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Generalizing considerations about
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(based on the proceedings

of M2S-HTSC-VII)

V I Belyavskii, Yu V Kopaev

1. Problems of cuprate physics
Soon after the discovery of high-temperature superconduc-
tivity in cuprates, three points were noted by Anderson [1]
which could potentially form the basis for understanding the
unusual behavior of the cuprates in both the superconducting
(SC) and normal (N) states. These points were (1) the crystal
structure of the cuprates, the main element of which are
weakly coupled copper —oxygen (CuQ») planes, is quasi-two-
dimensional (2D); (2) the SC state is due to the doping of
CuO; planes, which are Mott insulators when undoped; and
(3) the proximity of the SC to the insulating phase in a 2D
system may be the reason why the electronic states of a doped
insulator above the SC transition temperature 7, differ
radically from those in a normal Fermi liquid.

The copper —oxygen planes of a cuprate form a correlated
2D electronic system dominated by a single nondegenerate
electron band [2], with Coulomb repulsion between electrons
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on the same site as the dominant interaction. Since the
characteristic repulsion energy (the Hubbard energy Up) in a
cuprate is comparable on the order of magnitude with the
band width 7y, even the simplest models of strongly or weakly
interacting electrons are of limited applicability to the
undoped insulating phase. There is no fundamental difficulty
here, because the antiferromagnetic (AF) insulating state
arises both in the weak-interaction case, owing to the nesting
of the Fermi contour (FC) into which the Fermi surface of a
2D system degenerates [3], and in the case of strong on-site
repulsion, due to the constraint on the site occupation by two
opposite-spin electrons. The SC state arises at finite doping,
when the long-range AF order is already absent and
insulating correlations show up in the short-range AF order.

The phase diagram of an HTSC cuprate [4] typically
shows the SC state as lying in a finite doping range
X, <x<x* (x being the above-half-filling fraction of
carriers in the CuO plane). In the overdoped regime
(Yopr < X < x*, where x,,, is the doping level maximizing
T.), it is generally assumed that the transition from the SC
phase with an unusual gap symmetry to the N state occurs in
accordance with the Bardeen—Cooper—Schrieffer (BCS)
theory, i.e., the nonsuperconducting phase has properties
close to those of a normal Fermi liquid. In the underdoped
(x, <X <Xx,y) regime, there exists a temperature range
T, < T < T* in which the density of one-particle excitations
turns out to be suppressed, suggesting that a pseudogap has
opened up. Here T* is the gap-opening temperature, which
increases with decreasing doping and appears to coincide with
T, for x & xgp.

At a finite x, various phases of similar energy can coexist
in the system, such as resonating valence bond (RVB) states,
Wigner crystals of particles and of their pairs, charge density
waves (CDWs), orbital antiferromagnetism (OAF), and
superconducting states of various symmetry types. To
establish the possible symmetry of ordered states, the
phenomenology of such competing states based on very
general symmetry considerations [5, 6] can be employed.

If three components of the AF order parameter are
considered as generators of the SO(3) group and two
(amplitude- and phase-related) components of the SC order
parameter (for Cooper pairs of zero total momentum) as
generators of the U(1) group, then a five-dimensional super-
spin vector composed of these generators can be introduced
[5]. Extending the direct product SO(3) x U(l) to the
minimal group SO(5) allowing the AF and SC order
parameters to mutually transform into one another under
superspin rotations, one is forced to introduce operators
corresponding to the triplet pairs of particles with a large
total (AF) momentum. In strong-coupling models with
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repulsion such excitations correspond to antibonding states
outside the band of the continuous pair spectrum, according
to Ref. [3].

The closed algebra containing generators discussed in
Ref. [5] corresponds to symmetry SU(4) [6]. Among its
generators, in addition to those already mentioned, are
operators corresponding to singlet pairing with a large total
momentum, as well as operators that describe OAF. The
chains of subgroups of the SU(4) group (one of which
contains SO(5) and hence links antiferromagnetism and
superconductivity) produce a great diversity of ordered
states which can prove to be energetically close to one
another. Note that each of the chains contains SU(2) among
its subgroups.

One of the key criteria for adequately choosing the
microscopic model is that it must describe the pseudogap
state observed in underdoped HTSC cuprates. There is
currently unambiguous experimental evidence that the
pseudogap regime in the cuprates at 7, < 7' < T is due to
the existence of incoherent SC pairs (so that 7* corresponds
to bond breakdown in a pair and T, to phase coherence
appearing in the system of pairs [7]): (1) the symmetry of the
pseudogap is identical to the d-wave symmetry of the SC gap
[8]; (2) the Nernst effect in the pseudogap regime is
anomalously large, presumably due to vortex motions [9];
(3) the real and imaginary parts of the high-frequency (to 660
GHz) conductivity in the pseudogap regime relate in a similar
way to those of SC static conductivity [10]; and (4) the giant
proximity effect is observed in systems with SC phases
separated by an interlayer in the pseudogap state [11].

ARPES (angle resolution photoemission spectroscopy)
data suggest that the pronounced quasiparticle peak observed
close to the Fermi level at T < T, is absent in the pseudogap
state [12]. This implies that one-particle excitations well-
defined at 7 < T, rapidly damp out at 7 > T,, making
Landau’s Fermi-liquid theory inadequate for describing the
pseudogap state. Understanding the nature of this state is key
to understanding both SC and other unusual properties of the
HTSC cuprates [13].

At present, two approaches are being developed to build
the theory of the HTSC cuprates. One approach looks at how
the SC phase emerges from one of the insulating phases as
doping is increased. The second examines the way insulating
correlations manifest themselves against the background of
the SC state as doping is decreased.

2. Pseudogap. Algebraic Fermi liquid

The pseudogap can be considered as a ‘footprint’ the SC gap
leaves when a transition to the N phase takes place. As the
temperature is increased in the underdoped regime, this
footprint becomes increasingly less visible, finally vanishing
at temperatures ~ 7*. Thus, changing from the pseudogap
state at 7' < T* to the normal Fermi liquid state at 7> T* is
some kind of crossover rather than phase transition [14]. The
question is, what mechanism can preserve a gap in the
fermion branch of the elementary excitation spectrum while
destroying the phase coherence of the pairs?

The SC order parameter A(r) = Agexp [i®(r)] is char-
acterized by an amplitude 4,, which determines the magni-
tude of the gap, and by a coordinate-dependent phase @(r). In
the coherent state, the average value of the order parameter is
nonzero ({4(r)) # 0), whereas in the incoherent pseudogap
regime clearly (4(r)) =0 due to random fluctuations.
According to the scenario of Ref. [7], phase slip occurs at a

temperature Tp, which is determined by the superfluid
stiffness pg ~ n5(0), with ns(0) the density of SC electrons at
T=0. In conventional superconductors the superfluid
stiffness is high, so Ty, > T¢, and phase fluctuations play
only aminor role. T, can then be determined in the mean-field
approximation in accordance with the BCS theory. Cuprate
superconductors viewed as doped Mott insulators are
characterized by a low superfluid stiffness (proportional to
the doping level x) and, as appears to be the case for the
underdoped regime, Tpn ~ T¢, i.e., the phase transition is
determined by precisely the temperature at which the order
parameter undergoes a phase slip. This can qualitatively
explain the so-called Uemura plot [15] for cuprates, accord-
ing to which T, ~ ng(0). The phase transition from the
incoherent to the coherent state at T, is considered in Ref. [7]
as the Bose condensation of incoherent pairs that are already
in existence (were created at 7 ~ T *) in the system.

The low superfluid stiffness and the d-wave symmetry of
the SC gap and pseudogap in a 2D electronic system are two
features based on which those cuprate properties depending
on low-energy excitations can be described within a unified
phenomenological framework using a few parameters and in
a way independent of detailed microscopic behavior. Unlike
Ref. [7], in such a quantum-protectorate scheme [16] the phase
transition from the SC to the pseudogap state is treated as a
Berezinskii—Kosterlitz— Thouless transition. Order-para-
meter-phase fluctuations are considered as either classical
[17, 18] or quantum [19] and are due to elementary excitations
arising from the breakup or weakening of a bond in a vortex —
antivortex pair. This approach allows a qualitative tracing of
a transition from the d-wave SC gap, whose nodal points,
following the SC transition, transform into extended gapless
arcs which form the Fermi contour in the pseudogap state.

The most consistent phenomenology — the one developed
in Refs [20, 21] — includes quantum and thermal order-
parameter fluctuations and assumes the d-wave SC state to
arise from a strongly correlated insulating state as a result of
doping. The unusual symmetry of the order parameter, which
has nodal points at which the SC gap vanishes on the Fermi
contour, leads to low-energy fermion excitations near these
points. It is estimated that in the cuprates the dimensionless
parameter (fok}?)71 characterizing fluctuation effects (&, is
the mean-field coherence length and k. is the Fermi wave
vector) exceeds 10! (compared to (Eokg) ™' ~ 1074—107% in
conventional superconductors), which provides a wide
fluctuation temperature range 7, < T' < T* where dephased
pairs can exist.

The so-called ‘inverted’ approach to cuprate supercon-
ductivity [21] aims at identifying a state at 7 > T, which is
realized through a softer mode compared to one-particle
excitations due to pair breakup. The fundamental point the
theory makes is that the most significant thing electron
correlations do at the microscopic level is creating a large
d-wave-symmetric pseudogap which results from particle
pairing. Just as Landau quasiparticles are produced from
free-particle states by adiabatically turning on an interaction
in the theory of a normal Fermi liquid, in the scheme of
Ref. [21] the pseudogap regime arises from free d-wave
symmetric Bogolyubov particles. The pseudogap-opening
temperature 7 (proportional to the pseudogap amplitude)
then plays the role of the theory’s largest energy scale —
similar to the Fermi energy in the Landau theory. This makes
low-energy excitations rather well defined owing to a sort of
pairing protectorate [21].
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The elementary fermion excitations in this picture are
Bogolyubov quasiparticles interacting with collective modes,
which manifest themselves as the thermal and quantum
fluctuations of the order-parameter phase, i.e., as excited
vortex —antivortex pairs. According to Ref. [20], such an
interaction can be described by two U(1) gage fields, one of
which is massive in both the coherent and incoherent states
and accounts for the Doppler shift in quasiparticle energies
[17, 18, 22], whereas the other is massive in the coherent (SC)
state and becomes massless on transition to the incoherent
(pseudogap) state, implying that unbound vortex —antivortex
states form. Such a soft (zero-mass) well-defined (weakly
damped) collective mode plays, against the background of
incoherent pairs, the same quantum-protectorate role as
weakly damped one-particle states of a Fermi liquid play in
the BCS theory. The small superfluid stiffness at low doping is
explained by the small value of the vortex —antivortex binding
energy.

It turns out [21] that due to the d-wave order parameter
having nodes, the corresponding theory is formally equiva-
lent to anisotropic (2 + 1)-dimensional quantum electrody-
namics (QED, ). According to this theory, the behavior of
fermion excitations is essentially a non-Fermi-liquid one.
The so-called ‘algebraic’ Fermi liquid (AFL) that arises in
this way replaces the ordinary Fermi liquid as the basis of the
theory of the pseudogap state. The properties of AFLs put
them closer to the Luttinger than to the Fermi liquid in that
quasiparticle excitations have a large damping whereas the
feature of being well-defined is, on the contrary, found in
collective modes.

Analytical results obtained in the framework of QED,_
are presented formally as a power series in 1/ N, where N is the
number of pairs of nodes. For example, for a cuprate with a
single CuO; plane in the unit cell, Ref. [21] assumes N = 2 in
accordance with the proposed d-wave gap symmetry. For
more layers per unit cell, it is assumed [21] that N =4 (two
CuO;, planes) or N = 6 (three CuO; planes). The larger N is,
the better the estimate of the leading (proportional to 1/N)
term in the power series in 1/N.

As noted in Ref. [21], for N < N,, where N, = 32/n?, a
gap is spontaneously developed in the fermion excitation
spectrum at 7' = 0 due to the violation of chiral symmetry in
QED,_, which signals, in accordance with the cuprate phase
diagram, a phase transition from the AFL to the AF state.
The formation of the gap leads to the AF state, which can be
considered as a precursor of the Mott AF half-filling state.
For N > N., the nonsuperconducting state preserves its
chiral symmetry even for 7'— 0, and the only way this
state can give rise to AF order is by decreasing doping.
This conclusion, as noted in Ref. [21], is in principle not
inconsistent with a number of theories linking the pseudogap
behavior to the competition of ordered states that arise in
the particle—hole pairing channel. In particular, OAF with
a d-wave symmetric gap and the associated d-density wave
(DDW) can be considered as such chiral-symmetry-violating
ordering.

QED, | phenomenology is not concerned with what is the
microscopic mechanism that produces BCS type states with
d-wave pairing, nor does it include the effect of Coulomb
interaction, i.e., the dielectrization of the system at half filling
and the appearance of a state other than BCS (possibly with
d-symmetry preserved). Therefore, the predictions of the
theory of Ref. [21] preserve their validity upon inclusion of
the Coulomb interaction (to be discussed below).

3. Resonating valence bonds. Separation of charge

and spin degrees of freedom

Whatever microscopic approach is taken to cuprate super-
conductivity as a perturbationally inaccessible problem of
many strongly interacting particles, a certain guess must be
made in some way or another, as in the BCS theory, as to what
ground-state wave function describes the key properties of the
system best.

The function proposed by Anderson [1] relies on the
concept of resonating valence bonds and is represented as a
linear combination of configurations of singlet bonds
(opposite spin electron pairs localized on copper atoms in
the CuO; plane) and vacancies (doping-induced holes), under
the absolute prohibition on one and the same site being
occupied doubly by opposite spin electrons. The bonds are
treated as already-formed electron pairs, so that their wave
function (assuming a d-wave symmetric gap) could be written
in the usual BCS form

IBCS) = [ [ +vecfiély)Ivac), (1)
k

where |vac) is the vacuum state, u; and vy are the Bogolyubov
transformation amplitudes, and EIIT (¢_y,) are the creation
(annihilation) operators for electrons with momenta +k and
spins ¢ =T, |, respectively. The double occupation prohibi-
tion can be included using the Gutzwiller projection operator
[24]

P=1]00=am), (2)
i
where 7, is the occupation number operator for an electron
of spin ¢ on site i. Thus, Anderson’s RVB wave function is
written as

[RVB) = P|BCS). (3)

This is considered as a trial wave function in which the order
parameter 4 in |BCS) is a variational parameter interpreted as
the pseudogap magnitude. As doping decreases, the value of
A increases, in qualitative agreement with the observed T *(x)
dependence. The superfluid stiffness turns out to be propor-
tional to doping x rather than to total electron concentration
1 — x. Thus, the Gutzwiller projection corresponds to the
dielectrization of the system for x — 0 in a natural way.

The implications of choosing the wave function of the
form (3) have been examined numerically by many authors
using the Hubbard model (see, for example, Refs [25, 26]). It
has been found that a theory involving RVBs predicts a wide
diversity of behaviors the system exhibits depending on the
ratio of the Hubbard energy to the energy band width U, /1,
which is the parameter of the theory. Some of the predictions
of the RVB model (in particular, those concerning the
magnetic properties of the cuprates) are in qualitative
agreement with the experimental data available.

A widely used framework for describing the insulating
(Mott) half-filling state is the 7—J model, in which electron
hopping integrals between neighboring sites are suppressed
compared to the initial value (f)) due to the prohibited
occupation of a site by two opposite-spin electrons and turn
out to be proportional to the doping level x. The exchange
interaction between electrons on neighboring sites is propor-
tional to 72/U,. Although this is currently a widespread
approach to the theoretical study of the cuprates, it has been
noted (Laughlin [27]) that the Hubbard-model or z—J-model
results obtained by different authors turn out to be highly
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sensitive to calculation details and often are hardly consistent
with one another. There is apparently no convincing evidence
to support the possibility of the SC state within the 2D
Hubbard model [27].

A more consistent approach to the problem is one that
underlies the RVB model [1] and assumes charge and spin
variables to be separable (which is strictly justified for one
dimension only). The reason for such separation is a strong
electron —electron interaction, whose elimination allows new
quasiparticles — a spinless /olon carrying the hole charge and
an uncharged spinon carrying spin ¢ = £1/2 — to be defined.
The holons and spinons can be considered as weakly
interacting quasiparticles; and for their description, the
mean-field approximation can be used.

The simplest U(1)-symmetry separation form ¢ c,m fmbn
[28] ( is the creation operator for a particle of spin ¢ on site

L 18, the same for a spinon of zero charge and spin ¢ on site
n; and b, is the annihilation operator for a zero spin holon on
site ) leads to a number of difficulties, for the overcoming of
which an SU(2)-symmetry-based transformation which intro-
duces a doublet of Fermi operators instead of f;| [29] has
been proposed. Since the deviation from half-filling violates
the SU(2) symmetry, in order to restore it at x # 0, the boson
singlet b, was replaced by a doublet of Bose operators by, b,»
[30, 31]. The diversity of phase transitions is accounted for by
sets, of different symmetry, of anomalous averages which are
defined on operators f and b/ and violate SU(2) symmetry.
Going beyond the mean-field approximation — which
corresponds to projecting the thus found wave functions of
various ordered states onto SU(2) space — restores the SU(2)
symmetry and can correspond to strongly developed fluctua-
tions of such ordered states.

The materials with large values of Uj clearly are insulators
under all conditions and show no signs of superconductivity.
In the cuprates, U, are moderate in value, so the complete
prohibition — realized by the Gutzwiller operator — on the
occupation of a site by two opposite-spin electrons appears to
be an excessively stringent constraint. Reference [26] offers a
trial wave function of the form

IPRT) = ¢*|RVB),, (4)

where the operator e’ partially restores the possibility of a
site being occupied by two electrons. As before, the varia-
tional parameter 4 in |BCS) plays the role of a pseudogap,
and the off-diagonal long-range order (ODLRO) parameter
calculated in Ref. [26] — and hence T, — vanishes at x =0
and has a maximum at a certain optimum doping. The jump
in the distribution function at the Fermi momentum in the
directions of SC gap zeros tends to zero for x — 0, which
corresponds to the dielectrization of the system and to a low
superfluid stiffness, p, ~ x. According to experimental data,
p, and T in the strongly underdoped regime are proportional
to x — X,, and their domain of definition, as is seen from the
phase diagram of the cuprates, is the doping interval
x, <x<x*.

We note also that there is apparently no reason in
principle why QED,_; phenomenology based on the |BCS)
function with a d-wave gap cannot be extended to the
corresponding |[RVB) and |PRT) functions.

4. Laughlin Hamiltonian
Experimental data are by and large consistent with the
understanding that, as the temperature is increased, super-

conductivity persists at 7> T, in the pseudogap regime of
underdoped cuprates and that it coexists with antiferromag-
netism [27]. Since the SC state (which is dominated by the
insulating state in the pseudogap regime) manifests its
properties extremely weakly, an electron system that makes
the SC transition has a low superfluid stiffness and exhibits
strong fluctuation effects. ‘Hidden’ deep in the insulating
state, this kind of superconductivity has come to be known as
gossamer superconductivity [27], a very difficult term to
translate into Russian.

Laughlin [27], allowing for site occupation by two
opposite spin electrons — the possibility completely ruled
out only in the limit of very large Uy, — proposed the
following wave function to describe a gossamer superconduc-
tor (GS):

|GS) =

where 0 < oy <

I1(x)|BCS), (5)

1 is a measure of how effective the operator

H VIR oty ) (6)
J

is in preventing double site occupation. In a real material, o is
determined by the Coulomb repulsion Uj. Although called
the partial projection operator, II(x) is not actually a
projection operator and, unlike the Gutzwiller operator P, it
has the inverse operator IT (). The point of introducing the
parameter z, in Eqn (6) is to keep the total number of particles
1 — x unchanged as the parameter o is varied. The parameter
o=1-(1- 950)2 so that for « = 0 function (5) is identical to
|BCS) and for « = 1, to |RVB), because I1(1) = P.

Using the partial projection operator (6) to transform the
Bogolyubov quasiparticle operators b, , i.e., introducing new
operators

Biy = M(@)bie [T (), (7)

the Hamiltonian of the system becomes

I:I = Z Ekéliaélw ’ (8)
ko

where the quasiparticle energy is E, = (Ekz + A,f)l/z, & is the
electron kinetic energy measured from the chemical potential,
and 4y = Ag(cosk,a — cos k,a) is the d-wave gap. By defini-
tion,

B,,|GS) =0, 9)

e., |GS) is the exact wave function of Hamiltonian (8).
Because this latter in a non-negative operator, |GS) turns
out to be the exact zero-energy ground state.

Since transformation (7) is noncanonical, it fails to
preserve the anticommutation relations between the Fermi
operators bka, bkg on changing to the new operators Bkg, B,w,
preventing these latter from being considered as creation and
annihilation operators for new Fermi quasiparticles. The
physical content of this result is associated with the interac-
tion of quasiparticles, whose definition is obtained by
introducing variational functions

ko) = I1(2) b,|BCS) , (10)
allowing the energy of a quasiparticle to be determined. It
turns out [27] that partial projection has virtually no effect on
the quasiparticle dispersion law.
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A continuous adiabatic transition oy — 0 causes the
ground state |GS) to continuously transform to the ground
state |BCS). Since the ground states and low-energy excita-
tions of GS and BCS superconductors are in one-to-one-
correspondence, GS describes the same state of the material
that BCS does, according to Ref. [32].

The partial prohibition of the double occupation of a site
leads to the pseudogap-state-inherent renormalization of the
BCS coherence factors, as well as suppression of the
photoemission intensity and superfluid stiffness: as o, varies
from 0 to 1, the stiffness p, decreases from 1 to 2|x|/(1 + |x|),
vanishing at x = 0. When p decreases, the ‘partial projection’
at the same time leads to increased AF insulating correlations.

Hamiltonian (8) contains a Hubbard term U, resulting
from ‘partial projection’ (5). As the half-filled state is
approached, U increases indefinitely. But so does the
renormalized kinetic energy (¢, — ¢), and this in such a way
that the physically meaningful dimensionless parameter keeps
a finite value U/t ~ 1. In this sense Hamiltonian (8) provides
a reasonable description of AF correlations and dielectriza-
tion at half-filling [33]. That part of Hamiltonian (8) that
accounts for superconductivity is also renormalized, with the
consequence that as x — 0, the amplitude of the SC order
parameter increases — with the superfluid stiffness simulta-
neously decreasing, as already mentioned. Near half-filling,
provided the ‘partial projection’ is sufficiently strong,
Hamiltonian (8) corresponds to the Hubbard Hamiltonian
complemented with an interaction that produces d-wave
pairing in the system [32].

Although the ground state of a GS has much in common
with |[RVB) as the ground state of a doped Mott insulator, the
chemical potential in the GS scheme turns out to lie about
midway between the edges of the lower and upper Hubbard
bands (which is exactly what is found experimentally) —
unlike the RVB scheme, where the chemical potential is
shifted toward the edge of the lower band as a result of
doping [34].

In Ref. [34], an ‘effective’ Hubbard Hamiltonian supple-
mented by a term accounting for the AF spin—spin interac-
tion (term that arises in a natural way in the z—J model) is
used to find (as a function of the probability d = (7,7, ) of
the double site occupation) the renormalization factors g, and
g, for the order parameter components corresponding to the
charge and spin degrees of freedom. Near half-filling and for
d <1, it turns out that g, ~ 84 and g, ~ 4. An important
point to note here is that in the RVB scheme g, ~ 2x [34].

Knowing what the variational parameter o in Eqn (7) and
the corresponding renormalizations mean makes somewhat
clearer the way d-wave superconductivity in the presence of
DDW is treated in Ref. [35]. Let 4,(k)=4,f(k) and
A,(k) = A,g(k) be the SC and DDW order parameters,
respectively, where 4, and 4, are the amplitudes and the
functions f'(k) and g(k) give the angular dependences of the
order parameters. Then, if these dependences are identical,
i.e., f(k) = g(k) = cos2¢ (which is most probably the case in
the cuprates), the superconducting stiffness has the form [35]

_ A
A2+ A3

Ps (11)

which corresponds to p, being significantly suppressed at
small x, when the dominant correlations are AF ones, and
4, < 4,. Note that for the case f(k) = cos2¢, g(k) = sin2¢,
it is found [35] that p, = 4, /(4, + 4,).

5. Hidden order and current circulations

In Ref. [23] it is assumed that the pseudogap observed in the
cuprates is a true gap in the spectrum of one-particle
excitations with momenta (w,0) and that it arises due to the
appearance of a certain ordered state related to OAF (DDW
order, leading to a staggered distribution of the signs of
orbital current circulations over units cells, or the so-called
staggered-flux state [36]). Earlier studies of ordered current
states both used the Fermi-surface-nesting version of the
band theory (toroidal magnetic ordering) [37] and relied on
the Hubbard model [38, 39]. Since the OAF-related order is
hard to observe experimentally, the term ‘hidden’ was
introduced [23] for the order assumed to compete with
superconductivity. There is evidence that such ‘hidden’
order is observed in underdoped cuprates [40].

This model explains many properties of the cuprates, e.g.,
the fact that the symmetry of the pseudogap (DDW gap 4,) is
identical to that of the d-wave SC gap [23]. One objection to
the pseudogap state model of Ref. [23] is the absence at
T = T* of thermodynamic singularities inherent in second-
order phase transitions (in heat capacity, for example).

In Ref. [41] it is shown that a phase transition from the
insulating DDW state occurs not due to the breakdown of the
electron—hole pairs but rather due to fluctuations which
translate d-symmetric current contours into p-symmetric
ones (this corresponds to the div j = 0 constraint on fluctuat-
ing currents j, equivalent to prohibiting a site from being
occupied by two electrons in the Hubbard model). Fluctua-
tions with symmetry change d — p are analogous to the
appearance of a vortex —antivortex pair in QED,, ; phenom-
enology. In Ref. [41] it is shown that such a phase transition is
an infinite-order transition, which does not lead to a heat
capacity singularity.

The DDW order splits the Brillouin zone into two
magnetic subzones, so that an FC should consist of isolated
hole pockets if doping is low. ARPES shows, however [42],
that in hole-doped cuprates the FC appears in arc rather than
pocket form. According to Ref. [43], the spectral density
corresponding to the first magnetic Brillouin subzone greatly
exceeds the contribution from the second. The difference in
the intensity and structure of ARPES spectra between the
superconducting and pseudogap states is explained in
Ref. [43] by two facts: first, the coherent factors of these
states are different in nature; and second, the d-wave SC gap
has only zero points — as opposed to the zero lines of the
DDW order parameter in the pseudogap state (antinodal
quasiparticles, which are relatively high-energy excitations,
are assumed to damp out due to the creation of electron —hole
pairs along the FC arcs in the DDW state).

Within the framework of the generalized r—J model,
which preserves SU(2) symmetry even away from half-filling
[30], the pseudogap state is described as fluctuations between
SC and OAF (staggered-flux phase) d-wave states. Ivanov et
al. [44] employed this model to study current—current
correlations in the |[RVB) state with a d-wave order para-
meter. The study established the existence of slowly falling
(with distance) correlations of currents that have opposite
signs of circulation in neighboring unit cells [44, 45]. This
suggests that in the pseudogap region 7, < T < T* it is
precisely these correlations that manifest themselves as
broken vortices and antivortices (which are current circula-
tions of opposite sign). In accordance with the QED,,,
scheme, it is their existence that causes the violation of phase
coherence. In this way, it is possible to describe the evolution
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of the insulating SC state into the SC state as doping
increases.

In Ref. [44] it is assumed that the state of a d-density wave
manifests itself in the form of well-developed fluctuations
obtained from an ordered |[DDW) state by projecting it by
means of Psu(z) onto a subspace of group SU(2) such that one
of the following three states on each site is allowed: (1) one of
two fermions of the doublet f}, f; (2) boson b; with no
fermions; and (3) boson b, together with both fermions f, f,.
As a result of this projection, the translational and time
reversal symmetry violated by the DDW state are restored.
The pseudogap state arises due to the Bose condensation of
bosons b, and b, into the minima (0,0) and (n, nt) of their
corresponding bands.

In Ref. [44] it is shown that there is attraction between
bosons b; and by, which ensures the formatipn of a large-
momentum pair (r, 7). For each component b; or b, of this
pair there is a vortex or antivortex which can be put into
correspondence with it. The state obtained in this way is
equivalent to the [RVB) state: Pgyy(»)|DDW) = |[RVB). Thus,
when moving from small x values we can gain deeper insight
into the structure of both the SC and pseudogap states.
Qualitatively, the conclusion of Ref. [44] on replacing |[RVB)
with [PRT) or |GS) remains valid. Note also that the QED,_,
scheme, which is based on the |[BCS) state, can be realized in
any of the above states.

6. Large-momentum pairing for Coulomb repulsion

It should be noted that many results on cuprate properties
obtained in models with strong electron —electron interaction
(when U,)/t, > 1) are often recovered in the band (U, /t, < 1)
scheme. Since in cuprates, most likely, U,/t, ~ 1, the
situation here seems to be one is which the same problem —
the description of the insulating and SC properties of these
compounds — is approached from two different angles.

There is reason to believe that in addition to the usual
Cooper channel for zero-momentum superconducting pair-
ing, SC pairing with large total momentum can play a major
role in 2D systems like cuprates [5, 6, 44, 46, 47]. Such pairing
[48] differs considerably from the usual Cooper pairing,
primarily due to the existence of a kinematic constraint [49]
on the domain where the momentum of the relative motion of
a pair, k, is defined, the domain being strongly dependent on
the magnitude and direction of the pair momentum K and on
the FC shape. For zero-momentum pairing, there are no
kinematic constraints, since k coincides with the momentum
of a particle in a pair, and in the BCS model the domain of
definition of k is limited dynamically by that band in
momentum space where the pair-forming interaction is
nonzero.

In the general case, the kinematic constraint has the
consequence that the pair excitation energy vanishes only at
two points within the domain of definition of k rather than on
a line. In addition, the density of states of the relative motion
vanishes at these points, eliminating the logarithmic singular-
ity in the self-consistency equation and ruling out SC pairing
no matter how small the coupling constant is. However, for a
special shape of the FC — provided it is compatible with the
FC being located in an extended vicinity of the saddle point of
the electron dispersion law [50] and provided, further, that a
stripe structure can arise in the system [13] — it turns out that
for certain specific Ks the domain of definition of the relative-
motion momentum can include not separate points on the
FC, but rather its finite portions where the excitation energy

becomes zero. This mirror nesting of the FC already ensures
SC pairing for an arbitrarily small coupling constant
(provided the mirror nesting ‘quality’ is high enough [51]).

The internal structure of a pair with a large K is
determined by the way its component particles interact while
in relative motion, and the wave function of the pair is
represented as a linear combination accounting for all
crystallographically equivalent Ks. Coefficients in this com-
bination (and hence the symmetry of the resulting state) are
determined by the interaction between the component
particles with different (but equivalent) Ks. The ground state
of the system is constructed — exactly as in the BCS theory —
from the wave functions of pairs, i.e., can be designated
|BCS). Clearly, no prohibition on the occupation of a site by
two electrons is introduced formally.

Views differ as to what interaction leads to superconduc-
tivity in the HTSC cuprates, the noteworthy ones including
both the electron—phonon mechanism characteristic of the
BCS theory [52, 53] and mechanisms involving direct electron
correlations, considered in the Hubbard model and in its
variations of the types discussed above. References [48, 54]
use the band scheme to consider large-momentum SC pairing
that arises for Coulomb repulsion. In this case, simply
replacing the interaction matrix element U(x) (v =k — k’
being the momentum transfer upon scattering) by a single
constant U(x) — U(0) > 0 clearly can lead only to a trivial
solution for the self-consistency equation (such a replacement
proves sufficient in the BCS model with attraction, when
U(0) < 0). Therefore, noting that the region kinematically
allowed for relative-motion momenta of a large-K pair is
limited in size, the matrix element within this region can be
approximated by

2,2
U(x) = Uyrd (1 - ”;‘)) ,

(12)

where r is the effective Coulomb screening length, and Uy, as
can be seen in the site representation, is identical to the one-
site Hubbard energy. It should be noted that the second term
in Eqn (12) can be interpreted as a certain effective attraction
which, as shown in Ref. [32], should be added to the Hubbard
repulsion to obtain the SC solution. Note that in order for the
Hubbard model (which allows for pairing with momenta 0
and m [46]) to produce the SC solution, interaction corre-
sponding to pair exchange between neighboring sites should
be added to it (giving the so-called Penson — Kolb—Hubbard
model [47]).

Expression (12), viewed as the degenerate kernel of a
linear integral operator, has four eigenfunctions (two even
and two odd) [54], and the SC solution of the self-consistency
equation with kernel (12) is determined only by the two even
eigenfunctions, one with a positive and the other with a
negative eigenvalue. The necessary condition for the exis-
tence of an SC solution is that the kernel U(x) have at least
one negative eigenvalue. Since a screened Coulomb potential
in a Fermi system clearly has this property, it follows that to
describe the SC state there is, in principle, no need for any
other boson-field-mediated electron—electron interaction
(for example, BCS electron—phonon interaction) to be
considered.

In addition to the bound state, there is one more possible
solution to the Cooper problem of two attracting particles
with Fermi occupation — a strongly damped one in the
continuous spectrum of the relative motion of a zero-
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momentum pair. A similar problem concerning a large-
momentum pair with repulsion (12) also leads to a bound
state, in addition to which a weakly damped quasistationary
state (QSS) can develop near the edge of the continuous
spectrum of the relative motion of the pair [55]. Such QQSs
correspond to special elementary excitations that are formed
by pairs of one-particle states and show up as a sharply
increased density of states in a narrow (on the order of QSS
damping) energy range. Thus, to the formation of a QSS there
corresponds the suppression of the density of one-particle
states over the entire range of relative-motion energies. In this
case, the pseudogap appearing in the spectrum of one-particle
excitations in a limited temperature range 7, < T < T, with
T* increasing with decreasing doping [55], can be directly
related to the appearance of a QSS. The point to make here is
that both the QSS and the stationary state of the pair arise as
the solutions of one and the same equation for the wave
function of the relative motion of the pair.

There are analogies to be drawn between the QSS and
phase slip inducing excitations in QED,,; phenomenology
(broken vortex —antivortex pairs) as well as between the QSS
and excitations in the form of fluctuations of countercirculat-
ing orbital currents [41, 44].

Whether a (large-momentum) pair is in a bound or
quasistationary state, the wave function of its relative
motion, for repulsion of the form (12), is sign alternating in
the domain of definition of the relative-motion momentum,
changing its sign on a certain line that crosses FC twice within
the domain. The same property is possessed by the SC order
parameter, which hence has as many pairs of nodal points, N,
as there are crystallographically equivalent Ks contained in
the |BCS) state. For example, for the CuO, plane of
tetragonal symmetry, this number is N = 4, which exceeds
the critical value N, ~ 3 in the QED,,; scheme and thus
justifies its application to the pseudogap state even for
cuprates with one copper—oxygen plane in a unit cell.
Importantly, the analysis of experimental data shows [56]
that the SC gap (as well as the pseudogap) in the cuprates may
possess symmetry other than d-wave. The SC order para-
meter and QSS studied in Refs [48, 54, 55] have eight nodal
points (whose same-K points are close to one another) and
can be ascribed s + g symmetry [56].

Evidence that the SC gap depends significantly on the
momentum of the relative motion of a pair came from an
analysis of /—V curves of HTSC cuprates carried out in
Ref. [57] under the assumption that the asymmetry of an SC
gap can be described by a simple linear dependence on the
excitation energy of a pair. The dependence of the SC gap on
k has a strong effect on coherence factors, supporting the
conclusion about their renormalization which was reached in
Ref. [32].

Ideas about large-momentum pairing in the case of
repulsive interaction lead to the conclusion that the SC state
exists in a limited doping range x, < x < x*, and that for
weak doping the transition temperature 7, scales with x — x,,
as does the superfluid stiffness.

The fact that the SC order parameter is determined only
(in the general case, at least) by two eigenfunctions of the
kernel U(x) has to do with its choice in the form of (12) — a
choice which reflects the maximum dynamic symmetry
possible for the interaction which leads to superconductivity
in the case of repulsion (in the attraction case this symmetry is
higher, which, as already mentioned, makes it possible to
consider the interaction as point one). The eigenfunctions of

the kernel are a natural basis in terms of which to expand the
order parameter. Thus, the SC parameter is two-component,
and it is the invariant combinations of its components that
must enter into the free energy, thus leading to the Ginzburg —
Landau system of equations. In a similar manner to Ref. [58],
where two coexisting charged condensates interact via an
electromagnetic field, one would expect that the topological
defects of the order-parameter phase have a more complex
structure compared to the vortex —antivortex excitations in
the QED,_; scheme.

In Ref. [54] it is assumed that the ground state is described
by a function of the |BCS) form. One would think that the
presence in Eqn (12) of the Hubbard term U,r¢ determining
the efficiency of ‘partial projection’ in the Laughlin ground
state already takes this projection into account in some
sense — and to the extent allowed by band theory.

7. Conclusion

To what extent the current knowledge of the cuprate super-
conductors can form the basis for their theory and what this
theory might look like are moot questions. What is clear is
that the theory of the cuprates cannot be presented in as
simple a form as the BCS theory, in which an SC transition
from the state of a normal Fermi liquid is not complicated by
the presence of energetically close phases competing with
superconductivity. In principle, the BCS theory in its simplest
form is concerned with the instability of a weakly nonideal
Fermi gas toward the formation of singlet pairs due to weak
attraction between the particles. For a real (not weak)
interaction, Eliashberg’s equations are taken to replace the
BCS equation in the electron —phonon model.

Given the strong anisotropy of the cuprates, the impor-
tant role of electron correlations which lead to dielectrization
and AF order upon decreasing doping, and, finally, the strong
fluctuation effects in these materials, there seems to be little or
no hope for constructing a theory as simple and easy-to-
follow as BCS.

One would think, however, that the basic results we have
summarized here — obtained as they are from a variety of
approaches and methods and often similar in their implica-
tions — already provide a general and by and large adequate
picture of the unusual properties of the cuprates.
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Phase transitions and the giant
magnetoelectric effect in multiferroics

A K Zvezdin, A P Pyatakov

1. Introduction

It has long been noted that despite the different nature of
structural phase transitions in them, the three classes of
crystalline solid bodies — ferromagnets, ferroelectrics, and
ferroelastics — have a whole series of similarities such as the
existence of specific domains, anomalous physical properties
in the neighborhood of a transition, hysteresis, etc. In 1969,
K Aizu unified them into a single class of materials
collectively named ferroics, due to the prefix ‘ferro’ they

share [1]. Multiferroics are a class of crystalline solids in
which at least two of the three order parameters — magnetic,
electrical, or mechanical — coexist.

The subject matter of this work is ferromagnetoelectrics,
i.e., materials with magnetic and electric order simultaneously
present [2, 3]. The relationship between magnetic and electric
subsystems in ferromagnetoelectrics manifests itself as mag-
netoelectric (ME) effects and opens up the possibility of using
an electric field to control the magnetic properties of a
material or, vice versa, to use a magnetic field to modulate
the electrical properties. All this makes ferromagnetoelectrics
likely candidate materials for magnetic field sensors and
writing/reading devices.

Although this theme is not new (the first ferromagneto-
electric was synthesized back in 1961 [4]), it has long been of
purely academic interest because of the relatively small values
of the observed magnetoelectric effects and because these
effects have usually only been seen at low temperatures. For
example, for the classical magnetoelectric material Cr,O3
(chromite) the magnitude of the magnetoelectric effect is
o=P/H=3x10"1"C m20e)~!' 3.7x10""2sm~! or 107*
in the CGS system). ME effects two orders of magnitude
stronger were observed in TbPOy4 [5]: 1072 (in the CGS
system) or 3x 10719 s m~!. In current terminology such
effects are referred to as giant. However, in this particular
compound the magnetoelectric effect only exists at tempera-
tures below 2 K. It is only recently that materials showing
giant magnetoelectric effects at room temperature have been
obtained [6].

The discovery of giant ME effects is of particular interest
in the light of the rapid development of spin electronics, a new
branch of microelectronics which makes use of the transport
properties of spin-polarized electrons. The main concern of
spin electronics is converting information in the form of
magnetization into an electrical voltage. Currently, this
problem is being solved by using the phenomenon of giant
magnetic resistance (GMR) [7]. With the alternative offered
by the giant magnetoelectric effect, devices working on the
giant magnetoelectric effect can possibly present competition
to GMR devices in the future.

Also of interest are prospects for using magnetoelectric
materials in magnetic memory devices. The major limiting
factor in increasing the data-recording density is the
magnetic dipole interaction, and this gives promise to the
use of magnetoelectrics, most of which are antiferromagnets
in which magnetoelectric domains can act as information
bits.

Thus, for a ferromagnetoelectric to be used for practical
purposes, the following are simultaneously required: (1) high
(above room) electric and magnetic transition temperatures,
(2) a large ME effect, and (3) low electrical conductivity at
room temperature.

2. The ferromagnetoelectric bismuth ferrite BiFeO3
Among various ferromagnetoelectric materials, one of the
most attractive is bismuth ferrite BiFeOs. There are both
fundamental science and applied aspects of interest in this
material. The relatively simple chemical and crystal structure
of bismuth ferrite makes it interesting as a model object for
first-principles studies. Moreover, bismuth ferrite is of
practical interest as the basis for creating magnetoelectric
materials — to a large measure due to its record high
temperatures for electric (7. = 1083 K) and magnetic
(Tn = 643 K) ordering.
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