± electron scattering in this case is also caused by the
exchange of virtual phonons. The contribution of these
processes [59] becomes significant when T < YD. Here, the
electron ± electron scattering amplitude does not depend on
the energyE of the scattered particles atE5 kYD and rapidly
decreases at E � kYD. When E > kYD, only the Coulomb
scattering contributes to the scattering amplitude. In experi-
ments the contribution of the electron ± electron scattering to
the electrical resistivity r (r � AT 2), exceeding the electron ±
phonon contribution, was observed in aluminum [60] at
T < 4 K and in superconducting compounds with A15
structure [61] at T < 50 K. Here, the amplitude A exceed the
value calculated on the assumption that the scattering
mechanism is of the Coulomb type by a factor greater than
ten.

Thus, the main contribution to the relaxation of hole
carriers in high-Tc superconductors is provided by electron ±
electron scattering accompanied by the formation of an
intermediate bound state on a ÿU center, which can be
described as the exchange of a virtual boson with an energy
O. Since O � 0:2 eV, the temperature interval where the
contribution of such processes is essential extends to
T � 103 K.

The temperature dependence r�T � in such a model can be
derived from the Drude formula

r � m�
n
ne2

;

where m� is the effective hole mass and n is the hole carrier
scattering frequency. When O4E, the scattering amplitude
is independent of the particle energy E. Hence, the scattering
frequency n is determined by the hole concentration and a
statistical factor in the scattering cross section, i.e., the
volume of the phase space available for the scattering
particles, which is proportional to E1 � E2 (here E1 and E2

are the energies of the scattered particles measured from the
band top). Hence,

n / n�E1 � E2� : �5�

For DC conduction, E1 � E2 � G / T and n / nT / T 2,
with the result that r�T � / T. Such a dependence has been
observed in experiments with optimally doped samples of
YBa2Cu3O7, La2ÿxSrxCuO4, Bi2Sr2CaCu2Oy, etc.

In overdoped high-Tc superconductors, the ÿU centers
proved to be immersed in the matrix of the ordinary metal

with a degenerate electron distribution. The temperature-
dependent part of this resistivity in this case assumes the form

r�T � / G 2 / T 2 : �6�

Such a dependence has been observed for various high-Tc

superconductors in the `overdoping' mode.
The predominant contribution of the electron ± electron

interaction to the scattering processes also has an effect on the
frequency and temperature dependences of the optical
conductivity sopt:

sopt � e2n

m�
n

o2 � n2
; �7�

where o is the light frequency and n is the `optical' relaxation
frequency. For electron ± electron scattering (at a concentra-
tion n � 1022 cmÿ3), the collision frequency n5 1015 sÿ1.
Hence, for the IR range, n4o, and the formula for the
optical conductivity becomes even simpler:

sopt � e2n

m�n
: �8�

For `optical' relaxation, E1 � o, E2 � G / T, and n / no
when o4G and n / nT when o5G, which suggests that
sopt / oÿ1 (for o4G) and sopt / Tÿ1 (for o5G). These
results agree fully with the data of different experiments [62,
63].

7. Fluctuational superconductivity
and the pseudogap

Wewill now show that our model makes it possible to explain
the results of experiments on the observation of the
pseudogap in high-Tc superconductors in the underdoping
and optimal-doping regions. In experiments the opening of
the pseudogap manifests itself in the decrease, with tempera-
ture, in the spin-lattice relaxation rate [64], the Knight shift
[65], and the electronic specific heat g [66] and the emergence
of characteristic anomalies in the magnetotransport charac-
teristics [67]. In photoemission experiments the pseudogap
manifests itself in the shift of the Fermi edge. Hams et al. [68]
found that a pseudogap determined in this way has the
symmetry of a superconducting gap, which closes, however,
at a temperature T � > Tc, with T � increasing as the hole
concentration decreases.

Earlier, we assumed (see Ref. [34]) that the observed
pseudogap is simply the same superconducting gap that
opens, however, at T > Tc as a result of large fluctuations of
the number of particles caused by electron transitions
between a pair level of ÿU centers and the oxygen band.
The point is that, in contrast to the ordinary superconductor
with electron ± phonon interaction, where the superconduct-
ing gap closes because of thermal excitations above the Fermi
surface, excitations that diminish the number of states into
which electron pairs can scatter, in our case it is the filling of
ÿU centers by electrons that suppresses the gap. Hence, the
fluctuational decrease in the occupancy of a pair electron
number facilitates the strengthening of the superconducting
interaction and can lead to a fluctuational `switching on' of
superconductivity at T � > T > Tc0 (here Tc0 is the equili-
brium value of Tc). Such large fluctuations are possible in
underdoped samples, where a considerable number of theÿU
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centers belong to finite (nonpercolation) clusters. The mean
size of the finite clusters decreases with the doping level, and
the relative fluctuations of the occupancy of theÿU centers in
these clusters increase in value (i.e., T � increases). On the
other hand, in `overdoped' samples, where almost all copper
ions belong to an infinite percolation cluster, large fluctua-
tions become impossible. Using our percolation model as a
starting point, we will now try to determine the dependence of
the pseudogap opening temperature T � on the doping level d
in the YBa2Cu3O6�d compound.

As Fig. 4a shows, in YBa2Cu3O6�d aÿU center forms in a
cell if the CuO3 chain has three filled oxygen positions in
succession. The concentration of such cells with the oxygen
ions in the chains being randomly distributed is d3. Percola-
tion sets in when the threshold of percolation along the sites
for a square lattice, which is equal to 0.593 [69], is exceeded. If
we assume that such triples are distributed independently
(strictly speaking, this is not the case), then d3c � 0:593 and
dc � 0:84, according to the phase diagram of YBa2Cu3O6�d
[70]. If we allow for the fact that these triples of oxygen ions
are actually not distributed independently, we will find that
the value of dc differs from 0.84, but not significantly.

For d < dc, coupled ÿU centers form clusters of various
sizes. Inside each finite cluster the occupation numbers of the
ÿU centers are determined by equation (2), where the
constant T0 can be approximately found from measurements
of theHall effect [51] and varies between 400 and 800K. In the
case at hand, the inaccuracy in determining T0 is due to the
limits imposed on the range of temperature measurements
(see Ref. [51]).

Let us examine a cluster in which there are S ÿU centers.
The number of electrons on theÿU centers in such a cluster at
a temperature T is

N � 2TS

T� T0
:

As a result of fluctuations, the number of electrons on theÿU
centers in the given cluster can diminish by

����
N
p
�
�

2TS

T� T0

�1=2

:

The condition for fluctuation `switching on' of superconduc-
tivity in the given cluster at the temperature T � can be written
as follows:

N�T �� ÿ
��������������
N�T ��

p
� Nc ;

where

Nc � 2TcS

Tc � T0

is the number of electrons on the ÿU centers at the super-
conducting transition point. Thus,

2T �S
T � � T0

ÿ
�

2T �S
T � � T0

�1=2

� 2TcS

Tc � T0
: �9�

Solving this equation, we findT � as a function of S. Figure 12
shows the function T ��S� for two values T0 � 300 and 800 K.
We see that T � depends on T0 very weakly. The interval of
values of S is limited from the left by S � 2, which

corresponds to a cluster size of roughly 10 A
�
, i.e., the

smallest possible superconducting region on the order of the
coherence length in the CuO2 plane.

To determine T ��d�, we must find the mean size S of finite
clusters as a function of d. To this end, we use the results ofHu
andMak [71], who used theMonte Carlo method to study the
statistics of finite clusters S�p� in the problem of percolation
along sites for particles with a `hard core' on a triangular
lattice with the same value of percolation threshold pc � 0:85
as in our problem. Here, r is the probability that the given site
is occupied, and pc is the value of the probability correspond-
ing to the percolation threshold. Along with the scaling
nature of the behavior of S�p� in the neighborhood of pc [72]
and the proximity of the values of the percolation thresholds
in both problems, we can expect that the statistics of finite
clusters in these problems are also approximately the same.
Figure 13 shows the mean size S of finite clusters and the
percolation probability P as functions of the probability p of
site occupancy.

600

T �

500

400

300

200

100
20 40 60 80 100

S

T0 � 800K
T0 � 300K

Figure 12. Dependence of the pseudogap opening temperature T � on the

cluster size S for two values of T0.
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In the 0:1 < p < 0:82 interval the curve S�p� can be
approximated with good accuracy by the dependence

S�p� � 0:9�0:95ÿ p�ÿ2 : �10�

If in our problem we assume that the distribution of the
excess of oxygen over the positions in the chains is random,
we find that the probability p of occupancy of these positions
is equal to d. Plugging (10) into equation (9), we arrive at the
dependence T ��d� for YBa2Cu3O6�d, shown in Fig. 14 by a
solid curve. Note that this dependence depends very weakly
not only onT0 but also on the specific shape ofS�p�. Figure 14
shows the data from Ref. [73], where the pseudogap opening
temperature was determined by measuring the deviation of
the temperature dependence of resistance, R�T �, from the
linear behavior. Even allowing for the abstract nature of such
a method of determining the pseudogap opening tempera-
ture, its accuracy should be considered good. Interestingly,
the minimum value of the concentration at which a pseudo-
gap was still observed in the given experiment, d � 6:3,
corresponds toS � 2, i.e., the smallest possible superconduct-
ing cluster.

Such fluctuational superconductivity, which emerges in
microscopic regions of underdoped or optimally doped
samples, is the main cause of other anomalies: fan-shaped
broadening of the resistive transition [74, 75] and a jump in
heat capacity [76] in a magnetic field, the anomalous Nernst
effect [77], diamagnetic activity above Tc [78], the appearance
of a pseudogap after irradiation of optimally doped samples,
etc.

8. Incommensurate modulation of charges and
spins in La2 ± xMxCuO4

8.1 The current situation and statement of the problem
The past few years have seen many papers devoted to the
study of hole-doped cuprate high-Tc superconductors that in
one way or another use the concept of stripes to analyze the
results of research in this field [80 ± 91]. This concept
presupposes the existence of incommensurate modulation of
the spin AFM structure in the form of antiphase domains of
antiferromagnetically ordered spins separated by narrow
extended stripes of doped holes.

In experiments on magnetic neutron scattering, such
modulation, characterized by a wave vector Q, is observed
in the form of two incommensurate peaks shifted in relation
to the AFM wave vector QAFM(1/2, 1/2, 0) by e � 1=T along
the modulation vector. Here, T is the period of the magnetic
structure in units of the lattice constant. Accordingly, for
charge modulation the period is T=2, while the related
incommensurate modulation of the charge density is 2e.

The results of neutron diffraction studies of the magnetic
texture of La2ÿxSrxCuO4 and La1:6ÿxNd0:4SrxCuO4 [92 ± 97]
can be summed up in the form of a phase diagram (Fig. 15a).
We see that the incommensurate elastic-scattering peaks,
related to static modulation (hatched areas in Fig. 15a), are
observed at Sr concentrations x4 0:06. In the interval
0:07 < x < 0:015, there are incommensurate peaks in inelas-
tic neutron scattering, which indicate the presence of
dynamic modulation of the spin texture. At x < 0:07 there
are `diagonal' stripes with a single modulation vector
directed along the orthorhombic axis b, while at x > 0:055
there is modulation in two directions parallel to the
tetragonal axes (`parallel' stripes). In the intermediate
region 0:055 < x < 0:07 both types of modulation can be
observed. To be able to compare the spin structures that
appear for the cases of diagonal and parallel stripes, both
types are examined in tetragonal coordinates. Here, the spin
modulation incommensurability parameter d � e for pa-
rallel stripes and d � e=

���
2
p

for diagonal stripes. For
0:03 < x < 0:12 there exists a very simple relation (observed
in experiments) between the incommensurability parameter
and concentration: d � x.

The emergence of a stripe structure caused by the
competition between electron phase separation and long-
range Coulomb repulsion has been studied theoretically in
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the values of lcom for the given percolation region.
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Refs [80 ± 87]. An alternative mechanism of formation of an
insulating `stripe' phase in a lightly doped high-Tc super-
conductor due to nesting of the Fermi surface has been
suggested in Refs [88 ± 91]. Both theories, however, experi-
ence certain difficulties in describing the entire set of
experimental results. The main ones are:

(1) the transition from diagonal stripes to parallel stripes
(in LSCO) at x � 0:06;

(2) d � x for 0:04 < x < 0:12 and d � const for x5 0:12;
(3) the emergence of static correlations in LSCO within a

narrow region of concentrations at x � 0:12 (known as stripe
pinning); and

(4) the one-dimensional nature of diagonal stripes and the
two-dimensional nature of parallel stripes.

In an attempt to overcome the difficulties that appear in
analyzing the results of neutron experiments, Gooding et al.
[98, 99] proposed a physical spin-glass model based on the
assumption that the distribution of the localized doped holes
is chaotic. According to them [99], in the spin-glass phase the
doped holes are localized in the CuO2 plane. Being localized
in a certain region, such a hole generates a long-range field of
spin distortions. The emerging distortions of the AFM
background can be described as the creation of a topological
excitation, a skyrmion [100, 101], with a topological charge
Q � �1 corresponding to twisting of the AFM order
parameter (Fig. 16) in the vicinity of a localized hole.

Thus, doping destroys long-range AFM order and leads
to the formation of antiferromagnetically ordered disoriented
microdomains whose boundaries (domain walls) are specified
by localized doped holes, while the directions of AFM
ordering in neighboring microdomains are turned in relation
to each other through a certain angle (what is known as spin
twisting). This model made it possible to explain the various
features of the spin texture of La2ÿxSrxCuO4 observed in the
spin-glass phase [102].

Below we give an alternative explanation of the observed
spin and charge modulations. We use several ideas from
Gooding et al. [98, 99] and combine them with our ideas
concerning the mechanism of formation of ÿU centers,
dopant ordering, and percolation. To this end, we will first
attempt to guess the type of spin texture (which differs from
the classical stripe pattern) for some strictly ordered distribu-
tions of doped holes with x � xcom, which leads to a pattern of
spinmodulation that can be observed in experiments. Such an
approach is justified, since we can expect the stripe model to
be valid for an ordered distribution. What is more, the results
of the experiment done by Fujita et al. [97] show that for
0:07 < x < 0:12 (the region of parallel stripes), the correla-
tion length increases from 25 A

�
at x � 0:07 to 200 A

�
at

x � 0:12. It is only natural to relate the increase in the size
of the correlation region to the ordering of separate AFM
domains and to assume that the latter is due, in turn, to the
ordering of doped holes and, correspondingly, dopant ions.

Next, we will examine how the correctly guessed texture is
transformed when x < xcom and when we deviate from the
strictly ordered distribution of holes. We will then show that
within a certain range of concentrations xp < x < xcom the
main relations (which can be determined through experi-
ments) that hold for an ideal lattice of holes at x � xcom are
conserved.

8.2 Parallel stripes
Let is examine the case of complete ordering at xcom � 1=8.
We assume that each hole circulates along the oxygen square
surrounding a copper ion and that because of the interaction
between the hole current and the spins of the four nearest
copper ions the latter are polarized and the emerging
distortions of the AFM background can be described as the
creation of a skyrmion [100] with a topological charge�1 (see
Fig. 16).

Figure 17a shows a possible ordering of the projections of
Cu spins on the CuO2 plane for a completely ordered
arrangement of localized holes at x � xcom � 1=8, where
they form a square

���
8
p � ���

8
p

lattice. Here, the CuO2 plane is
broken into separate antiferromagnetically ordered tetrago-
nal microdomains whose angles are determined by the
localized doped holes. The projections on the CuO2 plane of
the directions of spins of Cu ions that are at lattice sites are
indicated by arrows. The emerging consistent ordering is
characterized by the AFM ordering of the microdomains
and by the ordered alternation of skyrmions with charges
Q � �1. Such ordering, as Fig. 16a shows, leads to an
imitation of a magnetic stripe structure. The magnetic
modulation period in this case is equal to the total size of
two antiphase domains along the modulation vector,

T � 2
���
2
p

lcom � 8; d � 1

8
� x ; �11�

in accordance with the experimental results. Such a picture
agrees with the work by Savici et al. [103], who applied the
muon spin relaxation (msR) method to La1.88Sr0.12CuO4 and
discovered the existence of antiferromagnetically ordered
microdomains (with sizes ranging from 15 to 30 A

�
) in which

the directions of magnetization are correlated on a scale up to
600 A

�
. Note that, as Fig. 17a shows, in this case there are no
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Figure 16.Rotation of the directions of spin projections on the CuO2 plane

in the vicinity of a skyrmion for topological chargesQ � 1 (a) andQ � ÿ1
(b).
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lattice. The hatched areas represent the

microdomains that form horizontal stripes. (b) The same as in (a) but for

x < 1=8. The plane is broken into domains separated by diagonal

dislocations. The displacement of stripes by one cell, which appears on

each dislocation, leads to an effective `tilting' of stripes through an angle

yY.
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charge stripes in the form predicted by the theory. However, it
must be said that in the case at hand we dealt with
commensurate modulation which yields no satellite peaks in
the diffraction patterns. Satellite reflections can appear only
in the case of incommensurate modulation. Moreover, in
their experiment, Tranquada et al. [92] also observed charge
modulation in the form of an incommensurate splitting of the
lattice peaks (2� 2e, 0, 0) and (0, 2� 2e, 0).

To understand why this occurs, let us go from a
completely ordered lattice of doped holes at x � 1=8 to their
distribution at x < 1=8. We begin by examining the experi-
mental data gathered for the region where static parallel
stripes exist at x � 0:12 [97, 104]. This gives us the possibility
of comparing in detail the results of experiments with our
model.

Kimura et al. [104] used an La1.88Sr0.12CuO4 sample to
observe the modulation of a spin texture with an incommen-
surability parameter d � 0:118. This corresponds to a mean
texture period T � 8:5 (in units of a), i.e., the alternation of
two periods, T1 � 8 andT2 � 9. Figure 17b shows the picture
we proposed of an ordered distribution of doped holes (and
hence of dopant projections) for a mean concentration
x � 0:118, which was obtained by partitioning the comple-
tely ordered distribution at x � 0:125 along the diagonal and
shifting one part in relation to the other by the vector
q � �1; 1�. Such a shift conserves the coherence of ordering
in domains on both sides of the dislocation (with a small
phase shift) and increases by unity the distance between
neighboring parallel stripes. Actually, we introduce a diag-
onal dislocation with a width equal to one cell. Such a
structure (Fig. 17b) produces characteristic reflections in the
diffraction pattern, and these reflections correspond to
incommensurate modulation of both spin (with an incom-
mensurability parameter d) and charge (with an incommen-
surability parameter 2d). The condition of conservation of the
mean concentration yields

Tdxm � �Td ÿ 1� xl : �12�
In this case, Td is the mean dislocation period in units of a,
and xl is the local concentration of holes inside a domain. To
maintain the mean concentration xm � 0:118 for a local
concentration inside a domain xl � 0:125, the introduced
diagonal dislocations must have a mean period
Td � T1 � T2 � 17. Such quasiperiodic dislocations, which
lead to incommensurate modulation of the crystal structure
and the spin texture, guarantee the possibility of observing
incommensurate reflections in diffraction experiments.

What makes the pattern of ordering so special is that, as
Fig. 17b shows, the parallel stripes are shifted by one lattice
constant, i.e., they can be tilted by an angle yY � 1=17 � 3:3�

in relation to the tetragonal axes. It is these `tilted' parallel
stripes with a tilting angle of 3� that were observed byKimura
et al. [104].

Fujita et al. [97] studied the dependence of the angle yY on
the type of crystal structure in the compound
La1:875Ba0:125ÿySryCuO4. They found that partial substitu-
tion of Sr for Ba at y � 0:06 leads to a transition from the LTT
phase [105] to the LTLO (low-temperature less-orthorhom-
bic) phase. Here, the stripe tilting angle gradually changes
from yY � 0 at y � 0:05 (in the LTT phase) to yY � 2� at
y � 0:09 (in the LTLO phase), with d � 0:120� 0:01 in the
entire range of Sr content.

From the condition that d � 0:120 for all values of y it
immediately follows that the mean period T � 8:33, with the

periodTd � 3T � 25. Here, from equation (12) it follows that
for amean dopant concentration xm � 0:125 the local dopant
concentration xl inside the domains is 0.130. This is easy to
understand if we assume that a small fraction of the Sr ions
(6 ± 10%) occupies such positions in the corresponding layers
(La/Ba ±O) that their projections on the CuO2 planes land at
the middle points of the squares. In other words, doped holes
start to fill the lattice beginning with lcom � 2, i.e., a
completely ordered state (when at x � 1=8 the dopants
occupy all positions in the

���
8
p � ���

8
p

lattice) in the case of
La1:875Ba0:125ÿySryCuO4 is not realized in the range of
concentrations y under investigation. This immediately
follows from a comparison of the phase diagrams Tc�x� of
La2ÿxBaxCuO4 and La2ÿxSrxCuO4 (Figs 8b and c). The deep
dip in Tc�x� at x � 1=8 in La2ÿxBaxCuO4 compared to the
small kink in La2ÿxSrxCuO4 suggests that in the first case the
dopant ordering in a

���
8
p � ���

8
p

lattice is much more complete
than in the second.

If there is a preferred direction for dislocations (one of the
orthorhombic axes), then at d � 0:120 the stripe tilting angle
yY � 1=25 � 2�, which corresponds to the maximum value of
yY observed by Fujita et al. [97] for y � 0:085 at the boundary
between the LTLO and LTO phases. On the other hand, in
the LTT phase both directions are equivalent, so dislocations
in both directions that slant the stripes in opposite directions
are equiprobable. As a result, the average tilting angle yY � 0
in the intermediate case where 0:05 < y < 0:09. The angle yY
is determined by the predominance of dislocations of a single
direction, which means that yY will increase as x increases
from 0.05 to 0.09.

Let us now discuss the temperature dependence of
magnetic ordering and its relation to charge ordering. Fujita
et al. [106] found that the emergence of long-range magnetic
order (a magnetic stripe structure) is observed at tempera-
tures TM below the charge ordering temperature Tch, which,
in turn, coincides with or is below the temperature of the
LTO!LTT(LTLO) transition.

As shown by Billinge et al. [107] and Haskel et al. [108,
109], the LTT±LTO±HTT transformations are of the
order ± disorder type in which the local tilts of the oxygen
octahedrons in microdomains with a size of about 10 A

�
do

not change and correspond to the LTT phase (rotation about
the h110i axis). In the transformations the local LTT tilts only
become more disordered with respect to each other. Since the
spins are coupled to the lattice through spin ± orbit coupling
and through the dependence of the superexchange interaction
on the octahedron tilt [110, 111], the structural disorder in the
LTO phase will destroy not only charge order but also
magnetic order. And vice versa, the restoration of this order
as the temperature is lowered and the LTO phase transforms
into the LTT or LTLO phase will successively lead to the
formation first of a long-range charge order (charge stripes)
and then of magnetic order (magnetic stripes) [106].

Let us now turn to the case of arbitrary values of x for
1=16 < x < 1=8. Here, the distribution pattern can be
obtained from the completely ordered distribution at
x � 1=8 by removing a certain number of sites one after
another. The texture imitating parallel stripes can emerge if a
percolation cluster joining

���
8
p � ���

8
p

domains into a single
antiferromagnetically ordered cluster exists.

Suppose that the lattice contains such correlated remnant
fragments of a parallel stripe texture genetically linked to���
8
p � ���

8
p

microdomains (Fig. 18a). The related neutron
diffraction pattern exhibits characteristic reflections deter-
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mined by the mean remnant texture period. In turn, the mean
period T of this texture, defined as the distance between the
middle points of single-phase magnetic stripes, includes two
occupied sites, as in the case of complete ordering. In other
words, a rectangle with an area equal to 2T (hatched area in
the figure) must contain two sites. This implies that

2Tx � 2 ; d � 1

T
� x : �13�

A sufficient condition for the above relationship to be valid is
the presence of site percolation in a domain with lcom �

���
8
p

,
i.e., for 0:0875 < x < 0:125. However, at smaller values of x
there can also be fairly large correlated clusters consisting of���
8
p � ���

8
p

microdomains. An exception is the interval near
x � 1=16, where one can hardly expect that there are
microdomains correlated over fairly large distances.

8.3 Diagonal stripes
Figure 19 shows an ordered distribution of the projections of
copper spins at x � 1=16, i.e., when the doped charges are
ordered in a 4� 4 lattice. As in the case of

���
8
p � ���

8
p

ordering,
the plane is broken into antiferromagnetically ordered
microdomains whose vertices are specified by localized
doped holes. As a result, there forms a system of mutually
perpendicular diagonal antiphase domains with a period
T � 8

���
2
p

along the diagonals. Hence, e � 1=8
���
2
p

, and
d � 1=16, in accordance with the experimental results.

As x decreases, in the interval 1=32 < x < 1=16 there
emerge correlated remnant fragments of a diagonal stripe
texture (Fig. 17b), including 4� 4 microdomains. For large
domains, due to the small radius l � a=2 of skyrmions on
their boundary, the ordering effect of the skyrmions is not
sufficient for determining the direction of ordering in the
space between the stripes. While in the case of parallel stripes
the direction of spin ordering in the space between stripes can
be either vertical or horizontal (with an equal probability), in
the case of a diagonal texture in an orthorhombic structure
there is a preferred direction along the easy-magnetization
axis a. Hence, in such fragments only one ordering direction,
along a, is retained, and the modulation vector is directed
along the other orthorhombic axis, b.

Repeating the same line of reasoning as for parallel stripes
at 1=16 < x < 1=8, we find that between the centers of single-
phase microdomains along the modulation vector parallel to
the b axis (precisely, in a rectangle with an area of 2

���
2
p

T) there
are two occupied sites. In other words, x � 1=

���
2
p

T �
e=

���
2
p � d, in accordance with the experimental results.

Thus, the relation d � x is, to a certain extent, accidental
and is related to the fact that in the case of parallel stripes the
occupied sites are located on lines separated by a distance of
2a, while in the case of diagonal stripes they are located on
diagonals separated by a distance of 2

���
2
p

. Hence, this relation
is valid only in the interval 1=32 < x < 1=8, which agrees with
the experimental results.

8.4 Dynamic stripes
The last problem that we will discuss in this section deals with
static and dynamic stripes. Figure 15a shows an experimental
magnetic phase diagram for La2ÿxMxCuO4 (M � Ba, Sr).
Figure 15b shows the concentration ranges within which there
can be antiferromagnetically correlated clusters of

���
8
p � ���

8
p

microdomains for 1=16 < x < 1=8 and 4� 4 microdomains
for 1=32 < x < 1=16. The dashed lines limit the regions of
existence of percolation clusters with L � 3 and L � ���

5
p

.
Such chains of doped holes in the CuO2 plane may border
on a cluster consisting of AFM microdomains. According to
what we have said earlier, in regions corresponding to the
existence of percolation clusters with L � 3 and L � ���

5
p

, ÿU
centers that act as pair acceptors are formed on pairs of
neighboring copper ions, and conductivity along the corre-
sponding chains of ÿU centers appears in these regions. This
emergence of conductivity destroys the static spin correla-
tions because of the motion of charges that disrupt the
magnetic order along its path. In this case, spin correlations
can be observed only in inelastic neutron scattering as
dynamic incommensurate magnetic fluctuations. What is
remarkable (see Fig. 15b) is that in addition to the region
x < 0:07 there is a narrow interval of concentrations
0:11 < x < 0:125 where there is no percolation along ÿU
centers, and it is precisely in this interval that static
incommensurate correlations are again observed.

9. Conclusions

In this review we have shown that many properties of high-Tc

superconductors observed in experiments have a natural
explanation in the framework of the model we proposed.
We believe that under doping the transition from the

a b

Figure 18. Fragments of a magnetic stripe texture. The texture's period,

which is defined as the minimum distance between the middle points of

single-phase magnetic stripes, includes two occupied sites within a band of

width lcom=
���
2
p

(hatched area). (a) Parallel stripes; the arrows indicate the

directions of spin projections at each site. (b) Diagonal stripes; the arrows

indicate the directions of AFM ordering in a microdomain.

Figure 19. Projections of Cu spins in the ordering of doped holes in a 4� 4

lattice.
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insulating state to the metallic state passes through a certain
concentration range, where electron pairs can go over from
oxygen ions to the two neighboring copper cations, while one-
electron transitions are still forbidden. It is this concentration
range that corresponds to the region of high-Tc super-
conductivity, where the electron ± electron attraction is
caused by the scattering of electron pairs on ÿU centers.
Doped charges are localized, and their role is reduced to the
formation of ÿU centers. The transition of electron pairs
from the oxygen band to the ÿU centers results in the
generation of additional carriers localized near the ÿU
centers. Conductivity appears in the system as a result of
percolation along ÿU centers, precisely, along the orbitals of
singlet hole pairs, which is facilitated by the ordering of the
dopant ions. Two-particle hybridization of a pair level and
states of the oxygen band leads to dramatically new properties
of the system (nondegenerate distribution of hole carriers and
the predominant contribution of electron ± electron scattering
to energy relaxation processes), which determine the unusual
behavior of high-Tc superconductors in the normal state. We
have found that the ordering of the dopant ions in certain
lattices also leads to the formation of an incommensurate spin
texture, which imitates stripe modulation, with an incom-
mensurability parameter d � x.

We have used the proposed model to provide a detailed
explanation of the superconducting and magnetic phase
diagrams of La2ÿxMxCuO4 and have shown that the features
of the phase diagrams only reflect the geometrical relations
existing in a square lattice and the competition of different
types of dopant ordering. The good agreement between the
calculated phase diagrams and the experimental results may
serve as an important argument in favor of the proposed
model of high-Tc superconductors.

The authors are grateful for the support provided by the
Ministry of Industry, Science and Technology of the Russian
Federation (Federal Program of Theoretical and Experimen-
tal Studies of High-Tc Superconductivity Mechanisms).
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