# <u>ΥCΠΕΧΗ ΦИЗИЧЕСКИХ НАУК</u>

## ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

# Динамическое диссипативное смешанное состояние в неоднородных сверхпроводниках II рода

В.Ф. Хирный, А.А. Козловский

Рассмотрены динамические диссипативные смешанные состояния, диссипация энергии и процесс проникновения собственного магнитного поля транспортного тока в следующих сверхпроводниках II рода: в низкотемпературных мелкокристаллитных металлических пленках, в высокотемпературных поликристаллических пленках и в объемных неоднородных (гранулированных) сверхпроводниках. Особенности в транспортных свойствах таких сверхпроводников обусловлены в основном их морфологией.

PACS numbers: 73.50.-h, 74.25.Op, 74.72.-h, 74.80.-g

# Содержание

- 1. Введение (285).
- Проникновение поля тока и ДДС состояние в широких поликристаллических и слоистых пленках (285).

2.1. Метастабильные токовые состояния. 2.2. Определение локальной температуры в области разрушения сверхпроводимости. 2.3. Формирование ВАХ гранулированных НТСП-пленок. 2.4. Особенности перехода из СП в ДДС состояние в бесщелевых сверхпроводниках. 2.5. Особенности перехода из СП в ДДС состояние вблизи  $T_c$ . 2.6. ДДС состояния слоистых сверхпроводников.

 ДДС состояния объемных керамических ВТСП-образцов на примере YBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> и Bi<sub>1,6</sub>Pb<sub>0,4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> (291).

3.1. Проникновение магнитного поля транспортного тока в цилиндрический сверхпроводник II рода. 3.2. ДДС состояния цилиндрических сверхпроводников II рода в магнитном поле, параллельном транспортному току. 3.3. Влияние на переход в ДДС состояние круговых поперечных остаточных магнитных полей. 3.4. Влияние на переход в ДДС состояние остаточных продольных магнитных полей.

4. Заключение (299).

Список литературы (300).

# 1. Введение

В однородных низкотемпературных сверхпроводниках (НТСП) І рода [1], а также в "жестких" и композитных НТСП ІІ рода [2], несущих транспортный ток, диссипативное динамическое смешанное (ДДС) состояние изучено достаточно полно. Однако за истекшее время

**В.Ф. Хирный, А.А. Козловский.** Институт монокристаллов НАН Украины, 61001 Харьков, просп. Ленина 60, Украина Тел. (380-572) 30-83-11. Факс (380-572) 32-02-73 E-mail: khirnyi@isc.kharkov.com

Статья поступила 8 августа 2003 г.

получено много новых, необычных результатов как на неоднородных (гранулированных) НТСП II рода, так и на образцах керамических высокотемпературных сверхпроводников (ВТСП). Это обстоятельство, а также интерес к достижению больших критических токов в таких сверхпроводниках оправдывает написание данного обзора.

В обзоре приведены результаты исследования особенностей перехода из сверхпроводящего (СП) в ДДС состояние под влиянием транспортного тока в металлических гранулированных (мелкодисперсных) НТСПпленках, слоистых НТСП- и ВТСП-пленках (раздел 2), а также в объемных керамических ВТСП-образцах (раздел 3).

# 2. Проникновение поля тока и ДДС состояние в широких поликристаллических и слоистых пленках

### 2.1. Метастабильные токовые состояния

До обнаружения ВТСП [3] свойства ДДС состояния гранулированных сверхпроводников исследовались в основном на мелкодисперсных металлических пленках, у которых кристаллиты были окружены окислом материала сверхпроводника [4]. Интерес к таким образцам был вызван тем, что, во-первых, гранулированные пленки широко использовались при изготовлении низкотемпературных устройств, таких, как криотроны и некоторые другие, во-вторых, из исходного объемного сверхпроводника I рода можно было термическим напылением в среднем и низком вакууме легко получать пленки со свойствами сверхпроводников I и II рода [5], и, в-третьих, образцы характеризовались низкими критическими токами, что позволяло сводить к минимуму влияние сил пиннинга F<sub>p</sub> и тепловыделения Q на динамику движения вихрей.

При исследовании диссипативного состояния на широких ( $w > \xi > \lambda_{\perp}$ ) мелкокристаллитных пленках,



Рис. 1. Типичный вид ВАХ тонкопленочных НТСП-образцов.

изготовленных из Al, In и Sn, в интервале толщин d = 10 - 300 нм были обнаружены метастабильные токовые состояния (МСТС) [5-11]. Здесь и — ширина пленки,  $\xi$  — длина когерентности,  $\lambda_{\perp} = 2\lambda_{\rm L}^2/d$  — эффективная глубина проникновения перпендикулярного к пленке магнитного поля, а *λ*<sub>L</sub> — лондоновская глубина проникновения магнитного поля. МСТС на вольт-амперных характеристиках (ВАХ) фиксировались в виде прямых, имеющих различные значения dV/dI, где V — электрическое напряжение на образце, а І — электрический (транспортный) ток (рис. 1). МСТС и ступени напряжения  $\Delta V$  на ВАХ возникали следующим образом. С увеличением І до  $I_1$  график зависимости I(V) представлял собой почти вертикальную прямую, совпадающую с осью тока. При напряжении  $V_1$ , когда  $I = I_1$ , происходил перескок рабочей точки на графопостроителе с этой почти вертикали на прямую 1. Движение по прямой 1 было возможно как вверх до точки с координатами I2, V2, так и вниз к I2, V2 при дальнейшем увеличении и уменьшении тока, соответственно. В точке I2, V2 происходил перескок на следующую прямую 2, а в точке  $\bar{I}_2$ ,  $\bar{V}_2$  — на предыдущую (бездиссипативную) часть ВАХ. При движении по прямым 2 и 3 происходили перескоки рабочей точки на соседние МСТС подобным же образом. Возникала серия таких прямых (или почти прямых) линий.

Для пленок, которые имели несколько потенциальных выводов по их длине, было обнаружено [6], что СП состояние разрушалось в узких полосах, расположенных поперечно. Это было подтверждено туннельными измерениями [7]. Локальный характер разрушения СП состояния был объяснен [8] проникновением в образцы цепочек из движущихся друг за другом под влиянием транспортного тока (силы Лоренца) вихрей Абрикосова (А-вихрей), которые проникали в пленку в "слабых" местах по току. Возможно также нескоррелированное зарождение А-вихрей с противоположных краев пленок и парами [5].

Для проникновения А-вихрей в пленку им надо преодолеть краевой барьер [12], по своей природе подобный барьеру Бина – Ливингстона [13]. Барьер может быть занижен неоднородностью, магнитным полем, либо транспортным током.

Существует нижнее значение  $I_{c1}$  критического тока [14], когда барьер резко уменьшается, но не исчезает

совсем, и верхнее —  $I_{c2}$ , при котором барьер уменьшается до нуля [8] и в пленку проникает первый Авихрь. Величину  $I_{c2}$  находили минимизацией полной производной энергии вихря [8],

$$E(x) = \frac{\left(\Phi_0/4\pi\right)^2}{\lambda_{\perp}} \left[ \ln\left(\frac{2\lambda_{\perp}}{\xi}\right) + \frac{\pi}{2} N_0\left(\frac{x}{2\lambda_{\perp}}\right) + \frac{\pi}{2} E_0\left(\frac{x}{2\lambda_{\perp}}\right) \right] - \frac{2\Phi_0 I}{\pi c} \left(\frac{x}{w}\right)^{0.5}, \qquad (1)$$

в пленке с током в области  $\lambda_{\perp} \ll x \ll w$  по координате x, где  $\Phi_0 = hc/2e$  — квант магнитного потока, h — постоянная Планка, c — скорость света в вакууме, e — заряд электрона,  $N_0(z)$  и  $E_0(z)$  — функции Неймана и Вебера, соответственно [15]. Для широких пленок, у которых ток течет в основном по краям [16],  $I_{c2}$  выражается как [8]

$$I_{c2} = \frac{c\Phi_0}{8\sqrt{2}\pi^{0.5}\xi} \frac{w}{\lambda_\perp} \sim 1 - \frac{T}{T_c} , \qquad (2)$$

где T — температура,  $T_c$  — критическая температура. Это выражение согласуется с экспериментально полученной зависимостью

$$I_1(T) = I_{\rm c}(T) \sim \left(1 - \frac{T}{T_{\rm c}}\right)$$

до  $T/T_c = 0,7$ , где  $I_c$  — критический ток. Формула (2) с точностью до коэффициента  $\approx 1$  совпадает с оценочным значением тока в пленке с неоднородностями [17, 18], при котором на ее краях достигается величина, равная току распаривания  $I_c^{GL}$  [19].

В реальных пленках имеющиеся неоднородности понижают барьер, и всегда выполняется условие  $I_{c1} < I_c < I_{c2}$  [8]. Из формулы (1) была определена [8] степень отклонения  $I_{c2}$  от I в виде  $k = a\varkappa(r_D/d)^{0.5}$ , где  $a \approx 1, \varkappa = \lambda_L/\zeta$  — параметр Гинзбурга–Ландау, а  $r_D$  эффективный размер неоднородностей в образце. На рисунке 2 прямой линией показана зависимость

$$\ln\left[k\left(\frac{d}{d_0}\right)^{0,5}\right] = \ln\left[a\left(\frac{r_{\rm D}}{d_0}\right)^{0,5}\right] + \ln\varkappa$$



**Рис. 2.** Степень отклонения теоретического значения критического тока от экспериментального в зависимости от величины параметра Гинзбурга – Ландау.

полученная в [8] при  $r_{\rm D} = 1,81 \times 10^{-6}$  м, где  $d_0$  — постоянная. Аналогичный размер неоднородности был определен иным образом в работе [20].

При движении А-вихрей поперек пленки они взаимодействуют между собой через пустое пространство [21]. Поэтому для увеличения их линейной плотности к пленке необходимо приложить электрическое напряжение  $V = \Phi_0 / \tau_{\rm L}(I)$  [22, 23], где  $\tau_{\rm L}(I)$  — время, за которое Авихри проходят разделяющее их расстояние в цепочке. Пока  $\tau_{\rm L} > \tau_0$ , ВАХ обратима, и выделившаяся за время движения А-вихрей энергия [8] выводится в термостат. Здесь  $\tau_0$  — время релаксации температуры *T* к равновесному значению  $T_0$ . При  $\tau_L \leqslant \tau_0$  локальная температура T<sub>m</sub> вдоль траектории движения А-вихрей не успевает релаксировать к Т<sub>0</sub>, и там развивается температурная неустойчивость. В этой области появляется неоднородное продольное электрическое поле Е и полоска нормальной фазы в виде теплового резистивного домена. Поле проникает на глубину  $l_{\rm E} = (l_{\rm i} l_{\rm H} T/3\varepsilon)^{0.5}$ , где и происходит диссипация энергии [24]. Здесь  $l_i$  — эффективная длина упругого пробега, l<sub>H</sub> — эффективная неупругая длина релаксации, є — энергетическая щель в спектре элементарных возбуждений сверхпроводника. У исследованных пленок  $l_{\rm E} = 10^{-6} - 10^{-7}$  м [9].

# 2.2. Определение локальной температуры в области разрушения сверхпроводимости

Для определения величины  $T_{\rm m}$  в работе [8] рассматривалось уравнение теплопроводности с одномерным (протяженным поперек пленки) источником тепла:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[K(T)\,\frac{\mathrm{d}T}{\mathrm{d}x}\right] - A(T)(T-T_0) + B'\delta(x) = \rho'C\,\frac{\partial T}{\partial t}\,,\,(3)$$

где K(T) — коэффициент теплопроводности пленки, отнесенный к ее толщине, x — координата вдоль длины пленки с источником тепла в точке x = 0 (рис. 3),  $A(T) = [a_1(T) + a_2(T)]/d$  — суммарный коэффициент теплоотдачи в подложку  $(a_1)$  и окружающую среду  $(a_2)$ на единицу толщины, B' = P/wd (P — мощность, расходуемая внешним источником тока),  $\rho'$  — плотность материала образца, C — теплоемкость,  $\delta(x)$  — дельтафункция. Определенное из (3) время однородной релаксации температуры  $\tau_0 = \rho' C/A$  [9] у исследуемых пленок было ~  $10^{-9}$  с. Вблизи  $T_c$  флуктуации температуры  $\Delta T_m = (T_m - T_0)$  малы, K и A — константы, и (3) преобразуется в уравнение [9]

$$K(T_0) \frac{\mathrm{d}^2(\Delta T)}{\mathrm{d}x^2} - A\Delta T = 0 \tag{4}$$

с граничными условиями

$$\frac{2 \operatorname{d}(\Delta T)}{\operatorname{d}x}\Big|_{x=0} = \frac{B'}{K}, \quad \text{M} \quad \lim_{x \to \infty} \Delta T(x) = 0, \quad (5)$$

где  $T_{\rm m} = T(x = 0)$ . Согласно (4), температура в направлении *x* от источника, расположенного при x = 0, уменьшается по закону

$$\Delta T = \Delta T_{\rm m} \exp\left(-\frac{x}{\lambda_{\rm T}}\right),\,$$

где длина распространения тепла  $\lambda_{\rm T} = (K/A)^{0.5}$  у исследованных пленок составляла ~ 10<sup>-5</sup> м. Из приведенных



**Рис. 3.** Схема локального разрушения сверхпроводимости (заштрихованная область) (а) совместно с отображениями локальной температуры разогрева  $T_{\rm m}$  (б) и электрического поля E (в).

оценок следует  $\lambda_{\rm T} > l_{\rm E}$ , что подтверждает правомерность представления источника тепла  $\delta$ -функцией на рис. 3 и в уравнении (3).

На практике пленки исследовались в широкой области температур, и уравнение (4) заменялось более общим уравнением, в котором учитывались температурные зависимости K(T) и A(T), благодаря чему было получено [8] выражение для нахождения величины  $T_{\rm m}$  в явном виде:

$$P = R_0 [3(T_m - T_0)^4 + 8(T_m - T_0)^3(T_0 + \beta) + + 6(T_m - T_0)^2(T_0 + \beta)^2]^{0.5},$$
(6)

в котором  $\beta = -0.5T_c$ , а постоянная  $R_0$  определялась из ВАХ и I-T-диаграммы (рис. 4). Стрелками на ВАХ показано варьирование величины I, а на I-T-диаграмме — соответствующее изменение локальной температуры в области разрушения сверхпроводимости.

Когда I = 0, температура пленки равна  $T_0$ , чему соответствует точка M на I-T-диаграмме. При  $I = I_N$ появляется область, где СП состояние разрушено, и  $T_m$ за время  $\sim \tau_0$  (прямая NL на ВАХ) достигает в общем случае значений выше, чем  $T_c$  (точка L на I-T-диаграмме). При дальнейшем увеличении тока  $T_m$  монотонно растет. С последующим уменьшением тока СП состояние в точке L восстановиться не может, так как там  $T_m > T_c$ . Равенство  $T_m = T_c$  достигается в точке H, но образец не переходит в СП состояние, поскольку  $V \neq 0$ . Это происходит лишь в точке Q, когда локальная температура  $T_m$  за время  $\sim \tau_0$  релаксирует к температуре термостата  $T_0$  (прямая QR на I-T-диаграмме и ВАХ). Коэффициент  $R_0$ , определяемый из (6) при



**Рис. 4.** Определение  $T_{\rm m}$  из рассмотрения ВАХ образцов (а) и их I-T диаграммы (б). СС–СП состояние, МСДС — метастабильное диссипативное состояние, НО — нормальная область,  $I_{\rm p}(T) = I_{\rm c}^{\rm GL}(T)$  — ток распаривания.

 $T_0 = 0.5T_c$ , равняется  $R_0 = (P_Q/\sqrt{3})(T_{mQ} - T_0)^{-2}$  [8], где  $P_Q$  — диссипируемая в пленке мощность, рассчитанная для точки Q на ВАХ, а  $T_{mQ}$  — величина локальной температуры области разрушения сверхпроводимости, когда рабочая точка на графопостроителе при записи ВАХ находится в точке Q. Зная  $R_0$ , для любой точки ВАХ, расположенной между точками H и Q, можно определить величину  $T_m$ . На рисунке 5 показаны зависимости  $T_m$  от I для индиевой пленки, из которых видно, что с возрастанием I значения  $\lambda_{\rm T}$  и  $T_m$  увеличиваются.



**Рис. 5.** Построение зависимости величины  $T_m$  от I(6), согласно ВАХ (а) индиевой пленки. Прямые (I) получены при  $T_0 = 2,6$  K, а прямые (2) — при  $T_0 = 2$  K.

# 2.3. Формирование ВАХ гранулированных НТСП-пленок

Учитывая аналитические зависимости T(x) и E(x, T, j), ВАХ пленки

$$V = \int E(x, T, j) \, \mathrm{d}x = \int E(x, T, j) \left(\frac{\mathrm{d}x}{\mathrm{d}T}\right) \, \mathrm{d}T$$

можно представить формулой [25]

$$V = 2 \int_{T_0}^{T_c(I)} E(T, j) (B')^{0.5} K(T) \,\mathrm{d}T + \Delta V_H \,, \tag{7}$$

где первое слагаемое в правой части появляется за счет возникновения полоски нормальной фазы, а второе из-за падения напряжения на неоднородности.

В отсутствие пиннинга вихрей выражение для E(T, j)записывается в виде  $E = \rho_n f(j, T)$  [26], где  $\rho_n$  — удельное сопротивление пленки в нормальном состоянии, j средняя плотность транспортного тока,

$$f(j,T) = \frac{(1-j/j_{\rm c})}{[1-j/j_{\rm c}+F(j,T)]}$$

И

$$F(j, T) = a \left(\frac{j}{j_{\rm c}}\right) \left[\frac{T_{\rm c} - T}{T_{\rm c}}\right]^{3/2}, \quad a \approx 1$$

 $j_{\rm c}$  — средняя плотность критического тока появления ДДС состояния. Нелинейность функции E(j,T) связана с нелинейным процессом теплопроизводства, обусловленным диссипативными эффектами вязкого движения А-вихрей [26, 27].

Используя модель нелинейного теплопроизводства, в работе [28] была получена диаграмма состояний широкой НТСП-пленки, несущей транспортный ток. Из работы следует, что при различных значениях тока в пленке реализуются сверхпроводящее, резистивное, нормальное и бистабильное состояния. В последнем из них существуют неоднородные состояния в виде волн переключения, которые в зависимости от условий переводят пленку в сверхпроводящее состояние (при некоторой температуре  $T_1$ ), в резистивное или в нормальное.

Вид экспериментально получаемой ВАХ зависит также и от режима ее измерения [26, 29]. До сих пор рассматривались ВАХ, полученные в режиме измерения с заданным током. На рисунке 6 сравниваются два первых МСТС и фрагмент ВАХ, которые получены в режиме их измерения с источником заданного тока (кривая 1) и напряжения (кривая 2), соответственно. При измерении ВАХ в режиме с заданным током перед моментом развития температурной неустойчивости выполняется условие  $\tau_L < \tau_0$ . Нормальные остовы А-вихрей находятся на минимальном расстоянии друг от друга порядка ζ. Время пребывания электронов в связанном состоянии в этой области  $\tau_{\Delta} \approx \hbar/2\varepsilon(T) \approx 10^{-11}$  с [30], где  $\hbar$  — постоянная Планка, деленная на 2π. Следовательно, при изотермическом движении А-вихрь должен преодолеть расстояние, равное ζ, за время существования электронов в связанном состоянии, т.е. с максимальной скоростью  $\xi/\tau_{\Delta} \approx 10^4$  м с<sup>-1</sup>. С другой стороны, при неизотермическом движении вихрей, когда  $\tau_{L}(I) = \tau_{0}$ , минимальное расстояние между вихрями будет  $\approx \lambda_{\rm T}$ , поэтому наименьшая скорость неизотермического движения вихрей в



**Рис. 6.** Схематический вид ВАХ, измеренных в режимах с заданным током (1) и с заданным напряжением (2). На вставке: осциллограмма импульсов напряжения "гигантской джозефсоновской генерации" электромагнитных колебаний.

момент образования полоски нормальной фазы будет равна  $\lambda_T / \tau_0 \approx 10^4$  м с<sup>-1</sup>, что совпадает с максимальной скоростью изотермического движения, определенной выше иным способом.

При  $\tau_{\rm L}(I) < \tau_0$  (область срыва напряжения между точками С и D на кривой 1, см. рис. 6) возникнет полоска нормальной фазы. Когда количество тепла, которое уходит в термостат от неоднородности, превышает отводимое от чистого сверхпроводника, полоска нормальной фазы закрепляется на неоднородности и не расширяется [31], что возможно при диффузном способе распространения тепла вдоль пленки от разогретого участка [5, 32]. Если увеличивать ток (выше точки D на кривой 1, см. рис. 6), то наблюдается почти линейное поведение ВАХ. Линейная зависимость I(V) означает [8], что почти вся энергия от источника эдс тратится на то, чтобы разорвать куперовские пары в области существования неоднородного продольного электрического поля (см. раздел 2.1), и лишь незначительная ее часть идет на нагревание образца. В этом случае электроны в связанной паре, ускоряясь в этом поле на расстоянии l, приобретают энергию  $\delta W$ , равную *eEl*. Если  $\delta W > 2\varepsilon$ (энергии связи пары), то индивидуальный электрон, встречаясь с дефектом, рассеивается, разорвав при этом пару. Поскольку eEl = eV, то минимальное значение напряжения V<sub>0</sub> в сверхпроводнике, когда существует ДДС состояние, при уменьшении тока I определяется выражением [8]

$$V_0 = \frac{2\varepsilon(T)}{e} \,. \tag{8}$$

При измерении ВАХ в режиме заданного напряжения [26, 29] А-вихри проникают в пленку, когда  $I = I_B$  (точка B на ВАХ, см. рис. 6) [33]. Когда  $I = I_C$  (точка C, на рис. 6), первично формируется полоска нормальной фазы, что вызывает уменьшение тока I из-за появления электрического сопротивления  $R_n$  (участок CE на кривой 2, см. рис. 6). Диссипация энергии уменьшится, и полоска за время ~  $\tau_0$  вернется в СП состояние. При  $I = I_B$  в том же месте на пленке повторно начнут проникать и двигаться А-вихри (точка *E* на рис. 6). Мгновенные значения электрического напряжения *U* на пленке в процессе проникновения и движения А-вихрей с образованием полосок нормальной фазы представлены на осциллограмме (см. вставку на рис. 6) [29, 33]. Точке *a* соответствует начало проникновения А-вихрей, а точке *b* развитие температурной неустойчивости и появление полоски.

В точке *b* напряжение *U* возрастет до значения  $U = V_0 + U_n + U_p$ , где *U* — мгновенное значение падения напряжения на полоске нормальной фазы (величина переднего фронта импульса), а  $U_p$  — мгновенное значение падения напряжения, характеризующее неравновесное электрическое поле, расположенное в направлении протекания тока *I* от полоски нормальной фазы в сверхпроводящую область образца. Существование такого поля, которое расположено на длине  $l_E$  от нормальной полоски, предполагалось ранее в работе [24]. Здесь оно получается естественным образом, поскольку энергия электронов транспортного тока больше  $\varepsilon$ .  $U_n$  — напряжение на полоске.

После образования полоски нормальной фазы (точка *c* на вставке рис. 6) ток *I* станет меньше  $I_c$ , а  $T_m$  станет равной  $T_0$  за время  $\approx \tau_0$ . Но характер зависимостей U(t) и R(t) будет определяться временем рекомбинации квазичастиц в пары с испусканием фононов (участок *cd* на вставке рис. 6). За это время U(t) станет равным  $V_0$  [29] (участок *de* на вставке рис. 6). Так как  $I < I_c$ , сверхпроводимость восстановится, R(t) и U(t) достигнут нулевого значения за время порядка  $\tau_A$  (точка *e* на вставке рис. 6). При  $I = I_B$  процесс образования полоски начнется опять и будет повторяться периодически, и на пленке появится генерация электромагнитных колебаний [29]. Такие нестационарные полоски были названы "полосками проскальзывания фазы" (ППФ) [33].

Исходя из вида ВАХ [29], период t<sub>р</sub> появления ППФ можно получить из соотношения [33]

$$\langle U \rangle = \frac{Ut_{\rm i}}{t_{\rm p}} = Ut_{\rm i}v \,,$$

которое определяет среднее напряжение  $\langle U \rangle$ , даваемое генератором импульсов длительностью  $t_i$  с амплитудой мгновенного напряжения в импульсе U. Здесь v — частота следования импульсов. Согласно этому соотношению,  $\langle U \rangle \sim v$ ; наименьшая частота генерации  $v_{\min} \sim 1/w$ , так как чем больше w, тем больше  $t_p$ ;  $v_{\max}$  достигается при минимальном падении напряжения на сверхпроводнике  $\langle U \rangle = V_0$  (точка K на BAX, см. рис. 6), выше которого образец перейдет в нормальное состояние [29, 33].

Связь между частотой зарождения ППФ и величиной магнитного потока  $\Phi$ , который их пронизывает, можно получить, как следует из работы [29], из соотношения Джозефсона  $\langle U \rangle = \Phi v/c$ , где c — скорость света в вакууме.

### 2.4. Особенности перехода из СП в ДДС состояние в бесщелевых сверхпроводниках

Выше речь шла о сверхпроводниках, у которых  $\varepsilon \neq 0$ . Но  $\varepsilon$  зависит от T, I и магнитного поля H. В гранулированных пленках вблизи  $T_{\rm c}$  имеется область на плоскости

(T, H), в которой  $\varepsilon = 0$ ,  $\Delta \neq 0$  и  $l_i < \xi$  [34], где  $\Delta$  параметр порядка. В этой области, согласно "первой теореме эквивалентности" [35], электрическая проводимость  $\sigma$  пленок эквивалентна проводимости сверхпроводников с добавлением парамагнитных примесей, т.е. пленки находятся в состоянии бесщелевой сверхпроводимости [36]. В таком состоянии для экранирующего тока  $I_{s}$ , наведенного полем H, выполняется условие  $I_{\rm s} > I_{\rm c}$  [34], и поэтому  $I_{\rm g} > I_{\rm c}$ , где  $I_{\rm g}$  — ток генерации электромагнитных колебаний.

Зависимости I(T) и I(H) можно получить, если учесть влияние парамагнитных примесей на термодинамические свойства сверхпроводника [34, 37]. При добавлении примеси выражение для энергетической щели примет вид [37]

$$\varepsilon_{\rm p} = \varDelta \left[ 1 - \left( \frac{1}{\tau_{\rm s} \Delta} \right)^{2/3} \right]^{3/2},\tag{9}$$

где *т*<sub>s</sub> — время пробега электрона с переворотом спина.

Когда  $\tau_s \Delta = 1$ ,  $\varepsilon_p = 0$  при  $\Delta \neq 0$ , и сверхпроводник становится бесщелевым, но явление сверхтекучести  $(R_{\rm n}=0)$  сохраняется благодаря сверхпроводящим корреляциям между куперовскими парами. В этом случае плотность тока можно представить в виде [37]

$$\mathbf{J}=\mathbf{J}_{\mathrm{s}}+\mathbf{J}_{\mathrm{n}}\,,$$

где  $\mathbf{J}_{s} = (2\sigma\tau_{s}/c)|\Delta|^{2}\mathbf{P}', \mathbf{J}_{n} = \sigma \mathbf{E}, \mathbf{P}' = 2m\mathbf{v}_{s}$  — сверхтекучий импульс и v<sub>s</sub> — скорость сверхпроводящих электронов. Вблизи Т<sub>с</sub>

$$\mathbf{v}_{\mathrm{s}} \sim \frac{\hbar}{m\xi(T)} \sim \varDelta(T)$$

 $\Delta(T) \sim (1 - T/T_c)^{0.5}$  [34], a  $\Delta(H) \sim [1 - (H/H_c)^2]^{0.5}$  [38], где *H*<sub>c</sub> — термодинамическое критическое магнитное поле. Следовательно,

$$J_{\rm g}(T) \sim \left[\Delta(T)\right]^2 \sim 1 - \frac{T}{T_{\rm c}}, \quad J_{\rm g}(H) \sim 1 - \left(\frac{H}{H_{\rm c}}\right)^2, (10)$$

тогда как  $J_c^{\rm GL}(T) \sim (1 - T/T_c)^{3/2}$ , а  $J_c^{\rm GL}(H) \sim$   $\sim [1 - (H/H_c)^2]^{3/2}$ . Подобные свойства тока генерации наблюдались в работе [39].

# 2.5. Особенности перехода из СП в ДДС состояние вблизи T<sub>c</sub>

До сих пор рассматривалась область температур  $T < 0.9T_{\rm c}$ , когда выполнялось условие  $\xi(T)$ ,  $\lambda_{\perp}(T) < r_{\rm D}$ . Для области температур  $T > 0.9T_c$  и  $\xi(T)$ ,  $\lambda_{\perp}(T) > r_D$ , поперечный размер А-вихрей превышает размер неоднородностей. В этом случае ситуация напоминает поведение А-вихрей в однородной пленке, поскольку вихри "не замечают" неоднородностей. В таких пленках барьер, препятствующий проникновению А-вихрей, уменьшается практически на одну и ту же величину вдоль всего образца только за счет транспортного тока. А-вихри проникают по всей длине пленки в пределах незначительного интервала критических токов.

При измерении ВАХ в режиме с заданным током после развития температурной неустойчивости А-вихри отсутствуют. Образец весь переходит в диссипативное состояние, при котором нет движения магнитного

потока, а имеется лишь набор расположенных на расстоянии l<sub>E</sub> друг от друга (см. раздел 2.2) полосок нормальной фазы. Отсутствие движения А-вихрей и магнитного потока было зафиксировано в работе [40]. Вблизи Т<sub>с</sub> расстояние между стационарными полосками нормальной фазы l<sub>E</sub> становится того же порядка величины, что и  $\lambda_{\rm T}$ , благодаря возрастанию  $l_{\rm E}$ , поскольку  $l_{\rm E} \sim \varepsilon^{-0.5}$ , а  $\varepsilon \to 0$  при  $T \to T_{\rm c}$ . Следовательно, общая длина неоднородного состояния, на которой существует электрическое сопротивление R<sub>r</sub> и падение электрического напряжения  $V_{\rm r}$ , равняется  $2l_{\rm E}$ . Благодаря идентичности неоднородных областей электрическое сопротивление пленки имеет величину, кратную  $R_r$ , а ее BAX ступенчатую структуру с величиной ступенек напряжения  $V_{\rm r}$ .

Экспериментальные данные о существовании неоднородной области длиной 2l<sub>E</sub> с падением электрического напряжения, кратного V<sub>г</sub>, на ВАХ, возрастании вдоль пленки электрического сопротивления на кратную величину  $R_{\rm r}$ , и появлении ступенчатой структуры ВАХ вблизи *T*<sub>с</sub> были подытожены в работе [41].

Характерная особенность на ВАХ при этом — это конечное значение сверхпроводящего тока  $I_0$  (см. рис. 1), который остается при экстраполяции наклона dV/dI к V = 0. Однако это явление подтверждает существование полосок нормальной фазы, поскольку появление тока *I*<sub>0</sub> обязано эффекту "андреевского отражения". При протекании электрического тока из нормальной в сверхпроводящую область электроны отражаются в виде дырок. В результате сверхток состоит из тока куперовских пар, равного  $I_c - I_0$ , и тока, созданного дырками,  $I_0$ . Примерно одинаковое значение токов І0 для первых трехпяти МСТС получается из-за того, что отражаются только те электроны, энергия которых меньше  $\varepsilon(T)$ .

Интересная особенность должна наблюдаться при измерении ВАХ в режиме заданного напряжения. При  $I < I_{c}$  (точка C на рис. 6) возникнет генерация электромагнитных колебаний во всем образце.

### 2.6. ДДС состояния слоистых сверхпроводников

В слоистых НТСП при температуре  $T > T_{\rm KT}$ , которая называется температурой перехода Березинского-Костерлица – Таулесса [42, 43], проявляется квазидвумерное состояние в системе нейтральных пар — двумерный (2D) вихрь — антивихрь [44-46]. В таких материалах под влиянием тока I из-за разрыва вихревых диполей и перемещения свободных двумерных А-вихрей, количество которых зависит от величины тока I, появляется диссипация энергии, возникает нелинейность ВАХ, и, как следствие этого, меняется характер процессов теплопроизводства. Зависимость V от I имеет вид [47, 48]

$$V \sim I^{a(T)+1}$$
,  $a(T) = \Lambda\left(\frac{T_{\rm c} - T}{T}\right)$ ,  
 $\Lambda = \Phi_0 \frac{s}{16\pi^2 \lambda_{\rm L}(0)^2 T_{\rm c}}$ ,

s — период слоистой структуры, а  $\lambda_{\rm L}(0)$  — лондоновская глубина проникновения при 0 К [49].

Помимо вышеотмеченного, в слоистых ВТСПобразцах при рассмотрении термической устойчивости ДДС состояния необходимо еще учитывать джозефсоновскую связь [50] между слоями. В высокотемпературных сверхпроводниках 2D вихри, которые появились под влиянием тепловых флуктуаций, замыкаются двумя джозефсоновскими вихрями (Д-вихри), расположенными между сверхпроводящими слоями. Для разрыва такого устройства току *I* необходимо дополнительно преодолеть натяжение Д-вихрей. Благодаря этому появляется составляющая критического тока  $I_c(T) = I_{c0}(1 - T/T_{\rm KT})^{3/2}$  [50], которая обращается в нуль при  $T = T_{\rm KT}$ , а ВАХ ВТСП-образцов можно представить в виде  $V \propto I[I - I_c]^{a(T)}$  [51].

В работе [52] нелинейность теплопроизводства учитывалась следующим образом. Мощность теплопроизводства записывалась в виде

$$\frac{\partial Q(T)}{\partial t} = \rho(J,T) J^2,$$

причем нелинейное сопротивление сверхпроводника в диссипативном состоянии принималось равным

$$\rho(J,T) = \rho_{\rm n} \left[ 1 - \frac{J_{\rm c}(T)}{J} \right]^{a(T)}$$

И

$$J_{\rm c}(T) = J_{\rm c0}\left(1 - \frac{T}{T_{\rm c}}\right).$$

Но в этой модели не был учтен тот факт, что при  $T_{\rm KT}$  ток  $I_{\rm c} \rightarrow 0$ , а ВАХ остается нелинейной [53] вплоть до  $T = T_{\rm c} > T_{\rm KT}$ . При этом необходимо еще учесть наличие тока распаривания  $I_{\rm c}^{\rm GL}$ , который стремится к нулю при  $T = T_{\rm c}$ . И лишь когда  $I = I_{\rm c}^{\rm GL}$ , ВТСП переходит в нормальное состояние, и ВАХ становится линейной. Эти особенности были учтены в работах [54, 55]. В работе [54] решалось одномерное уравнение типа (3), в котором при помощи выражения для эффективного нелинейного электрического сопротивления сверхпроводника  $\rho(J, T)$  аппроксимировались основные особенности поведения слоистых ВТСП. В работе [55] в резистивном состоянии сопротивление принималось равным

$$\rho(J,T) = \rho_{\rm n} \, \frac{J - J_{\rm c}(T)}{[J_{\rm c}^{\rm GL}(T) - J_{\rm c}(T)]^{a(J,T)}} \, , \label{eq:rho}$$

где

$$a(J,T) = \left(\frac{T_{\rm c} - T}{T}\right) \left\{ 1 - \left[\frac{J}{J_{\rm c}^{\rm GL}(T)}\right] b \right\},\label{eq:alpha}$$

*b* — численный параметр,

$$J_{\rm c}^{\rm GL}(T) = J_{\rm c}^{\rm GL}(0) \left(1 - \frac{T}{T_{\rm c}}\right)^{3/2}$$

и  $J_{\rm c}^{\rm GL}(0)$  — плотность тока распаривания при T = 0 К.

Полученная в работе [55] диаграмма неоднородных состояний ВТСП-пленки отличается от неоднородных состояний широкой НТСП-пленки [28] тем, что в слоистом сверхпроводнике состояние с  $T = T_1$  может быть как сверхпроводящим, так и резистивным. В широкой НТСП-пленке оно может быть только сверхпроводящим.

В работе [56] для объяснения низкотемпературных нелинейностей ВАХ пленок  $YBa_2Cu_3O_x$  была предложена модель, в которой сверхпроводники переходили в ДДС состояние в результате расширения термически активированных вихревых колец. Согласно этой модели, при протекании тока I в пленках толщиной  $d \ge \xi$  зарождаются вихревые кольца в плоскости, перпендикулярной направлению тока. Энергия вихревого кольца состоит из двух частей: собственной энергии вихря

$$W(r_{\rm L}) = 2\pi r_{\rm L} \left(\frac{\Phi_0}{4\pi\lambda_{\rm L}}\right)^2 \ln \varkappa - \frac{\Phi_0}{c} \ J\pi r_{\rm L}^2$$

и энергии взаимодействия между вихрем и током, которая играет роль, эквивалентную силе Лоренца. Радиус зарождения колец изменяется от малого значения  $r_{\rm L} = \xi$  до большого

$$r_{\rm L} = r_{\rm m} \approx \frac{c \Phi_0}{8\pi^2 \lambda_{\rm L}^2 J} \,,$$

соответствующего  $W(r_L) = 0.3$ начение  $r_m$  является пороговым радиусом, при достижении которого вихревые кольца свободно расширяются. В итоге индуцируется электрическое напряжение, возникают электрическое сопротивление и диссипация энергии. Результат, который был получен в этой модели, оказался аналогичным предсказываемому в модели, рассматривающей зарождение вихревого диполя вихрь–антивихрь в 2D сверхпроводниках.

Как и в пленочных НТСП, в ВТСП-пленках наблюдается [57–59] генерация электромагнитных колебаний вследствие движения вихрей под влиянием транспортного тока с появлением на ВАХ ступенек напряжения [60].

# 3. ДДС состояния объемных керамических ВТСП-образцов на примере YBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> и Bi<sub>1,6</sub>Pb<sub>0,4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>

Керамические ВТСП-образцы состоят из сверхпроводящих гранул, электрические контакты между ними представляют собой типичную слабую связь со свойствами джозефсоновского перехода [61]. Имеется два подхода [62] к объяснению диссипации энергии: в первом ВТСП-образцы рассматриваются как сверхпроводящее стекло [63], тогда как во втором учитывается существование в них А- и Д-вихрей. В модели сверхпроводящего стекла каждой грануле присуща своя фаза  $\varphi$  параметра порядка. При малых токах I электрическое напряжение между *i* и *j* гранулами  $V_{ij} = (\hbar/2e) d\phi/dt$  появляется из-за термического активирования "проскальзывания" фазы между ними. Когда значение усредненного по всем связям тока (*I*<sub>i</sub>) меньше, чем усредненный критический ток связей  $\langle I_{ij} \rangle$ , ВАХ становится нелинейной из-за влияния тепловых флуктуаций на процесс проскальзывания фазы [64]. При  $\langle I_i \rangle > \langle I_{ij} \rangle$  ВАХ линейна со значением  $\mathrm{d}V/\mathrm{d}I \cong R_\mathrm{g}$ , где  $R_\mathrm{g}$  — электрическое сопротивление между гранулами, когда они находятся в нормальном состоянии [65]. В 1D и 2D джозефсоновских переходах влияние собственного поля тока H<sub>i</sub> на I<sub>ij</sub> оказывается несущественным, когда их размеры меньше некоторого характерного значения [66], в то время как в объемных ВТСП-образцах предполагается [67], что низкие значения  $J_{\rm c} \approx 10^2 \text{ A см}^{-2}$  являются следствием влияния  $H_{\rm i}$  на  $I_{\rm c}$ .

Во втором подходе рассматриваются модели, в которых учитывается динамика движения вихрей:

гигантский крип потока [68], коллективный крип потока [69], вихревое стекло [70] и т.д. Фактически эти два подхода дополняют друг друга [61]. Так, в работе [71] кроме вклада в диссипацию от резистивности течения потока

$$R_{\rm F} = \frac{H\Phi_0}{\eta c^2} \, \frac{l_0}{s_0} \, ,$$

учитывался вклад от микроструктуры в виде усредненного по всему образцу электрического сопротивления R<sub>i</sub>, присущего системе перколяционных связей, т.е. сопротивлениям слабых связей. Здесь  $l_0$  — длина образца,  $s_0$  – его поперечное сечение. Общее сопротивление равнялось  $R = R_{\rm F} + R_{\rm i}$ . Следовательно, в общее значение критического тока дают вклады токи  $I_c^F$  и  $I_c^j$ , где  $I_c^F$  — критический ток, при котором в образец проникают вихри, а Іс есть критическое значение тока Ііј. Известно (см., например, [72] и ссылки в этой работе), что в области температур от 77 К до  $T_c$  величина  $I_c$  определяется силой пиннинга, т.е.  $I_c = I_c^F$  и  $I_c^F < I_c^j$ , тогда как при низких температурах сила пиннинга вихрей возрастает до такой степени, что значение критического тока ограничено максимальным критическим током слабых связей, т.е.  $I_{\rm c} = I_{\rm c}^{\rm j}$  и  $I_{\rm c}^{\rm F} > I_{\rm c}^{\rm j}$ . С практической точки зрения нас интересует область температур 77 К < T < T<sub>c</sub>, и в дальнейшем перколяционный вклад в Ic не будет рассматриваться.

# 3.1. Проникновение магнитного поля транспортного тока в цилиндрический сверхпроводник II рода

Одно из свойств керамических ВТСП, которое отличает их от НТСП, — это большое (до 75%) уширение температуры  $\Delta T_c$  в области резистивного перехода R(T, H), которое происходит из-за особенностей вихревого состояния [73]. Температурный интервал  $\Delta T_c$  перехода R(T) также уширяется при увеличении транспортного тока *I* как при  $H \neq 0$  [74, 75], так и при H = 0 [64, 76– 86]. В последнем случае для объяснения вида кривой R(T, I) было предложено несколько моделей.

Так, в работе [87] предполагалось, что критические токи в слабых связях имеют определенное статистическое распределение; в [88] учитывалось статистическое распределение центров пиннинга; в [89–91] ВТСП-образцы рассматривались как состоящие из набора 2D сверхпроводящих слабых связей со свойствами планарных сверхпроводников; в [76] предполагалось существование вихревых пар в межгранульных связях в отсутствие внешнего поля; в [79, 92] рассматривалась модель, в которой учитывался перколяционный характер проводимости; и, наконец, в работе [93] была предложена модель "гетерофазная структура – эффективная среда". К недостаткам этих моделей следует отнести то, что в них имеется лишь частичное объяснение наблюдаемого явления.

В дополнение к расширению температурной области резистивного R(T,I) перехода в ДДС состояние под влиянием тока в работах [85, 86] было обнаружено два значения критического тока  $I_{c1}$  и  $I_{c2}$ . Эти свойства, характерны для идеальных сверхпроводников II рода [94–97].

Традиционно считается [34, 94–97], что переход из СП в ДДС состояние при  $I_{c1} < I_c$  возникает в результате движения магнитного потока в образце. Диссипация

энергии происходит: а) в результате проникновения в образец вихрей, созданных под влиянием внешнего поля H и собственного  $H_i$  магнитного поля транспортного тока I, и б) при выходе из образца неустойчивых конфигураций магнитного потока<sup>1</sup>.

В цилиндрических идеальных сверхпроводниках II рода, когда  $H_i \ge H_{c1}$ , на поверхности зарождаются, стягиваются и аннигилируют в центре образцов кольца из А-вихрей, что приводит к появлению электрического сопротивления и ДДС состояния. Критический ток появления сопротивления или токовой неустойчивости равен [94–97]

$$I_{c1} = 0,5crH_{c1},$$
 (11)

где r — радиус цилиндра, а  $H_{c1}$  — нижнее критическое магнитное поле, т.е. поле вхождения в образец первого вихревого кольца.

Теоретические исследования проблемы проникновения собственного магнитного поля транспортного тока в цилиндрические сверхпроводники II рода были проведены в работах [101–103]. Так, с использованием результатов теории Лондонов в неограниченном образце рассчитывалась структура магнитного поля, магнитный поток и свободная энергия цельного тороидального Авихря [101, 102]. Работа [101] послужила отправной точкой для решения задачи о проникновении вихревого кольца через краевой барьер. В несколько различных подходах она была решена в работах [103–106]. В работах [104–106] при определении условий проникновения кольцевого А-вихря использовался метод, развитый ранее [1] применительно к сверхпроводникам I рода.

Распределение магнитного поля в тороидальном Авихре, который содержит только одну азимутальную компоненту поля  $h = (0, h(\rho, z), 0)$  в цилиндрической системе координат  $(\rho, \theta, z)$ , определялось [104–106] из решения уравнения Лондонов для кольца, которое расположено в плоскости z = 0:

$$\frac{\partial^2 h}{\partial \rho^2} + \rho^{-1} \frac{\partial h}{\partial \rho} - (\rho^{-2} + \lambda_{\rm L}^{-2}) h + \frac{\partial^2 h}{\partial z^2} = \\ = -\left(\frac{\Phi_0}{\lambda_{\rm L}^2}\right) \delta(\rho - r_0) \delta(z) .$$
(12)

Здесь  $r_0 < r$  — радиус кольца.

Далее учитывалось [106], что точно так же, как ток идеального соленоида не создает магнитного поля в окружающем пространстве, замкнутый А-вихрь не образует магнитного поля вне образца, включая его поверхность. Этим задавалось граничное условие вида  $h(\rho = r, z) = 0$ , которое позволило применить конечное преобразование Ханкеля, представляющего решение (12) в виде рядов Фурье – Бесселя:

$$h = \frac{\phi_0 r_0}{\lambda_L^2 r} \sum_{k=1}^{\infty} \frac{J_1(\gamma_k \rho/r) J_1(\gamma_k r_0/r)}{J_2^2(\gamma_k) \left[ (\gamma_k^2 + (r/\lambda_L)^2 \right]^{0.5}} \times \exp\left\{ -|z| \left[ \lambda_L^{-2} + \left( \frac{\gamma_k}{r} \right)^2 \right]^{0.5} \right\},$$
(13)

<sup>&</sup>lt;sup>1</sup> В работах [98-100] было рассмотрено явление неустойчивости вихревых конфигураций без учета влияния поверхности на процесс выхода вихрей.

где  $J_{1,2}$  — функции Бесселя порядков 1 и 2, а  $\gamma_k$  — нули функции Бесселя  $J_1$ .

Из выражения для свободной энергии вихря

$$F = \frac{1}{8\pi} \int \left[ \mathbf{h}^2 + \lambda_{\rm L}^2 (\operatorname{rot} \mathbf{h})^2 \right] \mathrm{d}V$$

(где V' — объем) была определена свободная энергия вихревого кольца в цилиндре (за исключением области размером ~  $\xi$  вокруг оси вихря):

$$F(r_0) = \frac{\Phi_0^2 r_0^2}{4\lambda_L^2} \sum_{k=1}^{\infty} \frac{J_1(\gamma_k r_0/r) J_1[(r_0 - \xi)/r]}{J_2^2(\gamma_k) [\gamma_k^2 + (r/\lambda_L)^2]^{0.5}}.$$
 (14)

Изменение свободной энергии  $F(r_0)$  вихревого кольца (в единицах  $\Phi_0^2/\lambda_L$ ) показано на рис. 7 [106].

Интегрирование (12) вдоль полуплоскости по z от  $-\infty$  до  $+\infty$ , а по r от 0 до  $\infty$ , дает [106] выражение для величины магнитного потока, который содержится в вихревом кольце:

$$\Phi(r_0) = \Phi_0 \left(\frac{2r_0 r}{\lambda_{\rm L}}\right) \times \\ \times \sum_{k=1}^{\infty} \frac{J_1(\gamma_k r_0/r) \left[1 - J_0(\gamma_k)\right]}{J_2^2(\gamma_k) \gamma_k \left[\gamma_k^2 + (r/\lambda_{\rm L})^2\right]} \,.$$
(15)

Из соотношения (15) следует, что  $\Phi(r_0)$  равняется нулю на границе цилиндра (рис. 8), где круговой А-



**Рис. 7.** Зависимость свободной энергии вихревого кольца (в единицах  $\Phi_0^2/\lambda_L$ ), которое находится внутри сверхпроводящего цилиндра с радиусом *r*, от радиуса кольца *r*<sub>0</sub>. Кривая  $I - r = 20 \lambda_L$ ,  $2 - r = 0.5 \lambda_L$ .



**Рис. 8.** Магнитный поток (в единицах  $\Phi_0$ ), который течет через вихревое кольцо, находящееся в длинном цилиндре радиусом  $r = 20\lambda_L$  (кривая *I*) и  $r = 0.5\lambda_L$  (кривая *2*).

вихрь сливается со своим мнимым изображением (в пределе  $r_0 \rightarrow r$  это понятие приобретает смысл), и при  $r_0 = 0$ , когда вихрь сжимается в точку на оси цилиндра.

С целью изучения влияния на величину  $J_c$  барьера в работах [104–106] определялось изменение свободной энергии Гиббса  $\Delta G_c$  в результате проникновения вихревого кольца в СП цилиндр II рода с идеальной поверхностью, по которому течет транспортный ток *I*. Аналогично выводу в [1], выражение для  $\Delta G_c$  записывалось в виде

$$\Delta G_{\rm c} = F - \Delta W_I$$

где  $\Delta W_I = (1/c) I \Delta \Phi(r_0)$  — работа, совершаемая источником постоянного тока при вхождении кольца. Здесь  $\Delta \Phi(r_0)$  — магнитный поток, который покидает контур источника тока, когда вихрь перемещается от границы цилиндра  $r_0 = r$  к положению с радиусом  $r_0$ . На рисунке 9 показано изменение гиббсовской свободной энергии  $G_c(r_0)$  длинного СП цилиндра, у которого  $r_0 = 20\lambda_L$ , в зависимости от различных значений тока I.  $G_c = F$  при I = 0, и барьер имеет ширину  $\sim r$ . С выполнением условия  $I \ge I_c(r)$  барьер исчезает, и вихревые кольца спонтанно проникают в образец. Автор работы [106] определил значение  $I_c(r)$ , используя критерий  $\partial G_c / \partial r_0|_{r_0 \to r} = 0$ . Полученная плотность критического тока

$$J_{\rm c} = \frac{2\varepsilon_{\rm L}c}{\Phi_0\xi} = J_{\rm c}^{\rm GL}$$

оказалась не зависящей от  $r (\varepsilon_{\rm L} = (\Phi_0/4\pi\lambda_{\rm L})^2$  — электромагнитная энергия вихря на единицу длины). При этом собственное поле тока на поверхности образца достигает значения  $H_{\rm i} = H_{\rm s} = H_{\rm c}r/\lambda_{\rm L}$  при  $r < \lambda_{\rm L}$ , и  $H_{\rm i} = H_{\rm s} = H_{\rm c}$ , когда  $r \gg \lambda_{\rm L}$ , т.е. переход в ДДС состояние происходит, как и в сверхпроводнике I рода с током, в полном соответствии с правилом Сильсби в отличие от полученного ранее [94–97] значения  $H_{\rm s} = H_{\rm c}/\varkappa$ .

После выключения тока кольца сжимаются и аннигилируют, за исключением тех колец, которые, находясь в приповерхностном слое толщиной порядка  $\lambda_L$ (см. рис. 7), покидают образец. За время выхода вихревых колец из СП образца восстанавливаются его диамагнитные свойства, которые были нарушены,



**Рис. 9.** Свободная энергия Гиббса цилиндра, содержащего вихревое кольцо, в зависимости от величины тока *I*. I = 0 (кривая *I*),  $I = 0,1I_c$  (2),  $I = 0,2I_c$  (3) и  $I = I_c$  (4).

когда сверхпроводник находился в ДДС состоянии. Чтобы зафиксировать этот процесс, авторы работ [107, 108] изучали изменение во времени *t* сигнала реальной части  $\chi'$  комплексной динамической магнитной восприимчивости  $\chi_{ac} = \chi' + i\chi''$  после выключения транспортного тока в ВТСП-образцах. Идея метода состояла в том, что при протекании тока через образец величина сигнала  $\chi'$  изменялась при выполнении условия [107– 110]

$$|\chi'(T, I \neq 0)| < |\chi'(T, I = 0)|.$$

После выключения тока І рабочая точка, фиксирующая сигнал  $\chi'$  на графопостроителе, перемещалась в течение некоторого времени с кривой  $\chi'(T, I \neq 0)$  на кривую  $\chi'(T, I = 0)$ . Фиксируя время этого перехода при некоторой постоянной температуре  $T = T_0$ , авторы определяли зависимость  $\chi'(t)$ . Начиная с  $T = T_c$ , после выключения тока I величина сигнала  $\chi'$  оставалась неизменной в течение некоторого времени  $t_s$ , которое принималось за время выхода из образца вихревых колец, находящихся в первом ряду от поверхности. Эффект наблюдался лишь в области температур, при которых реализуется режим не изолированных, а слабо связанных гранул [107, 108], когда в образце имеются Д-вихри. Зависимость R(I) на рис. 10, полученная из кривых R(T, I) при 96 К [107], характеризует изменение ДДС состояния при варьировании тока I в образце  $\mathrm{Bi}_{1,6}\mathrm{Pb}_{0,4}\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_x$  с  $J_\mathrm{c}(T=77~\mathrm{K},H=0) \approx 10~\mathrm{A~cm}^{-2}.$ 

Поскольку эффект наблюдался в области температур существования Д-вихрей, то предполагалось [109, 110], что образец покидают кольца, образованные из Двихрей. Для наглядности поверхность ВТСП-образцов рассматривалась как 2D среда, состоящая из соединенных между собой мостиков переменной толщины, в которой массивными электродами (берегами) являются СП гранулы, а проводящими ток соединениями между ними (т.е. мостиками) — слабые связи. При определенных условиях под влиянием транспортного тока в слабых связях появляются Д-вихри [111]. Располагаясь вдоль круговых линий индукции поля  $H_i$  и замыкаясь, Д-вихри образуют кольца вблизи поверхности ВТСП-образцов.

Согласно формуле (11),  $J_c \sim 1/r$ , что при H = 0 подтверждается многочисленными экспериментами (см., например, [112, 113] и рис. 11). Зависимость J(S) претерпевает изменения при  $H \neq 0$ . На рисунке 11 видно,



**Рис. 10.** Зависимость  $R_i/R_n$  от величины *I* при T = 96 К. На вставке: зависимость  $I_{c1}$  или  $2\pi r H_{c1}$  от температуры.



**Рис. 11.** Зависимости  $J_c(H)$ , полученные в различных по величине внешних продольных полях: H = 0 (1),  $H = 150 \ \exists$  (2),  $H = 300 \ \exists$  (3) при  $T = 77 \ \text{K}$ .

что поле слабо воздействует на плотность критического тока тонких иттриевых образцов и заметно влияет на ток образцов с большим поперечным сечением *S*. Такая особенность объясняется, если учесть влияние размера образцов (геометрического барьера), что не было сделано при выводе формулы (11) в случае идеального сверхпроводника II рода [34]. Если имеется барьер, то [112, 113]:

$$j_{\rm c} = j_0$$
 при  $H_{\rm i} < H_{\rm s}$ , (16a)

$$j_{\rm c} = 0$$
 при  $H_{\rm i} > H_{\rm s}$ , (166)

где  $j_c$  — локальная плотность критического тока, а  $j_0$  — локальная плотность тока распаривания. Переходя от локальных значений критических величин поля и тока к объемным с усреднением по площади поперечного сечения *S* радиуса *r*, как и в работе [67], получаем

$$J_{\rm c} = J_{\rm c}^{\rm GL}$$
 при  $r < \frac{cH_{\rm s}}{2\pi j_0}$ , (17a)

$$J_{\rm c} = \frac{cH_{\rm s}}{2\pi r} \quad \text{при} \quad r > \frac{cH_{\rm s}}{2\pi j_0} \,. \tag{176}$$

Из формулы (17а) и из [104–106] следует, что при  $r < 2\lambda_{\rm L}$  в идеальном СП образце II рода с барьером ДДС состояние не успевает наступить, так как механизм развала куперовских пар сработает раньше, чем начнется течение потока. Скажется и геометрический фактор, поскольку вихревые кольца не могут существовать в таком сверхпроводнике. В случае образцов с  $r \gg \lambda_{\rm L}$  уравнения (176) и (11) становятся идентичными при  $H_{\rm s} = H_{\rm c1}$ .

Выводы, которые следуют из (17а) и (17б), совпадают с утверждением [106], что ширина барьера в массивных образцах под влиянием тока уменьшается до значения  $\sim \lambda_{\rm L}$  при  $J_{\rm cl} = \varepsilon_{\rm L} c / \Phi_0 \lambda_{\rm L} \ll J_c^{\rm GL}$ . Здесь  $J_{\rm cl}$  — плотность тока дефектного механизма вхождения вихрей на неоднородностях  $\sim \lambda_{\rm L}$ , который создает поле, равное  $H_{\rm cl}$ , на поверхности образца. Следовательно, высокие значения  $J_c$  могут быть достигнуты или на образцах с размерами около  $10^{-7}$  м, согласно (17а), или с большим поперечным сечением за счет пиннинга вихревых колец, что происходит тогда, когда радиальная сила  $F_{\rm r}$  их линейного натяжения будет меньше силы пиннинга  $F_{\rm p}$ , где [97]

$$F_{\rm r} = \frac{\Phi_0 H_{\rm c1}}{4\pi r} \,. \tag{18}$$

В этом случае образцы находятся в критическом состоянии, а модель, предложенная выше [112, 113], будет моделью критического состояния. Она подобна моделям [114, 115], в которых анализировались образцы с барьером и нулевым объемным пиннингом (т.е. весь пиннинг был сосредоточен вблизи поверхности), но не учитывалось влияние транспортного тока на барьер.

Результаты, которые получаются из моделей [112, 113] и [67] совпадают, хотя механизмы перехода из СП в диссипативное состояние в них различны. В работе [67] предполагается, что это происходит из-за непосредственного влияния на величину  $J_c$  поля  $H_i$ , тогда как в [112, 113] ток перехода определяется условиями, при которых в образец проникают вихревые кольца. Например, при 77 К влияние силы пиннинга на динамику вихрей уже необходимо учитывать [116]. Для "жестких" НТСП II рода процесс образования вихревых колец и зависимость  $J_c(r)$  рассматривались в работах [117, 118].

#### 3.2. ДДС состояния цилиндрических сверхпроводников II рода в магнитном поле, параллельном тременортному току

транспортному току

Магнитное поле в керамические ВТСП-образцы проникает поэтапно [61]: 1) когда  $H < H_{clj}$ , поле не проникает. Здесь  $H_{clj}$  — нижнее критическое поле межгранульных связей; 2) при  $H_{clj} < H < H_{c2j}$  поле начинает проникать в межгранульные связи в виде Д-вихрей ( $H_{c2j}$  — верхнее критическое поле межгранульных связей); 3) поле  $H_{c2j} < H < H_{c1g}$  отвечает полному проникновению в межгранульные связи,  $H_{c1g}$  — нижнее критическое поле гранул; 4)  $H \ge H_{c1g}$  — поле постепенного проникновения магнитного потока в гранулы в виде А-вихрей. Следовательно, определенные в разделе 3.1 для ВТСП-образцов величины  $I_{c1}$  и  $J_{c1}$  — это  $I_{c1j}$  и  $J_{c1j}$ , соответственно.

Когда в сверхпроводнике реализуется бессиловая конфигурация ток – поле, то внешнее поле H, параллельное I, не влияет на условия вхождения вихревого кольца, созданного полем  $H_i$ . Также и транспортный ток I не понижает критическое поле проникновения линейного вихря, параллельного оси цилиндра [119]. Но с изменением H и I могут существовать вихревые конфигурации, более близкие к виду линий индукции магнитного поля — геликоидальные вихри [119–122], ранее обсуждавшиеся лишь качественно [98–100]. Для выяснения распределения поля геликоидального вихря в СП цилиндре с током совместно решались [119–122] уравнения Максвелла и Лондонов со специальной правой частью. Магнитный поток, протекающий через геликоидальный вихрь в направлении оси z вдоль оси цилиндра при любой длине

витка геликоида L, равняется

$$\Phi_z(r_0) = \Phi_0 \left[ 1 - \frac{I_0(r_0/\lambda_{\rm L})}{I_0(r/\lambda_{\rm L})} \right],$$

в то время как эта величина для кольцевого вихря была тождественно равна нулю. В случае массивного образца поток, пронизывающий вихрь в азимутальном направлении,

$$\Phi_{\perp} = \Phi_0 \left[ 1 - rac{r_0}{\lambda_{\mathrm{L}}} K_1 \left( rac{r_0}{\lambda_{\mathrm{L}}} 
ight) 
ight],$$

совпадает с этой же величиной для вихревого кольца в массивном образце [103]. Здесь  $I_k(x)$  и  $K_k(x)$  — модифицированные функции Бесселя [15].

При изучении проблемы энергетического барьера, препятствующего проникновению и выходу геликоидальных вихрей из цилиндрических СП образцов, в [119–122] определялась величина свободной энергии Гиббса  $G_h$  аналогично тому, как это делалось при вычислении  $G_c$  для цилиндра с вихревым кольцом. Учитывая работу, совершаемую источниками постоянного поля  $\Delta W_H$  и тока  $\Delta W_I$ , выражение для  $G_h$  можно представить в виде [122]

$$G_{\rm h} = \left(\frac{\Phi_0}{4\pi\lambda_{\rm L}}\right)^2 \sqrt{(1+s^2)} \ln\left[2\frac{(r-r_0)}{\xi}\right] - \left(\frac{H\Phi_0}{4\pi}\right) \left[1 - \frac{I_0(r_0/\lambda_{\rm L})}{I_0(r/\lambda_{\rm L})}\right] \pm \left(\frac{I\Phi_0}{2\pi cL}\right) \left[1 - \frac{r_0I_1(r_0/\lambda_{\rm L})}{rI_1(r/\lambda_{\rm L})}\right],$$
(19)

где s = r/L обозначает тангенс угла наклона оси геликоида к оси *z*. Верхний знак относится к левоспиральным, а нижний — к правоспиральным вихрям. Автор работ [119–122] определял критические параметры, используя критерий  $\partial G_h/\partial r_0|_{r_0 \to r} = 0$ , что давало значение критического поля проникновения геликоидального вихря на поверхности образца вида

$$h_{\rm cr}(J,s) = H_{\rm c} \frac{I_0(r/\lambda_{\rm L})}{I_1(r/\lambda_{\rm L})} \left[ \sqrt{(1+s^2)} - \frac{sJ}{J_{\rm L}} \right],\tag{20}$$

где  $H_c = \Phi_0/2 \sqrt{2 \pi \lambda_L \xi}$ , а  $J_L = cH_c/4\pi \lambda_L$  — лондоновское значение критического тока [95]. Оптимальный шаг спирали  $L = r[(J_L/J)^2 - 1]^{1/2}$  определялся путем минимизации  $h_{cr}$  по *s*. После подстановки *L* в (20) было получено соотношение между значениями на поверхности критической плотности тока  $J_{cr}$  и критического поля  $H_{cr}$  проникновения оптимального геликоида вида [121]

$$\frac{I_{\rm l}(r/\lambda_{\rm L})}{I_{\rm 0}(r/\lambda_{\rm L})} \bigg]^2 \left(\frac{H_{\rm cr}}{H_{\rm c}}\right)^2 + \left(\frac{J_{\rm cr}}{J_{\rm c}}\right)^2 = 1.$$
(21)

На рисунке 12а дана, измеренная на образце Ві<sub>1,6</sub>Pb<sub>0,4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>, зависимость  $I_c$  от H, типичная для керамических гранулированных ВТСП [112]. Такое поведение характерно для области температур, близких к 77 К. Но, начиная с 95,1 К и выше (рис. 126), вид зависимости  $I_c(H)$  изменялся и становился подобным предсказанному в (21), что свидетельствует о проникновении геликоидальных вихрей. Согласно рис. 126,



**Рис.** 12. Зависимость  $I_c(H)$  в керамическом ВТСП-образце Ві<sub>1,6</sub>Рb<sub>0,4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>, находящемся в магнитном поле, параллельном образцу и току: T = 80,1 К (а), T = 95,1 К (б). Штриховая линия — расчетная кривая (22).

соотношение между *I*<sub>с</sub> и *H* можно представить в виде [112]

$$\frac{I_{\rm c}^2}{0,013^2} + \frac{H^2}{74^2} = 1\,,\tag{22}$$

если рассматривать кривую как часть эллипса с центром в начале координат (на рисунке показана штриховой линией). Изменение вида  $I_c(H)$  вызвано тем, что при T > 95 К эффективный поперечный размер джозефсоновского вихря порядка  $\lambda_j$  превышает эффективный поперечный размер дефектов, и силы пиннинга становятся настолько слабыми, что образец ведет себя подобно идеальному сверхпроводнику II рода.

Соотношение (21) можно получить [112] и из экспериментальной зависимости  $\varepsilon(H)$  [38] (см. раздел 2.4), если учесть [103], что  $I_{cr} = crH_s/2 \propto \varepsilon$ .

Чтобы узнать, какие вихри и при каких условиях существуют в образце, авторы работы [123] определяли диаграмму состояний геликоидов, круговых и продольных линейных вихрей. Согласно формуле (11), для этого необходимо знать изменение критической температуры межгранульных связей  $T_c^j$  в зависимости от значений продольного **H** и кругового поперечного  $\mathbf{H}_{cc}$ магнитных полей и их суперпозиции. Исследования проводились на керамических пустотелых образцах  $\mathbf{Bi}_{1,6} \mathbf{Pb}_{0,4} \mathbf{Sr}_2 \mathbf{Ca}_2 \mathbf{Cu}_3 \mathbf{O}_x$ . Круговое поле создавалось током  $I_{cc}$ , который протекал по медному проводу диаметром ~ 1 мм, находящемуся внутри продольного отверстия в ВТСП-образцах.

Температура  $T_c^j$  соответствовала температуре изменения на 50 % сигнала  $\chi'(T)$  в области СП перехода слабых связей [112]. При некоторых значениях полей **H** и **H**<sub>cc</sub> кривые зависимостей  $\chi'(T)$  или сдвигались к низким температурам на величину  $\Delta T_c^j$ , или нет. Изменение вида кривых означало, что в образец проникают геликоиды. Неизменному виду соответствовало существование в образце суперпозиции круговых и линейных вихрей. На рисунке 13 приведена диаграмма таких состояний [123]. Кривые определяют нижнюю и верхнюю границы области существования геликоидов. Вне этой области в образце находятся круговые поперечные и продольные линейные Д-вихри при значениях **H** и **H**<sub>cc</sub> примерно на порядок отличающихся друг от друга. При



**Рис. 13.** Диаграмма состояний существования в образце геликоидов, круговых и продольных линейных вихрей.

соизмеримых значениях этих полей в образцы проникают геликоиды.

### 3.3. Влияние на переход в ДДС состояние круговых поперечных остаточных магнитных полей

В керамических ВТСП-образцах величина I<sub>с</sub> определяется не только пиннингом вихрей, но и значением межгранульной магнитной индукции **B**<sub>i</sub> [124]. В работе [125] утверждается, что в слабых связях после выключения транспортного тока It происходит инверсия знака в распределении **B**<sub>i</sub>. В результате при повторном измерении тока  $I_c$  его значение возрастает, и образец переходит в ДДС состояние при большем транспортном токе  $I = I_c$ , т.е. происходит как бы взаимная компенсация поля H<sub>i</sub>, созданного током I, полем, которое остается в межгранульных связях после выключения тока It. Но такое утверждение противоречит теореме Стокса. Что же происходит на самом деле? Чтобы ответить на этот вопрос, необходимо выяснить различия в поведении круговых магнитных полей в цилиндрических образцах, когда они находятся в нормальном и сверхпроводящем состояниях.

Известно [126], что когда сверхпроводник с током находится в нормальном состоянии, циркуляция кругового магнитного поля **H**<sub>i</sub>, созданного током, равна

$$\oint_C \mathbf{H}_i \,\mathrm{d}\mathbf{I} = \frac{4\pi}{c} \,I,\tag{23}$$

где  $I = \int \mathbf{J} \, \mathbf{dS}$  — полный ток через поверхность поперечного сечения S, которая стягивается контуром C. После выключения тока I поле  $\mathbf{H}_i = 0$ . В сверхпроводящем состоянии в ВТСП-образцах в этом случае поле  $\mathbf{H}$  ведет себя совсем иначе. Чтобы это проверить, в работе [123] исследовались иттриевые образцы кругового и прямоугольного поперечного сечения [112]. При T = 300 К через образцы пропускался ток  $I_t$ . Затем их охлаждали до 77 К, выключали ток  $I_t$  и измеряли  $I_c$  по 4-зондовой схеме. Магнитное поле Земли не экранировалось. Образцы находились в жидком азоте. Величина  $I_c$  определялась в двух случаях: при совпадении направлений  $I_t$  и измерительного тока  $I_c$  (кривая I на рис. 14), и когда направления этих токов были противоположными (кривая 2 на рис. 14) [123]. Полученный результат подтверждает



Рис. 14. Типичный вид зависимости приведенных критических токов  $I_c/I_{c0}$  от величины тока  $I_t$ . *I* — направления токов  $I_t$  и *I* совпадают; 2 — токи  $I_t$  и *I* противоположны.

экспериментальные данные работы [125]. На рисунке 14 через  $I_{c0}$  обозначена величина критического тока, измеренного при 77 К и H = 0, т.е. после охлаждения в нулевом магнитном поле (ZFC-режим). Из вида кривых на рис. 14 следует, что внутри иттриевого ВТСП-образца имеется остаточное магнитное поле, из-за которого изменяется величина Ic. Это поле может присутствовать в образце только в виде колец из А-вихрей (см. раздел 3.1), запиннингованных в гранулах, куда они проникли еще при  $T = T_c$ , когда выполнялось условие  $H_{\rm clg} \approx 0$ . Но магнитное поле  $\mathbf{H}_{\rm v}$  находится внутри цельного кругового А-вихря, и его нельзя обнаружить вне СП образца (см. [106], (16) и рис. 8), как это было сделано в работе [127]. Чтобы поле присутствовало снаружи образца, вихревые кольца должны быть разорванными. А это может произойти только на каких-либо несверхпроводящих включениях (неоднородностях) [128], к которым вихри притягиваются из-за выигрыша в энергии с силой  $f \propto H_c^2 r_D \xi$  [129]. Процесс притяжения вихрей к неоднородностям является определяющим для понимания возникновения сил пиннинга как в НТСП-, так и в ВТСП-образцах [69], что было подтверждено экспериментально с помощью техники декорирования [130]. При слиянии с неоднородностью часть вихревого кольца, которая ее пересекает, исчезает, сливаясь со своим мнимым отображением [129], т.е. вихрь разрывается. Это следует также из анализа работы тонкопленочных НТСП-трансформаторов постоянного тока [131].

Для непосредственного доказательства существования разорванных А-вихрей с помощью стандартного магнитометра были определены величина, вид и распределение остаточных круговых магнитных полей  $\mathbf{H}_{\text{REM}}^{\text{out}}$ снаружи иттриевых ВТСП-образцов [132, 133]. Чувствительность системы равнялась 0,01 Э. На рисунке 15 дано распределение  $\mathbf{H}_{\text{REM}}^{\text{out}}$  в плоскости поперечного сечения образца диаметром  $4,5 \times 10^{-3}$  м и длиной  $35 \times 10^{-3}$  м после выключения тока  $I_t = 10$  А, направленного перпендикулярно плоскости рисунка. Величина полей и их распределение практически не изменялись по высоте образца. Составляющая магнитного поля, параллельная продольной образующей цилиндра, и поле на торцах обнаружены не были. На рисунке 16 показано



**Рис. 15.** Распределение параллельной и перпендикулярной составляющих кругового остаточного магнитного поля вне цилиндрического иттриевого образца (заштрихован) после выключения тока *I*<sub>t</sub>.



**Рис. 16.** Распределение параллельной и перпендикулярной составляющих кругового остаточного магнитного поля вне иттриевого образца с квадратным сечением (заштрихован) после выключения тока  $I_t$ .

распределение поля  $\mathbf{H}_{\text{REM}}^{\text{out}}$  в прямоугольном образце в плоскости поперечного сечения с размерами сторон  $5 \times 10^{-3}$  м и длиной  $35 \times 10^{-3}$  м. Условия измерений и остальные результаты были такими же, как у цилиндрического образца. Обнаруженное распределение поля Н аналогично распределению поля магнетика, при котором соотношение (23) выполняется при I = 0, что является экспериментальным доказательством отсутствия сингулярности в величине H<sub>v</sub> [133]. Это вытекает из следующих рассуждений [133]. В сверхпроводнике II рода, который находится в смешанном состоянии, в окрестности магнитных вихрей rot v<sub>s</sub> отличен от нуля, но равна нулю циркуляция по контуру, проведенному внутри сверхпроводника и вне его в отсутствие тока (v<sub>s</sub> скорость сверхпроводящих (сверхтекучих) вращающихся в вихре электронов). В сверхтекучем же гелии, который находится во вращающемся сосуде, в окрестности вихрей и rot v<sub>s</sub>, и циркуляция по контуру, проведенному внутри цилиндра, не равны нулю (здесь  $v_s$  — скорость сверхтекучих атомов гелия, вращающихся в вихре). А это возможно только в случае, когда область рассмотрения является "пространственно" многосвязной [134].

Кроме того, обычно считается [126], что поток вектора **H** через произвольную замкнутую поверхность  $S_1$  равен нулю, т.е.  $\oint \mathbf{H} \, d\mathbf{S}_1 = 0$ . При этом подразумевается (хотя никогда не оговаривается), что область рассмотрения "пространственно" односвязная. Затем на основании теоремы Остроградского делается вывод, что div  $\mathbf{H} = 0$  и магнитное поле не имеет источников и стоков магнитных зарядов. Но в "пространственно" многосвязных областях, даже с точечными сингулярностями, теорема Остроградского не выполняется [135], и div  $\mathbf{H} \neq 0$ . Следовательно, в "пространственно" многосвязных областях в магнитном отношении возможно существование магнитных монополей.

Возвращаясь к неоднородным сверхпроводникам, можно утверждать, что притягиваясь к порам и несверхпроводящим включениям с размерами  $r_{\rm D} > \lambda_{\rm L}$  [136] и пересекая их, вихревые А-кольца разрываются. Магнитные поля Н<sub>v</sub> вихрей, которые пересекают несверхпроводящие включения, рассеиваются через области разрывов колец. Соответствующие им линии индукции, не разрываясь, деформируются сложным образом. Магнитные поля рассеяния, которые находятся в межгранульном пространстве слабых связей вне запиннингованных кусков вихрей, проникают в гранулы на глубину  $\lambda_L$  и частично выходят из образца. На рисунке 17 показано распределение магнитного поля внутри неоднородности (поры) с  $r_{\rm D} > \lambda_{\rm L}$  в области разрыва вихревого кольца, которое должно реализоваться, если рассматривать распределение вихрей в грануле как в мезоскопическом дископодобном образце [137, 138]. Существование вихрей, у которых величина магнитного потока Ф удовлетворяет условию  $\Phi < \Phi_0$ , в мезоскопических цилиндрических образцах было давно предсказано в [139-141]. В гранулах с размерами  $10^{-5} - 10^{-6}$  м, как и в мезоскопических образцах [137, 138], могут существовать вихри, у которых магнитный поток  $\Phi < \Phi_0$ . Если расстояние между гранулами больше, чем  $\lambda_L$ , линии магнитной индукции полей рассеяния могут замыкаться даже



**Рис. 17.** Схематическое представление рассеяния магнитного поля  $H_v$  вихря (1) в грануле (2) как в мезоскопическом образце.

вокруг гранул. Малые величины  $H_{REM}^{out}$  указывают на то, что рассеивается незначительная часть магнитного поля  $H_v$ , в то время как основная его часть  $H_{REM}^{in}$  остается внутри образца, совпадая по направлению с  $H_i$ . Не изменяет своего направления и знак  $B_j$  после выключения транспортного тока.

Полученный результат напоминает поведение охлажденной в магнитном поле сверхпроводящей сферы с идеальной проводимостью, которая становится магнитным диполем после выключения магнитного поля, хотя механизмы этих эффектов различны.

Таким образом, зависимости  $I_c(I_t)$ , приведенные на рис. 14, можно объяснить [123] как результат взаимодействия между захваченными в образце разорванными кольцами, образованными из А-вихрей, (А-кольца) и проникающими в него кольцами, созданными Д-вихрями, (Д-кольца). О взаимодействии между запиннингованными в гранулах цельными А-вихрями и проникающими в образец Д-вихрями при значении внешнего поля  $H \neq 0$  см. работу [142].

Присутствие поля  $H_{\rm REM}^{\rm in}$  оказывает влияние на проникновение Д-колец следующим образом. Запиннингованные разорванные А-кольца отталкивают входящие Д-кольца того же знака. Последние, чтобы проникнуть, должны преодолеть силу отталкивания А-вихрей, для чего и необходим дополнительный к  $I_{c0}$  ток (кривая I на рис. 14). Вхождение Д-колец противоположного знака по отношению к запиннингованным разорванным А-кольцам облегчается их взаимным притяжением, т.е. критический ток в этом случае будет меньше, чем  $I_{c0}$ (кривая 2 на рис. 14). Сила, действующая на проникающие Д-кольца, равна [123] (см. раздел 3.1)

$$F = F_{\rm r} \pm \Delta F = F_{\rm r} \pm \Phi_0 \frac{\Delta H}{4\pi r} , \qquad (24)$$

где  $\Delta H$  — различие между магнитными полями, генерируемыми на поверхности образца токами  $I_c(I_t)$  и  $I_{c0}$ . Знак "плюс" берется, когда кольца одного знака, "минус" — в противоположном случае. На рисунке 18 показана дополнительная сила  $|\Delta F|$ , действующая на входящее в иттриевый ВТСП-образец Д-кольцо, в зависимости от величины  $I_t$ , т.е. фактически от значения остаточного поля  $H_{\text{REM}}^{\text{in}}$ . Изменение характера зависимости  $I_c(I_t)$  при  $I_t > 10$  A (см. рис. 14), по-видимому, возникает из-за воздействия джоулева тепла.



**Рис. 18.** Изменение дополнительной силы  $|\Delta F|$  в зависимости от величины тока  $I_t$ . Точки — направления токов  $I_t$  и I совпадают; квадраты — токи  $I_t$  и I противоположны.

# 3.4. Влияние на переход в ДДС состояние остаточных продольных магнитных полей

В ВТСП-образцах поля рассеяния должны быть и у линейных запиннингованных разорванных А-вихрей, созданных внешним полем Н, параллельным оси цилиндра и току I, о чем свидетельствуют гистерезисы критического тока, величина которых зависит от магнитной предыстории образцов (см., например, [143]). Для исследования влияния остаточного магнитного поля **H**<sub>REM</sub> на величину *I*<sub>с</sub> в работах [123, 144] были проведены измерения критического тока при 77 К на иттриевых и висмут-свинцовых ВТСП-образцах в режимах ZFC и FC (охлаждение в поле Н). В первом случае критический ток, измеряемый в возрастающем поле Н, обозначался как  $I_{1c}(H)$ , а измеряемый в убывающем поле — как  $I_{2c}(H)$ . Критический ток  $I_{3c}(H)$  определялся после включения и выключения поля Н. При проведении измерений в FCрежиме, когда образец охлаждался в поле Н до 77 К без выключения поля, определялся критический ток I<sub>4c</sub>(H). Критический ток  $I_{5c}(H)$  измерялся в остаточном магнитном поле, когда после охлаждения образца до 77 К поле выключалось. Если затем поле включалось опять, то определялся критический ток  $I_{6c}(H)$ . На рисунке 19 приведены типичные данные, полученные на одном из иттриевых образцов. Гистерезис токов I<sub>1c</sub> и I<sub>2c</sub> появлялся в результате захвата магнитного поля в гранулах при  $H = 300 \ \Im > H_{clg}$ . Условие  $I_{3c} = I_{c0}$  означало, что после выключения поля Н оставшееся в образце поле  $\mathbf{H}_{\mathsf{RFM}}^{\mathsf{in}} < \mathbf{H}_{\mathsf{clj}}$ . Существование в образце поля  $\mathbf{H}_{\mathsf{REM}}^{\mathsf{in}},$ созданного разорванными вихрями, которое компенсирует поле **H**, подтверждается неравенством  $I_{1c} < I_{4c}$ .

При измерении в режиме FC до H < 75 Э равенство  $I_{6c} = I_{4c}$  означало, что  $H_{TRAP} = H_{REM}$ , где  $H_{TRAP}$  — поле, которое захватывалось образцом, а  $H_{REM}$  — поле, которое оставалось в образце после выключения внешнего поля H. Увеличение поля H приводило к выполнению условия  $I_{6c} < I_{4c}$ , а значит,  $H_{REM}$  становилось меньше  $H_{TRAP}$  из-за влияния на свойства вихрей барьера Бина – Ливингстона гранул.

Таким образом, критические токи (точнее, токи перехода из СП в ДДС состояние) зависят от величины остаточного поля в образце  $H_{REM}^{j}$ , где  $H_{REM}^{j}$  — намагниченность межгранульных связей, в которую вносят вклад поля рассеяния  $H_{v}$  разорванных вихрей. Для определения захваченных  $H_{TRAP}^{j}$  и остаточных  $H_{REM}^{j}$  магнитных



**Рис. 19.** Зависимости приведенных критических токов  $I_c/I_{c0}$  от величины внешнего продольного магнитного поля H:  $I_{1c}(H)$  — кривая (I);  $I_{2c}(H)$  (2);  $I_{6c}(H)$  (3);  $I_{4c}(H)$  (4);  $I_{5c}(H)$  (5) и  $I_{3c}(H)$  (6).

полей в межгранульной области в работах [123, 144] использовалось равенство эффективных магнитных полей и токов, измеренных в различных режимах (см. рис. 19). Величина поля  $H_{\text{REM}}^{j}$  определялась тремя различными способами (рис. 20):

1) из равенства токов  $I_{1c}$  и  $I_{5c}$ , что дает  $H_{REM}^{j} \cong H_{1}$ , где  $H_{1}$  — поле, в котором был иттриевый образец при измерении  $I_{1c}$ ;

2) из сравнения токов  $I_{1c}$  и  $I_{6c}$  следует, что  $H^{j}_{\text{REM}} \cong H_6 - H_1$ , где  $H_6$  — поле, в котором находился образец при измерении  $I_{6c}$ .

Эти значения сравнивались с величиной  $H_{\text{REM}}^{j}$ , полученной графическим методом — непосредственно по максимумам, которые наблюдались в зависимостях  $I_c(H)$  при максимально возможной компенсации поля **H** полем  $\mathbf{H}_{\text{REM}}^{j}$ .

Захваченное в межгранульном пространстве поле  $H_{\text{TRAP}}^{j}$  нельзя определить экспериментально. Его величина вычислялась [121, 141] с помощью равенства  $I_{4c} = I_{1c}$  и  $H_{3\phi\phi4} = H_{3\phi\phi1}$ . Тогда  $H_{\text{TRAP}}^{j} \cong H_4 + H_1$ , где  $H_4$  — значение поля, в котором находился образец при измерении  $I_{4c}$ . На рисунке 20 даны зависимости  $H_{\text{REM}}^{j}(H)$  и  $H_{\text{TRAP}}^{j}(H)$ , полученные на слаботоковых образцах с  $J(T = 77 \text{ K}, H = 0) < 5 \text{ A см}^{-2}$ .



**Рис. 20.** Зависимости  $H_{\text{REM}}^{j}$  (кривые l-3) и  $H_{\text{TRAP}}^{j}$  (4) от поля H, полученные различными способами: (кривая l) — расчет по методу 1; (2) — расчет по методу 2 и (3) графическим методом (см. текст).

### 4. Заключение

За последние годы тема, вынесенная в заглавие обзора, становится все более актуальной в свете практических применений керамических ВТСП-образцов в качестве проводов и т.п. Многие транспортные свойства сверхпроводников II рода существенно зависят от течения магнитного потока. В обзоре затронута лишь часть этой большой области исследования — динамики вихрей и доменов нормальной фазы, а именно, вызванное транспортным током течение магнитного потока. Проведенные исследования привели к ясному пониманию таких явлений, как

1) "гигантская джозефсоновская генерация" электромагнитных колебаний в НТСП-пленках;

2) возникновение ДДС состояний в керамических ВТСП-образцах при токах, малых по сравнению с током распаривания, которое происходит в результате проникновения и движения Д-колец;

 динамика вихревых колец и влияние на этот процесс магнитного поля; 4) токовые гистерезисные петли и влияние на их вид внешних магнитных полей;

5) разорванные на неоднородностях вихри и влияние их магнитного поля (в том числе остаточного) на электрические и магнитные свойства керамических ВТСП-образцов.

Авторы благодарят В.А. Ямпольского за обсуждение ряда рассмотренных в обзоре проблем.

# Список литературы

300

- Хюбенер Р П Структуры магнитных потоков в сверхпроводниках (М.: Машиностроение, 1984) [Huebener R P Magnetic Flux Structures in Superconductors (Berlin: Springer-Verlag, 1979)]
- 2. Минц Р Г, Рахманов А Л *Неустойчивости в сверхпроводниках* (М.: Наука, 1984)
- 3. Bednorz J G, Müller K A Z. Phys. B 64 189 (1986)
- 4. Cohen R W, Abeles B Phys. Rev. 168 444 (1968)
- Хирный В Ф, Дисс. ... канд. физ.-мат. наук (Донецк.: ДонФТИ АН УССР, 1981) с. 143
- 6. Галкин А А, Иванченко Ю М, Хирный В Ф ФТТ 20 1237 (1978)
- Иванченко Ю М, Хирный В Ф ФНТ 4 969 (1978)
- Иванченко Ю М, Хирный В Ф, Михеенко П Н ЖЭТФ 77 952 (1979)
- 9. Иванченко Ю М, Михеенко П Н, Хирный В Ф ЖЭТФ 80 161 (1981)
- 10. Медведев Ю В, Хирный В Ф ФТТ 26 1163 (1984)
- Иванченко Ю М, Медведев Ю В, Михеенко П Н, Хирный В Ф, Препринт № 82-38 (Донецк: ДонФТИ АН УССР, 1982)
- 12. Куприянов М Ю, Лихарев К К ФТТ 16 2829 (1974)
- 13. Bean C P, Livingston J D Phys. Rev. Lett. **12** 14 (1964)
- 14. Лихарев К К Изв. вузов. Радиофиз. **14** 909, 919 (1971)
- Градштейн И С, Рыжик И П Таблицы интегралов, сумм, рядов и произведений (М.: Наука, 1971) с. 385
- 16. Rhoderick E H, Wilson E M *Nature* **194** 1167 (1962)
- 17. Ларкин А И, Овчинников Ю Н ЖЭТФ **61** 1221 (1971)
- 18. Андрацкий В П и др. ЖЭТФ **65** 1591 (1973)
- 19. Гинзбург В Л ДАН СССР **118** 464 (1958)
- 20. Губанков В Н, Лихарев К К, Павлов Н Б<br/>  $\Phi TT$  14 3186 (1972)
- 21. Pearl J Appl. Phys. Lett. 5 65 (1964)
- 22. Josephson B D Adv. Phys. 14 419 (1965)
- 23. Huebener R P Phys. Rep. 13 143 (1974)
- 24. Артеменко С Н, Волков А Ф<br/>  $У\Phi H$  128 З (1979)
- Иванченко Ю М, Медведев Ю В, Михеенко П Н, Препринт № 82-37 (Донецк: ДонФТИ АН УССР, 1982)
- 26. Иванченко Ю М, Михеенко П Н ЖЭТФ **82** 488 (1982)
- Иванченко Ю М, Медведев Ю В, Михеенко Π Η ΦΤΤ 25 763 (1983)
- 28. Артемов А Н, Медведев Ю В ФТТ 45 385 (2003)
- Иванченко Ю М, Михеенко П Н, Южелевский Я И Письма в ЖЭТФ 45 483 (1987)
- Пашицкий Э А Основы теории сверхпроводимости (Киев: Вища школа, 1985)
- 31. Besuglyi A I, Shklovskij V A J. Low Temp. Phys. 57 227 (1984)
- 32. Еру И И, Песковацкий С А, Поладич А В ФТТ 21 2004 (1979)
- 33. Хирный В Ф *ФТТ* **41** 577 (1999)
- Де Женн П Сверхпроводимость металлов и сплавов (М.: Мир, 1968) [de Gennes P G Superconductivity of Metals and Alloys (New York: W.A. Benjamin, 1966)]
- Maki K, in *Superconductivity* Vol. II (Ed. R D Parks) (New York: M. Dekker, 1969) Pt. 18, p. 1035
- 36. Абрикосов А А, Горьков Л П ЖЭТФ **39** 1781 (1960)
- Гулян A M, Жарков Г Ф Сверхпроводники во внешних полях. Неравновесные явления (М.: Наука, 1990); Gulian A M, Zharkov G F Nonequilibrium Electrons and Phonons in Superconductors: Selected Topics in Superconductivity (New York: Kluwer Acad./ Plenum, 1999)
- Дуглас Д, Фаликов Л, в сб. Сверхпроводимость (М.: Наука, 1967) с. 9 [Douglass D, Falikov L, in Progress in Low Temperature Physics Vol. 4 (Ed. C Gorter) (New York: J. Wiley, 1964)]
- 39. Чурилов Г Е и др. *ФНТ* **15** 994 (1989)
- 40. Москвин С И ФНТ 11 878 (1985)

- 41. Дмитренко И М ФНТ **22** 849 (1996)
- 42. Березинский В Л ЖЭТФ **61** 1144 (1971)
- Kosterlitz J M, Thouless D J J. Phys. C: Solid State Phys. 6 1181 (1973)
- 44. Artemenko S N, Kruglov A N Phys. Lett. A 143 485 (1990)
- 45. Buzdin A I, Feinberg D J. Phys. (Paris) **51** 1971 (1990)
- 46. Глазман Л И, Кошелев А Е ЖЭТФ 97 1371 (1990)
- 47. Minnhagen P Rev. Mod. Phys. 59 1001 (1987)
- 48. Артемов А Н, Мартынович А Ю ЖЭТФ 109 265 (1996)
- Lawrence W E, Doniach S, in Proc. of the 12th Intern. Conf. on Low Temperature Physics, Kyoto, 1970 (Ed. E Kanda) (Tokyo: Kcegaku, 1971) p. 361
- 50. Артемов А Н и др. Физика и техн. выс. давл. 11 110 (2001)
- 51. Jensen H J, Minnhagen P Phys. Rev. Lett. 66 1630 (1991)
- 52. Максимов И Л, Водолазов Д Ю Письма в ЖТФ 24 (21) 1 (1998)
- 53. Fix A Sh et al. IEEE Trans. Appl. Supercond. AS-3 1608 (1993)
- Гришин А М, Медведев Ю В, Николаенко Ю М ΦΤΤ 41 1377 (1999)
- 55. Артемов А Н, Медведев Ю В ФНТ 28 349 (2002)
- 56. Jiang H et al. *Phys. Rev. B* **45** 3048 (1992)
- 57. Jung G et al. Appl. Phys. Lett. 54 2355 (1989)
- 58. Amatuni L E et al. *Physica B* **173** 316 (1991)
- 59. Аматуни Л Е и др. Письма в ЖЭТФ 50 355 (1989)
- 60. Куприянов М Ю, Лихарев К К УФН 160 49 (1990)
- 61. Мейлихов Е З Сверхпроводимость: Физ., хим., техн. 2 5 (1989)
- 62. Clem J R Physica C 153-155 50 (1988)
- 63. Ebner C, Stroud D Phys. Rev. B 31 165 (1985)
- 64. Blackstead H A J. Supercond. 5 67 (1987)
- 65. Tiernan W M, Hallock R B Phys. Rev. B 43 10508 (1991)
- 66. Винокур В М, Кошелев А Е ЖЭТФ 97 976 (1990)
- 67. Dersch H, Blatter G Phys. Rev. B 38 11391 (1988)
- 68. Yeshurun Y, Malozemoff A P Phys. Rev. Lett. 60 2202 (1988)
- 69. Blatter G et al. Rev. Mod. Phys. 66 1125 (1994)
- 70. Fisher M P A Phys. Rev. Lett. 62 1415 (1989)
- 71. Mocaër P et al. J. Less Common Metals 164-165 1055 (1990)
- 72. Plecháček V et al. Physica C 225 361 (1994)
- 73. Сергеева Г Г *ФНТ* **18** 797 (1992)
- 74. Ikeda R, Ohmi T, Tsuneto T J. Phys. Soc. Jpn. 58 1377 (1989)
- 75. Gammel P L et al. *Phys. Rev. Lett.* **61** 1666 (1988)
- 76. Koch R H et al. Phys. Rev. Lett. 63 1511 (1989)
- 77. Takamura S, Hoshiya T, Aruga T Appl. Phys. Lett. 56 1582 (1990)
- 78. Bowley R M et al. *Physica C* **159** 51 (1989)
- 79. Göldschmidt D Phys. Rev. B 39 2372 (1989)
- Wördenweber R, Heinemann K, Freyhardt H C Cryogenics 28 694 (1988)
- 81. Goldschmidt D Phys. Rev. B 39 9139 (1989)
- Kardiwarman I, Suzuki M, Burr C R J. Phys.: Condens. Matter 1 8491 (1989)
- 83. Veira J A et al. J. Less Common Metals 151 77 (1989)
- 84. Paracchini C Solid State Commun. 74 1113 (1990)
- 85. Frenkel A et al. J. Appl. Phys. 67 3767 (1990)
- Hascicek Y S, Testardi L R IEEE Trans. Magn. MAG-27 1186 (1991)
- 87. Bradley R M et al. J. Phys. A: Math. Gen. 20 L911 (1987)
- 88. Plammer CJG, Evetts JE IEEE Trans. Magn. MAG-23 1179 (1987)
- 89. Resnick D J et al. Phys. Rev. Lett. 47 1542 (1981)
- 90. Hebard A T, Fiory A F Phys. Rev. Lett. 50 1603 (1983)
- 91. Fiory A T, Hebard A F, Glaberson W I Phys. Rev. B 28 5075 (1983)
- 92. Prester M et al. Phys. Rev. B 49 6967 (1994)

McGraw-Hill, 1975)]

(Berlin: Springer-Verlag, 1975)

95.

96.

97.

- Даунов М И, Буттаев М С, Магомедов А Б Сверхпроводимость: Физ., хим., техн. 5 73 (1992)
- Сан-Жам Д, Сарма Г, Томас Е Сверхпроводимость второго рода (М.: Мир, 1970) [Saint-James D, Sarma G, Thomas E J Type II Sperconductivity (Oxford: Pergamon Press, 1969)]

Тинкхам М Введение в сверхпроводимость (М.: Атомиздат,

1980) [Tunkham M Introduction to Superconductivity (New York:

Ullmaier H Irreversible Properties of Type II Superconductors

Кемпбелл А, Иветтс Дж Критические токи в сверхпроводниках

(М.: Мир, 1975) [Campbell A M, Evetts J E Critical Currents in

Superconductors (London: Taylor and Francis, 1972)]

### Т. 174, № 3] ДИНАМИЧЕСКОЕ ДИССИПАТИВНОЕ СМЕШАННОЕ СОСТОЯНИЕ В СВЕРХПРОВОДНИКАХ ІІ РОДА 301

- 98. Clem J R Phys. Rev. Lett. 38 1425 (1977)
- 99. Brandt E H Phys. Lett. A **79** 207 (1980)
- 100. Brandt E H Phys. Rev. B 25 5756 (1982)
- 101. Козлов В А, Самохвалов А В *Письма в ЖЭТФ* 53 150 (1991)
- 102. Kozlov V A, Samokhvalov A V Physica C 213 103 (1993)
- Гордион И М Сверхпроводимость: Физ. хим., техн. 5 1993 (1992)
- 104. Genenko Yu A Physica C 215 343 (1993)
- 105. Genenko Yu A, in Applied Superconductivity: Proc. of the Eur. Conf., EUCAS93, Göttingen, Oct. 4–9, 1993 Vol. 1 (Ed. H C Freyhardt) (Oberursel: Informationgeselschaft Verlag, 1993) p. 733
- 106. Genenko Yu A Phys. Rev. B 49 6950 (1994)
- 107. Хирный В Φ, Семиноженко В Π, Козловский А А, Гринченко Ю А ФНТ 20 774 (1994)
- 108. Семиноженко В П, Хирный В Ф, Гринченко Ю А, Козловский А А Сверхпроводимость: Физ. хим., техн. 6 2010 (1993)
- 109. Seminozhenko V P et al. Физика и техн. выс. давл. **3** 147 (1993)
- Гринченко Ю А и др. Сверхпроводимость: Физ., хим., техн. 5 2064 (1992)
- 111. Лихарев К К УФН **127** 185 (1979)
- Хирный В Φ, Семиноженко В Π, Козловский А А ΦΤΤ 38 2951 (1996)
- Khirnyi V F, Seminozhenko V P, Kozlovsky A A Funct. Mater. 3 179 (1996)
- 114. Clem J R, in Proc. of the 13th Conf. on Low Temperature Physics Vol. 3 (Ed. K D Timmerhaus, W J O'Sullivann, E F Hammel) (New York: Plenum, 1974) p. 102
- 115. Burlachkov L Phys. Rev. B 47 8056 (1993)
- 116. Khirnyi V F et al. Funct. Mater. 3 187 (1996)
- 117. Koppe H Phys. Status Solidi 17 K229 (1966)
- 118. Ulmaier H A, Kernohan R H Phys. Status Solidi 17 K233 (1966)
- 119. Гененко Ю А *Письма в ЖЭТФ* **59** 807 (1994)
- 120. Genenko Yu A Physica C 235-240 2709 (1994)
- 121. Genenko Yu A Phys. Rev. B 51 3686 (1995)

- 122. Гененко Ю А *ФНТ* **22** 1272 (1996)
- 123. Козловский А А, Хирный В Ф ФТТ 42 1780 (2000)
- 124. Evetts J E, Glowacki B A Cryogenics 28 641 (1988)
- Жуков А А, Мощалков В В Сверхпроводимость: Физ., хим., техн. 4 850 (1991)
- 126. Левич В Г Курс теоретической физики Т. 1 (М.: Физматгиз, 1962)
- 127. Yahara A, Matsuba H Cryogenics 29 405 (1989)
- 128. Лифшиц Е М, Питаевский Л П Статистическая физика Ч. 2 (М.: Наука, 1978)
- 129. Абрикосов А А Основы теории металлов (М.: Наука, 1987)
- 130. Jou C J et al. Appl. Phys. Lett. 52 326 (1988)
- 131. Clem J R Phys. Rev. B 12 1742 (1975)
- Хирный В Φ, Козловский А А, Дейнека Т Г Вопр. ат. науки и техн. Сер. 5. Вакуум, чистые металлы, сверхпроводники (11) 46 (2000)
- 133. Хирный В Ф, Козловский А А *ФТТ* **43** 2117 (2001)
- 134. Feynman R P, in *Progress in Low Temperature Physics* Vol. 1 (Ed. C Gorter) (Amsterdam: North-Holland, 1964) p. 17
- 135. Фихтенгольц Г М Курс дифференциального и интегрального исчисления Т. III (М.: Наука, 1966)
- 136. Seminozhenko V P et al. Funct. Mater. 1 19 (1994)
- 137. Geim A K et al. Nature 407 55 (2000)
- Milosevic M V, Yampolskii S V, Peeters F M Phys. Rev. B 66 024515 (2002); cond/mat 0107410
- 139. Bardeen J Phys. Rev. Lett. 7 162 (1961)
- 140. Keller J B, Zumino B Phys. Rev. Lett. 7 164 (1961)
- 141. Гинзбург В Л ЖЭТФ **42** 299 (1962)
- 142. Blinov E V et al. Supercond. Sci. Technol. 4 S340 (1991)
- 143. Долгин А М, Смирнов С Н Сверхпроводимость: Физ., хим., техн. 2 104 (1989)
- 144. Khirnyi V F, Kozlovskii A A, Deyneka T G Funct. Mater. 8 508 (2001)

#### Dynamic dissipative mixed states in inhomogeneous type II superconductors

#### V.F. Khirnyĭ, A.A. Kozlovskiĭ

Institute for Single Crystals, the National Academy of Sciences of Ukraine prosp. Lenina 60, 61001 Kharkov, Ukraine Tel. (380-572) 30-83 11 Fax (380-572) 32-02 73 E-mail: khirnyi@isc.kharkov.com

Dynamic dissipative mixed states, energy dissipation, and the process of transport current's self-magnetic field are considered for the following type II superconductors: low temperature small-crystallite metal films, high temperature polycrystalline films, and bulk inhomogeneous (granular) samples. The special transport properties of such superconductors are due primarily to their morphology.

PACS numbers: 73.50.-h, 74.25.Op, 74.72.-h, 74.80.-g

Bibliography - 144 references

Received 8 August 2003