
Abstract. The influence of defects and carriers on lattice dy-
namics, especially on Raman scattering from semiconductors
and metals, is considered; a comparison of the theory with
experimental data is made. Phonon scattering by point, line,
and plane defects produces a phonon shift and phonon broad-
ening, which influence the Raman line shape. This effect is used
for investigating strain at interfaces and for characterizing
semiconductor devices. Phonon interaction with carriers in-
volves a Coulomb field excited by optical-phonon vibrations.
Our treatment of the electron ± phonon interaction is based on
the Born ±Oppenheimer adiabatic approximation. The effect of
carriers is essential near the edge of the xÿk region where
Landau damping appears due to the electron ± hole excitation.
A possibility to determine the electron ± phonon coupling con-
stant from experiments with the phonon ± plasmon coupled
modes is discussed.

1. Introduction

As is well known, the main progress in the experimental
investigation of phonon spectra was made with the aid of
thermal neutrons many years ago. In recent years, however,
extensive use has been made of inelastic X-ray scattering and
Raman light scattering to attain these ends. In the latter case,
the scattering is observed with laser radiation, whose
wavelength is long in comparison with the lattice constant a

of the crystal under investigation, and the transferred wave
vector proves to be small, q5 1=a. This is the reason why the
phonon frequencies in experiments onRaman scattering (RS)
are determined only at the center of the Brillouin zone, q � 0.
This limitation is compensated for by a higher (in comparison
with neutrons) frequency resolution, which amounts to
1 cmÿ1, making it possible to measure not only the position
of the line, but also its structure, i.e., its width and asymmetry.
The lineshape proved to be sensitive, in particular, to the
presence of various defects in the sample. There emerged a
new area of experimental investigations, the so-called micro-
Raman spectroscopy. Stress and defect distributions in
semiconductors are investigated with a high spatial resolu-
tion employing a laser beam focused to wavelength dimen-
sions on the order of 1 mm.

The effect of homogeneous pressure or isotopic substitu-
tion on the phonon spectrum has been studied in many
semiconductors. The corresponding phonon frequency shift
is readily explicable on the basis of rather simple notions of
lattice dynamics. Explaining the broadening and asymmetry
of Raman lines requires invoking the quantum-mechanical
scattering theory. In this case, account should be taken of the
interaction of different branches of the vibrational spectrum
corresponding, for instance, to propagating and localized
modes. Furthermore, the presence of defects is quite often
responsible for the emergence of charge carriers. Thus, we are
led to the necessity of analyzing the effect of electron ±
phonon interaction on the phonon spectrum of heavily
doped semiconductors and metals.

The application of Raman spectroscopy to the study of
semiconductors is the subject of a wealth of papers. However,
experimenters have traditionally recorded only the line
positions and have disregarded width and asymmetry. So
far, works wherein investigations have been made of the line
shapes are scarce, and we would like to bring to the attention
of the reader precisely this aspect of Raman spectroscopy.
The aim of our review is to outline the presently existing
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notions of the effect of different factors on phonon damping
or, more precisely, on the linewidth of inelastic single-phonon
scattering.

2. Dispersion and width of optical phonons.
Qualitative estimates

Bearing in mind the application of Raman spectroscopy to
the investigation of disorder, we give an estimate of the
spectral parameters for optical phonons, as well as the
constants for their interaction with each other and with
various defects. In RS experiments, measurements are made
of the phonon frequency o�q� corresponding to the trans-
ferred momentum q. As already noted, this momentum is
small in comparison with the size of the Brillouin zone, and so
we will make use of the expansion of the phonon spectrum
about the zone center,

o2�q� � o2
0 � s 2q 2 ÿ ioG ; �1�

where the ��� sign corresponds to the branch minimum and
the �ÿ� sign to the maximum. The dependence of dispersion
parameter s on the direction q is of no great importance to us;
what matters are the orders of magnitude for s, the limiting
frequency o0, and the phonon width G. To estimate them, we
write the phonon Hamiltonian in the symbolic form

H ' ÿMo2u 2

2
� e0
a 2

u 2�1� a 2q 2� � e0
a 3

u 3 : �2�

The first term represents the kinetic vibration energy
Mv 2=2 per atom. The second term is the potential energy in
the harmonic approximation, i.e., written to the second order
in the displacement u. This term is also expanded in qa, where
a is the lattice constant. The factor e0=a 2 is the second
derivative of the Coulomb interaction energy e0 for two
atoms separated by the distance a. This energy is on the
order of e0 � e 2=a � �h 2=ma 2 � 5 eV, where the ion charge is
assumed to be on the order of the electron charge andm is the
electron mass. Comparing the first two terms in Eqn (2) gives
the frequency o0 which appears in expression (1):
o2

0 � e0=Ma 2. We employ the estimate of e0 to obtain

o0 � e0

������
m

M

r
; s � v

������
m

M

r
; �3�

where v � �h=am � 108 cm sÿ1 is the velocity of valence
electrons in dielectrics or conduction electrons in metals.
For the middle of the Periodic system, M=m � 105 and we
obtain o0 � 3� 102 K and s � 3� 105 cm sÿ1. Note that the
dispersion parameter s for optical phonons is on the order of
the sound velocity in a solid.

The last term in Eqn (2) is a third-order term in the
displacement u; it describes the transformation of one phonon
to two other phonons, which is nearly always possible for
optical phonons even at a zero temperature. These anharmo-
nic processes underlie the so-called natural phonon linewidth
G nat. Since the relativemagnitude of anharmonic terms is u=a,
in the second order of the quantum-mechanical perturbation
theory we obtain G nat=o0 � �u=a�2. To estimate the displace-
ment u, we write down the vibration energy per atom,

Mo2
0u

2 � �ho0

�
n� 1

2

�
;

where the mean number of phonons n5 1 when the
temperature is low �T5o0� and n � T=o for high tempera-
tures �T4o0�. Therefore, with the use of Eqn (3) we obtain,
for instance, for low temperatures

u 2 � a 2

������
m

M

r
; G nat � o0

������
m

M

r
: �4�

Despite the low value of the parameter
�����������
m=M

p � 10ÿ2,
the processes of phonon decay result in the linewidth G nat,
whichmanifests itself in Raman spectra, as well as in the finite
mean free path of the optical phonons rg. The latter can be
estimated from Eqn (1) by substituting rg for 1=q:
�s=rg�2 � oG. We obtain

rg � a

����������
o0

G nat

r
� 10a:

The cross section for anharmonic processes exhibits a rather
weak temperature dependence, since there exists no singular-
ity in the final density of states for these processes. That is why
the natural width Gnat can be assumed, up to room
temperature, to be independent of both the temperature (its
temperature dependence is given, for instance, in Refs [1, 2])
and the frequency in a sufficiently narrow frequency interval
with a width on the order of G nat in the neighborhood of the
o0 spectral line peak, which is of interest when investigating
the dependence of the width on different factors. In experi-
ments this line has a Lorentzian shape.

However, a certain number of defects are always inherent
in a real crystal. Isotopic defects are the simplest example of
such disorder. Their effect on the density of states of
vibrational spectra was discussed in reviews [3 ± 6] and on
Raman spectra, for instance, in Ref. [7]. In the general case,
the influence of defects on the phonon spectrum reduces to
the fluctuations of the deformation they produce. Figure 1
shows schematically the stress distribution near the surface of
a semiconductor or its interface with a different material. If
the stress were homogeneous (the straight line a), the problem
would reduce to the well-known problem [8 ± 14] of the effect
of pressure on the phonon spectrum. In our case it is possible
to introduce a coordinate-dependent deformation tensor
elm�r� and write the variation of coupling constants as the

c

b

a

Distance to the boundary

D
ef
o
rm

at
io
n

Figure 1. Schematic deformation distribution near the semiconductor

boundary. Shown is the deformation �b�, which dies out with depth in the

sample, as well as the fluctuating component �c�. The straight line �a�
corresponds to a homogeneous stress in the sample under pressure.
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first expansion term

Vi j�r� �
X
lm

li j lmelm�r� ; �5�

where the subscript i labels degenerate or close phonon
branches.

On the other hand, the effect of disorder is conveniently
represented as the resultant action of defects localized at point
rn:

Vi j�r� �
X
n

vi j�rÿ rn� �
X
n; q

vi j�q� exp
�
iq�rÿ rn�

�
: �6�

For finite dimensions of the laser-irradiated spot, the result
should be averaged over the location of defects residing
within this spot. Smooth variation of the phonon frequencies
at distances exceeding the spot size is retained on such
averaging. In the first order in the Vi j interaction, we arrive
at a secular equation whose rank is defined by the number of
degenerate branches and the coefficients are given by the
mean values of the interaction constants. In the case of a
single branch, for instance, the phonon frequency shift is

o2 ÿ o2�q� � hV�r�i � cv�q � 0� ; �7�
where c is the volume density of defects. For linear (or planar)
defects, v�q� depends on the two-dimensional (or one-
dimensional) vector q, and therefore the density of defects is
calculated per unit area (or length). Note that the spectral
parameter in all of our formulas is written as o2, because this
is precisely how it appears in the effective Hamiltonian (2).

Expression (7) gives the phonon frequency shift arising
from the variation of the medium field but tells nothing about
the broadening. The reason for the experimentally observed
broadening is sometimes referred to [15] as `the relaxation of
momentum conservation law'. It is estimated [16, 17] by
forming the convolution of the Lorentzian line profile with
some Raman frequency shift distribution arising from the
local stress. As is easy to see, too great a stress variation is
required to account for the observed broadening in that way.
We note, however, that the ordinary phonon scattering by
defects should lead to phonon damping and the correspond-
ing broadening of the Raman spectrum.

Indeed, in the second order of the perturbation theory we
obtain [18]:

G�k;o� ÿ G nat � c
X
q

��v�qÿ k���2 d�o2�q� ÿ o2
�
; �8�

where k ando are the initial momentum and frequency of the
phonon, while q and o�q� are the momentum and frequency
in the final state; the Dirac d function ensures the energy
conservation in the phonon scattering by the static disorder.

For frequencies joÿ o0j � G near the center of the
Raman line, only the range qG �

���������
o0G
p

=s � �����������
G=o0

p
=a is of

significance in the integration in Eqn (8). Because of this, the
result depends on the ratio between the range rv of the
interaction potential v�r� and 1=qG. Clearly, the elastic stress
about an uncharged defect decays primarily at an interatomic
distance, i.e., rv � a. For such defects, rvqG < 1, i.e., they are
short-range. In this case, the matrix element can be taken to
be a constant v�q! 0� � v0. Isotopic defects are known to be
short-range, and for them the potential is v0 �
�1ÿM=M0�a 3o2, where M and M0 are the respective
masses of the defect and the matrix atom. For point defects,
the summation (integration) in Eqn (8) is performed with
respect to the three-dimensional vectors q. Therefore, the

scattering of phonons from the neighborhood of the max-
imum of the optical branch by isotopic defects leads to their
width

G�k;o� ÿ Gnat � c

�
1ÿ M

M0

�2�
a 2o0

s

�3 �����������������
o2

0 ÿ o2

q
: �9�

For linear defects, e.g., dislocations, the summation in
Eqn (8) is performed over the two-dimensional vectors q and
for planar defectsÐ like a planar stacking fault or a crystallite
boundary Ð with respect to the one-dimensional vectors q.
Therefore, the contribution of defects to the linewidth
depends strongly on the density of the final phonon states: it
is proportional to �o0 ÿ o�1=2 for the scattering by point
defects, contains a jump y�o0 ÿ o� for linear defects, and
diverges as �o0 ÿ o�ÿ1=2 for planar defects. Unlike the
natural width, the defect-induced broadening manifests itself
only for frequencies o < o0, where the final phonon states
occur. Recall that we are dealing now with the neighborhood
of the maximum of the phonon branch. Where the phonon
branch has a minimum, there emerges an additional con-
tribution to the broadening on the high-frequency side
o > o0. One can see that the lineshape as a function of the
transferred frequency proves to be asymmetric.

Figure 2 from Ref. [19] shows the Raman spectra of
transverse optical (TO) phonons of isotopically modified
ZnSe. The high-frequency wing decays more slowly than the
low-frequency one. This shows up most clearly, for instance,
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Figure 2. Raman spectra of TO phonons of isotopically substituted ZnSe,

from Ref. [19].

March, 2004 Investigation of semiconductors with defects using Raman scattering 251



in a sample with a natural isotopic zinc composition and 80Se.
This asymmetry indicates conclusively that the TO phonon
branch in ZnSe has a minimum at the center of the Brillouin
zone.

It is interesting to compare (Fig. 3) the profile of the
1330-cmÿ1 line from a crystal diamond film from Ref. [20]
with the 1500-cmÿ1 line from a graphite-like material from
Ref. [21]. In Fig. 3a, the high-frequency wing slopes the most
gently, while in Fig. 3b it is the low-frequency one. The

maximum for the corresponding optical branch in graphite
is a well-established fact and the existence of the minimum for
diamond [22] is presently being debated. Figure 4 shows the
results of one such calculation. The Raman spectra are an
argument in favor of the existence of the minimum.

One can see that the spectral line profile depends on the
geometry of defects inherent in the sample. However, formula
(8) by itself is unsuitable for the quantitative description of the
effect of defects onRS: foro! o0, the result turns to zero for
point defects but diverges for linear and planar defects. To
derive a result that is also valid near the o0 line center, the
intrinsic phonon linewidth should be taken into account.

3. Influence of defects of various geometry
on Raman scattering

The results that are free from the above-noted drawbacks and
simultaneously give the phonon shift and width can be
obtained by resorting to the well-known Green function
approach. In this case, calculations should be made of the
experimentally measured Raman cross section. We introduce
a Hamiltonian which describes the scattering,

Ĥ � e 2

mc 2

�
d3k �s� d3k �i�

�2p�6 gabgua�k�i� ÿ k�s��Ab�k�i��Ag�k�s�� ;

�10�
whereAb�k�i�� andAg�k�s�� are the respective vector potentials
of the incident and scattered light and gabg is the so-called RS
tensor. The specific form of this tensor depends on the
symmetry of the phonon representation under consideration.
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Figure 3. (a) 1330-cmÿ1 line of Raman scattering from a crystal diamond film [diamond (I), high-quality film (II), film with a relatively low quality (III)]

from Ref. [20]; (b) 1500-cmÿ1 Raman line of a graphite-like material (carbon deposited in the atmosphere of hydrogen) from Ref. [21].
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Since the Hamiltonian is linear in phonon displacements
ua�k�, the effective cross section of scattering into the
frequency interval do�s� and the solid angle dO �s�,

ds

do�s� dO�s�
�
�

4e 2o�s�

c 2�hmo�i�

�2 gabge
�i�
b e
�s�
g ga 0b 0g 0e

�i�
b 0 e
�s�
g 0

p
�
1ÿ exp�ÿ�ho=kBT �

�
� ImDaa 0 �k;o� ; �11�

is expressed in terms of the phonon Green function
Daa 0 �k;o�, where e

�i�
b and e

�s�
g are the polarization vectors of

the incident and scattered light, and k � k�i�ÿ k�s� and
o � o�i�ÿ o�s� are the transferred momentum and fre-
quency. For the Stokes and anti-Stokes parts of the
spectrum, the frequency o > 0 and o < 0, respectively.

In the absence of defects, the Green function is diagonal,

D
�0�
i i �k;o� �

ÿ
o2

i �k� ÿ o2 ÿ ioG nat
�ÿ1

;

and we find that the ith mode contribution is Lorentzian in
form.Assuming thewidthG nat to be small in comparisonwith
o0, we obtain, for instance, in the neighborhood of the Stokes
line center, o � o0,

ImD
�0�
i i �k! 0;o� � oG nat

�o2
0 ÿ o2�2 � �oG nat�2

� G nat=4

�o0 ÿ o�2 � �G nat=2�2 :

To find the Green function in the presence of defects, one
needs to solve the Dyson equation, which is, in this specific
case, of the form [23]

Dÿ1i j �k;o� � D
�0�ÿ1
i j �k;o� � hVi ji

ÿ
X
q;m; l

Wiml j�qÿ k�Dml�q;o� ; �12�

where hVj ji describes the average deformation. This real term
is responsible for the phonon frequency shift; it also exists for
a homogeneous stress [see Eqn (7)] and would therefore
naturally be termed a homogeneous shift. The last term in
expression (12) is the phonon self-energy given by the Fourier
component of the deformation correlator:

Wiml j�rÿ r 0� � 
Vim�r�Vl j�r 0�
�

� c
X
q

vim�q� v �l j�q� exp
�
iq�rÿ r 0�� : �13�

The imaginary part of the phonon self-energy determines the
phonon damping caused by their scattering from defects. The
real part will be termed the inhomogeneous shift; it results
from stress fluctuations.

We recast Eqn (12) in the diagonal form and seek the
solution in the form

Dÿ1j j �k;o� � O 2
j �k;o� ÿ s 2j k

2 ÿ ioGj�k;o� ÿ o2 : �14�

For the unknown functions Oj�k;o� and Gj�k;o� we obtain
the system of equations

O 2
j �k;o� ÿ o2

0 ÿ hVj ji ÿ io
ÿ
Gj�k;o� ÿ G nat

� � Sj j�k;o� ;
�15�

where the phonon self-energy is

Sj j�k;o� � ÿ
X
m; q

Wjmmj�qÿ k�
O 2

m�q;o� ÿ s 2q 2 ÿ ioGm�q;o� ÿ o2
: �16�

We note that in the absence of defects Vi j � 0, Sj j�k;o� � 0,
and Eqn (15) gives Oj�k;o� � o0 and Gj�k;o� � G nat. In the
Born approximation, the correction is obtained with the aid
of Eqns (15) by substituting the zero-approximation values in
the expression for phonon self-energy (16). If we assume
G nat ! 0 in this case, the already known result (8) is obtained
for damping. However, our concern is the value of o � o0,
and the Born approximation is insufficient here.

As already noted, in the investigation of Raman spectra
our concern is with small wave vectors k5 qG; r

ÿ1
v , and

therefore the phonon self-energy should be calculated by
putting k � 0. Therefore, the phonon frequency shift and
broadening prove to be functions only of o and are
independent of k. To further simplify the calculation of
integral (16), the correlation radius rv may be treated as a
cutoff parameter, assuming the correlation function to be a
constant v�q � 0� for q < 1=rv and equal to zero for q > 1=rv.

In the case of point defects, for the contribution of one
branch in expression (16) we obtain

S�o� � A

�
2bÿ �a1 ÿ ia2�

�
1

2
ln
�b� a1�2 � a 2

2

�bÿ a1�2 � a 2
2

� i arctan
b� a1
a2
� i arctan

bÿ a1
a2

��
; �17�

where we introduced the notation

a1 �
�
O2�o� ÿ o2 � n 2�o��1=2 ;

a2 �
�ÿO2�o� � o2 � n 2�o��1=2 sign �o� ;

n 4�o� � �O2�o� ÿ o2
�2 � o2G 2�o� ; b �

���
2
p

s

rv
:

The constantAmay be related to either the volume density of
defects cv �A � cvv

2�q � 0�=4 ���
2
p

p2s 3� or the deformation
fluctuation e 2 �A � e 2o 4

0 r
3
v =2s

3�.
For linear defects,

S�o� � Bo0

�
1

2
ln

�
s 2=r 2v � o2 ÿ O2�o��2 � o2G 2�o��

o2 ÿ O2�o��2 � o2G 2�o�

ÿ i arctan
O2�o� ÿ o2

oG�o� ÿ i arctan
s 2=r 2v ÿ O2�o� � o2

oG�o�
�
;

�18�

where the constant B � csv
2�q? � 0�=4ps 2o0 is proportional

to the linear defect density cs per unit area and can be
expressed in terms of the deformation fluctuation
B � e 2o3

0r
2
v =2s

2.
For planar defects,

S�o� � C�ÿa1 � ia2�ÿ1
�
1

2
ln
�b� a1�2 � a 2

2

�bÿ a1�2 � a 2
2

� i arctan
b� a1
a2
� i arctan

bÿ a1
a2

�
; �19�
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where C � clv
2�qz � 0�= ���

2
p

ps and cl is the linear density of
planar defects.

The system of integral equations (15) for the functions
O�o� and G�o� with the phonon self-energy (17), (18), or (19)
is easy to solve numerically [23]. In this case, the parameters
determining the lineshape are A, B, or C, as well as the
parameter b=o0, which depends on the correlation radius.
When the phonon representation under consideration is
degenerate, the coefficients A, B, and C are matrices.

All the aforesaid regarding the effect of short-range
defects on the spectral shape of RS applies to the more
general Eqn (15) as well. An analysis of this equation for
rvqG > 1, i.e., for defects with a relatively long radius, suggests
that the spectral line is symmetric but its shape is different
from the Lorentzian one.

3.1 Stress investigation
in the 3C-SiC/Si epitaxial heterostructure
Silicon carbide is one of the most popular semiconductor
materials, since electronic devices based on silicon carbide can
function at high temperatures [24]. Among the numerous
hexagonal and rhombohedral polytypes of silicon carbide
there is cubic 3C-SiC (C means cubic and the digit 3 denotes
the number of atomic layers which make up the crystal period
in the direction of the principal axis).

The theory outlined above was employed to analyze the
results of micro-Raman spectroscopic investigations of stress
in a film of cubic silicon carbide near the interface with the
silicon wafer [25, 26]. The sample geometry is shown
schematically in Fig. 5. The 3C-SiC film was deposited by
vapor-phase heteroepitaxy on a silicon wafer oriented along
the normal h001i. Three samples were investigated. The first
one was obtained from CRHEA (Valbonne, France). The
carbonization temperature was 1400 �C, and the in situ
monitoring technique was used to stabilize the growth
parameters. An 18-mm thick monocrystalline film resulted.
The second sample with a thickness of 6 mm was obtained

from the LETI-CEA (Grenoble, France); it was distinguished
for its low carbonization temperature (1200 �C) and also for
the post growth sacrificial oxidation to improve its optical
properties. Lastly, use was made of a 3-mm thick sample
commercially available from Cree Research, Inc. [27].

The Raman spectra were recorded at room temperature
with a Jobin-Yvon T64000 spectrometer equipped with a
cooled charge-coupled device (CCD) camera. Use was made
of the 5145-A

�
line of an argon-krypton laser with a power low

enough (500 mW) to eliminate sample heating. The light was
incident on the clean surface of samples with the f1�10g
orientation (see Fig. 5). A confocal microscope focused the
incident beam into a spot about 1 mm in diameter, which was
transferred over the f1�10g sample surface along the h001i
direction. An analysis was made of the Raman spectra in
relation to the distance between the light spot and the SiC/Si
interface.

The Raman spectra in the neighborhood of the LO mode
are shown in Figs 6a, 6c, and 6d. The lineshape is obviously
asymmetric for the samples from CRHEA and Cree
Research, the low-frequency line wing extending further.
This is an indication that the defect correlation radius is
rather short. Since the LO mode is a singlet, the spectrum is
described by a single coupling constant.

Defect models of varying dimensions were put to a test.
Themodel of linear defects (18) proved to be best suited in our
case. The calculated curves are shown by solid lines in Fig. 3,
and the results of comparison with theory are given in the
caption to Fig. 6 and in Tables 1 and 2 for the CRHEA
sample. Also given in Fig. 6b are the functionsO�o� andG�o�
for several distances between the laser spot and the SiC/Si
interface, which describe the effect of stress fluctuations on
the shift of the resonance curve and its width, respectively.
The former function changes sign near the peak of the
spectrum; this is the reason why the shift of the resonance
frequency is far less than the variation of width. Therefore,
the main contribution to the shift is made by the average
stress, while its fluctuations define the linewidths.

SSii SSiiCC

k(i) k(s)

z

�1�10�
�110�

�001�

Figure 5. Backscattering geometry in micro-Raman experiments [25].

The laser focal spot was moved along the direction of the h001i normal

towards the SiC/Si interface. The distribution of deformation (compres-

sion in the SiC region and tension for Si) is shown in the lower part of

the drawing.

Table 1. Frequency, width, and inhomogeneous shift of the longitudinal
mode in the 3C-SiC/Si sample from CRHEA versus distance to the
interface; the experimental spectra are shown in Fig. 6c. The last column
gives the interaction constant determined from comparison with theory.

Distance,
mm

Frequency,
cmÿ1

Width,
cmÿ1

Shift,
cmÿ1

Interaction,
cmÿ1

0
0.5
1.0
2.0
5.0
9.0

971.6
972.4
972.3
972.5
973.0
973.2

4.02
3.86
3.62
3.45
2.88
2.80

0.3
0.4
0.3
0.2
0.1
0.1

1.5
1.3
1.0
0.7
0.18
0.1

Table 2. Frequency and width of the transverse modes in the 3C-SiC/Si
sample from CRHEA versus distance to the interface; the experimental
spectra are shown in Fig. 6e. The last column gives the interaction constant
determined in comparison with theory.

Distance,
mm

TO1

frequency,
cmÿ1

TO1

width,
cmÿ1

TO2

frequency,
cmÿ1

TO2

width,
cmÿ1

Interaction
Bzz, Bxx, Bxz,
cmÿ1

0
0.5
1.0
2.0
5.0
9.0

794.0
795.3
795.4
796.1
797.0
797.0

3.57
3.33
2.43
2.09
2.03
2.01

796.5
797.0
796.8
797.1
797.8
797.6

3.12
3.07
2.34
2.04
1.97
1.95

1.8, 1.4, 0.3
1.4, 1.3, 0.3
0.5, 0.5, 0.1
0.2, 0.2, 0.05
0.2, 0.15, 0.01
0.1, 0.1, 0.07
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The correlation radius for all curves in Figs 6a and 6c was
found to be the same, rvo0=s � 20, which corresponds to
rv=a ' 6. The LO mode lineshape for the LETI-CEA sample
shown in Fig. 6d is symmetric but not Lorentzian. This
situation corresponds to a relatively long-range correlation
function, rv=a � 25. The natural width of the longitudinal
phonon ranges between 2.8 and 3.0 cmÿ1 for different
samples, the small difference being related to the quality of
the samples.

The effect of stress fluctuations is also evident in the TO-
phonon range. The experimental results obtained with the
CRHEA sample are given in Fig. 6e. The TO phonon is a
doublet, and its stress-induced splitting is seen in the spectrum

recorded for the shortest distance from the interface. The line
asymmetry is visible in the spectra with distances to the
interface of 1, 2, 5, and 9 mm, where the spacing of the
doublet is rather small: the low-frequency line wing falls off
more slowly than the high-frequency one. We note that the
natural linewidth proved to be the same for all lines of
transverse modes: Gnat � 1:8 cmÿ1. The correlation radius
also proved to be the same: rv=a ' 6.

Using the expression for the coupling constant Bjm �
e 2o3

0r
2
v =2s

2 it is possible to estimate the deformation fluctua-
tion versus distance between the spot and the SiC/Si interface
[compare Eqns (18) and (12)]. This dependence is depicted in
Fig. 7, which indicates that the deformation relaxes primarily
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Figure 6. Spectra of RS from the side surface of monocrystalline SiC films of varying thickness deposited on a silicon wafer: (a, c, d) for the longitudinal

mode of samples with respective film thicknesses of 3, 18, and 6 mm; (e) for the transverse mode of an 18-mm film. The distance between the laser spot and

the SiC/Si interface is specified by the curves inmicrometers. The curves were plotted byway of comparisonwith theory, Eqns (15) and (18). (b) Functions

G�o� (top) and O�o� (bottom) corresponding to the spectra of Fig. 6a. The line position and width, as well as the interaction constant B, derived by this

comparison for different distances between the light spot and the SiC/Si interface are collected in Tables 1 and 2 for an 18-mm film sample. The

corresponding values (cmÿ1) for the curves in Fig. 6a: (0 mm) 972.7, 5.2, 3.0; (1.5 mm) 972.9, 4.3, 1.5; (3 mm) 973.1, 3.6, 0.7; and in Fig. 6d: (0 mm) 972.4,

4.38, 20; (2 mm) 972.8, 4.11, 15; (3 mm) 973.0, 3.66, 8; (6 mm) 973.0, 3.29, 3.2.
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at a distance on the order of 3 mm. This relaxation can be
approximated by the zÿa law. The rms fitting yielded
a � 1:0� 0:2. Similar fitting for the LO phonon resulted in
a � 0:76� 0:25, i.e., in the same value to within experimental
error. Employing the values rv=a � 6 and B � 2 cmÿ1, the
deformation was estimated as e ' 10ÿ3 at a distance of about
0.25 mm from the interface.

3.2 Investigation of the Raman spectra
at silicon ± insulator interfaces
References [28, 29] were concerned with the study of
deformation fluctuations near the silicon ± insulator inter-
faces. These silicon-on-insulator (SOI) structures have
recently found wide use (see, for instance, Refs [30, 31]),
since they make it possible to avoid direct electric contact
between the active part of the device and the wafer. A
conventional SOI structure is depicted in Fig. 8. A thin
monocrystalline silicon overlayer (SOL) is on top of the
buried silicon oxide (BOX) layer, which in its turn resides on
a thick silicon wafer. The monocrystalline film is normally
0.2 mm thick and the oxide layer is 0.4 mm. To produce the
oxide, two different methods are in fact used: one involving

oxygen ion implantation termed SIMOX (separation by
implantation of oxygen) and the other involving hydrophilic
bonding of two pre-oxidized silicon layers, called the BESOI
method (bond and etch back SOI) or Unibond [32].

The experimentswere conducted on three samples 100mm
in diameter prepared in SOITEC [32]; one was prepared by
the SIMOX method by way of intense oxygen implantation
and the other two by the Unibond method. In all cases, the
initial Si film thickness was 0.2 mm. In two cases (theUnibond
and Simox samples), advantage was taken of sacrificial
oxidation to reduce the film thickness (the experimental
series A and B). To estimate the effect of multiple high-
temperature oxidation at 1050 �C, one more Unibond sample
was subject to a low-temperature oxygen-assisted IBE (ion
beam etching) process (the C experimental series).

Of course, the goal is that all three layers (SOL, BOX, and
the silicon wafer) should be void of defects and stress.
However, the real situation is not nearly so ideal. According
to the data available from the literature, the SOL surface
roughness ranges from 2 A

�
in the Unibond sample to 5 A

�
in

the SIMOX one, while the dislocation density ranges from
102 cmÿ2 in the Unibond sample to 106 cmÿ2 in the SIMOX
one. Direct bonding of two oxidized films should result, like
the ion implantation accompanied by high-temperature
annealing, in the emergence of stress at the interface [33].
This gives rise to defects in the SOL as well, primarily to
dislocations. The interaction between dislocations and stress
in a solid is a well-known problem of the theory of elasticity.
Recent years have shown certain progress in this direction
[34 ± 36], but many qualitative observations remain to be
explained.

3.2.1 Investigation of the Raman spectra from samples with
varying Si film thickness. Since the SOL is too thin for the
investigation of its properties even by micro-Raman spectro-
scopy, the reflected signal in Ref. [29] was recorded from the
side plane of the wafer. In this case, the spectrum variation in
the backscattering geometry was recorded in relation to the
SOL thickness, which varied from approximately 200 to 5 nm.
For each layer of specific thickness, several spectra were
recorded in the x direction, the spectra corresponding to
different distances between the laser beam and the wafer ±
BOX interface (see Fig. 8). Some results of investigation of the
Raman spectra from the A series samples are shown in Fig. 9.

The experimental data were compared with the calculated
data starting fromEqns (11) ± (14) of the theory. Owing to the
presence of the interface, the triplet of optical phonons for
k � 0 splits into a doublet corresponding to vibrations in the
interface plane (the x and y directions) and a singlet
corresponding to vibrations in the z direction. In the matrix
of coupling constants, the nonzero elements are Bxx � Byy,
Bxz � Byz, and Bzz. The numerical solution of Eqns (15) and
(18) yields the coefficients Bi j, which define the shift and
width of the line. The linear defect model provides the best
description of experimental data in this case. Figure 6d gives
one example of a numerical solution [the functions Gj�o� and
Oj�o� ÿ o0 ÿ hVj ji=2] for j � z, i.e., for a z-polarized phonon.
The results of comparison with theory Ð the positions of
resonances, their widths, and the values of the matrix
elements Bxx and Bzz Ð are collected in Table 3 for the A
series samples (Unibond); the Bxz coefficient did not prove to
have any effect and was therefore set equal to zero. The best
agreement was reached for rvo0=s � 16, which corresponds
to a correlation radius (the dislocation core size) rv � 1:3 A

�
.
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We note that both the width and the resonance frequency
(520 cmÿ1) of the Raman spectrum assume its bulk values for
the longest distance between the laser spot and the interface
(about 5 mm for all samples of the series). As the spot ±
interface distance shortens (2 mm first, then 1 mm), the line
shifts towards lower frequencies and broadens, which is
particularly significant for a small SOL thickness. This
becomes noticeable for a film thickness below 42 nm.

The theory enables us to distinguish two contributions of
defects to the phonon frequency shift. The first-order
contribution is independent of the phonon frequency but is

responsible for the common shift and splitting of the optical
phonon triplet in silicon. The shift to the low-frequency side is
indicative of the presence of tensile stress in the surface wafer
layer [8, 25]. The splitting of the triplet to a singlet and a
doublet, which is allowed by the symmetry, is noticeable only
for sufficiently thin SOLs (5 and 11 nm, see Table 3). One
more contribution to the line shift arises in the second order of
the perturbation theory; it depends on the frequency (Fig. 9d)
and defines the linewidths. One can see from Table 3 that the
magnitude of the second contribution, for instance for an
SOL thickness of 5 nm, amounts to 6.1 cmÿ1 for the
linewidths and �0:36 cmÿ1 for the line frequencies. We note
that this contribution to the shift is appreciably smaller than
the first-order contribution, which amounts toÿ1:2 cmÿ1 for
the same sample.

Similar results were also obtained for the SIMOX. The
natural width was found to be somewhat larger (3.4 cmÿ1 in
comparison with 3.1 cmÿ1 for Unibond) and the correlation
radius corresponded to the same value rvo0=s � 16. Themain
distinction is that the stress relaxation depth is larger in this
case. Specifically, some difference in linewidth can be seen at
distances of 5 and 20 nm from the interface.

Therefore, an unexpected effect was discovered: for a
fixed laser spot ± interface distance, the width of Raman
lines in the wafer increased with a reduction in the SOL
thickness. As this distance increases, the lines become
narrower to attain a value defined by the natural width at a
distance of several micrometers. This is an indication that the
stress in the wafer increases as the SOL thickness is reduced.
This stress relaxes at a distance of several micrometers from
the Si/SiO2 interface. To verify this conclusion, investigations
were made of the infrared reflection by the SOL surface and
its roughness.

3.2.2 Effect of SOL thickness on the infrared reflection. A
study wasmade of the interference in the infrared reflection in
the 400 ± 7500 cmÿ1 frequency range to control the SOL
thickness [37]. Along with the interference pattern, a
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Table 3.Frequency, width, and interaction with defects for phononsG 025 in
Unibond samples with different SOL thickness for different distances to
the interface.

Layer
thickness,
nm

Distance to
the interface,
mm

G 025 frequency,
cmÿ1

oz, ox

Width,
cmÿ1

Gz; Gx

Interaction,
cmÿ1

Bzz, Bxx

203 5.0
2.0
1.0
0

520.0
519.76
519.28
519.18

3.10
3.21
3.32
3.61

0
0.20
0.39
0.97

95 5.0
2.0
1.0
0

520.0
520.0
520.0
519.28

3.10
3.10
3.32
3.69

0
0
0.38
1.16

42 5.0
2.0
1.0
0

520.0
520.0
519.18, 516.13
519.17, 519.08

3.10
3.21
3.69, 3.26
4.25, 3.42

0
0.19
1.16, 0.29
2.51, 0.6

11 5.0
2.0
1.0
0

520.0
520.18, 520.15
520.27, 520.22
519.55, 519.13

3.10
3.32, 3.1
3.86, 3.42
6.23, 3.70

0
0.38, 0
1.54, 0.58
9.6, 1.2

5 5.0
2.0
1.0
0

520.0
519.73, 519.70
519.26, 519.27
519.14, 519.00

3.10
3.32, 3.1
6.44, 3.61
9.44, 4.65

0
0.39, 0
10.6, 0.96
29.0, 3.67
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singularity was observed in the 1000 ± 1100 cmÿ1 range. This
singularity was clearly seen to become narrower with
reduction of the SOL thickness from 203 to 95 and then to
42 nm. The origin of the 1070 ± 1080 cmÿ1 doublet structure is
well known [38 ± 43]: it is caused by the splitting of the triply
degenerate vibration of the SiO4 tetrahedron residing in the
BOX. The presence of the interface changes the symmetry of
the field surrounding the tetrahedron and the zmode splits off
the x and y vibrations, so that a doublet structure with a 1 : 2
intensity ratio is observed. The relatively broad singularity in
the initial sample with an SOL thickness of 200 nm splits into
two separate vibrations when the SOL thickness becomes less
than 40 nm. Based on the intensity ratio, the lower frequency
value is ascribed to the z vibration, while their common shift
to the lower frequency side testifies to the compressive
character of the stress in the oxide layer. To account for the
singularity narrowing, the stress in the SOL may be assumed
to decrease as the thickness is reduced. The relative variation
of the bond length in the molecule can be estimated by
approximating the potential energy by the power law rÿn,
where n is close to five for typical oxides. Then, the relative
variation in the vibration frequency is do=o � �n� 2� dr=2r.
Since the reduction of SOL thickness results in a frequency
shift of 50 cmÿ1, the variation of the Si ±O bond length is
estimated as 1%.

3.2.3 Correlation of Raman spectra with surface roughness.
Measurements of surface roughness with a tunnel microscope
[29] showed that the rms roughness increased from 1.5 to 4 A

�

as the SOL thickness was lowered from 203 to 5 nm. Clearly
there is a direct relationship between the surface roughness
and the elastic stress near the interface. By averaging rough-
ness over a sufficiently large surface area it is possible to
obtain the equation

z 2 ÿ z 20 � cb20l
2 ;

which relates the average roughness z 2 to the dislocation
density c in the surface layer of the SOL. Here, z 20 is the
roughness in the absence of dislocations, b0 is, by the order of
magnitude, the Burgers vector, and l is the average size of hills
on the surface in the tangential direction generated by the
roughness. On the other hand, with the use of Eqn (18), for
the maximal width [at the line center o � O�o�] we have

Gÿ G nat � a�z 2 ÿ z 20 � arctan
s 2

r 2vo0G
; �20�

where a � r 4vo
3
0=4ps

2b20l
2.

The dependence (20) is shown with a solid line in Fig. 10,
together with experimental points for samples with various
SOL thicknesses. The only fit parameter a � 2:1 cmÿ1 A

� ÿ2

was selected so that the lines pass through the values of
z-phonon width and roughness measured for the sample with
a 5-nm thick SOL. The value a � 0:28 cmÿ1 A

� ÿ2 for the x
phononwas obtained by comparing the constantsBxx andBzz

from Table 3. It is instructive to estimate the surface
roughness parameter l employing these data. We take the
expression for a and put b0 � 1 A

�
to obtain a reasonable

value for the dimension of hills on the surface: l � 88 A
�
. The

samples obtained in different ways differ by the values of
initial roughness (1.2 A

�
, the A series) and (2.0 A

�
, the C series).

The main conclusion of the work is that the SOL samples
make up a balanced system depicted schematically in Fig. 11.

The distinctive features of this system are, first, the presence
of compression stress in the oxide layer, which lowers with a
reduction in the SOL thickness and, second, the tensile stress
in the SOL, on whose surface there occurs a roughness of up
to 4 A

�
if the layer is thin enough. And, lastly, there is a tensile

and fluctuating stress in the wafer leading to a deformation on
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Figure 10. Widths of the two components of the phonon triplet as

functions of the mean square roughness of the SOL surface of the
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the order of 10ÿ2. The source of this stress is the Si/SiO2

interface between the materials with different coefficients of
thermal expansion, as well as with different lattice constants.
The oxide layer borders on silicon regions on either side, and
therefore thinning one of them (the SOL) results in an
increase in the tensile stress of the other (the wafer). At the
same time, the compression stress in the oxide layer decreases.

3.3 Resonance interaction of propagating
and localized phonon modes
Up to this point we considered the interaction of propagating
phonon modes with defects. At the same time, local phonon
vibrations can also arise in the presence of defects [44 ± 46].
There exists an important distinction between point defects
on the one hand and linear or planar defects on the other. In
the latter case, according to quantum mechanics, localized
states may occur at the continuum edge o0 due to a relatively
weak phonon ± defect interaction. We then encounter the
serious problem of taking into account the resonance
interaction of localized modes and propagating modes of the
continuum.

Numerical calculations invoking different models [47, 48]
were conducted in order to determine the effect of planar
stacking faults on the phonon spectrum of SiC polytypes. To
solve the problem in the analytical form [49], advantage is
conveniently taken of the Green function technique. Assum-
ing the defect potential to be short-range [v�q� � v0 in
Eqn (13)] and retaining the terms of higher order in this
potential than was previously done, we obtain the Dyson
equation for the phonon Green function in the form

D�k;o�ÿ1 � D0�k;o�ÿ1 � cv0

�
1� v0

X
q

D�q;o�
�ÿ1

; �21�

where the last term is the phonon self-energy in the
approximation linear in the density c. We restricted ourselves
to the case of low defect density, when the average distance
between the defects (rc / cÿ1=2 for linear defects) is long in
comparison with the phonon mean free path. We note two
circumstances: first, if Eqn (21) is expanded in powers of v0 we
arrive at an equation of the Eqn (12) type. Second, whenD0 is
substituted for D in the integral and the imaginary part is
separated, in the limit G! 0 there emerges expression (8)
obtained in the second order in v0.

The poles of the Green function yield the spectrum of the
system. In the absence of defects, these are the propagating
phonon states, to which there correspond the poles of D0.
When there is only one defect, D0 should be substituted
instead of D in the expression for phonon self-energy, and
then, for the proper sign of the coupling constant, a pole can
emerge, which describes the localized state. The frequency of
this state is derived from the equation

1� v0
X
q

D0�q;o� � 0 :

However, for a finite density of defects, D should be kept
inside the integral sign. The resultant equation (21) is an
integral equation for the Green function D�q;o�. This
equation takes into account the resonance interaction of the
localized states and the continuum states.

The integral equation can be reduced to an algebraic one
[49]. To this end, in the case of point defects we introduce a
new unknown function z and a complex variable z0:

D�k;o� � �zÿ s 2k2�ÿ1 ; z0 � o2
0 ÿ o2 ÿ ioG nat :

Then, Eqn (21) gives

z � z0 � co3
0

�
k
l
ÿ k� p

2

������
ÿz

p �ÿ1
: �22�

For linear defects,

D�k;o� � �zÿ s 2k 2
?�ÿ1 ; z0 � o2

0 ÿ s 2k 2
z ÿ o2 ÿ ioG nat ;

and we obtain

z � z0 � co2
0

�
1

l
ÿ ln

k 2

ÿz
�ÿ1

: �23�

For planar defects,

D�k;o� � �zÿ s 2k 2
z �ÿ1 ; z0 � o2

0 ÿ s 2k 2
k ÿ o2 ÿ ioG nat ;

and we find

z � z0 � co2
0

�
1

l
ÿ o0������ÿzp

�ÿ1
; �24�

where l is the dimensionless phonon ± defect coupling
constant proportional to v0; c is the dimensionless atomic
density of defects per unit volume, area, or length for point,
linear, or planar defects, respectively; k � s=a is the cutoff
parameter, which is on the order of the Debye frequency; the
z-axis is aligned with the direction of the linear defect; and the
two-dimensional vector kk is selected along the planar defect.
The values of the functions

������ÿzp
and ln �ÿz� are taken in the

upper complex half-plane.
Each of Eqns (22) ± (24) is in fact a system of two

equations for the real and imaginary parts of z. In this case,
instead of z we can conveniently introduce real variables x
and y:

ÿz �
���������������
x2 � y2

p
exp

�
i

�
p
2
ÿ arctan

x

y

��
;

assuming that y > 0 and ÿp=2 < arctan z < p=2 in accor-
dance with the choice of the function values defined above. A
similar form is also employed for z0 with the change
x! o2 ÿ o2

0 and y! oG nat. We calculate Im zÿ1 to find
the Raman spectrum with the excitation of a long-wave
�k � 0� optical phonon.

Two calculated Raman spectra for planar defects are
exemplified in Fig. 12. The calculations were made under the
assumption that the optical phonon branch has a maximum
at the center of the Brillouin zone at a frequency
o0 � 520 cmÿ1 for k � 0. One can see from Fig. 12a (the
coupling constant is negative and the localized state is
absent) that the resonance line corresponding to the
excitation of the long-wavelength phonon is asymmetric.
The broadening is stronger on the low-frequency side of the
peak, which results in asymmetry. This is the effect of the
final-state phonon density: the elastic interaction with
defects contributes to the phonon width only in the o < o0

range, to which phonon transitions can occur in the
scattering by defects.
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When the coupling constant is positive (Fig. 12b), there
exist localized states with frequencies above the continuum
edge o > o0. Their contribution to the Raman spectrum has
the form of an extensive continuumwith awidth proportional
to

���
c
p

. This dependence results from the resonance interaction
of localized states with the nearby continuum. Had we
substituted the zero-approximation function D0 instead of D
on the right-hand side of the Dyson equation (21), we would
have obtained the conventional form of local vibration
spectrum with a maximum (shown with a dotted line). This
spectrum does not differ from the exact one only when there is
a large coupling constant, so that localized states occur away
from the continuum edge. Their contribution to the Raman
spectrum is Lorentzian in form and significantly smaller in

magnitude, which is proportional to the defect density in this
case.

We note that the localized states are related to the
minimum of the optical phonon branch for a negative value
of the coupling constant, and their frequencies then lie below
the continuum edge. Numerical calculations carried out in
Ref. [47] yielded the corresponding spectrum pattern (Fig. 13)
with a broad plateau.

4. Coulomb effects in a uniaxial semiconductor

It is well known [50] that the Coulomb field excited in the
optical vibrations in lattices with a dipole moment (for
instance, in SiC) lifts the threefold degeneracy at the center
of the Brillouin zone. The frequency of longitudinal optical
vibrations comes to exceed the frequency of the transverse
ones. In non-cubic crystals (for instance, in hexagonal and
rhombohedral polytypes of the same SiC), one more effect is
related to the Coulomb field. Namely, optical vibration
frequencies prove to be dependent on the direction of
phonon propagation: for k � 0, the frequencies depend on
the direction of the wave vector k. This is a relatively unusual
effect, both from the physical and mathematical standpoints:
the eigenvalues of dynamic matrix calculated for k � 0 are
nevertheless dependent on the vector k. The reason for this
effect lies with the non-analytic dependence of the dynamic
matrix on the direction of k, which is caused by the long-range
Coulomb field.

As already noted, in micro-Raman spectroscopy both
incident and reflected light beams are focused. In this case, the
Raman line in a non-cubic crystal proves to be more strongly
broadened because the absorbed phonon frequency depends
on the direction of its wave vector.

The effects of long-range dipole ± dipole interaction have
been known in ferroelectrics [51]. Recent numerical calcula-
tions [52, 53] clearly reveal the dependence of optical phonon
frequencies on the direction of the wave vector at the center of
the Brillouin zone in A3B5-type semiconductors.

However, for uniaxial SiC polytypes the problem can be
solved without resorting to numerical calculations, by
invoking only symmetry considerations [54]. First, we
consider the phonon spectrum of the 3C-SiC cubic polytype,
whose elementary cell contains two atoms. For the close
neighborhood of the center of the Brillouin zone, where
k5 p=a (a is the lattice constant), it is possible to split the
acoustic and optical modes by expanding the dynamic matrix
in powers of the vector k. For optical modes in the zero
approximation in k there results a system of three equations
of the form

�fÿM 0o2�u � f ; �25�

where M 0 is the reduced mass of the two atoms (Si and C) in
an elementary cell and f is the diagonal element of the
interaction matrix (in a cubic crystal there exists only one
such element of a 3� 3 matrix). When calculating f it is
always possible to restrict oneself to some number of closest
neighbors. However, the effect of the long-range Coulomb
field cannot be included in this way. It can be represented as
the force f � ZE acting on the effective charge Z, and the
electric field E itself should be determined from the given
optical displacement field u with the aid of the Maxwell
equations.
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Eliminating the magnetic field from the Maxwell equa-
tions, it is possible to express the electric fieldE in terms of the
polarization P:

E � ÿ4p
�
k�kP� ÿ o2P=c 2

�
k 2 ÿ o2=c 2

: �26�

The frequency o, which is of interest here, is on the order
of the optical phonon frequency, i.e., 103 cmÿ1, and the wave
vector of the phonon, when it is excited by light, is by the
order of magnitude equal to the wave vector of the light (in
Raman scattering it is defined by the transferredmomentum),
which amounts to 105 cmÿ1. This implies that the condition
k4o=c is satisfied (the region where this condition is
violated is termed the polariton region). Then, in expression
(26) the terms with c 2 should be neglected, with the result that
the electric field ± polarization relationship assumes a simple
and singular form:

E � ÿ4pk�kP�
k 2

: �27�

In the long-wavelength approximation �k5 p=a�, which
we restrict ourselves to, the polarization is related to the
dipole moment of an elementary cell Zu: P � NZu� wE,
where w is the atom polarizability and N is the number of
elementary cells per unit volume. Expressing E in terms of u
with the aid of the last-given expressions and employing the
equations of motion (25), for a cubic crystal we find the
frequencies of transverse �o2

TO � f=M� and longitudinal
�o2

LO � f=M� o2
pi� optical phonons, where

opi �
�
4pNZ 2

M 0e1

�1=2

is the ion plasma frequency and e1 � 1� 4pw. Despite the
fact that the direction of the vector k appears explicitly in the
relationship between E and P, the optical vibration frequen-
cies are direction-independent, as they must be for a cubic
crystal.

As is well known, the anisotropy of non-cubic SiC
polytypes is small, because the nearest environment retains
cubic symmetry. We introduce the static deformation tensor
ui j, which will describe the difference between the elements of
the dynamic matrix of a non-cubic polytype and a cubic one.
Then, the phonon spectrum of the non-cubic polytype can be
derived as follows. At first we expand the interaction matrix
in powers of ui j and find the frequencies of so-called `strong'
modes. Then, account should be taken of the fact that there
are more than two atoms in the elementary cell of a non-cubic
polytype, resulting in the emergence of additional `weak'
optical modes. They can be obtained by folding the Brillouin
zone of the cubic polytype in the direction of the principal axis
the number of times corresponding to the increase in the
number of atoms in the elementary cell. The folding
procedure was proposed in Ref. [55], while the frequency
shifts and the intensities of weak modes in optical absorption
and Raman scattering were calculated in Ref. [56].

The dynamic matrix may contain only invariants (with
respect to crystal symmetry transformations) composed of
components of the ui j tensor. There exist two such first-order
invariants uzz and uxx � uyy in crystal axes. Furthermore, it is
always possible to fix the volume of the initial imaginary
crystal, i.e., put ui i � 0. Only one invariant remains, for
instance uzz, and it can be written by adding only to the zz

element. Finally, account can also be taken of the small
anisotropy of the polarizability tensor, whose two principal
values wxx and wzz are different in a uniaxial crystal. Therefore,
for strong modes there results, in lieu of Eqns (25), the system
of equations

b� ~o2
pin

2
x ÿ o2 ~o2

pinxny ~o2
pinxnz

~o2
pinxny b� ~o2

pin
2
y ÿ o2 ~o2

pinynz

~o2
pinxnz ~o2

pinynz a� ~o2
pin

2
z ÿ o2

0B@
1CA

�
ux
uy
uz

 !
� 0 ; �28�

where

n � k

k
; a � f

M 0 ; b � a� buzz ;

~o2
pi �

4pNZ 2

M 0�1� 4p�wxx sin2 y� wzz cos2 y�
� :

We select the yz plane in such a way that the vector k lies in
this plane and denote by y the angle between k and the z-axis:
nx � 0; nz � cos y, and ny � sin y. Then, the Coulomb part of
the matrix (28) is diagonalizable with the unitary transforma-
tion

Ui j �
1 0 0
0 cos y sin y
0 ÿ sin y cos y

 !
�29�

and the problem of phonon frequency determination reduces
to the diagonalization of the matrix

b 0 0

0 b cos2 y� a sin2 y �bÿ a� sin y cos y
0 �bÿ a� sin y cos y b sin2 y� a cos2 y� ~o2

pi

0B@
1CA: �30�

The solution of this problem is evident. There is one
transverse vibration (TO1) with the frequency o2

TO1
� b,

polarized in the x direction, and two modes in the yz plane
with the frequencies

o2
2; 3�y� �

1

2
�~o2

pi � a� b� � 1

2

��
~o2
pi � �aÿ b� cos 2y�2

� �aÿ b�2 sin2 2y	1=2 : �31�

We emphasize that expression (31) gives the optical
phonon frequencies at the center of the Brillouin zone, but
they depend on the wave vector direction. This dependence
arises from the combined effect of the Coulomb field and
crystal anisotropy. In the absence of the Coulomb field
(~o2

pi � 0), the frequencies are o2
2 � a, o2

3 � b, and there is
no angular dependence. In the isotropic case (a � b,
wxx � wzz), formula (31) gives the spectrum of a cubic crystal.

In the limiting case when the crystal anisotropy is small in
comparison with the Coulomb interaction (jaÿ bj5o2

pi),
one of the yzmodes proves to be almost transverse (TO2) and
the other almost longitudinal (LO), and the corresponding
frequencies can be written as

o2
TO2
�y� � b cos2 y� a sin2 y ; �32�

o2
LO�y� � ~o2

pi � b sin2 y� a cos2 y :
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The angular dependences of frequency (32) are plotted in
Fig. 14a, where r � ~o2

pi; the dependences of this form (with
constant r) were first proposed by Loudon [57]. Figure 14b
shows the Raman line for a wide aperture of the incident laser
beam; the line asymmetry is caused by angular dispersion.

We note that ~o2
pi in expression (32) also depends on the

angle. However, the anisotropy of the inner shells' polariz-
ability may prove to be smaller than the crystalline anisotropy
responsible for the difference between a and b. There then
exists a conservation law, specifically, the sum of the squared
yz-mode frequencies is direction-independent. For instance,

o2
TO2
�y � 0� � o2

LO�y � 0�

� o2
TO2

�
y � p

2

�
� o2

LO

�
y � p

2

�
: �33�

To verify this law, one can take the example of the 6H-SiC
polytype, where the angular dependence of optical frequen-
cies is known from experiments [58, 55]. In the propagation
along the crystal axis �y � 0�, the TO2 and TO1 modes are
degenerate and their frequencies are equal to

���
b
p

. The
experimental frequency for the 6H-SiC polytype is 797 cmÿ1

(with an uncertainty of about 1 cmÿ1). The corresponding
frequency of the longitudinal mode is oLO�y � 0� �
�o2

pi � a�1=2. For the propagation perpendicular to the axis
(y � p=2), oTO2

�p=2� � ���
a
p

(the experimental value is
788 cmÿ1) and oLO�y � p=2� � �o2

pi � b�1=2 (experiment
gives a value of 970 cmÿ1). Hence, it follows that
opi � 552:9 cmÿ1, a � 7882 cmÿ2, b � 7972 cmÿ2, and lastly
oLO�y � 0� � �o2

pi � a�1=2 � 962:6 cmÿ1, which coincides
with the experimental value, to within the experimental error.

5. Influence of charge carriers
on phonon dispersion and damping

The problem of the interaction between phonons and
conduction electrons is of fundamental importance in
different areas of solid-state physics and above all in
superconductivity. This is the reason why it invariably
attracts the attention of theorists. The effect of free carriers
on longitudinal optical phonons in semiconductors [59] and
metals [60, 61] has been observed in experiments (see the
review [62] and the recent paper [63] written on the high-

temperature Nd1:86Ce0:14CuO4�d superconductor employing
inelastic X-ray scattering). This effect is easy to explain
because the longitudinal vibrations, for instance, in a polar
dielectric, are accompanied by an electric field, which
interacts with the carriers. This interaction is long-range in
nature. It is sometimes referred to as the Coulomb screening
and is described by the Maxwell equations.

At the same time, phonon vibrations are accompanied by
a lattice deformation, and in the long-wavelength approxima-
tion they should be responsible for a change in the local
electronic spectrum e�p; r; t�. Two types of the corresponding
deformation interaction are known. For acoustic branches
this is the FroÈ hlich interaction. In the long-wavelength limit,
acoustic deformation reduces to a simple shift, which should
have no effect on the electrons. This interaction may contain
only the derivatives of the displacement, i.e., the deformation
tensor ei j:

e�p; r; t� � e0�p� � zi j�p� ei j�r; t� :

For a cubic crystal it assumes the form

e�p; r; t� � e0�p� � z�p� div u�r; t� ; �34�

where z�p� is a scalar function of electron momentum.
The local deformation interaction in the form

e�p; r; t� � e0�p� � zi�p� ui�r; t� �35�

is possible for optical phonons, where the coupling constant
zi�p� is a vector function.

The significant distinction between these two is that only
the longitudinal phonon mode interacts with electrons in the
case (34). Moreover, they differ by symmetry: in the former
case, the phonon representation under consideration should
allow a tensor function and, in the latter case, a vector
function to exist.

Employing the diagram technique, A BMigdal arrived at
the conclusion [64] (see also Ref. [65]) that the FroÈ hlich
interaction results in a significant renormalization of the
phonon spectrum. Namely, the acoustic phonon velocity
should change by the order of magnitude ~s � s�1ÿ 2l�1=2,
where l � z 2 is the dimensionless electron ± phonon interac-
tion constant. Hence, it is clear that the acoustic mode should
be expected to soften significantly, while for l! 1=2 an
instability even occurs. This result is inconsistent with the
adiabaticity of the electron ± phonon system. According to
the Born ±Oppenheimer approximation, light electrons
should follow the relatively slow lattice vibrations and the
variation of the phonon spectrum should therefore be small in
the non-adiabaticity parameter

�����������
m=M

p
, where m and M are

the respective masses of electrons and ions. In the context of
adiabatic approximation (see, for instance, Ref. [50]), the
electron ± phonon interaction (34), (35) itself arises only due
to departures from adiabaticity. As shown by Brovman and
Kagan [66], in the Hamiltonian of the system two terms
appear that compensate each other in the calculation of
phonon renormalizations so that the remaining contribution
contains the non-adiabaticity parameter. Using one of the
terms of the FroÈ hlich Hamiltonian type in the conventional
diagram technique is therefore incorrect.

At the same time, a large number of papers are dedicated
to the calculation of sound damping in metals on the basis of
the kinetic equation (see review [67]), which represents the
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electron ± phonon renormalization directly. The effect of
electron ± phonon interaction was shown to be rather small
to the extent of the non-adiabaticity parameter. Specifically,
the change in the sound velocity ds � ~sÿ s and the dampingG
for the phonon with a wave vector k and a frequency ok � sk
are given by the formula

ds
s
ÿ i

G
ok
� l

s 2

v 2
F

ÿ i
ps
2vF

; kvF > jok � itÿ1j ;
ok

ok � itÿ1
; kvF < jok � itÿ1j ;

8>><>>: �36�

where t is the electron relaxation time and vF is the Fermi
velocity. We note that the non-adiabaticity parameter
s=vF �

�����������
m=M

p
appears explicitly in the first of formulas

(36) and appears in the second one when taking into account
the domain of applicability.

The electron ± phonon coupling constant l is proportional
to the state density on the Fermi surface n0 � m �pF=p2 and
the square of the deformation potential zi k. The requirement
that the number of electrons must be conserved upon the
inclusion of electron ± phonon interaction implies that l
vanishes in the isotropic case, and therefore Migdal should
have obtained the zero result when considering the isotropic
case.

Major renormalizations (in particular, extremely strong
dispersion Ð on the order of the Fermi velocity) was
predicted for optical phonons as well [68 ± 70]. In a recent
paper M Reizer [71] somewhat improved the situation by
considering the screening of the long-range electric field
emerging in longitudinal optical vibrations (it is likely that
the effect of Coulomb screening on optical phonons was first
noted in Ref. [72]; see also Ref. [73]). The strong dispersion
disappeared, but the electron ± phonon interaction was
incorporated into the result in a non-physical way.

Extremely strong optical phonon dispersion has not been
experimentally observed until the present time. Dedicated
searches in osmium [74] in the long-wavelength range
kvF < jo� itÿ1j, where it should be observable according
to Refs [68 ± 70], yield the usual values of dispersion
do=dk � 106 cm sÿ1 for a Fermi velocity vF �
�3ÿ5� � 107 cm sÿ1. Experimentally, coupled phonon ±
plasmon modes in doped semiconductors supposedly furnish
a good opportunity for investigating electron ± phonon
interactions. Two such modes L� were repeatedly observed
in experiments on Raman scattering (see, for instance,
Ref. [75]). However, in the interpretation of experimental
data advantage was always taken of the theory which
included only the Coulomb screening; the effect of deforma-
tion (FroÈ hlich) interaction was neglected.

Here, we give the theoretical results [76] obtained with the
inclusion of screening, deformation interaction, and the
electron and phonon relaxation times. It is pertinent to note
that the screening is determined by the dielectric function
e�k;o�. When comparing experimental data with theory,
advantage is commonly taken of either the Drude form of
conductivity or the so-called Lindhard ±Mermin approxima-
tion [77], which is a rather artificial generalization of the
Lindhard formula to the case of electron collisions. Applying
the Lindhard formula is meaningful when the transferred
wave vector k is comparable with the electron Fermi
momentum pF. The electron ± phonon interaction is most
pronounced in heavily doped semiconductors with a high
density of carriers, which are degenerate under these condi-

tions even at room temperature. The most appreciable effect
occurs for kvF � o, where vF is the Fermi velocity ando is the
phonon frequency, and usually the condition k5 pF is
fulfilled in the studies of Raman scattering on samples with
a carrier density of more than 1017 cmÿ3. This condition
allows us to consistently use the kinetic equation method in
lieu of the Lindhard ±Mermin approximation.

6. Raman scattering
by interacting electrons and phonons

To take into account the conduction electrons and the electric
field E�r; t� excited in lattice oscillations we write the effective
Hamiltonian (10) describing Raman scattering in the general
form

H � e 2

mc 2

�
d3rN�r; t�U�r; t� ; �37�

where U�r; t� denotes the product of the vector potentials of
the incident and scattered light:

A�i��r; t�A�s��r; t� � U�r; t� � exp
�
i�krÿ ot��U�k;o� ;

k � k�i� ÿ k�s�,o � o�i� ÿ o�s� are the transferred momentum
and frequency, respectively.

The operator

N�r; t� � gn̂�r; t� � gj ûj�r; t� � gEE�r; t� �38�

is linear in the electron number n̂, phonon displacement ûj,
and field E operators. The polarizations of the vectors ûj�r; t�,
E�r; t�, A�i��r; t�, and A�s��r; t� are included in the coupling
constants. For instance, the vertex describing the light
scattering with electron ± hole pair production with the
inclusion of possible resonance electron transitions between
the band states in the second order of the perturbation theory
has the form

g�p� � e �i�a e
�s�
b

�
dab � 1

m

X
n

�
p b
f n p

a
n f

Ef �p� ÿ En�p� � o�i�

� p b
f n p

a
n f

Ef �p� ÿ En�p� ÿ o�s�

��
:

In the quasiclassical approximation, the electron density
fluctuations

hhgn̂�r; t�ii �
�

d3p

�2p�3 g�p� fp�r; t� ; �39�

averaged quantum-mechanically and statistically, are calcu-
lated employing the electron distribution function fp�r; t�. It
is easy to obtain an estimate of the deformation-optical and
electrooptical vertices gj � 1=a 4, gE � 1=ea, as well as of the
electron vertex g�p� � m=m �, where a is the lattice constant
and m � is the effective electron mass.

The quantity U�r; t� can be considered as an external
force, and it is possible to define the generalized susceptibility
in the linear response to this force:

hhN �k;o�ii � ÿw�k;o�U�k;o� : �40�
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Next, with the aid of the fluctuation-dissipation theorem it is
possible to write the equation

K�k;o� � 2

1ÿ exp �ÿo=T � Im w�k;o� �41�

relating the susceptibility to the Fourier component of the
correlation function

K�r; t; r 0; t 0� � hhN y�r; t�N �r 0; t 0�ii ; �42�

which depends on rÿ r 0 and tÿ t 0 by virtue of uniformity.
The Raman cross section is given by the formula

ds

do�s� dO�s�
� k�s�z o�s�

pc

�
2e 2

c�hmo�i�

�2

K�k;o���U�k;o���2 ; �43�
where k�s�z is the normal component of the wave vector
[dependent on the parallel component and the frequency
o�s�] in the scattered wave. We do not enlarge here on surface
effects related to the electron reflection from the surface of the
sample (see Refs [78, 79]). The skin effect for the incident and
scattered fields can be included by integrating jU�k;o�j2 with
respect to the normal component kz, which gives the factor
1=Im�k�i�z � k�s�z �. The resultant cross section proves to be
dimensionless and gives the fraction of inelastic-scattered
light relative to the incident beam intensity.

Therefore, the problem reduces to the determination of
generalized susceptibility. To solve it, we can conveniently
take advantage of the Boltzmann equation. In accordance
with the concept of adiabatic approximation, the zero-
approximation function f0�e�p; r; t� ÿ m� should be consid-
ered as depending on the local electronic spectrum:

e�p; r; t� � e0�p� � zj�p�uj�r; t� � g�p�U�r; t� :

Here, the interaction with electrons was employed in the form
of expression (35) and account was taken of the terms (37) and
(38); the interaction (34) was considered in detail in Ref. [80].

From the electron number conservation condition we find
the variation of the chemical potential

m � m0 � hg�p�iU�r; t� � hzj�p�ibj�r; t� ;

which reduces to the renormalization of vertices

g�p� ! g�p� ÿ hg�p�i ; zj�p� ! zj�p� ÿ hzj�p�i : �44�

The angular brackets denote integration over the Fermi
surface,

h. . .i � 1

n0

�
�. . .� 2 dSF

v�2p�3 ;

the integration being normalized to the density of states so as
to satisfy the condition h1i � 1.

For the addition to the electron distribution function

fp�r; t� ÿ f0
�
e�p; r; t� ÿ m

� � ÿ df0
de

dfp�r; t� �45�

we obtain the equation of the Fourier-component form

ÿ i�oÿ kv� dfp�k;o�
� cp�k;o� ÿ

1

t

�
dfp�k;o� ÿ hdfp�k;o�i

�
; �46�

where

cp�k;o� � evE�k;o� ÿ io
�
zj�p� uj�k;o� � g�p�U�k;o�� :

Here, the time derivative of the electron energy variation
enters in response to different factors: the Coulomb field, the
deformation interaction (35), and the interactions (37) and
(38), which describe Raman scattering. The collision integral
is written in the t approximation so that the continuity
equation for the electron charge is fulfilled. The relaxation
time t is defined by electron ± phonon collisions, defects, etc.;
the methods of its calculation are well known [81, 82].

The phonon interactionwith electrons and the fieldU�r; t�
manifests itself also in the equation of phonon motion:

�o2
k ÿ o2� uj�k;o� � Z

M 0 Ej�k;o� ÿ gU�k;o�
M 0N

ÿ 1

M 0N

�
2 d3p

�2p�3 zj�p� dfp�k;o� ; �47�

in which there enter the mean value of displacement uj�k;o�,
the reduced elementary cell mass M 0, and the number of
elementary cells per unit volumeN. The last term on the right-
hand side of formula (47) is the derivative of the Hamiltonian
with respect to the displacement uj. For the interaction (34)
this term is replaced with

� ikj
M 0N

�
2d3p

�2p�3 z�p� dfp�k;o� :

The natural width can be taken into account by performing
the change o2

k ! o2
k ÿ ioG nat in the final results.

Since we aim to study the effect of carriers, the phonon
frequency ok is assumed to be known, which should be
calculated in the absence of the electric field E, disregarding
all non-adiabatic corrections. In the long-wavelength approx-
imation it can be written as o2

k � o2
0 � s 2k 2, where s is on the

order of the conventional sound velocity in metals and the
sign corresponds to either the maximum or the minimum of
the phonon branch.

The field E, which describes the electron ± phonon
interaction, is given by the Maxwell equation (27), whence it
is clear that it is longitudinal and defined by the longitudinal
polarization component.

In order to avoid linking between the longitudinal and
transverse modes, the transferred wave vector is assumed to
be directed along the crystal symmetry axis, which is taken to
be the z-axis. The equation divD � 0 in the Fourier
component form is Dz�k;o� � 0, i.e.,

e1E�k;o� � 4pNZuz�k;o�

� 4pie
k

�
2 d3p

�2p�3 dfp�k;o� ÿ 4pgEU�k;o� � 0 ; �48�

where the first term describes the contribution of the filled
electronic states, the second the contribution of phonon
vibrations to the polarization, the third �Pe� the contribution
of charge carriers with the density r � ÿdivPe, and the last
one the contribution of the field U�r; t� defined, according to
the general rule, by differentiation of the Hamiltonian (37),
(38): P � ÿqH=qE � ÿgEU.

Equations (46) ± (48) make up a complete system of
equations for the problem under consideration. Using the
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solution of the kinetic equation, it is possible to bring the
equation of phonon motion (47) and the Poisson equation
(48) to the form

�~o2
j ÿ o2� uj�k;o� ÿ

~Z

M 0 Ej�k;o� � ÿ ~gjU�k;o�
M 0N

; �49�
ee�k;o�E�k;o� � 4pN �Zuz�k;o� � 4p~gEU�k;o� : �50�

The dielectric function of the electron system is found to be

ee�k;o� � e1 � e1
k 2
0

k 2

�
1ÿ ho=Dpi

1ÿ hi=Dpi=t
�
; �51�

where Dp � oÿ kvz � itÿ1 and k 2
0 � 4pe 2n0=e1 is the Tho-

mas ±Fermi screening parameter. The phonon frequency, the
effective ion charge, and the vertexes, all being renormalized
by the deformation interaction, are defined by the expressions

~o2
j � o2

k �
on0
M 0N

��
z 2j �p�
Dp

�
� ihzj�p�=Dpi2

tÿ hi=Dpi
�
; �52�

~Z � Zÿ ien0
N

��
vzzj�p�
Dp

�
� ihvz=Dpihzz�p�=Dpi

tÿ hi=Dpi
�
; �53�

~gj � gj � on0

��
zj�p�g�p�

Dp

�
� ihzj�p�=Dpihg�p�=Dpi

tÿ hi=Dpi
�
; �54�

~gE � gE ÿ ien0

��
vzg�p�
Dp

�
� ihvz=Dpihg�p�=Dpi

tÿ hi=Dpi
�
; �55�

and the charge �Z differs from ~Z (53) by the sign of the term
that gives the renormalization. Equation (49) can be applied
both to longitudinal and transverse phonons. In the latter
case, the field should be put equal to zero, E � 0.

The following expression results for the susceptibility:

w�k;o� � we�k;o�

� ~g 2
j ee�k;o�=NM 0ÿ 4p~gE �gE�~o2

j ÿ o2� ÿ 4p~gj�~gE eZ� �gE �Z�=M 0

�~o2
j ÿ o2� ee�k;o� � 4pN eZ �Z=M 0 ;

(56)

where

we�k;o� � ÿon0
��

g 2�p�
Dp

�
� ihg�p�=Dpi2

tÿ hi=Dpi
�
;

and �gE differs from ~gE (55) by the sign of the second term.

6.1 Electron Raman scattering
Formulas (41), (43), and (56) describe Raman scattering with
the production of different excitations in the electron ±
phonon system. If we put ~gj � gE � eZ � �Z � 0, we arrive at
the scattering with the excitation of electron ± hole pairs,

w�k;o� � we�k;o� �
4p~g 2

E

ee�k;o� ; �57�

with only the term in parenthesis to be kept in the expression
for ~gE (55). For an arbitrary electronic spectrum, expression
(57) can be calculated in the limits of large and small values of
the parameter k � kvF=�o� itÿ1�. For jkj4 1, formula (51)
gives

ee�k;o� � e1

�
1�

�
k0
k

�2�
1� i

po
k

�
d�m�
v

���
; �58�

where m � vk=vk and d�x� is the Dirac function. Here, the
imaginary part is called the Landau damping, and the
corresponding Raman scattering

Im w�k;o� � po
k

�
g 2�p�d�m�

v

�
�59�

was first calculated for the case of superconductors in
Ref. [83]. In the isotropic case, it vanishes [84] owing to
condition (44).

In the opposite `dirty' limiting case jkj5 1 the first term in
expression (57), which describes electron ± hole pair produc-
tion,

Im we�k;o� �


g 2�p�� ot

�ot�2 � 1
; �60�

was obtained in Ref. [85] employing the Green function
technique.

The second term in expression (57) gives the scattering
with plasmon production. In this case, it is expedient to
expand in k the dielectric function

ee�k;o� � e1

�
1ÿ o2

pe � k 2w

o�o� itÿ1�
�
; �61�

where the k-independent term is related to the Drude
conductivity, the electron plasma frequency being given by
the integral over the Fermi surface o2

pe � k 2
0 hv 2

z i. The
complex coefficient

w � k 2
0

ÿhv 4
z i � ihv 2z i2=ot

�
�o� itÿ1�2

determines the plasmon dispersion. For a quadratic electronic
spectrum, hv 2z i � v 2F=3 and hv 4

z i � v 4F=5. Since we have put
gE � 0, the k-expansion of the vertex ~gE has the form

~gE � ÿ
ien0k



g�p�v 2

z

�
�o� itÿ1�2 :

The plasmon peak intensity is therefore proportional to k 2 in
accordance with the general requirements for the dynamic
structure factor.

6.2 Raman scattering by transverse phonons
The cross section for the scattering by transverse phonons can
be obtained by putting eZ � �Z � ~gE � 0 in expression (56):

w�k;o� � ~g 2
TO=NM 0

~o2
TO ÿ o2 ÿ ioG nat : �62�

We separate the real and imaginary parts to rewrite this
expression in the form

Im w�k;o� � 1

NM 0
oGg 2

TO �
�
Re ~o2

TO ÿ o2
�
Im ~g 2

TO�
Re ~o2

TO ÿ o2
�2 � �oG�2 ; �63�

and ~oTO, ~gTO are given by expressions (52) and (54). We find
the shift and width of the resonance curve

Dok � Re
~o2
TO ÿ o2

k

2ok
; G � Gnat ÿ Im

~o2
TO

ok

March, 2004 Investigation of semiconductors with defects using Raman scattering 265



with the aid of expression (52), in which the vertex should
correspond to a transverse phonon polarized, for definitive-
ness, along the x-axis: zj�p� � zx�p�. In the limiting case k4 1
we obtain

~o2
TO � o2

k �
n0ok

k

�
z2x�p�

�
ÿip� 2ok

kv

�
d�m�
v

�
; �64�

and for k5 1,

~o2
TO � o2

k �
ok

ok � itÿ1

�

z 2x �p�

�� k 2


v 2
z z

2
x �p�

�
�ok � itÿ1�2

�
: �65�

We emphasize that the frequency renormalization is
defined by the density of states n0 and the deviation of
interaction from the average value zx�p� ÿ hzx�p�i, which
naturally vanishes in the isotropic case. One can see that the
interaction broadens transverse phonons and makes them
harder. The maximum relative renormalization is on the
order of lapFm �o=mjo� itÿ1j for kv � jo� itÿ1j, where l
is the dimensionless electron ± phonon coupling constant and
m � is the effective electron mass.

From expression (63) it also follows that the lineshape
proves to be asymmetric in the presence of electron ± phonon
interaction, because there appears an imaginary part in ~gTO.
This effect (the emergence of asymmetry of a narrow
resonance on the strength of its interaction with a broad
continuum) is referred to as the Fano resonance [86]. The
limiting expressions for ~gTO (54) are obtained from expres-
sions (64) and (65) by way of the substitution
z 2x �p� ! zx�p� g�p�.

6.3 Raman scattering
by longitudinal phonon ± plasmon modes
In a nonpolar crystal, the scattering by longitudinal phonons
differs from the scattering by the transverse ones by only the
change of the constant gTO ! gLO, and in a cubic crystal these
constants are equal. In a polar crystal or a crystal with carriers
there additionally appears in expression (56) the contribution
of the generated Coulomb field with the constant gE. The
formula simplifies in the limit k � 0, when it follows from
Eqns (53) and (55) that the effective charge and the
electrooptical coefficient are not renormalized by the elec-
tron ± phonon interaction: eZ � �Z � Z, ~gE � gE. The long-
itudinal phonon frequency ~o0 (52) and the strain-optical
constant ~gLO (54) are renormalized; the corresponding limit-
ing expressions are similar to formulas (64) and (65). The
aforesaid concerning the TO-line symmetry also applies to the
LO phonon.

Since the dielectric function of the electron ± phonon
system in the long-wavelength limit is

e�0;o� � ee�0;o� � 4pNZ 2

M 0�~o2
0 ÿ ioG nat ÿ o2� ; �66�

the second term in formula (56) has poles under the condition
e�0;o� � 0, which defines the frequencies o� of coupled
phonon ± plasmon modes for k � 0. When the electron and
phonon relaxation frequencies tÿ1 � Gnat � 0 and the
deformation potential zLO�p� � 0 the well-known formula
for the frequencies

o2
� �

1

2
�o2

pe � o2
LO� �

1

2

��o2
pe � o2

LO�2 ÿ 4o2
peo

2
TO

�1=2 �67�

results, where oTO � ok is the transverse-phonon frequency
for k � 0, o2

LO � o2
TO � o2

pi, and o2
pi � 4pNZ 2=e1M 0.

The dependence of the frequencies o� on the carrier
density, more precisely on ope=oTO, is plotted in Fig. 15.
The upper curve starts from oLO and tends to the electron
plasma frequency ope. The lower curve begins as
opeoTO=oLO and approaches the value oTO. Therefore, by
observing in the optical region the longitudinal mode and
adding electrons we will notice the oLO-to-oTO frequency
transition. This is the result of Coulomb screening.

In the long-wavelength limit, k � 0, the Raman scattering
by longitudinal modes was calculated by Hon and Faust [87],
disregarding both the electron ± phonon deformation inter-
action and the relaxation processes. In this case, formula (56)
can be rewritten as

w�0;o� � �4pgE�
2

e1e�0;o�
�
ee�0;o�A2wI

e1
ÿ e1

4p
ÿ 2AwI

�
; �68�

where

wI �
NZ 2

M 0�o2
TO ÿ ioG nat ÿ o2� ; A � Co2

TOM
0e1

4pNZ 2
;

and C � gLOZ=gEMo2
TO is the so-called Faust ± Henry

constant. Expression (68) coincides with the Hon ±Faust
formula [see, for instance, Ref. [88], Eqn (3.1)].
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Figure 15. Dependence of the phonon ± plasmon mode frequencies (in

units of oTO) on the electron plasma frequency (in units of oTO), i.e., on

the density of free electrons, for k � 0. The frequency ratioopi � oTO was

selected, in this case oLO=oTO �
���
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.
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For k 6� 0, the coupled-mode frequencies are defined by
the poles of expression (56), i.e., by the equation

�~o2
j ÿ ioG nat ÿ o2� ee�k;o� � 4pN eZ �Z

M 0 � 0 �69�

with the renormalized phonon frequency and ion charge.
The renormalization also appears in the numerator of
expression (56). When the deformation interaction is
absent, zLO�p� � 0, the effect of carriers manifests itself in
the term gLO~gE owing to the interference with the electronic
scattering g�p�.

The expansion of ~gE is of the form

~gE � gE ÿ
ien0k



v 2z g�p�

�
�o� itÿ1�2 �70�

for jkj5 1 and

~gE � gE � en0kÿ2�o� itÿ1�
�
g�p�

�
ÿ p
2
ÿ io
kv

�
d�m�
v

�
�71�

for jkj4 1.We note that the imaginary part of ~gLO�gE, which is
responsible for the line asymmetry, is most pronounced when
ot ' 1.

The dispersion of coupled modes is shown schematically
in Fig. 16. We note its behavior for large k. One of the modes,
which is primarily of a plasmon nature, asymptotically
approaches the straight line o � kvF for a low electron
collision rate tÿ1. The reason lies with the singularity of the
electron contribution (51) to the dielectric function

ee�k;o� � e1 � e1
k 2
0

k 2

�
�
1ÿ o

2kvF

�
1

2
ln

4k 2v 2F
�oÿ kvF�2 � tÿ2

ÿ i
tÿ1

oÿ kvF

��
�72�

for tÿ1 < oÿ kvF 5 kvF.
The other mode, which is of the phonon type, possesses a

relatively weak dispersion. This mode penetrates into the
kvF 4o range, and here its damping decreases with k.Wewill
consider this mode in greater detail. The second term in
formula (52), which defines the renormalized frequency ~oj,
is smaller than the first one both for small and large k.
Furthermore, we ignore the renormalization of the ion
charge, which is weak in the limit of small jkj5 1, and give

the solution of Eqn (69) for the frequency and damping of the
phonon-type mode:

(i) low carrier density, ope < oTO,

jkj5 1 ; o2 � o2
LO ÿ ioLOGnat

� loLOo2
TO

o �

�
1� k 2

3

�
� �opiope�2

oLOo �

�
1� ik 2

3toLO

�
; �73�

jkj4 1 ; o2 � o2
LO ÿ ioLOGnat

� loLOo2
TO

kvF

�
ÿi p

2
� 1

k

�
ÿ 3�opiope�2
�kvF�2

�
1� ipoLO

2kvF

�
;

�74�

where o� � oLO � i=t.
(ii) high carrier density, ope 4oTO,

jkj5 1 ; o2 � o2
TO ÿ ioTOGnat

� lo3
TO

o �

�
1� k 2

3

�
ÿ o2

pioTOo �

o2
pe

�
1ÿ ik 2

3toTO

�
; �75�

jkj4 1 ; o2 � o2
TO ÿ ioTOGnat

� lo3
TO

kvF

�
ÿi p

2
� 1

k

�
� �opikvF�2

3o2
pe

�
1ÿ ipoTO

2kvF

�
; �76�

where o � � oTO � i=t. The definition of l depends on k:

l � n0hz 2�p�i
M 0No2

TO

; k5 1 ;

l � n0v2Fhz 2�p�=v 2z i
M 0No2

TO

; k4 1 :

The order of magnitude proves to be the same in both cases:
l � pFam

�=m.
The most significant effect of Coulomb interaction is

screening, which reduces to the change of the first term
o2

LO ! o2
TO on the right-hand sides of equalities (73) ± (76)

with an increase in carrier density. The last terms on the right-
hand side, which do not contain l, are a small correction in
the screening. For instance, for a high carrier density
[expressions (75), (76)] they are small in the parameter
o2

pi=o
2
pe � m=M. Nevertheless, this correction is significant

in expression (76), for it is responsible for dispersion. The
dispersion parameter is the vFopi=ope quantity, which is on
the same order of magnitude as the sound velocity.

The terms with l describe the effect of deformation
interaction. We emphasize once again that these terms
vanish in the isotropic case by virtue of the electron number
conservation condition upon the inclusion of electron ±
phonon interaction (44). In the short-wavelength domain
[expressions (74), (76)] they contain the non-adiabaticity
parameter s=vF explicitly, because the phonon frequencies
o � s=a. In the long-wavelength domain [expressions (73),
(75)], the non-adiabaticity parameter has an effect on the
width of this domain itself: k5 jo� itÿ1j=vF. Here, the
electron ± phonon interaction effects become stronger as the
Fermi surface departs from sphericity, as well as with an
increase in carrier density and effective carrier mass; the last-
named quantities enter into the definition of l.

In the limiting cases of small and large k, the frequency
renormalization is given by the same integral over the Fermi

o

o�

ope > oTO

oÿ

k

a o
ope < oTO

o�

oÿ

k

b

Figure 16. Dispersion of phonon ± plasmon modes for `metallic',

ope > oTO (a), and semiconductor, ope < oTO (b) carrier densities. The

dashed straight lines separate the kvF > o domain, where the Landau

damping exists, and the dashed curves in this domain depict the damping

modes.
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surface h1=Dp�k�i as the dielectric function ee�k;o�. For
explicit calculations it is required to know the form of the
electronic spectrum. As an interpolation to the intermediate
values of k, use can be made of the value of the integral
calculated for an isotropic Fermi surface:


1=Dp�k�
� � 1

2kvF
ln

1� k
1ÿ k

; k � kvF
o� itÿ1

; �77�

where advantage is taken of that branch of ln x which is real
for positive real values of x with a cut along negative x.

The results of numerical calculations are given in Figs 17 ±
20. In this case, electron Raman scattering was ignored,
g�p� � 0, and use was made of the typical value of the
Faust ±Henry constant C � ÿ0:5 of electron and phonon
relaxation [88, 89]: tÿ1 � 10ÿ1oTO and Gnat � 10ÿ2oTO. The
ion plasma frequency was assumed to be opi � oTO, and
therefore oLO �

���
2
p

oTO. In Figs 17 ± 20, the frequency o is
given in units ofoTO and the wave vector k and the Thomas ±
Fermi parameter k0 are given in units of oTO=vF. Low and
high carrier densities differ by the value of k0; for a quadratic
spectrum, the electron plasma frequency is ope � k0vF=

���
3
p

.

In Fig. 17, the left peak ato=oTO � 0:45 depicts the plasmon-
type vibration, while the right at o � oLO � 1:5oTO corre-
sponds to a primarily phonon-type vibration of significantly
higher intensity (their relative amplitudes are not drawn to
scale in Fig. 17). When the wave vector approaches the
boundary of the domain kvF > o, where the Landau
damping arises (Fig. 16b), the plasmon peak broadens and
nearly vanishes for k � 0:8. The plasmon peak intensity
increases relative to the phonon peak intensity with an
increase in the l constant. The broad continuum for
o < kvF emerges due to the excitation of electron ± hole pairs.

The dispersion (i.e., the resonance frequency as a
function of k, curve 1), the half-width of the resonance
curve (curve 2), and the line asymmetry (the difference
between the right and left abscissas corresponding to the
half-height, curve 3) are shown in Fig. 18 for the plasmon
peak. All quantities are expressed in units of oTO. The width
and the asymmetry increase significantly when the peak
approaches the kvF > o domain. Figure 19 depicts the
phonon peak behavior in the vicinity of o � oLO. When k
increases from 0 to 1.7, the phonon peak shifts toward higher
frequencies and broadens Ð this is the effect of Landau
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Figure 17. Raman spectra versus transferred frequency (in units of oTO)

for a semiconductor with a low carrier density defined by the Thomas ±

Fermi parameter k0 (in units of oTO=vF) and for two values of the

electron ± phonon constant l; the transferred momentum (in units of

oTO=vF) is specified in the curves. Chosen were the frequency ratio

oLO=oTO �
���
2
p

and the width ratios Gnat=oTO � 10ÿ2, tÿ1=Gnat � 10.

The right peak is primarily phonon in character and the left one is

primarily plasmon in character.
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damping (see Fig. 16). But for k > 1:75 the peak emerges on
the lower-frequency side, o ' 1:4, and becomes narrower for
k > 2:2, because Landau damping decreases with k [see
expression (58)].

The Raman spectra calculated for heavily doped semi-
conductors and metals are given in Fig. 20. The longitudinal
vibration, which is primarily of a phonon nature, is now
excited approximately for o=oTO � 1. The resonances are
asymmetric. The corresponding dispersion dependences for
the phonon and plasmon vibrations are plotted in Fig. 21. The
feature for k ' o=vF is clearly visible.

6.4 Influence of the metal ± insulator transition
on the phonon spectrum
The effect of carriers on the phonon spectrum will be
discussed by the striking example of a metal ± dielectric
transition occurring in a GaN compound under pressure. It
is well known that GaN at a pressure of about 20 GPa
experiences a transition from a metal state with a carrier
number density of 5� 1019 cmÿ3 to a semiconductor state
with a carrier number density of 3� 1018 cmÿ3. In the
semiconductor state, the crystal becomes transparent, the
transition also being confirmed by photoluminescence data.
The transition is attributed to the fact that the energy gap
width increases with pressure, while the energy of the donor
level related to the valence band remains invariable. At some
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Figure 19. Phonon-type resonance for large transferred momenta.
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pressure this level is found to lie below the bottom of the
conduction band.

The Raman spectra in the neighborhood of the most
intense mode E2 recorded with a GaN monocrystal in a
broad pressure range [90, 91] are shown in Fig. 22; the solid
curves were plotted [92] with the aid of Eqns (15) ± (17).

With increasing pressure, the splitting seen at normal
pressure in the 568 cmÿ1 region (these are most likely the E2
and E1modes) becomes unobservable; all modes shift toward
higher frequencies; the widths increase monotonically for E2
and for the weak and broad A1 mode (530 cmÿ1 at normal
pressure) everywhere, with the exception for the 20 ± 30 GPa
interval.

The hardening of phonon modes under uniform com-
pression is a well-known phenomenon. It was observed, for

instance, in a cubic 3C-SiC as well as in Si [8, 10]. However,
the frequency shift in GaN is abnormally large Ð it
amounts to 50% as pressure increases up to 44 GPa.
Moreover, the linewidths also increase and lineshapes
acquire an asymmetric form, testifying to the rise in the
number of defects and to the inhomogeneity of stress in the
sample under pressure.

Throughout the pressure measurement range, the fre-
quency (squared and averaged in the splitting) of the E2 line
fits in the linear dependence

o2
1 � o2

2

2
� 5682 � 4:97� 103P ; �78�

plotted in Fig. 23a, where the frequency is taken in cmÿ1 and
the pressure in GPa.

However, for theA1mode there are two linear portionsÐ
one at pressures below 20 GPa,

o2
3 � 5232 � 4:78� 103P ; �79�

and the other above 23 GPa,

o2
3 � 5442 � 4:62� 103P ; �80�

i.e., the frequency of this mode rises rather steeply in the
transition from the metal to the semiconductor state.

The sharp change of the A1 line position at a pressure of
about 20 GPa correlates with its narrowing shown in
Fig. 23b. One can see that, aside from the contribution of
scattering by defects to the widths of all lines, which
increases with pressure, for the longitudinal A1 mode there
is a significant contribution to the width only in the metal
state. Therefore, the electronic nature of the transition in
GaN under pressure is also confirmed by Raman scattering
investigations.

7. Conclusion

In recent years, micro-Raman spectroscopy has been found to
be a fine instrument which enables us to investigate the defect
and stress distributions in semiconductors with a spatial
resolution on the order of 1 mm. The mechanism of Raman
line broadening, which invokes the quantum-mechanical
theory of phonon scattering by defects, provides an explana-
tion of the picture observed. At the same time, of special
interest, both from the theoretical standpoint and for
applications, is the possibility of measuring the electron ±
phonon interaction constant with the aid of Raman scattering
or X-ray investigations. The most crude result of the presence
of carriers reduces to the softening and broadening of
phonons: this is the effect of Coulomb screening. The
electron ± phonon (deformation or FroÈ hlich) interaction
arises due to the non-adiabaticity of the system of electrons
and ions. We emphasize that this interaction yields a nonzero
result only with the inclusion of anisotropy. Against the
background of the screening, this interaction shows up as
some small yet perfectly observable effect, which would be
desirable to measure.
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