
Abstract. We consider various geometric phases (GPs) in sin-
glemode fiber lightguides (SMFs) and in fiber ring interferom-
eters (FRIs): the Pancharatnam phase stemming from the cyclic
evolution of the polarization state of radiation (RP state) in
SMF, the Rytov ±Vladimirski|̄ phase (RV phase) stemming
from the Rytov effect (specifically, rotation of the polarization
plane due to noncoplanar winding of SMFs), as well as the
nonreciprocal phase difference of counterpropagating waves
(NPDCW) and nonreciprocal geometric phase of counterpro-
pagating waves (NGPCW), which are caused by polarization
nonreciprocity (PN) in FRIs. We show that in the general case,
the Pancharatnam phase for an arbitrary RP state is inconsis-
tent with the real phase change of light fluctuations in media

that possess not only circular but also linear birefringence. We
show that the RV phase, having a geometric origin, can in
principle be considered as a dynamic phase (DP). We also show
that the NGPCW can be considered as an effect of the evolution
of the RP state mapped on the PoincareÂ sphere in Ginzburg's
orthogonal screw polarization modes (GSPMs) of SMFs in the
FRI contour. We analyze a number of experiments in which
geometric phases were detected in FRIs: changing the RV phase
and Rytov's angle (RA) in response to change of the pitch of
helicoidal winding of SMFs.

1. Introduction

In his well-known paper of twenty years ago [1], M Berry
analyzed the conditions for the creation (existence) of a
geometric (topological) phase that describes the evolution of
the SchroÈ dinger wave function in a system with a time-
dependent Hamiltonian. This geometric phase (GP) is
known as Berry's phase. Presently, the term `Berry's phase'
is often used not only in quantummechanics but also in other
fields (see reviews [2 ± 7]). It must be mentioned that the main
manifestations of the geometric phase in polarization optics
were discussed in detail in the 1930s ± 1950s by S MRytov [8,
9], V V Vladimirski|̄ [10], and S Pancharatnam [11, 12] and
even earlier in classical mechanics: 150 years ago by
W R Hamilton [13] and 50 years ago by A Yu Ishlinski|̄ [14,
15] (see review [7]).
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The present paper discusses various manifestations of
geometric phases in singlemode fiber lightguides (SMFs)
and in fiber ring interferometers (FRIs). FRIs are mostly
used as fiber-optics gyroscopes (FOGs) Ð sensors of angular
velocity [16]. The principle of the functioning of the FOG is
based on the Sagnac effect [17 ± 21] that produces a phase
difference between counterpropagating waves in the FRI.
Furthermore, FRIs have other uses Ð both fundamental and
purely application-oriented Ð discussed in detail in review
[16].

There are several reasons why we decided to discuss the
geometric phases in FRIs. First, the geometric phase in the
Michelson and Mach ±Zender interferometers has already
been analyzed in sufficient detail and there exists a large
number of experimental and theoretical publications devoted
to this aspect (see review [2]). Second, counterpropagating
waves in FRI travel over equal optical paths and the phase
difference can originate exclusively in nonreciprocity effects
(e.g., Sagnac, Fiseau, and Faraday effects), and therefore the
phase difference caused by length inequality between inter-
ferometer arms can be excluded from consideration (because
it has no bearing on the geometric phase aspects). Third, in
contrast to fiber interferometers of other types, a remarkable
topological (geometric) phenomenon occurs in FRIs Ð the
so-called polarization nonreciprocity (PN) [16, 22, 23], which
leads to a nonreciprocal phase difference of counterpropagat-
ing waves (NPDCWs), also known as the zero shift in FRIs. If
the radiation source used in an FRI is nonmonochromatic,
the interference of counterpropagating waves that travel
through the slow and fast birefringence axes of SMF can be
treated separately, and the concept of nonreciprocal geo-
metric phase of counterpropagating waves (NGPCWs) can be
introduced for each of the independent interference patterns
[24]; the NGPCW can be defined on the PoincareÂ sphere. The
main difference between the NPDCW and NGPCW on the
one hand, and theRytov ±Vladimirski|̄ phase (RV phase) and
the Pancharatnam phase on the other hand is that the former
remain nonreciprocal despite the fact that they are generated
in a reciprocal medium. Therefore, three different types of
geometric phases can exist simultaneously in FRIs.

The Pancharatnam phase (PP) and the Rytov ±Vladi-
mirski|̄ phase were previously considered in the framework
of the so-called helical photons [2] having circular polariza-
tion [25]. However, an arbitrary radiation polarization state
(RP state) can occur in SMFs. It is shown below that the
concepts of PP andRV phases can be extended to an arbitrary
RP state only if both orthogonal polarization modes in SMFs
are excited with equal weights. In particular, it is shown in
what follows that in the general case, the value of the
Pancharatnam phase does not always coincide with the
actual change of the phase of light oscillations Ð not only in
optically activemedia (this was known previously [2]) but also
in linearly birefringent media. Later in the paper, we point to
a simple and visually clear physical interpretation of the
Rytov effect and show that the term `Pancharatnam phase'
covers two different geometric phases with very distinct
physical meanings.

The physical meaning of the Pancharatnam phase and a
number of its characteristic features were treated in Refs [22,
23] (see also Section 5.3 of review [16]); however, these results
need further elaboration concerning FRIs with an imperfect
(nonideal) polarizer; this is done in Section 6.

We also discuss experimental observations of the geo-
metric phase in FRIs [26 ± 28]. These results were discussed in

[16, 29] but the matter requires additional analysis, which we
give in Section 7.

2. Review of the literature. Emergence
of the concepts of geometric phases in
polarization optics and fiber ring interferometry

We begin with the Rytov effect. S M Rytov has shown [8, 9]
that when a linearly polarized light beam propagates along a
nonplanar trajectory, the beam polarization plane rotates
relative to the natural Frenet trihedron, formed by the
tangent, the normal, and the binormal unit vectors, that
accompanies the beam. This is what we mean by the Rytov
effect. V V Vladimirski|̄ soon showed that the angle of
rotation of the light polarization plane with respect to the
initial angle measured from the normal is numerically equal
to the area of the figure on the unit-radius sphere bounded
by a closed curve drawn on this sphere by the tangent to the
beam trajectory in the process of spatial evolution of the
Frenet trihedron [10]. Neither Rytov nor Vladimirski|̄ wrote
anything about the phase corresponding to the Rytov effect.
To the extent of our knowledge, it was first mentioned in
Ref. [30] that the rotation of the polarization angle caused by
the beam propagation along a nonplanar trajectory corre-
sponds to a certain phase increment. It was suggested that
one refer to the phase acquired by a circular photon (or a
beam with a circular RP state) in a lightguide with nonplanar
winding as the Rytov ±Vladimirski|̄ (RV) phase. The RV
phase is a formal consequence of the fact that the lightguide
acquires circular birefringence owing to the nonplanar
winding.

Rytov's papers [8, 9] were published in 1938 ± 1940, and
that of Vladimirski|̄ [10] in 1941 in Dokl. Akad. Nauk SSSR
(Soviet Physics Doklady). Because this journal was not
translated into English at the time, these publications were
mostly unknown outside the USSR (see, e.g., Refs [31, 32]).
We note that the Rytov effect was multiply `rediscovered'
(see, e.g., Refs [30, 33 ± 40]), by M Berry himself [39], among
others.

In 1956, S Pancharatnam (Bangalore, India) considered
not one but, in fact, two different geometric phases [11, 12].
Later, different authors applied the same term, `Panchar-
atnam phase,' to different types of geometric phases, creating
additional misunderstandings in some cases. Only in review
[2] were we able to find a simultaneous description of both
Pancharatnam geometric phases, but even there the two are
given the same name. Pancharatnam first considered the
phase difference between two completely polarized beams in
different RP states, with no optical (conventional) phase
difference [11], and showed that it can be defined on the
PoincareÂ sphere [41, 42]. Pancharatnam also showed [11] that
if the RP state of one of the beams varied cyclically (i.e.,
returned to the initial state), its phase (with the optical phase
corresponding to a given evolution subtracted) would not
equal the initial phase.

In what follows, we specifically refer to the Pancharatnam
phase caused by the difference between the radiation
polarization states of two interfering beams as the Panchar-
atnam phase 1 (PP1), and to that caused by the cyclic
evolution of the radiation polarization state of one beam as
the Pancharatnam phase 2 (PP2). The phase mostly discussed
in the literature is PP2. Papers [11, 12] published in the
Proceedings of the Academy of Sciences of India went
practically unnoticed at the time of publication.
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S M Rytov's [8, 9], V V Vladimirski|̄'s [10], and
S Pancharatnam's [11, 12] results became widely known at
the end of the 1980s and the beginning of the 1990s when
Berry's work [1] stimulated considerable interest in geometric
phases. For instance, papers [8, 10] were included in collected
papers [43], and paper [11] in Ref. [44]. It must also be
mentioned that M Berry contributed significantly to making
the work of Pancharatnam, Rytov, and Vladimirski|̄ widely
known. In Ref. [45], he described Pancharatnam's work [11]
and in Ref. [46], wrote about the work of Rytov [8] and
Vladimirski|̄ [10].

The history of the discovery of the nonreciprocal phase
difference of counterpropagating waves and the nonrecipro-
cal geometric phase of counterpropagating waves is closely
related to the study of fiber ring interferometers and the
discussion and further investigation of polarization nonreci-
procity. Immediately after the development of the fiber ring
interferometry in 1976 [47], it was discovered that a fairly
large phase shift of the interference pattern of two counter-
propagating waves occurs at the interferometer output; this
so-called zero shift is not connected with rotation [48]. The
cause of this phenomenon is the polarization nonreciprocity
of the FRI contour; however, this effect was unknown at the
time, not only to experts in fiber gyroscopes, but even to those
who worked in polarization optics.

The phenomenon was explained independently and
practically simultaneously by V N Logozinski|̄ [49] (Mos-
cow), R Ulrich and M Johnson (Stuttgart, FRG) [50], and
G Schiffner and colleagues (Munich, FRG and Vienna,
Austria) [51]. These authors showed that polarization non-
reciprocity stems from the difference between excitation
conditions for counterpropagating waves at the entrance to
an FRI and results in a nonreciprocal phase difference of the
counterpropagating waves at the output of the FRI. It
appears that Schiffner was the first to understand this; in
January 1978, he submitted a German patent [52] that
proposed to eliminate polarization nonreciprocity in FRI by
installing two identical linear polarizers with identical
orientation of transmission axes in each of the inputs of the
FRI contour. Schiffner was obviously in no hurry to publish
his results in the open press. In mid-January 1979, he
submitted two similar and simultaneous patent applications
[52] and then very similar applications for US patents [53, 54],
and only by the end of January submitted a paper to Applied
Optics [51], which was published in July of the same year.
However, two months before, in May 1979, information
about polarization nonreciprocity and a method of eliminat-
ing it was publicly discussed at the presentation of the
diploma project of a student of the Moscow Institute for
Physics and Technology, V N Logozinski|̄ [49], supervised by
awell-known expert in laser gyroscopes, SAGordon (see also
[55]). At about the same time, Ulrich and Johnson published
their paper [50].

It must be noted that the method of eliminating polariza-
tion nonreciprocity in FRIs suggested by Schiffner [51 ± 54]
proved rather unsuccessful because it required the use of two
expensive polarizers within the fiber ring interferometer, and
most importantly, they needed very precise mutual adjust-
ment.1 In 1980, Ulrich proposed the so-called minimal FRI
contour [56] (Fig. 1), which has considerable advantages over
earlier proposals [49 ± 55] in that the contour includes only

one polarizer placed within the FRI contour between two
beam splitters. This FRI design gained the widest popularity.

A considerable number of papers were later devoted to
polarization nonreciprocity in fiber ring interferometers (see,
e.g., Refs [57 ± 95]), but none of them explained the physical
meaning of the polarization nonreciprocity phenomenon,
and the nonreciprocal phase difference of counterpropagat-
ing waves caused by polarization nonreciprocity was not
treated as a manifestation of geometric phases. In 1996, one
of the authors of this review showed [24] that NPDCWs can
be reduced to a geometric phase (NGPCWs) because the
NPDCW, calculated separately for counterpropagating
waves arriving along the slow and fast axes of the singlemode
fiber waveguide in the FRI contour, is numerically equal to
half the area of the spherical triangle on the PoincareÂ sphere
formed by points corresponding to the state of radiation
polarization at the input and both outputs of the contour. The
PoincareÂ sphere method proposed in Ref. [24] proved
convenient in a number of cases of polarization nonrecipro-
city. In the general case, the PoincareÂ sphere method [24]
makes it possible to illustrate the polarization nonreciprocity
phenomenon in FRI quite clearly and helps to understand it
in clearer terms.

The polarization nonreciprocity phenomenon was ana-
lyzed in Refs [22, 23] (see also Section 5.3 of review [16]). For
instance, it was shown in these papers that the polarization
nonreciprocity phenomenon occurs even in FRIs containing
a singlemode fiber waveguide with only one polarization
mode,2 and that the creation of polarization nonreciprocity
occurs because the FRI contour is not equivalent to a straight
or curved segment of the singlemode fiber lightguide: it is a
nonconventional loop of the lightguide whose end segments
are parallel to one another (see Fig. 1). As a result, the
reciprocity conditions lead to different requirements for the
structure of the Jones matrices [41] that describe the
singlemode fiber lightguide and those that describe the FRI
contour: the nondiagonal elements of the Jones matrix of the
SMF segment must be equal in magnitude and have opposite
signs, while for an FRI contour, the nondiagonal elements of
the Jones matrix must be equal. However, papers [22, 23]
contain the statement that ``...the effects of polarization
nonreciprocity are in a way `virtual' or `hidden' because
additional phase difference must be present if we want to
detect them'' [16].3 This statement is valid only for FRIs
without a polarizer or with an ideal polarizer.

5

6

4
3

2

7

1

Figure 1. FRI schematic diagram: 1 Ð superluminescent diode, 2, 5 Ð

beam splitters, 3Ðpolarizer, 4ÐSMF segment between the polarizer and

the second beam splitter, 6ÐFRI contour, 7Ð photodiode.

1 A similar technique was proposed in Ref. [49]; in Ref. [50], it was

suggested that one polarizer be installed after the radiation source and the

other in front of the radiation receiver.

2 An erroneous statement was often quoted in the past, namely, that the

FRI polarization nonreciprocity is due entirely to the presence of two

channels, that is, of two interfering orthogonal polarization modes.
3 The phase difference meant here was caused by the `true' nonreciprocal

effects (Faraday, Fiseau, Sagnac) or by a mismatch of wavefronts of

counterpropagating waves, etc.
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Inwhat follows, themain relations for geometric phases in
singlemode fiber lightguides and in fiber ring interferometers,
as well as the physical interpretations, are discussed in detail.

3. Pancharatnam phases

3.1 PoincareÂ sphere techniques
Because the Pancharatnam phases are defined on the
PoincareÂ sphere, we begin with a brief exposition of the
method of describing light polarization on the PoincareÂ
sphere [41, 42] (Fig. 2). It is common knowledge that there
exists a one-to-one correspondence between points on the
PoincareÂ sphere and all possible radiation polarization states.
Thus, points located on the `equator' correspond to the linear
polarization with various azimuths, the `north pole' N
corresponds to the right-circular polarization, and the
`south pole' S corresponds to the left-circular polarization.
Points lying on the same `meridian' correspond to the
radiation polarization state with equal azimuths of the larger
axis of the ellipse and different ellipticities (the closer to the
pole, the greater the ellipticity). Points lying at the same
`latitude' correspond to RP states with equal ellipticities and
different azimuths of the greater axis of the ellipse. Mutually
orthogonal RP states (which are elliptic in the general case,
with opposite directions of path tracing and with orthogon-
ally oriented larger ellipse axes) correspond to diametrically
opposite points on the PoincareÂ sphere. We remind the reader
that angles in real space are doubled on the PoincareÂ sphere.

3.2 Pancharatnam phase of the first kind
Pancharatnam first considered the phase difference arising
between two beams with intensities I1 and I2 that have
unequal RP states but zero conventional phase difference
[11]. The polarization states of these beams correspond to
points A and B on the PoincareÂ sphere (Fig. 3). The state of
polarization of the sum (interference) of two beams corre-
sponds to point C, and the intensity of the sum of two beams
is described by the expression

I � I1 � I2 � 2
��������
I1I2

p
cos

c

2
cos d ; �1�

where the angle c equals the arc AB (an arc on a sphere is
always a segment of a circumference of the sphere); the
quantity cos �c=2� determines the visibility of the interference
pattern; 4 d is the effective phase difference between two
beams due to the difference between their polarizations, that
is, the Pancharatnam phase of the first kind (PP1),

d � pÿ 1

2
YABC 0 ;

where YABC 0 is the solid angle, with apex at the center of the
PoincareÂ sphere (point O), that subtends this spherical
triangle ABC 0; and C 0 is the point on the PoincareÂ sphere
diametrically opposite toC. Because d is measured in radians,
and YABC 0 in steradians, we mean numerical equality. If the
radius of the PoincareÂ sphere equals unity, the angleYABC 0 is
numerically equal to the area of the triangle SABC 0 . We note
that the quantity d can be calculated using the Jones matrix
techniques [41].

In Ref. [11], Pancharatnam analyzed the interference of
totally coherent beams and in Ref. [12], of partially coherent
beams.

3.3 Pancharatnam phase of the second kind
The Pancharatnam phase of the second kind (PP2) is a much
more complicated subject. It can be defined unambiguously
only for the cyclic evolution of an RP state, but even then it
does not always correspond to the actual phase change of
light oscillations. Pancharatnam himself did not conduct any
specific analysis of how the cyclic evolution of an RP state
occurs, that is, what the anisotropic elements are through
which a light beam passes in the process. Even though a large
number of theoretical and experimental papers were devoted
to this problem (relevant references can be found in the
bibliography of review [2]), it is not established in the general
case under what conditions the actual change in the phase of
light oscillations corresponds to PP2. The only discussion of
this problem is given in [2] but in only one particular case of

2o

2a

O

A

S

N

0�

Figure 2.The PoincareÂ sphere: 2aÐlatitude of pointA, 2oÐlongitude of

point A, point N Ð `north pole', point SÐ `south pole'.

A

N

C

B

O

C 0

S

0�

Figure 3. Pancharatnam phase of the first kind (PP1) mapped on the

PoincareÂ sphere. PointsA andB correspond to the polarizations of the two

beams, point C is the polarization of their sum, and point C 0 maps the

polarization orthogonal to that given by C.

4 If the polarizations of the beams are orthogonal, the points A and B on

the PoincareÂ sphere are diametrically opposite, c � p, and therefore

cos �c=2� � 0; hence, the visibility is also zero.
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optically active media. In what follows, we discuss this
problem in the general case.

As we mentioned earlier, PP2 was considered for the so-
called helical (circular) photons [2], which correspond to a
field with a specific value of the spin operator (i.e., to the so-
called `pure' states), because the photon Ð a massless
particle Ð can only have two values, �1, of the projection
of the angular momentum (spin) on its velocity direction [25].
But calculations of geometric phases in polarization optics
must be carried out for arbitrary RP states.

In order to better understand the physical meaning of PP2
and the methods of its mathematical description, we consider
three simple examples in which an RP state of an arbitrary
type undergoes a cyclic evolution as the beam passes through
various polarizers and circular and linear phase plates; we
then calculate the value of PP2 in these cases using the
PoincareÂ sphere technique and the Jones matrix technique
[41]. For simplicity, we consider discrete optical elements,
assuming among other things that polarizers have optical
thickness so small in comparison with wavelength that the
phase increment acquired in them is negligibly small. The
medium between optical elements is assumed to be polariza-
tion-isotropic, and the phase increment acquired in it
neglected, because it can always be subtracted.

Example 1. Let a monochromatic light beam with linear
polarization and horizontal azimuth pass successively
through a right-circular polarizer, then a linear polarizer
whose transmission axis is at an angle a to the horizontal,
and a linear polarizer with a horizontally oriented transmis-
sion axis, after which the RP state returns to the initial one
(Fig. 4). Here, we assume all polarizers to be ideal in the sense
that the polarization corresponding to the allowed direction is
transmitted without loss, the orthogonal polarization is
totally absorbed, and, furthermore, no additional phase
increments are created. We also assume that a 6� p=2� Kp,
where K is an integer (otherwise the intensity at the output of
the third polarizer is zero). Therefore, the initial RP state in
Fig. 4 corresponds to point A that lies on the `equator' and
has zero longitude. After passing through the right-circular

polarizer, light has right-circular polarization, which corre-
sponds to point N, and having then passed through the first
linear polarizer, light acquires linear polarization with
azimuth a, which corresponds to point B on the equator of
the PoincareÂ sphere with longitude 2a. Finally, light leaving
the second polarizer again acquires linear horizontal polar-
ization corresponding to point A. The solid angle on the
PoincareÂ sphere subtended by the spherical triangle ANB
equals 2a. Therefore, the value of PP2 equals a Ð half the
solid angle 2a.

We now obtain the same result using the Jones matrix
technique [41]. The relation between the Jones vectors at the
entrance E0 and exit E of the system of the three polarizers
discussed has the form

E � P3 �P2 �P1 � E0 ; �2�

where

E0 � 1
0

� �

is the Jones vector of linearly polarized light with horizontally
oriented azimuth,

P1 � 1

2

1 ÿi
i 1

� �
;

P2 � cos2 a sin a cos a
sin a cos a sin2 a

� �
;

P3 � 1 0
0 0

� �

are the respective Jones matrices of the right-circular
polarizer, of the linear polarizer with the transmission axis
oriented at the angle a to the horizontal, and of the linear
polarizer with the horizontal transmission axis. After simple
calculations, we obtain

E � 1

2
cos2 a� i sin a cos a

0

� �

� cos a
2

cos a� i sin a
0

� �
� cos a

2

exp �ia�
0

� �
: �3�

We have thus established again that the phase increment
due to RP state evolution equals a and, therefore, the value of
PP2 calculated using the PoincareÂ sphere techniques and the
phase increment calculated using the Jones matrix techniques
equal one another.

Example 2. Let a monochromatic light beam that in the
general case has elliptic polarization and horizontal azimuth
pass through a right-circular phase plate (an optically active
medium) that creates the phase difference d � 2p between
slow and fast axes, such that the larger and smaller axes of the
polarization ellipse at the output of the plate rotate by p;
therefore, as in the example discussed above, the RP state
returns to the initial state (Fig. 5). In Fig. 5, the initial (and
final) RP states correspond to pointA on the PoincareÂ sphere,
with the latitude 2o and longitude a � 0. A cyclic variation of
the RP state then corresponds to the parallel on the PoincareÂ
sphere with the latitude 2o. The opening angle of the cone
with apex at the center of the PoincareÂ sphere and the base
coinciding with the parallel at latitude 2o is 2Y, where

2a

O

A

B

S

N

0�

Figure 4. Mapping of the Pancharatnam phase of the second kind on the

PoincareÂ sphere. Linearly polarized light passes consecutively through one

circular and two linear polarizers. Point A corresponds to the initial and

final radiation polarization states, and pointsN and B to intermediate RP

states. Arrows indicate the direction of change of the RP state.
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Y � p=2ÿ 2o, and the solid angle w at the apex of this cone
is [96]

w � 4p sin2
Y
2
� 2p�1ÿ sin 2o� : �4�

Therefore, the value of PP2 for a linearly polarized beam
�2o � 0� is maximal and equals p (half the solid angle w); PP2
is zero for right-circular polarization of the beam and falls in
the interval �0; p� for elliptic polarization.

We now use the Jones matrix technique to calculate the
phase increment. The expression relating the Jones vectors at
the entrance E0 and exit E has the form

E � C � E0 ; �5�

where

E0 � cosR
i sinR

� �
;

C �
cos

d
2

sin
d
2

ÿ sin
d
2

cos
d
2

0B@
1CA � ÿ1 0

0 ÿ1
� �

are respectively the Jones vectors of elliptically polarized light
with the horizontal larger axis of the ellipse �R � 2o� and the
Jones matrix of the right-circular phase plate with the phase
difference for the right- and left-circular polarization d � 2p.
We can assume without losing generality that 04R4 p=4
because otherwise the position of the larger axis of the
polarization ellipse would jump by p=2 as the parameter R
passes through the value p=4. We note that the latitude 2o on
the PoincareÂ sphere is related to R by 2o �
arcsin �sin 2R sinc� [41], where c is the phase difference
between the orthogonal components of the electric field. In
the case in question, we have c � p=2 and therefore R � o.
Hence, the parameter R characterizes the ellipticity of the
polarization, tanR � b=a, where a and b are the larger and
smaller axes of the ellipse, respectively [41].

After simple calculations, we obtain

E � ÿ cosR
i sinR

� �
: �6�

The minus sign at the vector in (6) indicates that both its
components have acquired the phase shift p in the course of
cyclic evolution, regardless of the ellipticity of the initial
polarization. This contradicts the result obtained above by
the PoincareÂ sphere technique, which showed that the value of
PP2 depends on the ellipticity of light polarization. Expres-
sions (5) and (6) coincide only forR � 0, that is, for the linear
polarization of light. Therefore, a particular example of an
optically activemedium allowed us to show that in the general
case, PP2 cannot adequately describe the phase increment
acquired in the course of cyclic evolution of a polarization
state.

Example 3. Let a monochromatic light beam with linear
polarization and azimuth oriented at an angle a to the
horizontal plane pass through a linear phase plate that
creates the phase difference 2p between the slow and fast
axes, with the slow axis being oriented horizontally (Fig. 6).
Both orthogonal linear polarizations are excited in this phase
plate, with different weights in general, and therefore, the RP
state undergoes gradual modification in the course of light
passing through the plate.5 The initial (and final) RP states in
Fig. 6 correspond to point A on the equator on the PoincareÂ
sphere at the longitude 2a. The cyclic evolution of theRP state
corresponds in this case to a circle on the PoincareÂ sphere with
its center on the `equator' at the longitude a � 0. The opening
angle of the cone with apex at the center of the PoincareÂ
sphere and the base coinciding with this circle equals 2Y � 4a
and the solid angle of the apex of this cone [96] is

w � 4p sin2
Y
2
� 4p sin2 a : �7�

Therefore, if a � 0, that is, if the azimuth of linear light
polarization at the entrance to the phase plate coincides with

N

A

2o
2Y

0�

S

Figure 5.Mapping of the Pancharatnamphase of the second kind (PP2) on

the PoincareÂ sphere. Elliptically polarized light passes through an optically

active medium Ð circular phase plate with phase shift 2p. Point A

corresponds to the initial and final RP states. The angle 2o characterizes

the ellipticity of the polarization of light. Arrows indicate the direction of

change of the RP state.

5 This variation of the RP state with time is known as polarization beats.
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S

O

0�

N

Figure 6. Representation of the Pancharatnam phase of the second kind

(PP2) on the PoincareÂ sphere. Linearly polarized light passes through a

linear phase plate with the phase shift 2p. PointA corresponds to the initial

and final RP states. The angle 2a characterizes the azimuth of linear

polarization. Arrows indicate the direction of change of the RP state.
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its slow axis, then w � 0 and PP2 is also zero. If a � p=4, that
is, if both linear polarizations in the slow and fast axes are
excited with equal weight, then w � 2p and PP2 is given by
half the solid angle w and is equal to p. If a � p=2, that is, if the
azimuth of the linear polarization of light at the entrance to
the plate coincides with its fast axis, then w � 4p and PP2 is
correspondingly equal to 2p.

We now apply the Jones matrix technique to the
calculation of the phase increment. The expression relating
the Jones vectors at the entrance E0 and exit E of the phase
plate is

E � L � E0 ; �8�

where

E0 � cos a
sin a

� �
;

L �
exp

�
id
2

�
0

0 exp

�
ÿ id

2

�
0BB@

1CCA � ÿ1 0
0 ÿ1

� �

are respectively the Jones vector of linearly polarized light
with azimuth oriented at an angle a to the horizontal and the
Jones matrix of a linear phase plate with the phase difference
d � 2p for the slow and fast axes (for horizontal and vertical
linear polarization). We then have

E � ÿ cos a
sin a

� �
: �9�

As in the previous case, the minus sign at the vector in Eqn (9)
signifies that both its components acquired the phase shift by
p.We see that in the case of a linear phase plate, PP2 coincides
with the phase calculated using the Jones matrix technique
only if a � p=4.

A conclusion that can be made on the basis of the above
analysis of cyclic evolution of the RP state in circular and
linear phase plates is that PP2 may not correspond to the
actual phase calculated by the Jones matrix technique if
orthogonal polarizations are excited with unequal weights.
On the other hand, if the RP state is such that only one of the
orthogonal polarizations is excited in the phase plate (this RP
state is known as an eigenstate for a given phase plate), then a
dynamic phase is generated. A change in the dynamic phase
does not correspond to a change in the RP state: the PR state
does not vary in the course of propagation of the polarization
eigenmode through an anisotropic medium, and the point
representing it on the PoincareÂ sphere remains stationary,
whereas the dynamic phase changes by the quantity�pDnz=l
(where Dn is the difference between refractive indices for the
slow and fast axes of the phase plate and l denotes the light
wavelength in the vacuum) as a consequence of the difference
between the refractive index for a given axis n� Dn (the plus
sign for the slow axis and the minus sign for the fast axis) and
its average value n. Obviously, these constraints on PP2 also
hold for a broad class of elliptic phase plates.

If the two polarization eigenmodes are excited with two
different weights, it is impossible in general to separate PP2
and the dynamic phase [2]. An attempt to represent the real
phase increment as a sum of PP2 and the dynamic phase
was made [97], but it cannot be considered satisfactory:

according to the definition in Ref. [97], the dynamic phase
in the case of the cyclic evolution of the RP state is
identically zero.

In the general case, therefore, PP2 for the cyclic evolution
of polarization is only equal to the actual phase change (its
measurement is conducted by the method of interference of
the investigated beam and the reference beam whose phase
and radiation polarization states are known) in the case where
light travels through various combinations of polarizers of
arbitrary types. The situation is more complex for phase
plates: we were able to demonstrate in a number of particular
cases that if two orthogonal polarizations are excited with
different weights, then PP2 cannot be equal to the actual
phase change.

We now consider the question, important in fiber ring
interferometry, of the reciprocity of the Pancharatnam
phases. Of course, PP1 cannot in principle be either
reciprocal or nonreciprocal: it is merely an additional phase
difference between two beams, caused by the difference
between their polarizations. As for PP2, its reciprocity
depends on the type of birefringence of the optical medium
in which the cyclic evolution of the RP state unfolds. If this is
conventional, circular, or linear birefringence, then PP2 is
reciprocal. If, however, this circular birefringence is caused by
the Faraday effect and the linear birefringence is caused by
the electromagnetic nonreciprocal optical birefringence aris-
ing in crossed electric and magnetic fields [98 ± 100], then PP2
is also nonreciprocal because the nonreciprocal increment
�Dn to the refractive index n has different signs for counter-
propagating waves. If the phase increment is calculated by the
Jones matrix technique, then the question does not arise
because the sign of the phase for counterpropagating waves
is taken into account automatically.

The main conclusion of this section is that in the most
general case, it is advisable to calculate both the phase
difference between two interfering beams with different
polarizations and the additional phase difference created in
the course of RP evolution using the Jones matrix technique
or the equivalent method of expanding the field in geometric-
optics (normal) waves [101 ± 103]. We note that normal waves
are plane waves, and polarization modes in singlemode fiber
lightguides have a near-Gaussian transverse intensity distri-
bution. But because the transverse distribution of light
intensity is in most cases ignored (for instance, when the RP
state and its phase in an SMF are calculated by the Jones
matrix technique), normal waves in the SMF context are in
fact mutually orthogonal polarization modes, which are
typically elliptic.

Before we consider the Rytov effect and the Rytov ±
Vladimirski|̄ phases in fiber ring interferometers, it is
necessarily to consider how the birefringence of an SMF is
affected by bending and twisting of the optical guide as it is
wound onto the spool of a fiber ring interferometer.

4. SMF birefringence due to its mechanical
deformations

4.1 Kinematic phase in SMFs
First, we consider the phase increment in isotropic light-
guides. As mentioned above, polarization in isotropic light-
guides always acquires a phase increment j � 2pLn=l (the
kinematic phase), which is proportional to the optical length
of the waveguide Ln, where L is the lightguide length, n is the
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effective index of the SMF, and l is the wavelength of light in
the vacuum. The kinematic phase is independent of the type
of winding of the lightguide, provided the deformations
caused by winding do not affect the value of n. Because
counterpropagating waves travel over the same optical path
in the FRI contour, kinematic phases of the counter
propagating waves are equal even if the value of n is affected
by the deformations caused by winding. Therefore, the
kinematic phase cannot in any way change the result of
interference of counterpropagating waves.

4.2 Linear birefringence of SMFs induced by bending
In the preceding section, we discussed the so-called isotropic
singlemode fiber lightguide in which orthogonal polarization
modes are degenerate. In a real SMF, however, some sort of
polarization anisotropy is always present, and the effective
refractive indices for orthogonal polarization modes slightly
differ, covering the range from 10ÿ3 for SMFs with strong
linear birefringence to 10ÿ9ÿ10ÿ8 for the so-called coupled
SMFs in which linear birefringence is largely suppressed. A
nonplanar winding of a lightguide inevitably creates certain
bending, which results in an additional linear birefringence b
(rad mÿ1) [104 ± 106],

b � 2pr
l

�
d

D

�2

; �10�

where d is the lightguide diameter and D is the winding
diameter; in quartz SMFs, r � 0:133. The birefringence b is
related to the difference Dn between refractive indices for the
slow and fast polarization modes of the SMF and to the light
wavelength l as b � 2pDn=l. From the standpoint of
mathematical description in the plane-wave approximation,
the fiber lightguide we consider does not differ in any way
from a linear phase plate. The linear birefringence due to
bending disturbs the inherent (nonperturbed) linear birefrin-
gence of the SMF (provided it is nonzero) and the two add up
as vectors.

4.3 Circular birefringence in SMFs induced by twisting.
Ginzburg's screw polarization modes
As a singlemode fiber lightguide is wound, the lightguide may
in principle be twisted, causing torsional deformations and
generation of the induced circular birefringence bc, whose
value is given by [104, 106 ± 108]

bc � 2�1ÿ g� t ;

where g is the photoelasticity coefficient, which is 0.065 ±
0.080 for quartz SMFs [104, 106 ± 108], and t is the fiber
twisting per unit length (rad mÿ1). If the lightguide has its
proper (nonperturbed) linear birefringence, the polarization
eigenmodes of a twisted SMF become elliptic [103, 109].
However, it is very inconvenient to describe a twisted SMF
in the laboratory reference frame: the ellipticity and the
azimuth of the larger axis of the ellipse of polarization
eigenmodes of such an SMF, considered as integral char-
acteristics of the entire segment of the SMF, are periodic
functions of the lightguide length even if twisting is uniform.

This problem was solved in 1944 by V L Ginzburg [101]
(see also Ref. [102]): he introduced the concept of screw
polarization modes, that is, modes in a reference frame co-
rotating with twisting. In this case, the ellipticity of polariza-
tion modes becomes independent of the lightguide length, the

elliptic birefringence equals 6 be � �b 2 � b 2
c �1=2, and the

azimuth of the larger axis of the ellipse rotates together with
the screw reference frame. In calculations of signals at the
output of an SMF segment, we need to take the rotation of the
helical reference frame into account. Ginzburg also formu-
lated the condition of applicability of geometric optics in the
case where twisting is constant and there is no linear
interaction between normal waves [101, 102]:

2t5 b : �11�

If this condition is satisfied, polarization eigenstates of the
mediumwith nonperturbed linear birefringence and torsional
twist are weakly elliptic, that is, nearly linear, and can be
treated as screw polarizationmodes [101, 102]. Condition (11)
can be written in a somewhat different form bc 5 b, stating
that the circular birefringence induced by twisting must be
much lower than the linear birefringence of the medium. If no
linear birefringence was initially present, twisting cannot
produce any circular birefringence in the medium [101, 102].

Ginzburg also showed that there is another condition for
the applicability of geometric optics: 2tl5 bcl5 1; however,
this condition is always satisfied in actual optical media [101,
102]. It states that the phase difference due to twisting-
induced circular birefringence building up along the optical
path equal to the light wavelength must be much less than
1 radian. The physical meaning of this last condition is that
there is no back reflection of the light wave in a twisted
medium with nonperturbed linear birefringence. In quartz
SMFs, this condition is satisfied with a large safety margin (of
at least three orders of magnitude) because torsion stresses
begin to destroy the lightguide only at twists of about 150 ±
200 turns mÿ1 [109].

In the case of variable twisting, the adiabaticity condition
was formulated in Ref. [103]: ellipticity of normal waves must
vary weakly over the length of polarization beats in the SMF,
Lb � l=Dn. If this condition is satisfied, then linear interac-
tion in the propagation of normal waves can be neglected in
the first approximation. We note that energy exchange
between two normal waves can be characterized qualitatively
by the so-called polarization conservation parameter Ð the
h-parameter [110 ± 114]. The h-parameter was applied earlier
to describe the coupling of linear polarization modes in
singlemode fiber waveguides. Recently, it proved possible to
generalize the concept of the h-parameter to polarization
modes with arbitrary ellipticity [109, 115]. Obviously, even if
the above condition is satisfied, it is no longer possible to
neglect the linear interaction of normal modes (polarization
modes) if there are a large number of inhomogeneities over
a considerable length of the optical medium (such as the
SMF).7

Ginzburg's results [101], just like those of Rytov [8, 9] and
Vladimirski|̄ [10], went unused for a long time. It was only in
1972 that E V Suvorov [116] applied the results of [101] to
describe the propagation of electromagnetic waves through a
plasma in the presence of a shear of force lines of a magnetic
field. In 1983, when it became necessary to describe the linear
interaction between polarization modes in SMFs, the results
presented in [101] were used in the paper by V V Zheleznya-
kov, V V Kocharovski|̄, and Vl V Kocharovski|̄ [103]. Later,

6 Paper [101] treated a linear phase plate with torsion stresses.
7 The condition that is violated in this case is hL5 1, where L is the length

of the SMF.
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Ginzburg's method was used to describe random coupling of
polarization modes in SMFs in the presence of linear
birefringence [109] and of regular and random twisting. In
particular, it was shown in Ref. [109] that in the case of
random twisting, the SMF is characterized by three
h-parameters, not by a single one as in Refs [110 ± 114].

Because the results of Ginzburg's work [101] provide a
simple and visually clear description of the RP state evolution
in media with linear birefringence and twisting and are
important in polarization optics, it is only fair to refer to
screw polarization modes introduced in Ref. [101] as
Ginzburg's screw polarization modes (GSPMs). In princi-
ple, they are equivalent to the conventional method of Jones
matrices in a linear base and may provide certain advantages
in specific cases. For this, it is necessary to pass to the elliptic
base corresponding to mutually orthogonal GSPMs [117].
With this base, the Jones matrix of an SMF segment with
Ginzburg's screw polarization eigenmodes becomes diagonal,
which considerably simplifies calculations.

A legitimate question arises here: why did the results in
Refs [8 ± 10, 101] lay dormant for so long? These results were
far ahead of the contemporary level of polarization optics,
which was mostly oriented toward the needs of crystal-
lography. Even though the results obtained by H PoincareÂ
[118], NWiener [119] (coherencematrix, 1930), andRC Jones
and H Hurwitz [120 ± 122] (Jones matrices and equivalence
theorems in polarization optics, 1941) were well-known, most
authors, as noted in review [42], ignored the results of these
papers and carried out calculations using very cumbersome
obsolete techniques until the beginning of the 1960s, that is,
until UShurkliff's monograph appeared in print [41].

5. The Rytov effect and Rytov ±Vladimirski|̄
phase in SMFs and FRIs in the case
of noncoplanar winding

5.1 The Rytov effect in a singlemode fiber lightguide
of FRIs
We return to discussing the fiber ring interferometer (FRI).
Because the FRI contour consists of a large number of turns
wound onto an SMF spool, the end of each turn is shifted
relative to the beginning of this turn by a distance of at least
one diameter of the lightguide fiber. In this case, the light-
guide has a noncoplanar (nonplanar) winding and the Rytov
effect Ð rotation of the light polarization plane Ð is
generated in it [8, 9]. The Rytov effect not only rotates the
polarization plane of the beam but also rotates the transverse
structure of the beam whenever that structure exists. For
instance, rotation of the speckle structure of light was
experimentally observed in a multimode lightguide wound
on a spool; this rotation was numerically equal to the solid
angle described by the tangent to the lightguide.

The angle of rotation of the polarization plane due to the
Rytov effect per one turn of the singlemode fiber lightguide
wound on a cylindrical spool (which we suggest be referred to
as the Rytov angle, or RA) is

g � 2p
�
1ÿ h�����������������������

�pD�2 � h2
q �

� 2p�1ÿ cos y� ; �12�

where D is the diameter of the cylinder, h is the winding pitch
of the SMF, and y is the angle between the lightguide axis and
the generatrix of the cylindrical spool. The total Rytov angle

is given by

aRyt � Kg ; �13�

where K is the integer equal to the number of turns.
We consider two types of windings of an SMF onto the

spool of the FRI contour.
(1) Let the winding of the lightguide on the cylindrical

spool be performed such that the axes of the inherent linear
birefringence retain their orientation from one turn to the
next, as shown in Fig. 7a. We note that this condition is met
automatically in the winding of the so-called ribbon single-
mode waveguide [124 ± 126], whose cross section is nearly
rectangular in shape and the birefringence axes are perpendi-
cular to the sides of the rectangle. In this case, the fiber
undergoes torsional twisting. The twisting t of the fiber per
unit length and the angle T of rotation of the axes of linear
birefringence per one turn of the fiber are found from the
expressions [2]

t � 2ph

�pD�2 � h2
;

�14�
T � 2ph�����������������������

�pD�2 � h2
q � 2pÿ g :

We see in this particular case that although the axes of
linear birefringence in the SMF retain their orientation from
turn to turn, the polarization eigenmodes of such an SMF
become elliptic as a result of the twisting. If the SMF
eigenmodes were elliptic, this sort of turn stacking would
change the degree of their ellipticity.

a2

1

3

2

1

b

Figure 7. Transversal cross section of a spool with a ribbon singlemode

fiber lightguide wound on it: (a) the lightguide is wound directly onto the

spool; (b) the lightguide is inside a Teflon tube wound onto the spool: 1Ð

spool, 2 Ð ribbon singlemode fiber lightguide; 3 Ð Teflon tube. Arrows

indicate directions of linear birefringence inside the SMF.

March, 2004 Geometric phases in singlemode éber lightguides and éber ring interferometers 297



(2) A different type of SMFwinding is used tomeasure the
Rytov effect. In order to avoid torsional deformation of the
lightguide in nonplanar winding, the lightguide is first placed
in a Teflon tube with a low friction coefficient and is then
wound onto a cylindrical spool [2, 26 ± 28, 127 ± 129]. The
Teflon tube undergoes torsional deformation but the optical
fiber does not Ð because the fiber readily unwinds inside the
tube in such a way as to remove torsional strains. In this way,
the structure of the SMF turns is not coplanar but the fiber is
not twisted.

The orientation of linear birefringence axes in the
transversal cross section of a ribbon SMF wound onto the
spool in a Teflon tube is shown in Fig. 7b. The figure makes
the physical meaning of theRytov effect of the SMFwith zero
torsional twisting quite transparent: it consists in the rotation
of the cross section and therefore of the linear birefringence
axes in the lightguide from one turn to another as a result of
the noncoplanar structure of the turns, that is, as a result of
the geometric properties of the winding of the lightguide onto
the spool.

Therefore, the Rytov effect is the rotation of the cross
section and, correspondingly, of the SMF axes without any
actual twisting of either the beam or the lightguide.

We note here that the value of the Rytov angle is
independent of the presence or absence of torsional twisting
of the fiber Ð these are two totally independent phenomena.
Because the Rytov effect causes rotation of the polarization
plane, it can be formally reduced to the emergence of some
additional optical activity, that is, the emergence of an
effective circular birefringence that in the laboratory refer-
ence frame is given by

bc � 2 teff � 2
g�����������������������

�pD�2 � h2
q ; �15�

where teff is the effective fiber twisting per unit length due to
the geometric properties of winding. In the helical reference
frame [101, 103, 109] comoving with this twisting, the
polarization eigenmodes within the SMF (Ginzburg's screw
polarization modes) retain their ellipticity that was present
before the lightguide was wound onto the spool. For example,
if the inherent (nonperturbed) birefringence in the SMF was
linear, then the GSPMs remain linearly polarized in the
helical reference frame. This is not surprising because the
Rytov effect is the emergence of rotation of the cross section
and, correspondingly, of the axes of the SMF birefringence
with zero twisting, that is, without generation of torsional
strains; indeed, the optical activity caused by the Rytov angle
is caused by the kinematic properties of the parallel transla-
tion of the Frenet trihedron along the beam trajectory or
along the lightguide in the case of nonplanar winding, which
is the same thing.

5.2 Similarities between the Rytov effect in polarization
optics and the Ishlinski|̄ effect in classical mechanics.
Parallel vector translation.
Noncommutativity of finite rotations
As mentioned above, the Rytov effect is a manifestation of
the so-called parallel translation, in this case, the translation
of the Frenet trihedron along the lightguide that was wound
in a nonplanar fashion. Such phenomena occur in various
fields of physics and result in various topological phases, the
difference between them being only that in some cases the
translation occurs in real space (e.g., the Rytov effect) and in

other cases in the parameter space. Parallel vector transla-
tion along a nonplanar surface is closely related to the so-
called noncommutativity of finite rotations. A clear illustra-
tion of this phenomenon in mechanics is given in Fig. 8. A
matchbox Ð a rectangular parallelepiped Ð successively
undergoes three rotations by 90� around three different sides
but is never rotated around its side with the striking surface
(the one to the right of the label). But after three rotations, the
matchbox is found to be rotated precisely around this side by
90�. If this matchbox rotation follows a different sequence,
the rotation angle in the final position has the opposite sign
relative to the initial position.8 This is the reason why this
phenomenon is known as noncommutativity of finite rotations.
This effect, caused by the conicalmotion of a solid (referred to
as `coning' in the American literature) was already discussed
by W R Hamilton [13] and later, in more detail, by
A Yu Ishlinski|̄ [14, 15] (see also review [7]). Incidentally, as
we showed in our publications [134, 135], this classic effect has
a relativistic analog: the Thomas precession.

We now consider the parallel translation operation as
such. We imagine moving a matchbox along a spherical
surface (e.g., along the surface of the earth) such that it
always remains parallel to itself (Fig. 9). The matchbox first
follows the equator, then goes up to the north pole along the
meridian, then descends to the equator along another
meridian 90� distant from the first, and finally returns to the
initial point along the equator. If we ignore the translational
motion, the matchbox performs the same operations as those
shown in Fig. 8 and its rotation angle (90�) is numerically
equal to the solid angle on the sphere subtended by the
trajectory of the matchbox.
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Figure 8. Geometric phase in classical mechanics: noncommutativity of

finite rotations. A matchbox undergoes three successive rotations by 90�

around different edges and as a result is rotated by 90� relative to the side

around which is was not rotated: (a ± d) the sequence of matchbox

positions; OÐmatchbox rotation axis for each position.

8 S AKharlamov demonstrated the rotation of a matchbox in the 1990s in

his lectures on theoretical mechanics at the Mechanics and Mathematics

Department of Moscow University [130] (see also the talk by N I Krobka

[131]). This phenomenon was similarly illustrated by the case of a rotated

book in volume I of the Berkeley Physics Course [132] and in the course of

theoretical mechanics by V F Zhuravlev [133].

298 G BMalykin, V I Pozdnyakova Physics ±Uspekhi 47 (3)



The mechanical kinematic effect discussed above is
directly analogous to the Rytov effect both from the
standpoint of physical interpretation and from that of
mathematical description. At the beginning of the 1950s,
Ishlinski|̄ proved a theorem known as the solid angle theorem
[14, 15], which was later reformulated by V F Zhuravlev as
follows9 [134, 136]: ``If a certain axis singled out in a solid with
three degrees of freedomhas spanned a closed conic surface in
the process of motion of the body and the projection of
angular velocity of the body on this axis was zero, then after
the axis returns to the initial position, the body has rotated
around this axis by the angle that is numerically equal to the
solid angle of the spanned cone.'' Translational motion of the
body does not affect the rotation angle. Ishlinski|̄ gave the
following example to illustrate the situation [14, 15]. An axis
with a frictionless flywheel mounted on it spans a solid angle;
if the angular velocity of the flywheel (or rather its projection
on the axis) is zero at the initial moment, then after the cyclic
rotation of the axis has been completed, the flywheel has been
rotated by the angle that is numerically equal to the solid
angle spanned by the axis. We see that the rotation of the
flywheel is connected with its inertial properties: to conserve
its kinetic energy in translation, the flywheel must execute a
rotation relative to the laboratory reference frame.

In view of this, we give another possible interpretation of
the physical nature of the Rytov effect. As indicated in
Kravtsov's monograph [32], ``...the Rytov equation reflects
a certain inertia of field vectors that locally cannot follow the
beam trajectory. These inertial properties are caused by the
conservation of the field momentum.'' This interpretation
agrees with Ishlinski|̄'s interpretation of the properties of
parallel translations of the body in classical mechanics, also
connected with the inertia of the body.

However, while the Rytov and Ishlinskii effects are
completely analogous, in the general case there is no such
analogy between the rotation angle acquired by a solid in the
process of conic motion (the so-called Ishlinski|̄ angle) and
the geometric phase in optics. A solid exists in conventional

space, where we can always separate the displacement of a
body, which is analogous to the kinematic phase in optics,
from the angle of rotation of the body that can be related both
to the conventional rotation in optics (analogous to the
dynamic phase) and to its conic motion (analogous to the
Rytov effect). Contrariwise, the kinematic and dynamic
phases, the RV phase, the Rytov angle, and PP2 are
generated in the process of light propagation through an
optical medium, which is anisotropic in the general case.
Rotations of a solid body related to its conic motion can be
treated ignoring its displacements and rotation, but the
changes in the kinematic phase, dynamic phase, RV phase,
Rytov angle, and PP2 are inseparable from the translational
motion of light in an optical medium, including SMF.
Consequently, it is not always possible to separate the RV
phase or PP2 from the dynamic phase.

In the presence of linear birefringence and irregular
twisting, the evolution of the RV phase and the change in
PP2 are described, even on a straight segment of an SMF, by
more complicated differential equations than the conic
rotation of a solid. Such an SMF is analogous, in the sense
of mathematical description, to relatively complicated (so-
called nonholonomic [139]) mechanical systems that can be
exemplified with the gyrocompass discussed by Ishlinski|̄ [14,
15]; this gyrocompass consists of two coupled gyrocompasses.
As shown in Refs [140 ± 142], the evolution of the RP state
and the change of PP2 in lightguides also occur in the presence
of nonholonomic constraints.10 Finding a useful mechanical
analog of the RP state evolution is not a simple problem, but
we were recently able to find a mechanical system that can be
described by a set of differential equations similar to that
describing an SMF with linear birefringence and irregular
twisting [143].

5.3 The Rytov ±Vladimirski|̄ phase
and the Pancharatnam phase of the second kind
in SMFs with noncoplanar winding
As shown above, the Rytov effect produces an equivalent
optical activity in singlemode fiber lightguides (or changes it if
it was already present in the SMF); hence, circularly polarized
light propagating through a lightguide with noncoplanar
winding acquires a dynamic phase, which has been suggested
to be referred to as theRytov ±Vladimirski|̄ phase (RVphase)
[2]. If light is already linearly polarized, a change is generated
in the RP state, additional relative to the laboratory reference
frame (indeed, birefringence does not change in the helical
reference frame comoving with the special twisting, that is,
Ginzburg's screw polarization modes preserve their ellipti-
city). In its turn, this change in the RP state causes an
additional phase change, which is in fact the Pancharatnam
phase of the second kind (PP2) for optically active media. As
mentioned above, it is not always possible to separate the RP
state and PP2 in the general case of the RP state.

We have shown above (see also [2]) that in optically active
media, PP2 corresponds to the real phase change only when
both circular polarization modes of the SMF are excited with
equal weights, that is, when linearly polarized radiation is sent
to the input of the SMF. Therefore, only in this particular case
does the PP2 caused by theRytov effect correspond to the real
phase change of light oscillations.

S

N

I

F

Figure 9. The geometric phase in classical mechanics: the parallel

translation. A matchbox moves parallel to itself along a closed trajectory

on the surface of the sphere, tracing a quadrant. As a result, having

returned to the initial position, the matchbox has been rotated by 90�.
I and F denote the initial and final positions of the matchbox.

9 On the solid angle theorem, see also Refs [137, 138].

10 We recall that one of the fundamental properties of nonholonomic

systems is that they do not in general return to the initial state after a cyclic

evolution [139].
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Whether the RV phase is the geometric or dynamic phase
is a matter of definition. The RV phase is a consequence of a
purely geometric phenomenon (the Rytov effect causing
optical activity of geometric origin) and is a geometric
phase in this sense. But if the RV phase is treated as a
consequence of optical activity, and the causes of this optical
activity are not analyzed, it can be considered a dynamic
phase.

If the SMF has no magnetic activity or has natural 11

optical activity simultaneously with linear birefringence,
then the RV phase is reciprocal because the equivalent
optical activity corresponding to the Rytov effect is also
reciprocal. Otherwise, as shown in Ref. [103], the RV phase
caused by the Rytov effect is nonreciprocal. It is obvious
that in this case, the PP2 due to the Rytov effect is also
nonreciprocal.

6. Polarization nonreciprocity in FRIs
and the nonreciprocal geometric phase
of counterpropagating waves

6.1 Polarization nonreciprocity in FRIs
As mentioned above, the polarization nonreciprocity effect
arises in the FRI contour satisfying conventional reciprocity
conditions [102] and is caused by the noncommutativity of
anisotropic elements in the FRI contour and by their
asymmetric orientation relative to the midpoint of the
contour [16, 22, 23]. Specifics of manifestations of polariza-
tion nonreciprocity and its physical interpretation are
discussed in detail in Refs [16, 22, 23, 144]. A number of
particular cases of polarization nonreciprocity are discussed
in Refs [57 ± 95]. Here, we concentrate on discussing the
polarization nonreciprocity and its effect on the nonrecipro-
cal phase difference of counterpropagating waves (NPDCW)
and on light intensity at the FRI output. The values of
ellipticity of polarization modes in the SMF of the ring
interferometer contour, the RP state at the FRI input, the
extinction coefficient of the polarizer, and the orientation of
birefringence axes of the SMF at the contour inputs are
assumed to be arbitrary. This allow us to describe certain
specific features, unknown earlier, of the polarization non-
reciprocity effect in FRIs.

The formation of random coupling of polarization modes
[109] on SMF inhomogeneities in an FRI contour greatly
complicates the analysis of polarization nonreciprocity [66,
74, 80, 87, 89, 92, 94, 95] because the ellipticity and mode
azimuths vary in a random manner (e.g., as the SMF
temperature varies) and this in turn changes the zero shift of
the FRI. In what follows, we consider fiber ring interferom-
eters with SMF contours and regular birefringence, that is,
without random inhomogeneities.

In the general case, natural polarization modes of SMF
with regular birefringence are elliptic. We note that the effects
connected with polarization nonreciprocity in FRIs whose
contour is made of a singlemode fiber lightguide with linear
birefringence are well known [16, 22, 23, 66, 74, 79], and in
FRIs whose contour is made of SMFs with circular birefrin-
gence, the phase difference of counterpropagating waves due

to polarization nonreciprocity is zero. This was proved by the
Jonesmatrix technique inRef. [84] and by the PoincareÂ sphere
method in Ref. [24].

Two different factors exist that produce polarization
nonreciprocity in FRIs with a single mode fiber lightguide
contour having regular birefringence. In what follows, we use
PN1 and PN2 to denote polarization nonreciprocity types
caused by these two distinct factors.

(1) PN1 arises only if the birefringence axes of the SMF at
different inputs of the FRI contour do not coincide. PN1 can
be regarded as a consequence of nonsimultaneous excitation
of the input radiation field of each polarization eigenmode at
the two ends of the contour. This factor is independent of the
coherence properties of radiation. The value of the NPDCW
due to PN1 depends on the angle between the birefringence
axis of the SMF at the inputs to the FRI contour, the RP state
at the FRI input, and the ellipticity of the SMF polarization
modes in the FRI contour. Because the NPDCW is related to
the topological characteristics of the FRI fiber contour Ð its
loop shape and rotation of the SMF axes at the contour
input Ð the NPDCW can be considered a geometric phase.

(2) PN2 is caused by the two-channel nature of the process
(the propagation of the radiation of counterpropagating
waves in the FRI contour in two orthogonal polarization
modes, or channels), by coherence or partial coherence of
radiation in orthogonal modes after passing through the FRI
contour, and the interference of polarization modes because
of the noncoinciding axes of anisotropy in the single mode
fiber at the input (output) of the fiber contour, or because the
polarizer in the FRI circuit (Fig. 10) is not oriented parallel to
one of the SMF axes. In this case, regardless of the RP state at
the FRI input, the interference signal at the output can carry
additional information on the phase difference of light waves
that passed along the slow and fast birefringence axes in the
SMF contour; this birefringence is directly proportional to
the linear birefringence times the fiber length and may vary in
response to mechanical factors acting on the SMF contour
and in response to temperature changes that affect the FRI
contour length L and the value of birefringence. Presently,
FRIsusenonmonochromatic lightsourcesandthecondition 12

L4 ldep is always met and the counterpropagating waves
passing along different birefringence axes of an SMF are not
coherent relative to one another. In this case, the NPDCW is
caused by PN2.

We note here that as shown in Refs [66 ± 74] (see also
Ref. [16]), polarization nonreciprocity is caused by the RP
state of one type or another at the FRI input. If radiation at

11 The natural optical activity stems from the susceptibility of the optical

medium (e.g., water solution of sugar) to rotation of beam polarization.

The circular birefringence of the medium, stemming from its torsional

twisting, is not optical activity.

12 ldep is the depolarization length of nonmonochromatic radiation in

SMFs (ldep � l20=�DlDn� [114], where Dl is the spectral width of the

radiation source).

a1a2

P

X

YY 0

X 0

12

Figure 10. Orientation of axes of inherent linear birefringence at the input

to the FRI contour:X,Y andX 0,Y 0 are the directions of the slow and fast

axes, respectively, at the inputs 1 and 2 of the contour.
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the FRI input is completely depolarized, there is no polariza-
tion nonreciprocity.

Figure 10, which shows the orientation of the inherent
linear birefringence axes in the SMF at both inputs of the FRI
contour, illustrates the fact that the radiation propagating
along the axis X acquires an additional phase increment by p
radians in comparison with the radiation propagating along
the axis Y; in calculations later in this section, this is taken
into account by introducing a half-wave phase plate.

We write the expressions for the electric fields of both
counterpropagating light waves at the input and output of the
FRI in the presence of rotation when a phase difference FS

due to the Sagnac effect appears in the FRI:

FS � 8pNsO
lc

: �16�

Here, l is the light wavelength in the vacuum, c is the speed of
light in the vacuum, s is the area of the projection of one turn
of the FRI fiber contour on the plane orthogonal to the
angular velocity vector, N is the number of turns in the FRI
contour, and O is the angular velocity of rotation.

The vectors of electric fields of counterpropagating waves
at the FRI output,

E� � E�x
E�y

� �
i Eÿ � Eÿx

Eÿy

� �
(in the Cartesian coordinates based on the allowed and
forbidden axes of the linear polarizer 13), are given by

E� � P � l
2
� T�ÿa2� � K� � T�a1� �P � E0 � exp

�
iFS

2

�
;

Eÿ � P � T�ÿa1� � Kÿ � T�a2� � l
2
�P � E0 � exp

�
ÿ iFS

2

�
;

�17�
where

E0 � Ax

Ay exp �ic�
� �

is the normalized Jones vector at the FRI input (A2
x � A2

y � 1)
and

P � 1 0
0 e

� �
; T�a� � cos a sin a

ÿ sin a cos a

� �
;

l
2
� ÿ1 0

0 1

� �
are the respective Jones matrices of the linear polarizer, of the
rotation of one of the ends of the contour by an angle a, and of
the half-wave plate. The matrices K� and Kÿ describe the
FRI contour depending on the direction of path tracing;
Kÿ � �K��T and

K� �
cos

d
2
� i sin

d
2
cos 2R

1

2
sin

d
2
sin 2R

ÿ 1

2
sin

d
2
sin 2R cos

d
2
ÿ i sin

d
2
cos 2R

0BB@
1CCA ;

where d � beL is the phase difference between the light waves
passing along the slow and fast birefringence axes;
be � �b 2 � b 2

c �1=2 is the elliptic birefringence of the SMF;
L is the length of the SMF contour; and the parameter R

characterizes the ellipticity of polarization eigenmodes of the
SMF. As indicated above, tanR � b=a, where a and b are the
larger and smaller axes of the polarization ellipse. If R � 0,
the SMF polarization modes are linear, and if R � p=4, they
are circular.

We note that Eqn (17) does not contain Jones matrices
describing beam splitters in the FRI circuit (see Fig. 1). This is
because the Jones matrix of an ideal polarization-isotropic
all-fiber beam splitter is the identity matrix with the coeffi-
cient 1=

���
2
p

. The identity matrix can be ignored in calculations
because the Jones vector multiplied by it does not change its
form. The coefficient 1=

���
2
p

can also be dropped because the
light intensity to be calculated is a relative value, while the
absolute values of the amplitudes of electric fields of counter-
propagatingwaves do not affect the final result in calculations
of the phase difference of the counterpropagating waves [this
is demonstrated below, see Eqn (21)]. It is shown in what
follows that if the FRI circuit uses discrete beam splitters Ð
not all-fiber ones Ð then the phase difference between
counterpropagating waves is affected quite significantly.

In the most general case, the expressions for the total light
intensity at the FRI output and for the part of it that
determines the intensity and phase difference of the inter-
ference signal are very complicated and cumbersome.14 In the
particular case of no rotation �FS � 0� and in the absence of
polarizers in the FRI circuit �e � 1�, the corresponding
expressions are considerably simplified:

Ifull � jE� � Eÿj2 � 2
�
2ÿ cos2 �2R� sin2 �a2 � a1�

�
; �18�

Iinterf � Re �E�x Eÿ�x � E�y E
ÿ�
y � � 1ÿ cos2 �2R� sin2 �a2 � a1� ;

�19�
Im �E�x Eÿ�x � E�y Eÿ�y � � cos �2R� sin �a2 � a1�
� ��A2

y ÿ A2
x� sin �2R� cos �a2 ÿ a1�

� 2AxAy

ÿ
cos �2R� cos �a2 � a1� sinc

� sin �2R� sin �a2 ÿ a1� cosc
��
: �20�

We note that the NPDCW of the counterpropagating waves
at the output of the fiber ring interferometer due to PN1 is
given by the formula

jnon � arctan
Im �E�x Eÿ�x � E�y E

ÿ�
y �

Re �E�x Eÿ�x � E�y Eÿ�y �
: �21�

We need these expressions in the discussion of the
experiments conducted to observe the geometric phase in
FRI [26 ± 28].

6.2 Nonreciprocal geometric phase of counterpropagating
waves in FRIs
The condition L4 ldep is practically always satisfied in FRIs
with nonmonochromatic radiation sources. Hence, as men-
tioned above, the counterpropagating waves traveling along
different birefringence axes of the SMF in the absence of
random inhomogeneities in the fiber lightguide interfere only

13 In the absence of a polarizer in the FRI circuit, the orientation of the

axes of the Cartesian coordinate system is chosen arbitrarily.

14 A detailed analysis of these expressions is a topic for a separate work

[145]. We note that in the case of an imperfect (nonideal) polarizer

�04e4 1� in the FRI circuit, the results obtained in [145] show that the

polarization nonreciprocity effect is not `hidden' or `virtual' as assumed

above [16, 22, 23], because light intensity at the FRI output is a function of

the phase difference c between the orthogonal components of the electric

field vector at the FRI input.
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pairwise. Therefore, we can consider two independent
interference patterns at the FRI output and, correspond-
ingly, two independent and generally nonidentical NPDCWs
caused by PN1,

j�1; 2�non � arctan
Im �E�x;yEÿ�x;y �
Re �E�x;yEÿ�x;y �

: �22�

It was suggested [24] that these phases can be calculated
using the PoincareÂ sphere technique. As shown in Ref. [24]
(see also Ref. [146]), the NPDCW for each of the SMF axes
(slow or fast) equals half the solid angle, with its apex at the
origin of coordinates, subtended by the spherical triangle on
the PoincareÂ sphere determined by the following three points:
the point corresponding to the RP state at the input to the
FRI circuit; the point corresponding to the RP state on one of
the outputs of the FRI contour; and the point corresponding
to the RP state at the opposite output of the FRI contour.
Obviously, the point on the PoincareÂ sphere representing the
RP state of the FRI contour input is common for both
spherical triangles that correspond to the slow and fast axes
of the SMF contour. The nonreciprocal phase differences
discussed here are defined on the PoincareÂ sphere, and we
therefore deal with a manifestation of geometric phases. It
was proposed in Ref. [146] to refer to them as nonreciprocal
geometric phases of counterpropagating waves (NGPCWs).
The NGPCW for counterpropagating waves traveling along
the slow axis of the SMF contour equalsj�1�non, and that for the
fast axis equals j�2�non.

We consider an NGPCW in a simple particular case:
polarization eigenmodes of the SMF contour of the FRI are
linear, and the slow axes of linear birefringence of the SMF at
the contour input rotate by the angles a1 and a2 (see Fig. 10).
There is no polarizer in the FRI circuit, and theRP state at the
FRI input is right-circular. Figure 11 shows a spherical
triangle ABN on the PoincareÂ sphere for the slow birefrin-
gence axis OBC (the second triangle A 0B 0N for the fast axis
OBC, where points A 0 and B 0 are diametrically opposite to
points A and B, is not shown in Fig. 11). PointN corresponds

to the right-circular polarization of light at the FRI input and
pointsA andB correspond to the RP state at the FRI outputs.
The angle 2a1 is counted along the PoincareÂ sphere equator in
the reverse direction because the angle a1 is measured
counterclockwise in real space (see Fig. 10). The NGPCW is
numerically equal to half the solid angle subtended by the
spherical triangle ABN or, for a unit-radius PoincareÂ sphere,
equals half theABN area. Clearly, if linearly polarized light is
sent to the FRI input, then both triangles degenerate to arcs
(parts of the PoincareÂ sphere equator) and the NGPCWs
equal zero for both polarization modes.

Another, equivalent definition of the NPDCW can be
proposed. In the particular case shown in Fig. 11, we consider
two open figures, each formed by two arcs on the PoincareÂ
sphere: the first byNA andAB and the second byNB andBA.
These arcs have the following physical interpretation. At one
of the inputs of the contour, the circularly polarized light has
excited a slow linearly polarized mode of the SMF, corre-
sponding to the arc NA. Because the orientations of the axes
at the input to the contour are different, this means that the
SMF is to some extent twisted and its polarization modes are
Ginzburg's screw polarization modes (GSPMs), and in this
case they are practically linear. At the output of the contour, a
GSPM rotates by the angle a1 ÿ a2, which corresponds to the
arc AB. Similarly, for the counterpropagating waves, we can
consider the arcsNB andBA. Even though each of the figures
ABN and NBA is open, they form a spherical triangle
together. Therefore, the NGPCW is numerically equal to
half the solid angle subtended by the spherical triangle on the
PoincareÂ sphere formed by arcs corresponding to the
excitation and the evolution of Ginzburg's screw polariza-
tion modes on the FRI contour.

It may seem at first glance that the NGPCW is identical to
the PP1 because both are determined by the area of spherical
triangles on the PoincareÂ sphere. This is not true, however,
First, the PP1 is numerically equal to the difference between p
and half the area of the complementary triangleABC 0, not to
half the area of triangle ABC (see Fig. 2). Second (and this is
the principal point), for the PP1, point C on the PoincareÂ
sphere corresponds to theRP state that is the sumofRP states
corresponding to points A and B on this sphere, while for the
NGPCW, point N does not correspond to the sum of
polarizations at points A and B (see Fig. 11): the sum of two
linearly polarized light beams is also linearly polarized, while
N corresponds to right-circular polarization. The physical
factors causing the appearance of PP1 and the NGPCW are
also different: PP1 is a consequence of the difference between
the RP states of two beams not differing in kinematic phase,
while the NGPCW is a consequence of the two beams
(counterpropagating waves at the FRI output) having
different initial phases, which they already acquired at the
input to the contour owing to nonsimultaneous excitation.

The PoincareÂ spheremethod [24] is not a universal tool for
calculating jnon due to polarization nonreciprocity of the
NPDCW, nor for calculating PP2. The NGPCWof the waves
traveling along the slow and fast axes of the SMF of the FRI
contour [i.e., j �1; 2�non , see formula (22)] are the arguments of
two complex numbers, while jnon [see formula (21)] is the
argument of the complex number that is the sum of the two
numbers above. In the general case, however, it is impossible
to calculate the argument of the sum if we only know the
arguments of the addends because the magnitudes of the
addends must also be known. The NPDCW is identically
equal to the NGPCWonly in the FRI with a contour made of

2a1

S

0�
AB

O

N

2a2

Figure 11. Representation of the nonreciprocal geometric phase of

counterpropagating waves (NGPCW) on the PoincareÂ sphere. Point N

corresponds to circular polarization of nonmonochromatic light at the

FRI input and points A and B correspond to linear polarizations of

counterpropagating waves traveling along the slow axis of linear birefrin-

gence of the SMF of the FRI contour, with azimuths a1 and a2.
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a single-polarization singlemode optical fiber, because in this
case only one spherical triangle corresponding to the unique
polarization of counterpropagating waves is created on the
PoincareÂ sphere. A number of particular cases where the
NPDCW can be calculated when the NGPCW is known were
discussed in Ref. [24]. In the general case, however, the
calculations that do not involve the phase difference of the
counterpropagating waves not caused by rotation of aniso-
tropy axesmust be carried out by the Jonesmatrix techniques.
Nevertheless, the PoincareÂ sphere technique may prove very
useful for a simple and visually clear presentation of the
polarization nonreciprocity phenomenon and for a straight-
forward synthesis of situations not resulting in polarization
nonreciprocity. This is discussed in detail in Refs [24, 146].
For instance, it is shown in Ref. [24] that in the case of
circularly polarized modes in the SMF of the fiber ring
interferometer contour, the NGPCW of either polarization
mode is zero, and therefore the NPDCW is also zero.

The main conclusions of this section are as follows. First,
the NGPCW can be regarded as a consequence of the
differences between the conditions of excitation and evolu-
tion of Ginzburg's screw polarization modes on the PoincareÂ
sphere. Second, in the general case, it is advisable to conduct
the calculation of the NPDCW using the Jones matrix
technique or the method of field expansion in normal waves
[101 ± 103]. In general, the PoincareÂ sphere method allows
giving a clear illustration of the phenomenon of polarization
nonreciprocity. In a number of important particular cases,
the NPDCW equals the NGPCW.

7. Analysis of experiments on recording
the geometric phase in FRIs

We now consider the results of experiments [26 ± 28] that
recorded changes in the phase on the interference pattern [26]
and in light intensity [27, 28] at the FRI output in response to
a change in the pitch of the helicoidal winding of a singlemode
fiber lightguide.

7.1 Parameters of fiber ring interferometers
on which measurements were conducted
FRIs investigated in Refs [26 ± 28] had SMF contours with
weak birefringence and no polarizer. The FRI circuit in
Ref. [26] had a single beam splitter, namely, a discrete optical
element Ð a polarization-isotropic beam-splitting prism,
while part of the SMF contour was one half of the SMF
loop (d � 125 mm) wound onto a spool 23 cm in diameter.
The FRI circuit in Refs [27, 28] contained two all-fiber beam
splitters and two turns of the SMF on the spool (neither the
diameters of the SMF and the spool nor the total length of the
SMF were reported). However, using the dependence of the
angle of rotation of the light polarization plane (the Rytov
angle) on the winding pitch given in Ref. [28], we can make a
numerical evaluation using formula (12), which indicates that
the spool diameter was approximately 13 cm. The dichroism
of beam splitters in Refs [26 ± 28] was negligibly small.
Monochromatic light sources with a linear RP state were
used in Refs [26 ± 28]: an He-Ne laser (l � 0:63 mm) in
Ref. [26], with the RP state at the output nearly linear and
changing to circular after passing through a polarizer and a
quarter-wave plate; and a semiconductor laser (l � 1:3 mm)
in Ref. [28], with an RP state that could be varied arbitrarily
using the so-called Lefevre polarization controller [105] that
consisted of two SMF rings with birefringence induced by

bending. A nonmonochromatic nonpolarized superfluores-
cent light source (l � 1:5 mm, linewidthDl � 50 nm)was also
used in Ref. [27]. Such radiation sources have very low
polarization [147]. There was another RP state controller
inside the FRI contour in Refs [27, 28] in which the value of
linear birefringence in the SMF was controlled through
mechanical compression [148]. Using this controller, a
segment of the lightguide was created, equivalent to the half-
wave phase plate. In Refs [26 ± 28], the lightguide was placed
in a Teflon tube and could easily unwind as the pitch of the
helicoidal winding was varied. In Ref. [26, 27], the pitch of
helicoidal winding was varied by shifting one of the ends of
the helix, and in Ref. [28], by symmetrically shifting both ends
of the winding in opposite directions.

Special samplingmeasurements conducted inRefs [26, 28]
showed that birefringence in the SMF was practically
unaffected by varying the pitch of the helicoidal winding.
Using formula (10), it was possible to calculate linear
birefringence induced by winding the SMF onto the spool.
It is likely that a standard lightguide with the diameter
d � 125 mm was used in Refs [27, 28].

In this case, we have b � 0:425 rad mÿ1, Dn � 4� 10ÿ8

for experiments in Ref. [26], and b � 0:51 rad mÿ1,
Dn � 1:2� 10ÿ7 in Refs [27, 28]. Because the residual
difference between refractive indices along the slow and fast
axes in weakly anisotropic SMFs is typically Dn �
10ÿ6ÿ10ÿ7, we can assume that the winding of the SMF
onto the spool [26 ± 28] indeed caused very little increase in
linear birefringence.

Here, we need to point to one specific feature of the FRI
circuit used in Ref. [26], which is important for interpreting
the results of this experiment. As mentioned above, the
experiment in Ref. [26] used a beam-splitting prism whose
Jones matrix, in contrast to the Jones matrix of an all-fiber
beam splitter, is not the identity matrix but is given by

1���
2
p 1 0

0 ÿ1
� �

:

For example, if a beamwith the right-circular polarization
is incident on this prism, the beam passing through the beam-
splitter prism does not change its RP state, while the beam
reflected from it becomes left-polarized, that is, changes the
sign of circular polarization. The sign of circular polarization
of the beam reflected from a polarization-isotropic mirror is
changed in the same way. If the SMF of the contour has its
circularly polarized eigenmodes, then one counterpropagat-
ing wave has right-circular polarization and the other left-
circular polarization. The counterpropagating waves again
acquire identical circular polarizations at the FRI output
because one passes through a beam-splitter prism and the
other is reflected by it.

In principle, the FRI investigated in Ref. [26] can be
regarded as the so-called polarization FRI (PFRI, see
Section 5.7 of review [16]), in which one counterpropagating
wave travels along the slow axis of the SMF contour and the
other along the fast axis. Earlier PFRIs contained a polariza-
tion prism at the input, in order to excite various mutually
orthogonal linear polarizations in counterpropagating waves
[100, 149 ± 154]. PFRIs were designed to detect nonreciprocal
effects [100, 149, 150] and gravitation waves [151 ± 154].
Therefore, a PFRI with the conventional beam-splitter
prism for geometric phase measurements was first proposed
in Ref. [26].
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7.2 Analysis of experimental results
We note first of all that because the areas of the FRI contours
investigated in Refs [26 ± 28] were small, the influence of the
Sagnac effect on the phase difference between counterpropa-
gating waves due to the earth's rotation is negligible [see
formula (16)]. We also note that only one of the possible
mechanisms producing changes in the NPDCW (observed
experimentally in Ref. [26]) and in the value of Ifull (observed
experimentally in Refs [27, 28]) was discussed in [29], namely
the effect of changed birefringence of the SMF in response to
the changed pitch of the helicoidal winding of the lightguide.
Here, we discuss the results reported in Refs [26 ± 28] from a
more general standpoint.

The effect recorded in Ref. [26] was a shift in the positions
of fringes formed by interference of counterpropagating
waves at the FRI output in response to the changed pitch of
the helicoidal winding of the singlemode fiber lightguide in an
FRIwith amonochromatic light source and circular RP state.
As mentioned above, one of the counterpropagating waves
was traveling along the right-circular birefringence axis of the
SMF, and the other along the left-circular one. Both waves
acquired identical polarization at the output and formed an
interference pattern. Because the circular birefringence of the
SMF contour arises as a result of the Rytov effect, and there
was a circular RP state at the FRI input, the phase difference
between counterpropagating waves was numerically equal to
twice the Rytov ±Vladimirski|̄ phase because one wave
acquired the RV phase with the positive sign, and the other
with the negative one. Hence, the FRI circuit [26] made it
possible to observe the polarization nonreciprocity due to the
Rytov effect. In this case, the nonreciprocity occurred because
of the presence of two channels, that is, the Rytov effect
resulted in PN2.

Because a discrete beam-splitter, not an all-fiber one, was
used in Ref. [26], a certain phase mismatch of wave fronts of
counterpropagating waves could also occur in principle. In
this case, if there was sufficient linear birefringence in the
SMF, and its polarization eigenmodes could be not quite
circular, then the change in the Rytov angle in response to the
changed pitch of the helicoidal winding of the lightguide
could result in a certain change jnon of the NPDCW as a
result of the changed PN1, and this could also lead to a shift of
interference fringes at the FRI output.

The quantity monitored in Refs [27, 28] was the change in
the value Ifull as the pitch of the helicoidal winding was varied;
the FRI used amonochromatic light source. In this case, if the
polarization eigenmodes of the SMF of the FRI contour are
linear �R � 0�, then the total intensity of radiation at the
output of the FRI without a polarizer is described by the
expression

Ifull � cos2
aRyt

2
; �23�

where aRyt stands for Rytov angle (13). As follows from
Eqn (23), the value of Ifull is then independent of the RP state
at the FRI input, which is in agreement with the results of
measurements [27, 28]. In this situation, the change in the
Rytov angle in response to the changed pitch of lightguide
winding resulted in changed PN1 and PN2, and the contribu-
tions of the two can hardly be separated.

As shown above, there are no nonreciprocal effects shown
by the two-channel type of FRI if the radiation source is
nonmonochromatic; hence, it is most interesting to analyze
the results of experiments [27] because they allow ignoring

changes in the PP2 and RV phase in response to the changed
pitch of the helicoidal winding.

In Ref. [27], the total light intensity Ifull was measured at
the output of the first and second beam splitters (see Fig. 1). In
actual FRIs, the signal is alwaysmeasured at the output of the
first beam splitter because the signal at the output of the
second beam splitter (located at the input to the contour) has
an additional phase difference between the counterpropagat-
ing waves: one wave passes through it twice, while the other is
twice reflected from it. Hence, in what follows, we always
consider only the function Ifull at the output of the first beam
splitter (this is illustrated in Ref. [27] by the upper plot in
Fig. 4). The part of the SMF in the FRI contour that is wound
on a spool has circular birefringence due to the Rytov effect.
The remaining part of the lightguide contour, with the
exception of the compressed segment with linear birefrin-
gence, can be considered practically isotropic. Therefore,
because the change in the pitch of the helicoidal winding of
the SMF was produced in Ref. [27] by shifting only one of the
two ends of the lightguide coil, one of the angles, a1 or a2 (to
be specific, we assume that a1 � aRyt), changes in expression
(18) for Ifull because of the changing magnitude of the Rytov
effect.

Figure 12 plots the light intensity Ifull as a function of the
rotation angle a1 as calculated in accordance with Eqn (18).
The calculations assumed the polarizer coefficient in the FRI
circuit e � 1, and the value of ellipticity of Ginzburg's screw
polarization modes for the equivalent uniform SMF of the
contour was R � 0; p=14; p=4.15 As in the case with a
monochromatic radiation source, the quantities Ax, Ay and
the phase difference c between the electric field components
at the FRI input did not affect the behavior of the curve
Ifull�a1�. This indicates that the RP state does not change
Ifull�a1�, which is in good agreement with the experimental

15 The FRI contour [27, 28] consisted of a number of different segments of

the SMF: weakly birefringent leading segments, a compressed segment

with linear birefringence, and a segment of helicoidal winding with

equivalent circular birefringence. However, in the absence of data on the

length of each of these segments and on the value of nonperturbed

birefringence of the SMF, we were forced to replace it with a certain

equivalent uniform SMF, that is, in fact, with a discrete optical element.
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p=2 p 3p=2 a1
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Figure 12. The total light intensity Ifull (the upper group of curves) and the

interference light intensity Iinterf (the lower group of curves) at the FRI

output as functions of the azimuth a1 of the SMF axis at the input to the

first beam-splitter in the FRI. e � 1, a2 � p=2, R � 0 (dashed curves),

R � p=14 (solid curves), R � p=4 (dash-dot curves). Dots mark experi-

mental data [27].
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conditions in Ref. [27], where light at the FRI input was
depolarized. Figure 12 also plots experimental values of Ifull
taken from paper [27]. We see that the experimental values fit
well the theoretical curve calculated in accordance with
Eqn (18) for R � p=14. For the sake of comparison, Fig. 12
gives the function Ifull�a1� in the case of linear �R � 0� and
circular �R � p=14� GSPMs in the singlemode fiber light-
guide contour of the FRI. We see that the curves do not agree
with the experimental values given in Ref. [27].

We therefore see that in Ref. [27], the Rytov effect in a
fiber ring interferometer was experimentally observed,
resulting in a change of the azimuth of one of the SMF
axes at the contour input in response to changes in the pitch
of the helicoidal winding. At the same time, using Eqn (18),
we were able to calculate the ellipticity of Ginzburg's screw
polarization modes in the SMF in paper [27]: R � p=14,
that is, the ratio of the smaller axis of the ellipse to the
larger axis was tanR � 0:228. The reason why the GSPMs
in the SMF in Ref. [27] had certain ellipticity was most
likely the compressed segment of the lightguide; however, it
could also be related to the residual torsional strain in the
light guide. If the contour of the experiment in Ref. [27]
contained no compressed segment of the SMF equivalent to
a half-wave linear phase plate, then the GSPMs would be
very nearly circular �R � p=4� and the changes in the output
intensity due to the Rytov effect would be practically
unobservable.

We note that the Rytov effect also changes the Rytov
angle and, therefore, the NPDCW, which is related to PP2.

We thus see that experiment [26] observed the Rytov ±
Vladimirski|̄ (RV) phase in the fiber ring interferometer, and
experiments [27, 28] observed theRytov effect in the FRI. The
authors of Ref. [26] give the correct interpretation to their
experimental results but refer to the RV phase as Berry's
phase. The authors of Refs [27, 28] also correctly indicate that
changes in light intensity of the FRI output were caused by
the rotation of the polarization plane in response to the
changed pitch of the helicoidal winding of the fiber optics
lightguide, but they add to this that they record the changes in
Berry's phase even though they actually measured changes in
the Rytov angle. However, because both the Rytov angle and
the Ishlinskii angle in classical mechanics are classified as
geometric phases in the broader sense, they can in principle be
referred to as Berry's phases. But this very general name for
distinct types of geometric phases may make it more difficult
to interpret the results of various studies, and we therefore
find it advisable to indicate the specific geometric phase each
time. 16

The main conclusion of this section is that what is
actually measured in experiments with controlled pitch of
helicoidal winding of the singlemode fiber lightguide of the
FRI is the Rytov effect in the case of nonmonochromatic
light sources, while in the case of monochromatic light
sources, the change in the Rytov ±Vladimirski|̄ phase is
additionally recorded.

8. Unfounded hypotheses related
to geometric phases in FRIs

The existence of geometric phases in optics led authors of
some publications to wrong conclusions about the function-

ing of fiber ring interferometers. For instance, we read in
Refs [155 ± 158] that the magnitude of the Sagnac effect in
FRIs depends on the type of winding (stacking) of the SMF
contour onto the spool; these authors also discuss the
possibility of a significant increase in the phase difference
between counterpropagating waves in view of the rotation of
the polarization plane in the case of nonplanar (e.g., toroidal)
winding of SMFs. E IYakubovich proved this statement false
by using the eikonal method in paper [29] written together
with one of the authors of the present review. Furthermore, it
was shown in Ref. [29] that the value of the phase difference
between counterpropagating waves due to the Sagnac effect is
proportional to the area of the projection of the contour
outline onto the plane orthogonal to the rotation axis. Hence,
it is maximal if the FRI contour has a planar winding and
cannot be increased by the noncoplanarity of the contour
outline: the phase difference can only decrease in this case.

As was shown in Section 7, the Rytov effect due to
noncoplanarity of winding the SMF contour of the FRI can
result in two effects:

(1) The change in the Rytov angle may result in a changed
NPDCW, which is related to PN1 (i.e., to nonsimultaneity of
excitation of counterpropagating waves in FRIs).

(2) For a nonmonochromatic radiation source, the
appearance of the RV phase results in the appearance of the
NPDCW, which is related to PN2 (i.e., to the two-channel
situation).

The Rytov angle can thus only result in the rise or
modification of the magnitude of the NPDCW in fiber ring
interferometers, that is, can only produce an additive term in
the phase difference caused by rotation (the Sagnac effect).
There can be no question of increasing the sensitivity of the
Rytov effect to rotation.

9. Conclusion

We now formulate the main results of this study.
(1) The Rytov effect, that is, the rotation of the light

polarization plane resulting from free noncoplanar winding
of a singlemode fiber lightguide, converts polarization
eigenmodes of the SMF into Ginzburg's screw polarization
modes (GSPMs); however, no additional elliptic birefrin-
gence is generated in the process. The Rytov effect in SMFs
is therefore a manifestation of optical activity not accom-
panied by a modification of birefringence in the helical
coordinate system.

(2) The Rytov ±Vladimirski|̄ phase has a geometric optics
origin, and therefore is a form of geometric phase; at the same
time, it can be regarded as a manifestation of dynamic phases
because it is defined for a circular radiation polarization state
in the case where the optical activity is caused by the Rytov
effect.

(3) In the general case, geometric phases in optics, defined
on the PoincareÂ sphere, do not allow calculating the actual
phase change corresponding to the change in the RP state
over a segment of an SMF or FRI. For instance, the
Pancharatnam phase PP2 does not in general correspond to
the actual phase even in the case of cyclic evolution of the RP
state in a medium with an arbitrary type of birefringence, for
instance, if both polarization eigenmodes were excited with
unequal weights. In the general case, the NGPCW of a fiber
ring interferometer does not allow calculating the nonreci-
procal geometric phase of counterpropagating waves caused
by PN1. Nevertheless, geometric phases make it possible to

16 I A Andronova made a significant contribution to the interpretation of

the results reported in Refs [26 ± 28].
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give a simpler and visually clear illustration of various
polarization effects in SMFs of a fiber ring interferometer.

(4) The reason why geometric phases in polarization
optics do not always correspond to the actual changes in the
light phase is that they always arise during the process of light
propagation through anisotropic optical media and cannot
always be separated from conventional kinematic and
dynamic phases, in contrast to geometric phases of classical
mechanics, where it is always possible to separate the
translational motion of a solid from its rotational and
conical motion.

(5) The calculation of the actual phase change of light in
the SMF or of the NPDCW due to polarization nonrecipro-
city in FRIs should be carried out in the general case by the
Jones matrix technique even though using GSPMsmay prove
advantageous in specific cases.

(6) In media possessing no magnetic activity or possessing
simultaneous natural activity and linear birefringence, the
Pancharatnam phase PP2 and the Rytov ±Vladimirski|̄ phase
are reciprocal and can be observed within a segment of the
SMF or in Michelson and Mach ±Zender fiber interferom-
eters; in fiber ring interferometers, they can be observed only
in two-channel situations that arise if a monochromatic
radiation source is used, that is, as a manifestation of a
change in PN2.

(7) The NGPCW can be regarded as a consequence of the
difference between the excitation and evolution condition for
GSPMs in the singlemode fiber lightguide of the fiber ring
interferometer, corresponding to different arcs on the
PoincareÂ sphere. If the FRI contour is made of a single-
polarization SMF, then the NGPCW and NPDCW are
identical.

We were able to establish that specific changes caused by
the Rytov effect in the radiation polarization state of light
propagating along a helicoidal beam were first treated in
Ref. [159]. The effect of waveguide twisting on the generation
of geometric phases in the microwave range was discussed by
L A Rivlin in Ref. [160]. We note that polarization
eigenmodes of such waveguides are Ginzburg's screw polar-
ization modes.

In conclusion, the authors express their gratitude to
V L Ginzburg and V V Vladimirski|̄ for a discussion of their
results published in the 1940s, to Vl V Kocharovski|̄ for a
discussion the results, which led to a number of important
changes and a considerable improvement in the presentation
of the material, to V M Gelikonov, Yu I Ne|̄mark,
G V Permitin, and S A Kharlamov for a number of useful
suggestions, and to S N Novikova for her help in preparing
graphic illustrations. This work was partly supported by the
Russian Foundation for Basic Research grant No. 03-02-
17253 and partly by the grant No. NSh 1622.2003.2.
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