
Abstract. Dynamic dissipative mixed states, energy dissipation,
and the penetration of a transport current's self-magnetic field
are considered for the following type II superconductors: low
temperature small-crystallite metal films, high temperature
polycrystalline films, and bulk inhomogeneous (granular) sam-
ples. The special transport properties of such superconductors
are primarily due to their morphology.

1. Introduction

The dynamic dissipative mixed (DDM) state has been studied
rather thoroughly in type I low temperature superconductors
(LTSCs) [1] and in transport-current-carrying `hard' and
composite type II LTSCs [2]. Meanwhile, however, many
new and interesting results have been obtained in both
inhomogeneous (granular) type II LTSCs and in samples of
ceramic high temperature superconductors (HTSCs). It is
these circumstances, along with the interest in achieving large
critical currents in such superconductors, which justify
writing this review.

The review examines the transport-current-induced tran-
sition from the superconducting (SC) to the DDM state in
metallic granular (fine-grained) LTSC films and in layered
LTSC and HTSC films (Section 2), as well as in bulk ceramic
HTSC samples (Section 3).

2. Current field penetration and the DDM state
in wide polycrystalline and layered films

2.1 Metastable current states
Before the discovery of HTSCs [3], the properties of DDM
states in granular superconductors were mainly studied in
fine-grained metal films, with the oxide of the superconduc-
tor's material surrounding film crystallites [4]. There are three
reasons for the interest in such samples. First, granular films
were widely used in fabricating low-temperature devices
(kryotrons, etc.). Second, films with the properties of type I
and II superconductors could be easily obtained from a bulk
type I superconductor by thermal sputtering in a medium or
low vacuum [5]. And third, owing to the characteristically low
critical currents of the samples, the effects of the pinning
forces Fp and of heat releaseQ on the motion of vortices were
reduced to a minimum.

A study of the dissipative state on wide (w > x > l?)
small-crystallite films of Al, In, and Sn in the thickness range
d � 10 ± 300 nm revealed metastable current states (MSCSs)
[5 ± 11]. Here, w is the thickness of the film, x is the coherence
length, l? � 2l2L=d is the effective penetration depth for a
magnetic field perpendicular to the film, and lL is the London
penetration depth of a magnetic field. MSCSs on current-
voltage (I ±V) curves were identified as straight lines with
different values of dV=dI, where V is the electrical voltage
across the sample and I the electrical (transport) current
(Fig. 1). The way the MSCSs and voltage steps DV appeared
on an I ±V curve is as follows. As I was increasing toward I1,
the graph of the I�V � dependence was a nearly straight line
coinciding with the axis of current. At a voltage V1, when
I � I1, a jump from this near-vertical to the straight line 1was
made by the plotting device's current point. Along the
straight line 1, both motions upward, to the point with the
coordinates I2, V2, and downward, to �I2, �V2, were possible as
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the current was further increased or decreased, respectively.
At point I2,V2, a jump to the next straight line 2 occurred, and
at point �I2, �V2, a jump to the preceding (non-dissipative)
portion of the I ±V curve took place. In a similar way,
motions along the straight lines 2 and 3 involved the current
point's jumps to the neighboring MSCSs, thus producing a
series of such straight (or near-straight) lines.

For films with several potential leads along their length,
the SC state was found to be destroyed in transversely
arranged narrow strips [6]. This fact was confirmed by
tunneling measurements [7]. The local nature of SC suppres-
sion was explained [8] as being due to Abrikosov (or A)
vortices moving one after another in chains under the action
of the transport current (the Lorentz force) and penetrating
into the film in its `current-weak' regions. The uncorrelated
appearance of A-vortices at the opposite edges of the film and
by pairs is also a possibility [5].

To penetrate the film, A-vortices must overcome an edge
barrier [12] of a similar nature to the Bean ±Livingston
barrier [13], which can be lowered by an inhomogeneity, a
magnetic field, or a transport current.

There exist two critical values of the current: Ic1, the lower
one, at which the barrier sharply decreases but does not
disappear completely [14], and Ic2, the upper one, at which
the barrier decreases to zero [8], enabling the first A-vortex to
penetrate the film. The value of Ic2 was found by minimizing
the total derivative of the vortex energy [8],
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for a film with a current in the region l?5 x5w along the x
coordinate, whereF0 � hc=2e is themagnetic flux quantum, h
is Planck's constant, c is the speed of light in a vacuum, e is the
electron charge, and N0�z� and E0�z� are the Neumann and
Weber functions, respectively [15]. For wide films, with the
current flowing primarily along the edges [16], Ic2 is expressed
as [8]
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where T is the temperature and Tc the critical temperature.
This expression agrees with the experimentally obtained
dependence

I1�T � � Ic�T � �
�
1ÿ T

Tc

�
up to T=Tc � 0:7 (Ic being the critical current). Formula (2)
agrees to within a factor � 1 with the estimated value for a
film with inhomogeneities [17, 18] of a current at which a
current equal to the depairing value IGL

c [19] is achieved at the
edges.

In real films, inhomogeneities lower the barrier, and the
condition Ic1 < Ic < Ic2 is always fulfilled [8]. From formula
(1), the deviation of Ic2 from I was determined [8] in the form
k � aK�rD=d�0:5, where a � 1, K � lL=x is the Ginzburg ±
Landau parameter and rD the effective size of inhomogene-
ities in the sample. The straight line in Fig. 2 is the dependence
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obtained in Ref. [8] for rD � 1:81� 10ÿ6 m, where d0 is a
constant. A similar inhomogeneity size was obtained by a
different method in Ref. [20].

As A-vortices move along the film, it has been shown [21]
that they interact with one another through empty space.
Therefore to increase their linear density it is necessary to
apply to the film a voltageV � F0=tL�I � [22, 23], where tL�I �
is the time it takes an A-vortex to travel the intra-chain
separation distance. As long as tL > t0, the I ±V curve is
reversible, and the energy released during the motion of
A-vortices [8] goes to the thermostat. Here t0 is the relaxation
time of temperature T to the equilibrium value T0. For
tL 4t0, the local temperature Tm along the trajectory of the
A-vortices does not have enough time to relax to T0, leading
to a temperature instability there. In this region, a nonuni-
form longitudinal electric field E develops, and a strip of
normal phase appears in the form of a thermal resistive
domain. The field penetrates to a depth lE � �lilHT=3e�0:5,
and it is there that the dissipation of energy takes place [24].
Here li is the effective elastic mean free path, lH is the effective
inelastic relaxation length, and e the energy gap in the
elementary excitation spectrum of the superconductor. In
the films studies, lE values ranged from 10ÿ6 to 10ÿ7 m [9].
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Figure 1. A typical I ±V curve for thin-film LTSC samples.
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Figure 2. The deviation of the theoretical from the experimental value of

critical current as a function of the Ginzburg-Landau parameter.
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2.2 Determination of local temperature in the region
of suppressed superconductivity
In Ref. [8], Tm was calculated using the heat conduction
equation for a one-dimensional (across the film) heat source,

d

dx

�
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dx
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ÿ A�T ��Tÿ T0�� B 0d�x�� r0C

qT
qt

; �3�

where K�T � is the film thermal conductivity per unit
thickness, x is the coordinate along the length of the film
with the heat source at x � 0 (Fig. 3), A�T � ��
a1�T � � a2�T �

�
=d is the total coefficient of heat transfer to

the substrate (a1) and the surrounding medium (a2) per unit
thickness, B 0 � P=wd (P being the power expended by the
outer heat source), r0 is the density of the samplematerial,C is
the heat capacity, and d�x� is the delta function. In the films
studied, the time of the uniform relaxation of temperature
t0 � r 0C=A as defined fromEqn (3) was� 10ÿ9 s [9]. Close to
Tc, temperature fluctuations are small,DTm � �Tm ÿ T0� and
K, A are constants, and Eqn (3) becomes [9]

K�T0� d2�DT�
dx2

ÿ ADT � 0 �4�

with the boundary conditions
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K
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where Tm � T�x � 0�. According to Eqn (4), as we move in
the direction of x from the heat source located at x � 0, the
temperature decreases according to the law

DT � DTm exp

�
ÿ x

lT

�
;

where the heat propagation length lT � �K=A�0:5 of the films
studied was � 10ÿ5 m. The estimates above suggest that
lT > lE, thus validating the d-function representation of the
heat source in Fig. 3 and Eqn (3).

In practice, the films were studied over a wide range of
temperatures, and Eqn (4) was replaced by amore general one
in which the temperature dependences K�T � and A�T � were
included. It therefore proved possible to obtain [8] an
expression for finding the value of Tm explicitly:

P � R0

�
3�Tm ÿ T0�4 � 8�Tm ÿ T0�3�T0 � b�

� 6�Tm ÿ T0�2�T0 � b�2 �0:5 : �6�

Here b � ÿ0:5Tc and the constant R0 was determined
from the I ±V curve and the I ±T diagram (Fig. 4).
Arrows on the I ±V curve indicate the variation of I, and
those on the I ±T diagram show the corresponding change
in the local temperature in the region of suppressed
superconductivity.

When I � 0, the temperature of the film is T0, to which
there corresponds point M in the I ±T diagram. For I � IN
there appears a region where the SC state is suppressed, and
Tm in a time� t0 (straight lineNL in the I ±V curve) generally
reaches larger values thanTc (pointL at the I ±T diagram). As
the current further increases, Tm increases monotonically. As
the current subsequently decreases, the SC state at point L
cannot be restored because we have Tm > Tc there. The
equality Tm � Tc is achieved at pointH, but the sample does
not make a transition to the SC state because V 6� 0. This
transition occurs only at pointQ, when the local temperature
Tm relaxes in time � t0 to the thermostat temperature Tm

(straight lineQR in the I ±T diagram and the I ±V curve). The
coefficient R0, as determined from Eqn (6) for T0 � 0:5Tc, is
R0 � �PQ=

���
3
p ��TmQ ÿ T0�ÿ2 [8], where PQ is the power

dissipated in the film as calculated for point Q in the I ±V
curve, and TmQ is the local temperature of the region of
suppressed superconductivity, when the current point of the
graph plotter recording the I ±V curve is at pointQ. Knowing
R0, it is possible to determine the value of Tm for any point of
the I ±V curve between points H and Q. Referring to the Tm

dependence for the indium film in Fig. 5, it is seen that lT and
Tm increase as I increases.
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Figure 3. Schematic of (a) the local suppression of superconductivity

(dashed region), (b) Tm, local heating temperature, and (c) electric field E.
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2.3 I ±V curve formation in granular LTSC films
Given the analytical dependences T�x� and E�x;T; j�, the
I ±V curve of a film,

V �
�
E�x;T; j � dx �

�
E�x;T; j �

�
dx

dT

�
dT ;

can be represented by the formula [25]

V � 2

�Tc�I �

T0

E�T; j ��B 0�0:5 K�T � dT� DVH ; �7�

where the first term on the right is due to the normal phase
strip, and the second arises from the voltage drop across an
inhomogeneity.

In the absence of vortex pinning the expression forE�T; j �
is written in the form E � rn f � j;T � [26], where rn is the
normal state resistivity of the film, j is the average transport
current density, and

f � j;T � � �1ÿ j=jc�
�1ÿ j=jc � F� j;T �� ;

where

F� j; T� � a

�
j

jc

��
Tc ÿ T

Tc

�3=2
; a � 1 ;

jc is the average critical current density for the DDM state.
The nonlinearity of the function E� j;T � is due to the heat
production process being nonlinear because of the dissipative
effects of the viscous motion of the A-vortices [26, 27].

In Ref. [28] a nonlinear heat production model was
employed to obtain the state diagram of a wide LTSC film
carrying a transport current. It is shown that at different
values of current, the superconducting, resistive, normal, and
bistable states are realized in the film. In the latter of these,
inhomogeneous switching-wave states exist which translate
the film either into the superconducting state (at a certain
temperature T1) or into the resistive or the normal state,
depending on the conditions.

What an experimentally obtained I ±V curve looks like
also depends on the measurement regime used [26, 29]. Thus
far, I ±V curves obtained in the specified-current regime have
been considered. Figure 6 compares two first MSCSs and a
portion of the I ±V curve measured using a source with,
respectively, either the current (curve 1) or voltage (curve 2)
being specified. When the I ±V curve is measured in the
specified current regime, the condition tL < t0 is fulfilled
before the onset of a temperature instability. The frames of
the A-vortices are spaced at least about x apart. The time
electrons stay bound in this region is tD � �h=2e�T � � 10ÿ11 s
[30], where �h is Planck's constant. Hence, an A-vortex
undergoing isothermal motion must travel a distance x in
the time the electrons remain bound Ð giving the maximum
velocity x=tD � 104 m sÿ1. On the other hand, when
tL�I � � t0, the minimum separation between the vortices
will be � lT, so that the minimum velocity for the non-
isothermal motion of the vortices at the moment of formation
of a normal phase strip will be lT=t0 � 104 m sÿ1, identical to
the velocity of isothermal motion as determined by a different
method in the discussion above.

At tL�I � < t0 (voltage breakdown region between points
C and D on curve 1, see Fig. 6) a strip of normal phase
appears. Then the amount of heat that goes to the thermostat
from an inhomogeneity exceeds that extracted from a pure
superconductor, and the normal phase strip attaches itself to
the inhomogeneity and does not expand [31], which is possible
if heat propagates diffusively along the film from the heated
region [5, 32]. If the current is increased (above point D on
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Figure 5. (b) Tm�I � dependence constructed using the I ±V curve for an

indium film shown in (a). Straight lines 1 are obtained for T0 � 2:6 K;
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curve 1, see Fig. 6), the I ±V curve is seen to behave nearly
linearly. The linear dependence I�V�means [8] that almost all
energy from the emf source is expended to breakCooper pairs
in the region where a non-uniform longitudinal electric field
exists (see Section 2.1), and that only a fraction of it goes to
heating the sample. In this case, when electrons bound in a
pair are accelerated by this field over a distance l, they gain
energy dW equal to eEl. If dW > 2e (pair-binding energy),
then an individual electron that encounters a defect is
scattered, breaking up the pair. Because eEl � eV, the
minimum voltage V0 at which there exists a DDM state is
given, for decreasing current I, by the expression [8]

V0 � 2e�T �
e

: �8�
When the I ±V curve is measured by specifying the voltage

[26, 29], A-vortices penetrate the film when I � IB (pointB on
the I ±V curve, see Fig. 6) [33].When I � IC (pointC in Fig. 6)
a normal phase strip forms first, causing current I to decrease
due to the appearance of an electrical resistance Rn (portion
CE of curve 2, see Fig. 6). Energy dissipation decreases, and
the strip returns to the SC state in a time � t0. At I � IB, the
A-vortices will again start penetrating andmoving at the same
spot on the film (point E in Fig. 6). The oscillogram in the
inset of Fig. 6 shows the instantaneous values which the
electrical voltage U on the film takes on as A-vortices
penetrate the film and move in it forming normal phase
strips in doing so [29, 33]. Point a is one where the A-vortices
start penetrating, and at point b a temperature instability
develops and a strip appears.

At point b the voltage U grows to the value
U � V0 �Un �Up, where U is the instantaneous value of
the voltage drop across the normal phase strip (themagnitude
of the pulse front edge), and Up is the instantaneous voltage
drop characterizing the nonequilibrium electric field directed
along the flow of the current I from the normal phase strip to
the superconducting region. The existence of such a field, lE
away from the normal strip, was assumed earlier in Ref. [24].
Here, it is obtained in a natural way because electrons in the
transport current have an energy higher than e. Un is the
voltage across the strip.

Upon the formation of a normal phase strip (point c in the
inset of Fig. 6) the current I will become smaller than Ic, and
Tm will become equal to T0 in a time � t0. The shape of the
dependences U�t� and R�t�, however, will be determined by
the time it takes the quasiparticles to recombine into pairs by
emitting phonons (portion cd in the inset of Fig. 6). In this
time U�t� will become equal to V0 [29] (portion de in the inset
of Fig. 6). Because I < Ic, superconductivity will restore itself,
and R�t� and U�t� will reach the zero value in a time of order
tD (point e in the inset of Fig. 6). At I � IB the strip formation
process will start again and repeat itself periodically, and
electromagnetic vibrations will start to be generated on the
film [29]. These non-stationary strips have come to be known
as `phase slip strips' (PSSs) [33].

Based on the form of the I ±V curve [29], the period tp for
the appearance of a PSS can be obtained from the relation [33]

hU i � Uti
tp
� Utin ;

which determines the average voltage hU i produced by a
pulse generator whose pulses have a duration ti and an
instantaneous voltage amplitude U. Here, n is the pulse
repetition frequency. According to this relation, hU i � n;

the minimum oscillation frequency is nmin � 1=w because the
larger w the larger tp; nmax is reached when the voltage drop
across the superconductor takes the minimum value
hU i � V0 (point K on the I ±V curve, see Fig. 6), above
which the transition to the normal state takes place [29, 33].

The way the emergence rate of PSSs is related to magnetic
flux F piercing them can be found [29] from the Josephson
relation hU i � Fn=c, where c is the speed of light in a
vacuum.

2.4 Features of the SP to DDM state transition in gapless
superconductors
The discussion so far has been concerned with superconduc-
tors with e 6� 0. Note, however, that e depends onT, I, and the
magnetic fieldH. In granular films close toTc there is a region
in the (T, H) plane in which e � 0, D 6� 0, and li < x [34],
where D is the order parameter. In this region, according to
the `first equivalence theorem' [35], the electrical conductivity
s of a film is equivalent to that of a superconductor with
added paramagnetic impurities, i.e., the state of the film is one
of gapless superconductivity [36]. In this state the screening
current Is induced by the fieldH satisfies the condition Is > Ic
[34], and therefore Ig > Ic, where Ig is the generation current
of electromagnetic oscillations.

The dependences I�T � and I�H� can be obtained by
including the effect of paramagnetic impurities on the
thermodynamic properties of a superconductor [34, 37].
Upon adding impurities the expression for the energy gap
takes the form [37]

ep � D
�
1ÿ

�
1

tsD

�2=3 �3=2
; �9�

where ts is the spin flip mean free path of an electron.
When tsD � 1, ep � 0 for D 6� 0, and the superconductor

becomes gapless, but the phenomenon of superfluidity
(R � 0) persists owing to superconducting correlations
between Cooper pairs. The current density in this case can
be written in the form [37]

J � Js � Jn ;

where Js � �2sts=c�jDj2P 0; Jn � sE, P 0 � 2mvs is the super-
fluidmomentum, and vs is the velocity of the superconducting
electrons. Close to Tc

vs � �h

mx�T � � D�T � ;

D�T � � �1ÿ T=Tc�0:5 [34], and D�H� � �1ÿ �H=Hc�2 �0:5
[38], where Hc is the thermodynamic critical magnetic field.
Hence,

Jg�T � �
�
D�T ��2 � 1ÿ T

Tc
; Jg�H� � 1ÿ

�
H

Hc

�2

; �10�

whereasJGL
c �T���1ÿT=Tc�3=2, andJGL

c �H��
�
1ÿ�H=Hc�2�3=2.

Properties like this have been observed in generation current
in Ref. [39].

2.5 Features of the SC
to DDM state transition close to Tc

The discussion thus far has been concerned with the
temperature region T < 0:9Tc, for which x�T �, l?�T � < rD.
For T > 0:9Tc and x�T �, l?�T � > rD, the transverse size of
the A-vortices exceeds the size of the inhomogeneities. The
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situation in this case is reminiscent of the behavior of
A-vortices in a homogeneous film because the vortices do not
`see' inhomogeneities. In such films the barrier to A-vortex
penetration decreases by practically the same amount along
the whole of the sample due to the transport current only.
A-vortices penetrate over the entire length of the film within a
small range of critical currents.

When the I ±V curve is measured in the fixed-current
regime, no A-vortices are present after a temperature
instability has developed. The whole of the sample makes
a transition to the dissipative state with no motion of
magnetic flux and only with a set of normal phase strips,
at a distance lE apart (see Section 2.2). The fact that neither
A-vortices nor the magnetic flux move was reported in Ref.
[40]. Close to Tc, the separation lE between the normal
phase strips becomes the same order as lT due to the
increase of lE (lE � eÿ0:5, and e! 0 as T! Tc). Hence, we
obtain 2lE for the total length of the inhomogeneous state
over which there exist an electrical resistance Rr and an
electrical voltage Vr. Because the inhomogeneous regions
are identical, it is found that the electrical resistance of the
film is a multiple of Rr and its I ±V is stepwise with a
voltage step Vr.

The reader is referred to Ref. [41] for experimental data
concerning 1) the existence of an inhomogeneous region of
length 2lE with a voltage drop in multiples of Vr on the I ±V
curve, 2) the increase, in multiples of Rr, of electrical
resistance along the film, and 3) the appearance of a stepwise
I ±V curve close to Tc.

What is characteristic of the I ±V curve in this case is the
finite value of the superconducting current I0 (see Fig. 1) as
obtained by extrapolating the slope dV=dI to V � 0. This
phenomenon, however, confirms the existence of normal
phase strips because the appearance of the current I0 is due
to the Andreev reflection effect. Electrons are reflected as
holes when electrical current flows from the normal to the
superconducting region, and, as a result, there are two parts
to the supercurrent, the current of Cooper pairs, which is
equal to Ic ÿ I0, and the current of holes, I0. That the values of
I0 are about the same for the first three or fiveMSCSs is due to
the fact that only those electrons with energies less than e�T �
are reflected.

There is an interesting feature which should be observed
when the I ±V curve is measured in the fixed voltage regime:
for I < Ic (point C in Fig. 6) it is expected that electro-
magnetic oscillations will start to be generated throughout
the sample.

2.6 DDM states in layered superconductors
In layered LTSCs at T > TKT, the Berezinski|̄ ±Kosterlitz ±
Thouless transition temperature [42, 43], a quasi-two-dimen-
sional state shows up in a system of neutral pairs of two-
dimensional (2D) vortices and antivortices [44 ± 46]. In such
materials the current I caused by the breakup of vortex
dipoles and by the motion of free two-dimensional A-
vortices (whose number depends on the value of I) gives rise
to energy dissipation and a nonlinear I ±V curve, altering the
nature of heat production processes as a consequence. The
dependence of V on I has the form [47, 48]

V � I a�T ��1 ; a�T � � L
�
Tc ÿ T

T

�
;

L � F0
s

16p2lL�0�2Tc

;

where s is the period of the layered structure and lL�0� is the
London penetration depth at 0 K [49].

Besides the above, the interlayer Josephson coupling [50]
should be taken into account in considering the thermal
stability of the DDM state in layered HTSC samples. In
high-temperature superconductors 2D vortices that arise due
to thermal fluctuations are closed with two Josephson
vortices (D-vortices) located between superconducting
layers. For the current I to break such a device it has to
overcome the stress ofD-vortices. This gives rise to the critical
current component Ic�T � � Ic0�1ÿ T=TKT�3=2 [50], which
vanishes for T � TKT, and the I ±V curve of HTSC samples
can be written in the form V / I �Iÿ Ic�a�T � [51].

In Ref. [52] the nonlinear nature of heat production is
taken into account as follows. Heat production power is
written in the form

qQ�T �
qt

� r�J;T � J 2 ;

and the nonlinear resistivity of the superconductor in the
dissipative state is taken to be

r�J;T � � rn

�
1ÿ Jc�T �

J

�a�T �
;

with

Jc�T � � Jc0

�
1ÿ T

Tc

�
:

This model, however, ignores the fact that forTKT the current
Ic ! 0 and that the I ±V curve remains nonlinear [53] all the
way to T � Tc > TKT. Another point to be considered here
is the presence of the depairing current IGL

c , which tends to
zero at T � Tc. And it is only when I � IGL

c that an HTSC
makes the transition to the normal state and the I ±V curve
becomes linear. These features were taken into account in
Refs [54, 55]. The former was concerned with the solution of a
one-dimensional equation of the type (3) which employed an
expression for the effective nonlinear electrical resistivity of a
superconductor r�J;T � to approximate the main features of
the behavior of layered HTSCs. In Ref. [55], resistivity in the
resistive state was taken to be

r�J;T � � rn
Jÿ Jc�T �

�JGL
c �T � ÿ Jc�T ��a�J;T�

;

where

a�J;T � �
�
Tc ÿ T

T

��
1ÿ

�
J

JGL
c �T �

�
b

�
;

b is a numerical parameter,

JGL
c �T � � JGL

c �0�
�
1ÿ T

Tc

�3=2

and JGL
c �0� is the depairing current density at T � 0 K.

The diagram obtained in Ref. [55] for the inhomogeneous
states of anHTSC film differs from the inhomogeneous states
of a wide LTSC film [28] in that in a layered superconductor
theT � T1 state can be both superconducting and resistive. In
a wide LTSC film, this can only be a superconducting state.

In Ref. [56] the model proposed to explain the low-
temperature nonlinearities of the I ±V curves of YBa2Cu3Ox
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films considers the expansion of thermally activated vortex
rings to be the reason why superconductors make the
transition to the DDM state. According to this model, the
flow of current I in a film of depth d4 x gives rise to vortex
rings in a plane perpendicular to the current direction. There
are two parts to the energy of a vortex ring, the vortex self-
energy

W�rL� � 2prL

�
F0

4plL

�2

ln Kÿ F0

c
Jpr2L

and the vortex ± current interaction energy which plays a role
equivalent to that of the Lorentz force. The radius for the
appearance of rings varies from the small value rL � x to the
large one

rL � rm � cF0

8p2l2LJ
;

which corresponds toW�rL� � 0. The value rm is a threshold
radius at and above which vortex rings are free to expand. As
a result, an electric voltage is induced, electrical resistance
develops, and energy dissipation appears. The result
obtained from this model proved similar to what the model
involving vortex ± antivortex dipoles in 2D superconductors
predicts.

Note that, in a similar manner to film LTSCs, electro-
magnetic vibrations due to the transport-current-induced
vortex motion [57 ± 59], with voltage steps on the I ±V curve
[60], are observed in HTSC films.

3. DDM states of bulk ceramic HTSC samples
as exemplified by YBa2Cu3Ox

and Bi1.6Pb0.4Sr2Ca2Cu3Ox

Ceramic HTSC samples consist of superconducting grains
electrically contacted by typical weak links with Josephson
junction properties [61]. There are two approaches [62] to
explaining energy dissipation: whereas in the first, HTSC
samples are considered as superconducting glass [63], the
second takes into account the existence of A- and D-vortices
in the samples. In the superconducting glass model every
grain possesses its own order parameter phase j. At weak
currents I the electrical voltage between i th and j th grains,
Vi j � ��h=2e� dj=dt, arises due to the thermally activated
phase `slip' between them. When hIii, the current averaged
over all links, is less than the average critical current hIi ji, the
I ±V curve becomes nonlinear due to the influence of thermal
fluctuations on the phase slip process [64]. At hIii > hIi ji the
I ±V curve is linear, with dV=dI � Rg, where Rg is the
electrical resistance between grains when they are in the
normal state [65]. In 1D and 2D Josephson junctions the
effect of the self-field of the current Hi on Ii j turns out to be
insignificant when they are smaller than a certain critical size
[66], whereas for bulk HTSC samples [67], the effect ofHi on
Ic is assumed to lead to the low values of Jc � 102 A cmÿ2.

Models used in the second approach include the vortex
motion dynamics in its aspects such as giant flow creep [68],
collective flow creep [69], vortex glass [70], etc. The two
approaches above are in fact complementary to one another
[61]. The study of Ref. [71], for example, along with
considering the dissipation due to the flux flow resistivity

RF � HF0

Zc2
l0
s0
;

takes into account the contribution from the microstructure,
in the form of all-sample-averaged electrical resistance Rj

possessed by the system of percolative links Ð i.e., by weak
link resistances. Here l0 is the sample length and s0 is its cross
section. The total resistance was R � RF � Rj. Hence,
contributions to the total critical current come from the
currents IFc and I jc, where I

F
c is the critical current for vortex

penetration into the sample, and I jc is the critical value of the
current Ii j. It is known (see, e.g., Ref. [72] and references
therein) that in the temperature range from 77 K to Tc the
value of Ic is determined by the pinning force, i.e., Ic � IFc and
IFc < I jc, whereas at low temperatures the vortex pinning force
increases to the point where the critical current is limited by
the maximum critical current of the weak links, i.e., Ic � I jc
and IFc > I jc. From a practical point of view, the temperature
range of interest here is 77 K< T < Tc, and the percolative
contribution to Ic will be ignored in the discussion that
follows.

3.1 Penetration of the transport current's magnetic field
into a cylindrical type II superconductor
One distinctive property of ceramic HTSCs compared to
LTSCs is a large (up to 75%) temperature broadening DTc

which occurs in the region of the resistive transition R�T;H �
and is due to the features of the vortex state [73]. The
temperature interval DTc of the transition R�T � is also
broadened as the transport current I increases, both for
H 6� 0 [74, 75] and H � 0 [64, 76 ± 86]. In the latter case, a
number of models have been proposed to explain the shape of
the R�T; I � curve.

In Ref. [87] a certain statistical distribution was assumed
for critical currents in weak links; Ref. [88] considered the
statistical distribution of pinning centers; in Refs [89 ± 91],
HTSC samples were viewed as consisting of a set of 2D weak
superconducting links with the properties of planar super-
conductors; the analysis of Ref. [76] assumed vortex pairs to
exist in intergrain links in the absence of an external field; the
model considered in Refs [79, 92] took into account the
percolative nature of conduction; and finally, the `hetero-
phase structure ± effective medium' model was proposed in
Ref. [93]. These models were deficient in that they offered
only a partial explanation of the observed phenomenon.

In addition to the extended temperature region of the
current-induced resistive R�T; I � transition to the DDM
state, two values of critical current, Ic1 and Ic2, were
discovered in Refs [85, 86]. This feature is characteristic of
ideal type II superconductors [94 ± 97].

The traditionally held view [34, 94 ± 97] is that an SC to
DDM state transition for Ic1 < Ic results from the motion of
magnetic flux in a sample. The dissipation of energy is
believed to occur a) because vortices created under the
action of the external field H and the self-magnetic field
Hi of the transport current I penetrate into the sample, and
b) when unstable magnetic flux configurations escape the
sample.1

In cylindrical, ideal type II superconductors, when
Hi 5Hc1, rings of A-vortices emerge and shrink at the
surface and annihilate at the center of the sample, leading to
an electrical resistance and the DDM state. The critical
current for the onset of resistance or for current instability is

1 Note Refs [98 ± 100] where the instability of vortex configurations is

analyzed disregarding the effect of the surface on the vortex escape

process.
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[94 ± 97]

Ic1 � 0:5crHc1 ; �11�
where r is the radius of the cylinder and Hc1 is the lower
critical magnetic field, i.e., the field at which the first vortex
ring enters the sample.

The problem of how the self-magnetic field of a transport
current penetrates cylindrical type II superconductors has
been addressed theoretically in Refs [101 ± 103]. In Refs [101,
102], magnetic field structure, magnetic flux, and the free
energy of a solid toroidal A-vortex were calculated for an
infinite sample, using the results of Londons' theory.
Reference [101] served as a starting point for addressing the
problem of a vortex ring penetrating a boundary barrier, a
problem which was then solved in Refs [103 ± 106] using
various approaches. Refs [104 ± 106] employed a method
developed earlier [1] for type I superconductors, to determine
the conditions for the penetration of a ringlike A-vortex.

In Refs [104 ± 106], magnetic field distribution in a
toroidal A-vortex with only one azimuthal field component
h � �0; h�r; z�; 0� in the cylindrical coordinate system (r; y; z)
was determined from the solution of Londons' equation for a
ring located in the plane z � 0,

q2h
qr2
� rÿ1

qh
qr
ÿ �rÿ2 � lÿ2L � h�

q2h
qz2

� ÿ
�
F0

l2L

�
d�rÿ r0� d�z� : �12�

Here r0 < r is the radius of the ring.
To proceed further, it was assumed [106] that in exactly

the same way that the current of an ideal solenoid does not
create a magnetic field in the surrounding space, a closed
A-vortex should not create a magnetic field outside the
sample (including its surface). The boundary condition of
the form h�r � r; z� � 0 specified in this way made it possible
to apply the Hankel transform leading to the following
Fourier ±Bessel-series solution for Eqn (12):

h � F0r0

l2Lr

X1
k�1

J1�gkr=r� J1�gkr0=r�
J 2
2 �gk�

��g2k � �r=lL�2�0:5
� exp

�
ÿ jzj

�
lÿ2L �

�
gk
r

�2�0:5�
; �13�

where J1;2 are Bessel functions of orders 1 and 2 and gk are the
zeroes of the Bessel function J1.

From the expression for the vortex free energy,

F � 1

8p

� �
h2 � l2L�rot h�2

�
dV 0

(with V 0 the volume), the free energy of a vortex ring in the
cylinder (except to within � x of the vortex axis) was
determined to be

F�r0� � F2
0r

2
0

4l2L

X1
k�1

J1�gkr0=r� J1
��r0 ÿ x�=r�

J 2
2 �gk�

�
g2k � �r=lL�2

�0:5 : �14�

The variation of the free energy F�r0� of a vortex ring (in
units of F2

0=lL) is shown in Fig. 7 [106].
Integrating Eqn (12) over the halfplane ÿ1 < z < �1,

0 < r < �1 yields [106] an expression for the magnetic flux

in the vortex ring,

F�r0� � F0

�
2r0r

lL

�

�
X1
k�1

J1�gkr0=r�
�
1ÿ J0�gk�

�
J 2
2 �gk� gk

�
g2k � �r=lL�2

� : �15�

From Eqn (15) it follows that F�r0� is zero at the cylinder
boundary (Fig. 8), where the circular A-vortexmerges with its
imaginary image (a concept that acquires a meaning in the
limit as r0 ! r), and at r0 � 0, when the vortex shrinks to a
point on the cylinder axis.

In Refs [104 ± 106] the effect of the barrier on Jc was
examined by determining the change in the Gibbs free energy
DGc due to vortex ring penetration into a type II super-
conducting perfectly surfaced cylinder carrying a transport
current I. Analogous to the derivation in Ref. [1], the
expression for DGc was written in the form

DGc � Fÿ DWI ;

where DWI � �1=c� IDF�r0� is the work done by the DC
source on the ring entrance. Here DF�r0� is the magnetic
flux which escapes the current source contour when a vortex
moves from the cylinder boundary r0 � r to the position with
a radius r0. Figure 9 shows how the Gibbs free energy Gc�r0�
of a long SC cylinder with r0 � 20lL varies with I. Gc � F for

4

F
,r
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n
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Figure 7. Free energy of a vortex ring inside a superconducting cylinder of

radius r, as a function of the ring radius r0. Free energy is plotted in units of

F2
0=lL. Curve 1: r � 20 lL; curve 2: r � 0:5 lL.
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Figure 8.Magnetic flux (in units of F0) flowing through a vortex ring in a

long cylinder of radius r � 20lL (curve 1) and r � 0:5lL (curve 2).
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I � 0, and the barrier has a width � r. When I5 Ic�r�, the
barrier disappears, enabling vortex rings to penetrate sponta-
neously into the sample. The author of Ref. [106] determined
the value of Ic�r� using the criterion qGc=qr0j r0! r � 0. The
critical current density obtained,

Jc � 2eLc
F0x

� JGL
c ;

turned out to be independent of r (eL � �F0=4plL�2 is the
electromagnetic energy of a vortex per unit length). The self-
field of the current at the sample surface reaches a value
Hi � Hs � Hcr=lL for r < lL and Hi � Hs � Hc for r4 lL,
i.e., the transition to the DDM state, as in a type I super-
conductor with a current, occurs in complete accordance with
the Silsby rule Ð and in disagreement with the previous
studies of Refs [94 ± 97], which yieldHs � Hc=K.

On turning off the field the rings shrink and annihilate Ð
except those in the subsurface layer of thickness on the order
of lL (see Fig. 7), which escape the sample. During the time
the vortex rings are escaping an SC sample, the sample
restores its diamagnetic properties which were disrupted
when it was in the DDM state. To pinpoint this process, the
authors of Refs [107, 108] examined the variation with time t
of the signal of the real part w 0 of the complex dynamic
magnetic susceptibility wac � w 0 � iw 00 after the turn-off of
transport current in HTSC samples. The idea of the method
was that as current flowed through the sample, the value of w 0

was varied under the condition [107 ± 110]��w 0�T; I 6� 0��� < ��w 0�T; I � 0��� :
After the current I was turned off, in a certain time the
working point pinpointing the signal w 0 on the graph plotter
moved from the curve w 0�T; I 6� 0� to the curve w 0�T; I � 0�.
By pinpointing the time of this transition at a certain constant
temperature T � T0, the authors determined the dependence
w 0�t�. Starting from T � Tc, after the turn-off of the current I
the magnitude of signal w 0 remained unchanged for a certain
time ts, and this was taken to be the escape time from the
sample for those vortices from the first layer beneath the
surface. The effect was observed only in a temperature region
where we are in the regime of weakly coupled (rather than
isolated) grains [107, 108], where there are D-vortices in the
sample. Referring to Fig. 10, the dependence R�I � obtained
from curves R�T; I � at 96 K [107] characterizes the change of

the DDM state with current I in a sample of
Bi1.6Pb0.4Sr2Ca2Cu3Ox with Jc�T � 77 K;H � 0� �
10 A cmÿ2.

Because the temperature range where the effect was
observed was one where D-vortices existed, the rings formed
by these vortices were supposed [109, 110] to escape the
sample. To make things visual, the surface of the HTSC
samples was considered as a 2D medium consisting of
interconnected bridges of varying thickness, with SC grains
as massive electrodes (banks) and weak links as conducting
links (bridges) between them. Under certain conditions,
D-vortices appear in the weak links due to the influence of the
transport current [111], which locate along the circular
induction lines of the field Hi and close themselves to form
rings near the surface of a HTSC sample.

According to formula (11), Jc � 1=r, which forH � 0 has
been confirmed by numerous experiments (see, for example,
Refs [112, 113] and Fig. 11). The dependence J�S� changes at
H 6� 0. It is seen in Fig. 11 that the field weakly affects the
critical current density of thin yttrium samples while
markedly influencing the current in samples with a large
cross section S. This feature is explained by including the
effect of the sample size (geometric barrier) Ð something
which was not done in the derivation of Eqn (11) in the case of
an ideal type II superconductor in Ref. [34]. If there is a
barrier, then [112, 113]

jc � j0 for Hi < Hs ; �16a�

jc � 0 for Hi > Hs ; �16b�

where jc is the local critical current density and j0 is the local
depairing current density. Changing from the local critical
field and current to volume ones and averaging over the cross
section S of radius r, we obtain as in Ref. [67]

Jc � JGL
c for r <

cHs

2p j0
; �17a�

Jc � cHs

2pr
for r >

cHs

2p j0
: �17b�

From Eqn (17a) and Refs [104 ± 106] it follows that for
r < 2lL, the DDM state does not have enough time to
establish itself in an ideal type II superconducting sample
with a barrier because the Cooper pair breaking mechanism
will do its job before the flow starts. Also, the geometric factor

0
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Figure 9. Gibbs free energy of a cylinder containing a vortex ring as a

function of current I. I � 0 (curve 1), I � 0:1Ic (2), I � 0:2Ic (3), and I � Ic
(4).
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Figure 10. Variation of Ri=Rn with I for T � 96 K. Inset: the temperature

dependence of Ic1 or 2prHc1.
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will play a role, because vortex rings cannot exist in such a
superconductor. For samples with r4 lL, Eqns (17b) and
(11) become identical forHs � Hc1.

The conclusions which follow from Eqns (17a) and (17b)
are tantamount to stating [106] that due to the influence of
current the width of the barrier in bulk samples decreases to
� lL for Jc1 � eLc=F0 lL 5 JGL

c . Here Jc1 is the current
density which is involved in the defect mechanism for vortex
entrance via inhomogeneities� lL andwhich produces a field
equal to Hc1 at the sample surface. Hence, high values of Jc
can be achieved either with samples about 10ÿ7 m in size Ð
according to Eqn (17a), or in samples with a large cross
section Ð due to the pinning of vortex rings, which occurs
when the radial force Fr of the rings' linear stress is less than
the pinning force Fp, where [97]

Fr � F0Hc1

4pr
: �18�

In this case, samples are in a critical state, and the model
proposed above [112, 113] is a critical state model. It is similar
to themodels [114, 115] which analyzed samples with a barrier
and zero bulk pinning (i.e., with all the pinning concentrated
close to the surface) but ignored the effects of transport
current on the barrier.

The results obtained from the models of Refs [112, 113]
and [67] are identical even though the mechanisms for the
transition from the SC to dissipative state are different in the
models. Whereas in Ref. [67] this transition is assumed to be
due to the direct influence on Jc of the field Hi, in Refs [112,
113] the transition current is defined by the conditions at
which vortex rings penetrate into the sample. For example,
the effect of the pinning force on vortex dynamics should
already be taken into account at 77 K [116]. For `hard' type II

LTSCs, the formation of vortex rings and the dependence
Jc�r� were considered in Refs [117, 118].

3.2 DDM states in cylindrical type II superconductors
in a magnetic field parallel to the transport current
A magnetic field penetrates a ceramic HTSC sample in a
stage-by-stage manner [61]: 1) when H < Hc1j, the field does
not penetrate. HereHc1j is the lower critical field of intergrain
links; 2) for Hc1j < H < Hc2j, the field starts penetrating
intergrain links in the form of D-vortices (Hc2j is the upper
critical field of intergrain links; 3) fieldHc2j < H < Hc1g fully
penetrates into the intergrain links, Hc1g being the lower
critical field of a grain; 4) for field H5Hc1g, magnetic flux
gradually penetrates into the grains in the form of A-vortices.
It follows then that the quantities Ic1 and Jc1 determined in
Section 3.1 for HTSC samples are Ic1j and Jc1j, respectively.

When a forceless current ± field configuration is realized
in a superconductor, the external fieldH parallel to I does not
affect the entrance conditions for a vortex ring created by the
field Hi. Nor does the transport current I lower the critical
field for the penetration of a linear vortex parallel to the
cylinder axis [119]. However, varying H and I may lead to
vortex configurations closer to the induction lines of the
magnetic field Ð namely to helicoidal vortices [119 ± 122],
which have thus far been given only a qualitative discussion
[98 ± 100]. To find out the distribution of the field of a
helicoidal vortex in an SC cylinder with a current, Maxwell's
equations were solved [119 ± 122] combined with Londons'
equations with a special right-hand side. The magnetic flux
flowing through a helicoidal vortex in the z-direction along
the cylinder axis is

Fz�r0� � F0

�
1ÿ I0�r0=lL�

I0�r=lL�
�
;

whatever the helicoid turn lengthL, whereas this quantity was
identically zero for a ring vortex. In the case of a bulk sample,
the flux piercing a vortex in the azimuthal direction,

F? � F0

�
1ÿ r0

lL
K1

�
r0
lL

��
;

is the same as for a vortex ring in a bulk sample [103]. Here,
Ik�x� and Kk�x� are modified Bessel functions [15].

In Refs [119 ± 122] the problem of the energy barrier
preventing helicoidal vortices from penetrating or escaping
cylindrical SC samples was approached by determining the
Gibbs free energyGh in a similar manner to calculatingGc for
a cylinder with a vortex ring. Taking into account the work
done by the constant field source, DWH, and that by the dc
source, DWI, the expression for Gh can be written [122]

Gh �
�

F0

4plL

�2 ����������������
�1� s2�

q
ln

�
2
�rÿ r0�

x

�
ÿ
�
HF0

4p

��
1ÿ I0�r0=lL�

I0�r=lL�
�

�
�

IF0

2pcL

��
1ÿ r0I1�r0=lL�

rI1�r=lL�
�
; �19�

where s � r=L is the tangent of the angle the axis of the
helicoid makes with the z axis, and where the upper and lower
signs refer to left- and right-hand spiral vortices, respectively.
The author of Refs [119 ± 122] determined the critical
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Figure 11. Jc�H� dependence for various external longitudinal fields:

H � 0 (1), H � 150 Oe (2), andH � 300 Oe (3) at T � 77 K.
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parameters by using the criterion qGh=qr0jr0! r � 0, leading
to a critical field for the penetration of a helicoidal vortex at
the sample surface, of the form

hcr�J; s� � Hc
I0�r=lL�
I1�r=lL�

� ����������������
�1� s2�

q
ÿ sJ

JL

�
; �20�

where Hc � F0=2
���
2
p

plLx and JL � cHc=4plL is the Lon-
don critical current [95]. The optimum turn length of the
spiral, L � r��JL=J�2 ÿ 1�1=2, was determined by minimizing
hcr with respect to s. On substituting L into Eqn (20), the
surface values of the critical current density Jcr and the critical
fieldHcr for the penetration of an optimal helicoid were found
to be related by [121]�

I1�r=lL�
I0�r=lL�

�2�
Hcr

Hc

�2

�
�
Jcr
Jc

�2

� 1 : �21�

Figure 12a shows, for a sample of Bi1.6Pb0.4Sr2Ca2Cu3Ox,
the measured Ic�H� dependence typical of granular HTSCs
[112]. Such behavior is characteristic of a temperature region
close to 77 K. However, starting from 95.1 K and up
(Fig. 12b), the Ic�H� dependence changed its form and
became similar to that predicted by Eqn (21), suggesting the
penetration of helicoidal vortices into the sample. According
to Fig. 12b, the relation between Ic andH can be written in the
form [112]

I 2c
0:0132

� H 2

742
� 1 ; �22�

if one considers the curve as part of an ellipse with its center at
the origin (the curve is shown dashed in the figure). The
reason why the Ic�H� dependence changes its form is that for
T > 95 K the effective cross section of the Josephson vortex,
on the order of lj, exceeds the transverse size of the defects,
and the pinning forces become so weak that the sample
behaves like an ideal type II superconductor.

Relation (21) can also be obtained [112] from the
experimental dependence e�H� [38] (see Section 2.4) by
noting [103] that Icr � crHs=2 / e.

To learn what vortices exist in a sample and under what
conditions they exist, the authors of Ref. [123] determined

the state diagram for helicoids and circular and long-
itudinal linear vortices. This, according to Eqn (11),
requires a knowledge of how T j

c, the critical temperature
of intergrain links, depends on the longitudinal (H) and
circular transverse (Hcc) magnetic fields and their super-
position. The studies were made on hollow samples of
Bi1.6Pb0.4Sr2Ca2Cu3Ox. The circular field was created by a
current Icc flowing through a conductor � 1 mm in
diameter placed in a longitudinal hole in an HTSC sample.

The temperature T j
c corresponded to the 50% change in

the signal w 0�T � near the SC transition of the weak links
[112]. At certain values of the fields H and Hcc, the curves of
the dependences w 0�T � did or did not shift to lower
temperatures by DT j

c. A change in the form of the curves
implied that helicoids penetrated the sample. The
unchanged form suggested that the superposition of
circular and linear vortices existed in the sample. Figure 13
presents a diagram of such states [123]. The curves in the
figure determine the upper and lower boundaries of the
region where helicoids exits. Outside this region, circular
transverse and linear longitudinal D-vortices exist in the
sample at H and Hcc values about an order of magnitude
apart. At comparable values of these fields, helicoids
penetrate the samples.

3.3 Effect of circular transverse residual magnetic fields
on the DDM transition
In ceramic HTSC samples, along with vortex pinning, the
intergrain magnetic induction Bj determines the value of Ic
[124]. Reference [125] argues that the distribution of Bj in
weak links exhibits an inversion of sign after the transport
current It is turned off. As a result, on repeating the
measurement of the current Ic its value increases and the
sample makes a transition to the DDM state at a higher
transport current I � Ic, i.e., the field Hi created by the
current I is sort of mutually compensated by the field which
remains in the intergrain links after the current It has been
turned off. But this statement is at odds with Stokes' theorem.
So what does actually happen? The answer depends on the
knowledge of the behavior difference between circular
magnetic fields in normal versus superconducting cylindrical
samples.

When a superconductor with a current is in the normal
state, it is known [126] that the circulation of the circular
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Figure 12. Ic�H � dependence for a ceramic HTSC sample of

Bi1.6Pb0.4Sr2Ca2Cu3Ox in a magnetic field parallel to the sample and

current: T � 80:1 K (a), T � 95:1 K (b). The dashed line is the calculated

relation (22).
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Figure 13. Diagram for the existence of helicoids and circular and linear

longitudinal vortices.
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magnetic fieldHi created by the current is�
C

Hi dI � 4p
c

I ; �23�

where I � � J dS is the total current through the cross
section surface S enclosed by the contour C. The field
Hi � 0 after the current I is turned off. In the super-
conducting state, the field H in HTSC samples behaves
entirely differently in this case. To verify this, yttrium
samples of circular and rectangular cross section [112]
were studied in Ref. [123]. At T � 300 K, a current It was
passed through the samples. The samples were then cooled
to 77 K, the current It was turned off, and Ic was measured
using a four-probe scheme. The earth magnetic field was not
screened, and the samples were in liquid nitrogen. The value
of Ic was determined for two cases, depending on whether It
and the measuring current Ic were coincident or opposite in
direction (curves 1 and 2 in Fig. 14, respectively) [123]. The
result obtained confirms the experimental data of Ref. [125].
Ic0 in Fig. 14 denotes the critical current measured at 77 K
and H � 0, i.e., upon cooling in a zero magnetic field (ZFC
regime). From the way the curves in Fig. 14 appear, there is
a residual magnetic field within the yttrium HTSC sample,
which affects the value of Ic. The only way this field can
be present in a sample is as rings of A-vortices (see
Section 3.1) pinned in grains into which they penetrated even
at T � Tc, when the conditionHc1g � 0 was fulfilled. But the
magnetic field Hv is within a solid circular A-vortex and so
cannot be detected outside the SC sample (see Ref. [106],
Eqn (16) and Fig. 8) as was done in Ref. [127]. For the field to
be present outside the sample the vortex ringsmust be broken.
But this can only happen on some kind of inclusions
(inhomogeneities) [128] to which the vortices are attracted
with a force f / H 2

c rDx due to a gain in energy [129]. The
process of attraction of vortices by inhomogeneities is key to
understanding how pinning forces form in both LTSC and
HTSC samples [69], as was confirmed experimentally using
the decoration technique [130]. Upon a merger with an
inhomogeneity, that part of the vortex ring that crosses the
inhomogeneity disappears, merging with its imaginary image
[129], i.e., the vortex breaks up. The same follows from the
analysis of how thin-film LTSC dc transformers work [131].

To directly prove the existence of broken A-vortices, the
magnitude, form, and distribution of residual circular
magnetic fields Hout

REM outside yttrium HTSC samples were
measured using a standard magnetometer [132, 133]. The
sensitivity of the measuring system was 0.01 Oe. In Fig. 15 is
shown the distribution ofHout

REM in the cross section plane of a
sample 4:5� 10ÿ3 m in diameter and 35� 10ÿ3 m in length,
following the switching off of the current, It � 10 A,
perpendicular to the plane of the figure. Both the magnitude
and distribution of the fields remained virtually unchanged
along the height of the sample. The magnetic field component
parallel to the cylinder directrix was not found to exist, nor
was the field at the faces of the cylinder. Figure 16 shows the
distribution of the field Hout

REM in the 5� 10ÿ3 m square
cross section of a sample 35� 10ÿ3 m in length. Both the
measurement conditions and basic results were the same as
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Figure 14. Typical variation of reduced critical currents Ic=Ic0 with current

It. 1, directions of the currents It and I coincide; 2, currents It and I are
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Figure 15. The diagram shows how the parallel and perpendicular

components of the circular residual magnetic field are distributed outside
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Figure 16. The diagram shows how the parallel and perpendicular

components of the circular residual magnetic field are distributed outside

a square cross section yttrium sample (shown dashed) after the current It is

turned off.
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for the cylindrical sample. The measured distribution of the
field H is similar to the field distribution for a magnet with
Eqn (23) fulfilled for I � 0 Ð proving experimentally the
absence of singularity in Hv [133]. The reasoning for this is
as follows [133]. In a mixed-state type II superconductor,
rot vs in the neighborhood of a magnetic vortex is nonzero,
but what is zero is the circulation along a contour drawn
inside and outside the superconductor in the absence of
current (vs is the velocity of the superconducting (super-
fluid) electrons that rotate in the vortex). As for superfluid
helium in a rotating container, both rot vs and the circula-
tion along a contour inside the cylinder are nonzero in the
vortex neighborhood (here vs is the velocity of the super-
conducting helium atoms rotating in the vortex). But this is
possible only when the region under study is `spatially'
multiply connected [134].

Moreover, it is commonly held [126] that the flux of the
vector H through an arbitrary closed surface S1 is zero, i.e.,�
HdS1 � 0. In stating this it is assumed (although never

mentioned) that the region under study is `spatially' simply
connected. After that the conclusion is drawn based on the
Gauss theorem that div H � 0 and that the magnetic field has
neither sources nor sinks for magnetic charges. But in
`spatially' multiconnected regions Ð even in ones with point
singularities Ð the Gauss theorem is not valid [135], and
div H 6� 0. Hence, from the magnetism point of view,
`spatially' multiconnected regions do allow the existence of
magnetic monopoles.

To return to inhomogeneous superconductors, it can be
argued that vortex rings break up when being attracted by
and crossing pores and non-superconducting inclusions of
size rD > lL [136]. The magnetic fields Hv of the vortices
crossing non-superconducting inclusions are dissipated
through the ring breakup regions. The induction lines
corresponding to these fields do not break up but deform in
a complicated way. The dissipated magnetic fields existing in
the intergrain space of weak links outside the vortices' pinned
portions penetrate into the grains to a depth lL and partially
escape the sample. Figure 17 shows what the magnetic field
distribution inside an inhomogeneity (pore) with rD > lL in
the breakup region of a vortex ring should be like if the vortex
distribution in a grain is taken to be that in amesoscopic disk-
like sample [137, 138]. The existence, in mesoscopic cylind-
rical samples, of vortices with a magnetic flux F < F0 was

predicted long ago inRefs [139 ± 141]. In grains of sizes 10ÿ5 ±
10ÿ6 m, as in mesoscopic samples [137, 138], vortices with a
magnetic flux F < F0 can exist. If the grain separation
exceeds lL, the magnetic induction lines of the dissipation
field can even close themselves around the grains. The small
values of Hout

REM indicate that only a small fraction of the
magnetic field Hv is dissipated, whereas the main part of it,
Hin

REM, remains within the sample, coinciding in direction
with Hi. Nor does Bj change its direction and sign after the
transport current is turned off.

The result obtained, although due to a different effect, is
reminiscent of how a magnetic-field cooled superconducting
sphere with a perfect conductivity becomes a magnetic dipole
after a magnetic field is turned off.

Thus, the Ic�It� dependences in Fig. 14 can be explained
[123] as resulting from the interaction between the broken
rings of A-vortices (A-rings) that are trapped in the sample
and the rings of D-vortices (D-rings) penetrating the sample.
For the interaction between grain-pinned solid A-vortices
and D-vortices penetrating a sample at an external field
H 6� 0, see Ref. [142].

The way the presence of the field Hin
REM affects the

penetration of D-rings is as follows. The pinned broken
A-rings repel the incoming D-rings of the same sign. These
latter must overcome this repulsion force to penetrate the
sample, and it is for this exact reason that a current
additional to Ic0 is needed (curve 1 in Fig. 14). The entrance
of D-rings of opposite sign to the pinned broken A-rings is
facilitated by their mutual attraction, so the critical current
will be lower than Ic0 in this case (curve 2 in Fig. 14). The
force acting on the penetrating D-vortices is [123] (see
Section 3.1)

F � Fr � DF � Fr � F0
DH
4pr

; �24�

where DH is the difference between the magnetic fields the
currents Ic�It� and Ic0 generate at the sample surface. For
rings of the same sign, the plus sign is taken, with the minus
sign taken otherwise. Figure 18 shows how the additional
force jDF j exerted on a D-ring entering an yttrium HTSC
sample varies with It Ð or in fact with the residual magnetic
fieldH in

REM. The change in the nature of the Ic�It� dependence
for It > 10 A (see Fig. 14) is presumably due to Joule heating
effects.
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Figure 17.Dissipated magnetic fieldHv of a vortex (1) in a grain (2) viewed

as a mesoscopic sample.
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3.4 Effect of longitudinal residual magnetic fields
on the DDM transition
In HTSC samples, dissipation fields should also exist for
linear, pinned broken A-vortices created by an external field
H parallel to the cylinder axis and current I Ð this is what
critical current hysteresis dependent on the magnetic pre-
history of a sample suggests (see, for example, Ref. [143]). In
Refs [123, 144], critical currents in yttrium and bismuth ± lead
HTSC samples were measured at 77 K in the ZFC and FC
(cooling in a fieldH) regimes to study the effect of the residual
magnetic field HREM on the value of Ic. In the first case the
critical current measured in the growing field H was denoted
by I1c�H�, and that measured in a decreasing field by I2c�H�.
The critical current I3c�H� was determined after the turn-on
and turn-off of the field H. For FC measurements, when a
sample was cooled to 77 K in a field H which was not turned
off, a critical current I4c�H� was determined. The critical
current I5c�H� was measured in the residual magnetic field
when the field was turned off on cooling the sample to 77K. If
the field was then turned on again, the critical current I6c�H�
was determined. Figure 19 presents typical data obtained in
one of the yttrium samples. The hysteretic behavior of the
currents I1c and I2c resulted from the magnetic field being
trapped in grains for H � 300 Oe> Hc1g. The condition
I3c � Ic0 implied that after the field H was turned off the
field that remained in the sample Hin

REM < Hc1j. The inequal-
ity I1c < I4c confirms the existence in the sample of the field
Hin

REM which is created by the broken vortices and which
compensates the fieldH.

In FC measurements to H < 75 Oe the equality I6c � I4c
implied that HTRAP � HREM, where HTRAP is the field which
was trapped by the sample andHREM is that which remained
in the sample after the external field H was turned off. An
increase in the field H led to the fulfillment of the condition
I6c < I4c, and henceHREM became less thanHTRAP due to the
effect of the grains' Bean ±Livingston barrier on the proper-
ties of the vortices.

In summary then, the critical currents (or more precisely,
currents for the SC to DDM state transition) depend on the
residual field in the sample H j

REM, where H j
REM is the

magnetization of intergrain links to which the dissipation
fields Hv of broken vortices make a contribution. In Refs
[123, 144] the equality of the effective magnetic fields and
currents measured in different regimes (see Fig. 19) was
employed to determine the trapped (H j

TRAP ) and residual

(H j
REM) magnetic fields in the intergrain region. The field

H j
REM was determined by two different methods (Fig. 20):
1) by equating the currents I1c and I5c, which yields

H j
REM � H1, where H1 is the field in which the yttrium

sample was when its I1c was measured;
2) from the comparison of the currents I1c and I6c it

follows thatH j
REM � H6 ÿH1, whereH6 is the field in which

the sample was when I6c was measured.
These values were compared with the H j

REM obtained
graphicallyÐdirectly from themaxima observed in the Ic�H�
dependences for the field H maximally compensated by
H j

REM.
The fieldH j

TRAP trapped in the intergrain space cannot be
determined experimentally, and its value was calculated [121,
141] using the equalities I4c � I1c and Heff4 � Heff1. Then
H j

TRAP � H4 �H1, where H4 is the field in which the sample
was when I4c was measured. Figure 20 shows the dependences
H j

REM�H� and H j
TRAP�H� obtained on weak-current samples

with J �T � 77 K ; H � 0� < 5 A cmÿ2.

4. Conclusions

The title theme has become increasingly topical in recent years
in light of the practical applications of ceramicHTSC samples
as conducting wires, etc. Many of the transport properties of
type II superconductors depend significantly on the flow of
magnetic flux in thematerial. Of this entire area of researchÐ
the dynamics of vortices and domains of the normal phase Ð
only a small fraction, namely the magnetic flux flow due to
transport current Ð is covered in this review. The studies
performed led to a clear understanding of things such as:

1) the `giant Josephson generation' of electromagnetic
vibrations in LTSC films;

2) DDM states resulting from the penetration and motion
of D-rings in ceramic HTSC samples at small currents,
compared to the depairing current;

3) the dynamics of vortex rings and its magnetic field
dependence;

4) current hysteretic loops and the effects of external
magnetic fields on their shape;

5) vortices broken at inhomogeneities and the effect of
their magnetic field (including the residual field) on the
electrical and magnetic properties of ceramic HTSC samples.

The authors would like to thank V Ya Yampol'ski|̄ for a
discussion of a number of problems reviewed.
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