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Abstract. The major stages of how mathematical statistical
physics has been used in the last fifty years to describe random
medium electromagnetic wave (light) propagation are outlined.
The statistical description is discussed either in terms of the
scalar parabolic equation (quasioptical approximation) —
when the governing parameters are needed, or by writing its
functional integral solution — if the caustic structure of the
wave field is to be analyzed.

1. Introduction

The year 2003 marks the 50th anniversary of the publication
of a widely known work by A M Obukhov [1] in which for
the first time he considered diffraction effects associated
with wave propagation in random media in the framework
of perturbation theory. Earlier, similar studies had been
carried out in the geometrical optics (acoustics) approxima-
tion. The method proposed in Obukhov’s work has not lost
its value so far. It provides a basic mathematical tool for a
variety of technical applications. However, it was shown

V I Klyatskin A M Obukhov Institute of Atmospheric Physics,

Russian Academy of Sciences,

Pyzhevskii per. 3, 119017 Moscow, Russian Federation

V I II'ichev Pacific Oceanological Institute, Russian Academy of Sciences
(Far East Division),

Baltiiskaya ul. 43, 690041 Vladivostok, Russian Federation

Tel. (7-095) 269 12 83

E-mail: klyatskin@yandex.ru

Received 4 June 2003
Uspekhi Fizicheskikh Nauk 174 (2) 177—195 (2004)
Translated by Yu V Morozov; edited by A M Semikhatov

185
185

experimentally by later authors [2, 3] that wave field
fluctuations grow rapidly with increasing distance as waves
(light) propagate in a medium with random large-scale
(compared with the wave length) inhomogeneities due to
the effect of multiple forward scattering. Starting from a
certain path length, calculations based on the perturbation
theory become unacceptable regardless of its form (strong
fluctuation regime). Monographs [4—13] and review papers
[14—18] reflected the general state of the wave propagation
theory in randomly inhomogeneous media at the time of
their publication. These works contain a lengthy bibliogra-
phy. In what follows, we focus on the main stages of the
description of wave propagation in randomly inhomoge-
neous media from the standpoint of mathematical statistical
physics.

Key issues in the description of deterministic problems
appear to be

e transition from the Maxwell vector equations to the
Leontovich scalar parabolic equation (quasioptical approx-
imation [19]);

e the method of smooth perturbations (MSP) proposed
by S M Rytov [20] for amplitude and phase fluctuations with
diffraction effects taken into account (employed in the
aforementioned work of A M Obukhov [1]);

e description of the solution of the parabolic equation in
the operator form or in the form of a path integral [21, 22].

In our opinion, the following steps in the development of
the theory are of primary importance for the statistical
description of the problem:

e development of a statistical theory for the description of
amplitude and phase fluctuations in the framework of the first
MSP approximation for a random phase screen and in the
case of a continuously distributed random medium,;
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e development of a statistical theory for the wave field
description in the framework of the approximation of
dielectric permittivity fluctuations delta-correlated along
the direction of wave propagation (equations for the
characteristic wave field functional and coherence functions
of different orders and for the derivation of the probability
distribution law for wave field intensity fluctuations) [13,
23-25];

e analysis of the wave field caustic structure in a randomly
inhomogeneous medium based on the statistical topography
approach [26];

e analysis of statistical characteristics of reflected waves in
random media [27, 28];

e going beyond the framework of the approximation of
delta-correlated fluctuations of dielectric permittivity (diffu-
sion approximation [13], equivalent to Chernov’s local
method [6] for the given problem).

These issues are briefly discussed in what follows.

2. Original stochastic equations
and some corollaries thereof

2.1 Maxwell equations for a stationary problem
Propagation of a monochromatic electromagnetic wave of
frequency w in a stationary inhomogeneous medium is
described by the Maxwell equations (see, e.g., Ref. [4])

rot E(r) = ikH(r),
rot H(r) = —ike(r)E(r) , (1)
dive(r)E(r) =0,

where E(r) and H(r) are the electric and magnetic field
strengths, respectively, &(r) is the dielectric permittivity of
the medium, and k = w/c = 2n/Ais the wave number (4 is the
wave length and ¢ is the wave propagation velocity). It is
assumed that the magnetic permeability u = 1, the medium
conductivity ¢ = 0, and time dependence of all the fields has
the form exp (—iw?).

Equations (1) can be rewritten as a closed-form equation
for the electric field E(r),

[A+ kzs(r)]E(r) = —V(E(r)VIne(r)) . (2)

The magnetic field H(r) is then computed using equality

1
H(r) = — rotE(r). (3)
ik
We are interested in the propagation of electromagnetic
waves in a medium with weak dielectric permittivity fluctua-
tions. We assume that

e(r)y =1+¢/(r),

where ¢(r) is the fluctuating component of the dielectric
permittivity ((g(r)) = 0). The smallness of ¢ (r) means that
(lei(r)]) < 1. Therefore, Eqn (2) can be written in a simplified
form

A+ K2E() = —k26 (DE(M) - V(EQVa®).  (4)

In Refs [29, 30], the perturbation theory was used to
evaluate depolarization of a light wave in the real atmosphere

at lengths of the order of 1 km; it was shown that
depolarization is very small, and therefore the last term in
the right-hand side of Eqn (4) can be ignored. This allows
passing to the scalar equation

[A+ K2 U(r) = ke (r)U(r) . (5)

It is necessary to formulate the boundary conditions for
Eqn (5) and identify the source of radiation.

2.2 Helmholtz equation (boundary value problem)

We now assume that an inhomogeneous medium layer
occupies a part of space Lo < x < L and that the point
source has coordinates (xg, Ro), where R denotes coordinates
in the plane perpendicular to the x axis. The wave field
G(x,R;xp,Rp) inside the layer is then described by the
equation for the Green’s function

Ox?

= 3(x — x0) O(R — Ry) , (6)

2
{i + Ag + K21+ &(x, R)}} G(x,R; x0,Rg)

where k is the wave number, Agr = 62/6R2, and
¢(x,R) = ¢ (r) is the deviation of the dielectric permittivity
from unity. Equation (6) implies the condition for a derivative
jump at xo,

0
G(X7 R; X0, Ro)

0
P G(X,R;X(),Ro) X

Ox

x=x0+0

— (R~ Ry). (7)

x=x9—0

We suppose that ¢(x, R) = 0 outside the medium layer; the
wave field outside the layer is then described by the Helmholtz
equation

62
{@+AR +k2} G(x,R;x0,Rp) = 0.

The continuity conditions for the functions G and 0G /0x
must be satisfied at layer boundaries. In addition, radiation
conditions must also be satisfied for Eqn (6) as x — +o0.
These boundary conditions can be written as

(E + i\/k—2+—A;) G(x,R;xo,Rp)| =0,
ox x=Lo (8)
(6av - i\/M) G(x,R;xo,Ro)|  =0.

B x=L

For a space that is boundless in R, the operator y/k2 + Ag
in Eqns (8) is defined by the Fourier transformation. It can be
regarded as an integral operator whose kernel is determined
by the Green’s function for a free space (see below).

Thus, the field of a point source in an inhomogeneous
medium is described by the boundary-value problem in
Eqns (6) and (8). This problem is equivalent to the integral
equation

G(x,R;x0,Rg) = go(x — x0, R — Ry)

L
+ J dx/JdR/go(x —x,R—=R")e(x',R") G(x',R";x0,Rp) ,
: ©)

where go(x, R) is the Green’s function in a free space.
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In the three-dimensional case,
r=Vx2+R?,

and this function is described by the integral representation

go(x,R) = Jgo(q) exp {i\/k2 —q? |x| + iqR} dq,

1
o =

The action of the operator y/k2 + Ag, in this case on an
arbitrary function F(R), can be represented in the form of a
linear integral operator,

go(x,R) = —% exp (ikr), (10)

47

V2 + A F(R) = JK(R —R')F(R')dR’,

whose kernel is defined by the equality (see, e.g., Refs[13, 31])
KR—-R")=+k2+Ar 6(R—R")
= 2i(k® + Ar) g0(0,R —R’).
The corresponding kernel of the inverse operator is defined by

L(R—R') = (k* + Ag) ?6(R — R’) = 2igy(0,R —R').

If the point source is situated at the boundary of the layer
xo = L, the wave field inside the layer at Ly < x < L is
described by the equation

62
{W—FAR-‘FICZ[I -‘rﬁ(X,R)}} G(x,R;L,Ry) =0 (11)

with the boundary conditions following from conditions (7)
and (8),

(i+i\/k2+AR) G(x,R; L,Ry) =0,
Ox =Ly (12)
(%7i\/k2+AR) G(X,R;L,Ro) = 7(3(R7R0).

7 x=L

Equivalent to the boundary-value problem in Eqns (11)
and (12) is the integral equation

G(x,R;L,Ry) = g(x — L,R —Ry)

L

+J dx’JdR' glx—x",R—R')e(x',R")G(x',R"; L,Ry),
L

" (13)

corresponding to the point xo = L in Eqn (9).

We note that all these boundary-value problems can be
reduced to problems with the initial conditions for an
auxiliary parameter L taking advantage of the so-called
embedding method (see, e.g., Refs [13, 31]). The basic
equation for a back-scattered field is then a nonlinear
integro-differential equation. A marked simplification is
feasible for waves in stratified media (one-dimensional
problems) when the equations of the embedding method are
transformed into ordinary differential equations with the
given initial conditions; this case allows a sufficiently
comprehensive statistical analysis [13, 31].

If a wave up(x,R) falls onto a layer of the medium
Ly < x < L from the region x < L (in the positive direction

of the x axis), the wave field U(x, R) inside the layer satisfies
the Helmholtz equation

62
{@JrAR + k(1 +g(x,R)}} U(x,R) =0 (14)
with the boundary conditions
0
<a——i\/k2+AR> U(x,R) =0,
X x=L (15)

=2ivVk?2+ Ag u()(L7 R) .

x=Ly

<a% + i\/m> U(x,R)

The field U(x, R) can be represented as

U(x,R) = u1(x,R) + uz(x,R), (16)

% U(X,R) =ik\k? + AR {ul(x,R) + uz(x, R)} ,
where two functions, u;(x,R) and u(x,R), are considered
instead of one, U(x, R). These functions describe waves that
propagate in positive and negative directions of the x axis,
respectively, and are related to the field U(x, R) by equalities
ensuing from (16),

up (X, R) =

(§+ ivk?+ AR) U(x,R),

(17)

i
NN

i 0
xR =—— (L /iP5 A )Ux,R.
2R = e (5 R VR

Differentiation of (17) with respect to x and the use of
Eqn (14) yield a system of equations for the functions u; (x, R)
and u,(x, R) with the boundary conditions ensuing from (15)
that have the form [32]

(%— i\/ﬂ)ul(% R)

-2
= L 8()67 R) U(X, R) )

2k Ar
(E—i- i\/ k2 —+ AR) Mz(x, R)

0x

(18)

112
—F R UeR),

2\/](2 +AR

u1(Lo,R) = ug(L,R), wa(L,R)=0.

The function u, (x, R) describes a wave propagating in the
direction opposite to that of the incident wave, i.e., a back-
scattered field.

2.3 Quasioptical parabolic equation

Ignoring the effects associated with back scattering, that is,
setting u>(x, R) = 0 in Eqns (18), we obtain the generalized
parabolic equation

d k2
QKA >Ux,R -
<6x =

e(x,R)U(x,R),

U(L(),R) :uo(Lo,R), (19)

which allows scattering at different angles (smaller than 7t/2,
however) to be described. In the case of small-angle scattering
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(Ar < k?), substitution of the field U(x, R) in the form
U(x,R) = exp {ik(x — Lo) } u(x,R)
in Eqn (19) yields an approximate quasioptical parabolic

equation adequate for the description of waves in a medium
with large-scale three-dimensional inhomogeneities,

0 i
ox u(xv R) - ﬂ

u(0,R) = up(R),

Aru(x,R) +% e(x, R)u(x,R), (20)

This equation has been successfully applied to the solution of
many problems concerning wave propagation in the Earth
atmosphere and oceans.

We note that both derivation and substantiation of the
parabolic equation itself and the generalized parabolic
equations have been considered in many publications.

Because Eqn (20) is a first-order equation in x with the
initial condition at x = 0, the causality condition in x (with
the coordinate x playing the role of time) is fulfilled for (20); in
other words, the following relation holds for the variational
derivative:

du(x,R)

WZO at .)CI<07 XI>X. (21)

For the variational derivative at x = x’, we have the equality

du(x,R) _ ik S(R — R u(x,R).

de(x—0,R") 2 (22)

In the general case, the quantity du(x,R)/8e(x’,R’) at
0 < x’ < x can be expressed through the Green’s function of
Eqn (20) using the relation

Su(va) _ik AR Y Y
m—i G(x,R,x 7l{ )u(x 7l{ )

The Green’s function G(x,R;x’,R’) satisfies the integral
equation

G(x,R;x",R) =g(x—x",R—R)
lk ¥ " " " "
+E dx" |dR" g(x —x",R—R")
Jx’ .
X S(Xl/7RII) G(X/I7Rl/;.x/7R/),

where the function

g(x—x',R—R’") =exp {% AR}é(R—R’)
- 27ri(xkf ) P {i];((ljc - l;)) 2}

at x > x’is the Green’s function for Eqn (20) in the absence of
inhomogeneities corresponding to the Fresnel expansion of
the Green’s function go(x, R) in Eqn (10). As x — x', Eqn (23)
becomes

G(x,R;x',R’) =g(x—x",R-R)

x—x’

~ =3R-R).

It should be noted that the Green’s function G(x,R;x’,R’)
describes the field of a spherical wave propagating from the
point (x',R").

Integral equation (23) can be written in an equivalent
form as a functional equation in variational derivatives,
3G(x,R;x",R) ik

Se(ER1) 2 G(x, R; &, Ry) G(&,Ry;x',RY)

with the ‘initial’ functional condition

G(x,R;x",R’)| =g(x—x",R-R').

e=0

Introducing the wave field amplitude and phase in
Eqn (20) in accordance with the formula

u(x,R) = A(x,R) exp {iS(x,R) }
allows writing the equation for the wave field intensity
I(x,R) = u(x,R)u*(x,R) as

d
dx
1(0,R) = Io(R).

I(x,R) +% Vr{VRS(x,R) I(x,R)} =0, o

It follows that in the general case of an arbitrary incident
beam of waves, the wave power in the plane x = const is
conserved:

Ey = Jl(x, R)dR = JIO(R) dR.

Equation (24) can be interpreted as a transfer equation for
a conservative admixture in a potential velocity field, for
which the cluster structure of the admixture field is known to
arise (see, e.g., Refs[13, 33—35]). Hence, the realization of the
wave intensity field must also have a cluster structure. In the
case under consideration, this phenomenon is manifested in
the form of caustic structures due to the effects of random
focusing and defocusing of the wave field in a random
medium. By way of example, photographs in Fig. 1 show
cross sections of a transverse laser beam propagating in a
turbulent medium under laboratory conditions [36] at
different intensities of dielectric permittivity fluctuations.
Similar photographs borrowed from Ref. [15] are presented
in Fig. 2. These photographs have been obtained by
numerical simulation described in Refs [37, 38]. The figures
illustrate formation of wave field caustic structures. Figure 3
shows a pool with a clearly visible caustic structure of the
wave field at the bottom. Such structures arise when there are
refraction and reflection of light by a disturbed water surface;
this phenomenon corresponds to scattering from the so-called
phase screen.

2.3.1 Path-integral form of parabolic equation solution. The
solution of parabolic equation (20) can be written in the form
of a path integral. For this purpose, instead of (20), we
consider the equation

0 i
a u(x,R) = —

- 2%k ARM(X, R)

+% e(x,R)u(x,R) + (v(x)VR) u(x,R), (25)

u(O, R) = u()(R) 5

where an arbitrary vector function v(x) is introduced. The
solution of Eqn (25) is a functional of the function v(&), where
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Figure 2. Cross section of a laser beam in a turbulent medium in the strong focusing (a) and strong fluctuation (b) regions (numerical simulation).

It follows from Eqn (25) that
du(x,R)

Sv(r g~ VRUER). (26)

Hence, Eqn (25) can be rewritten as

d i 8
&M(A’R)iﬂ v2(x)

u(x,R)

=1

+% e(x, R)u(x,R) + (V(x)Ve) u(x,R).

The solution of this equation has the form

u(x,R) = exp {ﬁLSvi—zé) dé} w(x,R), (27)

where w(x, R) satisfies the equation

Figure 3. Caustic structure in a swimming pool.

2 w(x,R) = ik e(x, R)w(x,R) + (v(x)Vr)w(x,R),
0 < &< x ie,ulx,R) =ulx,R,v(&)]. Then, Ox 2
w(0,R) = up(R),

(28)

u(x,R) = u[x,R] |V:0 .
which is simpler than (25).
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Thus, the solution of Eqn (20) can be written in the
operator form as

u(x,R) = exp {Zlkjoévézzé) dé} o (R + J:v(é) dé)

confd][one [rom)ed

For a plane incident wave, uy(R) =uy and Eqn (29) is
simplified:

X 52
u(x,R) = upexp {zl—kjo FrETE) df}

X exp {%Lx s(é, R+ LXV(W) dn> dé}

Equation (29) can also be rewritten in the form of a path
integral. For this purpose, the function v(x) in Eqn (28)
should be formally considered a stochastic Gaussian process
with the correlation function

. (29)
v(x)=0

v(x)=0

i

(va(x)vp(x")) = z Bupd(x — x'). (30)

The ensemble average of Eqn (28) over random function v(x)
with the aid of expression (26) and the Furutsu—Novikov
formula of type (48) (see Section 3.3) then yields the closed-
form equation

% <w(x, R)>v = i AR<w(x, R)>v +% e(x, R)<w(x7 R)>v ,
<w(0, R)>v =uy(R),

which coincides with Eqn (20). Hence,
X

u(x,R) = JDv(x) Uo <R + J

0

conft (o |

with the integral measure

V(é)dé>
V(n)dnﬂ de:} (31)

Iy dv(?)
[ TTE o dv(@ exp {(k/2) [ v2(@) de}

Dv(x) =

Evidently, the two forms of the solution in Eqns (29) and
(31) are equivalent. Indeed, it is possible to rewrite Eqn (31) as

u(x,R) = (w[x,R;v(&) + y(&)] >v’y:0

_ <exp {J:v(g) %@) dé}>v wlx,R; y(9)]

= exp {iLxSyi—z(f) dé}w [x, R;y(&)]

which coincides with expression (27).

y=0

)

y=0

2.3.2 Hopf equation. We now consider the functional
¢ [x;v(R), v (R")] = olx;v,v7]

— exp {iJ[u(x, R)0(R') + u* (x,R')o* (R)] dR’} . (32)

where the wave field u(x,R) is a solution of Eqn (20) and
u*(x,R) is the complex conjugate function. Differentiating
(32) with respect to x and using dynamic equation (20) along
with its complex conjugate yields the equality

L
1 . % *
= _EJ[U(R)ARM(X’ R)— v*(R)Agu*(x,R)] [x;v,v*] dR

— %CJS(L R) [’U(R)M(X7 R) — v*(R)u*(x, R)] olx;v,v*]dR,

which can be written in the form of an equation in variational
derivatives,

aav olx;v,0"] = %Js(x, R)M(R)¢[x;v,v*] dR

+iJ[U(R)AR %— o

with the Hermitian operator

Equation (33) is equivalent to the original equation (20). A
corollary of Eqn (33) is the expression for the variational
derivative

5 S
Se(x —O,R) POV 1T

X

M(R)@[x;v,v*]. (34)

|

3. Statistical averaging
We now consider the statistical description of the wave field.
3.1 General case of arbitrary statistics of the field ¢ (x,R)

We assume that the random field ¢(x, R) is a homogeneous
isotropic random field with the characteristic functional

@, [x;y(¢R)] = <6Xp {IJ déJdR'S(évR')l//(f,R')}>-
0
Instead of (33), we consider a more general equation
o gl
a—x (p x’ ’U, v 7 ;7

— %J[S(x, R) +n(x,R)] M(R)g|x; v, v ] dR

S S

o)~ ¢ (RAR GoR

T

@lx;v,v%n)dR
(35)

J {U(R)AR

with an arbitrary function #7(x, R). We then take the ensemble
average of Eqn (35) over the random field ¢(x,R). For the
characteristic functional of the solution of Eqn (20), supple-
mented by an arbitrary function n(x, R),

o[x;v(R),v*(R");n] = @[x;0,0%n] = (@[x;v,0%;1]),
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this gives a closed-form functional equation in variational
derivatives [13],

3 .
5 Pl v, 075 = Oy | x; Plx; 0,07

_ 8
i8n(&,R’)

+i§J7](Y R)V(R)®[x; v, 0" ] dR

e [0 = o R | o

X @x;v,0"5 1], (36)

where the functional

0L W(ER)] = 5o [ (&R

is a derivative of the logarithm of the characteristic functional
of ¢(x,R). Although Eqn (36) is linear, it cannot be solved at
present. Assuming that 5(x,R) = 0, we obtain a nonclosed
equation for the characteristic functional of the solution of
(20) in the form

0 . d
o Qx;v,0"] = <@x {x; m}(p[x; 1),11*]>

X ®[x;v,0"]. (37)

3.2 Approximation of the delta-correlated

random field &(x, R)

The wave field u(x, R) in the plane x is functionally dependent
only on the previous values of ¢(x,R), by virtue of the
dynamic causality principle. However, there can be a
statistical relation between u(x, R) and subsequent values of
¢(x1,R) (x; > x) because ¢(x’',R’) values at x’' < x are
correlated with ¢(¢,R) values at ¢ > x. The correlation
between the field u(x,R) and subsequent values of ¢(x’,R’)
is clearly apparent at x" — x ~ /|, where /| is the longitudinal
correlation radius of the field ¢(x,R). At the same time, the
characteristic correlation radius of the field u(x,R) is of the
order of x in the longitudinal direction. Therefore, the
problem under consideration involves the small parameter
Iy/x, which can be used for the construction of an approx-
imate solution.

In the first approximation, it may be assumed that
ly/x — 0, meaning a transition to the approximation that
the random field ¢(x, R) is delta-correlated in x. In this case,
the values of the fields u(&;,R) at & < x are not only
functionally but also statistically independent of a(nj,R’)
values at n; > x; in other words, the following equality holds
até; <xandn; > x:

<Huf,, 0 R) ) - <Huzl, ><Hs<n,-,R,->>.

(38)

In this approximation, all cumulant functions of the random
field ¢(x, R) have the structure (see, e.g., Ref. [13])

Kn(Rlvxl; cee ;Rmxn)

= Kn(RI, e ,Rn;xl)é(xl — )CQ) N (3(an1 — Xn) 5

and the following equality holds for the characteristic
functional of field ¢(x, R):

: 5
| ) -

For example, if [for the linear parabolic equation (20)] the
field ¢(x,R) is assumed to be a homogeneous random field
delta-correlated in x, then equation (37) for the characteristic
functional @[x; v, v*] of the solution of the problem takes the
form

% O[x;v,0%] = <@x {X; m}‘ﬂx?“’“*»

. o
Ox { i6s<x,R'>} |

— v (R)Aw s ‘Z’ Jdn'}cp[xm]

which in view of (34) can be written in the closed operator
form

k
2
|

SN P

0 *1 o v, ! . *
a@[x,v,v ]—@X{)@ MR )}@[x,v,v ]

—v*(R")Ag (39)

For moments of the field u(x, R),

Mm,,(X'Rl, P

<HH“R xR)> (40)

r=1lgq

R R{,...,R))

which are usually called the coherence functions of the order
2n at m = n, it follows from Eqn (39) that

a i m n
& My, = ﬂ <pz_:1 ARF - Z_:IAR;)an
. 1 m_
Jr@x[x;k(pz:lb(R’ Z(S

)|

(41)

due to the linearity of the original dynamic equation (20).

Equations (41) for moments of the wave field u(x,R) for
delta-correlated fluctuations of medium parameters can also
be obtained by a different, physically more demonstrable
method. It is illustrated by the derivation of the equation for
the mean field (u(x,R)). For this purpose, the original
stochastic equation (20) should be rewritten in the form of
the integral equation

e ) = wo®)exp {5 | o Ry e}

ijvdx exp {fjvs(;@R) d’?} Aru(Z,R).

In taking the ensemble average of Eqn (42) over the random
field ¢(&, R), we take equality (38) into account. This leads to

(42)
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the closed integral equation

(u(x.R)) = uo(R><exp {%rs@,m d«:}>

0

+ 21_ij dé <exp {%JA ¢(n,R) dﬂ}> Ar(u(&,R)).  (43)

0 ¢

For the transition from the integral equation to the differ-
ential one, we note that for delta-correlated fluctuations of
medium parameters, the equality

foof2 )
_ <exp {%Lc ¢(n,R) dn}><exp {%L‘ &(n,R) d’?}>

holds for any arbitrary point 0 < ¢ < x. Introducing the
function

P(x,R) = <exp {%L e(n, R) dn}> ;

we can therefore rewrite Eqn (43) as

i I“ &(x,R)

(u(x, R)) = uo(R)P(x, R) + 5 o P(&,R)

Ar(u(&,R)) de,

whence it is easy to derive the differential equation for
(u(x,R)),

%@(}c7 R)) = 21_k Ar(u(x,R)) + (u(x,R)) % In®(x,R),

M(O7R) = MO(R) ’

which coincides with Eqn (41) at m = 1, n = 0. Evidently,
equations for arbitrary moments of the field u(x,R) can be
obtained in a similar way.

3.3 Approximation of the delta-correlated Gaussian
random field &(x, R)

In the general case, correlation splitting depends on the
properties of the random field ¢(x, R). If ¢(x, R) is assumed
to be a random homogeneous delta-correlated field with the
correlation function

o0

By(x,R) = AR)3(x), A(R):Ji Bi(x,R)dx, (44)
then
O[x;y (&R

1

- 7[: dé “dR’dR AR’ = R)W(E,RW(ER)

and Eqn (39) takes the closed operator form

@[x;v,v7]

0x
_ 7%2”@’(111 AR’ - R)M(R')M(R)®[x; v, v°]

+ﬁ {HU(R/)AR, %

* 8 *
—v*(R")Ag 61}*(R')} dR’}@[x;uv ],

while equations (41) for moments of the wave field u(x,R)
take the form

a 1' m n
a an - E (; AR,, - (; AR(;)an

k2
— g Qi Ry R R) My, (45)
where
ORy,...,R,;R{,...,R})
m m m n
~ 3 AR - R) 23S AR - R)
i=1j=1 i=1j=1
n n
+> D AR/ -R)) (46)

We note that correlation splitting for a Gaussian random
field and its functional is feasible based on the so-called
Furutsu— Novikov formula [41, 42] (see also Ref. [5])

(e(x,R)@[e(x",R")]) = de' JdR'BC(x - x',R—R)

X <ﬁ <D[£(x’7R')]>.

This formula holds for any functional ®@[¢(x’,R’)] of the
Gaussian random field ¢(x,R) and can be regarded as
integration by parts in a functional space [43]. Assuming
that the field ¢(x,R) is a Gaussian, homogeneous, and
o-correlated with correlation function (44), we rewrite
formula (47) at 0 < x’ < x as

(e(x, R)®[e(x", R")])

(47)

= %JA(R — R’)<m (D[s(x’,R’)]>dR’. (48)

We now write equations for the mean field (u(x,R)) and
the second-order coherence function

[, RR) = (1 (x, R,R))
7,(x, R, R") = u(x, R)u*(x,R’),

ensuing from (45) and (46) atm =1, n=0,and m =n = 1:

0 i A k2
a <u(x, R)> =% R<u(x, R)> iy A(O)(u(x7 R)> ,

(u(0,R)) = uo(R), (49)
% Fz(x, R,R/) = i(AR — ARf)Fz(X, R,R,)
—%D(R—R’)Fg(x,R,R’), (50)

I>(0,R,R’) = up(R)ug (R).

We here introduce a new function

related to the structure function of the random field ¢(x, R).
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Equations (49) and (50) are readily solvable for an
arbitrary function D(R) and arbitrary initial conditions. For
example, the mean wave field is expressed as

(u(x,R)) = up(x,R) exp (—% x) ) (51)
where uy(x, R) is the solution of the problem in the absence of
fluctuations of medium parameters,

up(x,R) = [g(x, R —R)uyy(R’)dR’,

the function g(x,R) is the Green’s function in a free space,
and the quantity y = (k2/4)A4(0) is the coefficient of extinc-
tion.

Accordingly, using the variables

1

1
R—R+-p, R'—>R—§p

2

we express the second-order coherence function as
x
(xR, p) = |70\ @, —a ¢

. k2 &
X exXp 1qR——J D{p—q-=|dérdq, (52)
where

1(@p) = s [n(R p)exp (~iaR) dR.
(2m)

Further analysis of the problem depends on the form of
the initial conditions for Eqn (20) and on the fluctuation
patterns of the field &(x, R).

For the incident plane wave case, where

up(R) = ug = const, 7(R,p) = [uo|”, 70(q,p) = |uo[*5(a),
expressions (51) and (52) are markedly simplified and become

(u(x,R)) = ugexp <—% “/x) 5 (53)

1
Ia(x, R p) = o exp (—Z kaD<p>> |

These expressions are independent of the effect of plane wave
diffraction in a randomly inhomogeneous medium. A new
statistical scale p,, then appears in the plane normal to the
direction of wave propagation; it is found from the condition

1.

Z k XD(pcog) =1 (54)
and is called the coherence radius of the field u(x,R). The
coherence radius depends on the wave length, distance
covered by the wave, and statistical parameters of the
medium.

Equations for higher-order coherence functions cannot be
solved in the analytic form; their analysis requires either
numerical or approximate methods.

3.4 Applicability conditions for the approximation

of delta-correlated fluctuations of medium parameters

and diffusion approximation for a wave field

We now consider applicability conditions for the approxima-
tion of delta-correlated fluctuations of the field ¢(x, R). It is
possible to construct a theory of consecutive approximations

to the functional dependence of statistical characteristics of
the wave on the field ¢(x,R). The approximation of delta-
correlated fluctuations discussed in the preceding paragraphs
is the first step in this theory. Other approximations take the
finiteness of the longitudinal radius of the field &(x, R) into
account and lead to a system of closed integro-differential
equations for wave field moments (see, e.g., Ref. [13]).

Thus, it is easy to demonstrate that the approximation of
delta-correlated fluctuations of the field ¢(x, R) for the mean
field (u(x,R)) is valid if the following three conditions are
fulfilled:

Iy <Kl?, olk*F <1, x> (400)~a’l),  (55)
where / and /, are the longitudinal and transverse correlation
radii of the field &(x, R), respectively, and o2 is its variance.

Equations of the second approximation for the coherence
function I';(x, R, p) can be obtained and analyzed in a similar
way. In the case of a plane incident way, the applicability
conditions for the approximation of the delta-correlated
fluctuations of ¢(x, R) for the function I',(x, R, p) are given by

p<x, kx|VA(p)|<1. (56)

It must be emphasized that conditions (55) and (56) are
virtually independent because they impose constraints on
different parameters. Specifically, conditions (56) may prove
to be satisfied when the condition o2k 2/? < 1 is violated. We
also note that conditions (56) impose limitations only on local
characteristics of fluctuations of the field ¢(x,R) and can
therefore be also written for a turbulent medium, whereas the
quantity y = k24(0)/4 is determined by the largest-scale
fluctuations of the field ¢(x, R).

We now turn to the application of the diffusion approx-
imation to the description of statistical properties of the
solution of parabolic equation (20). We note that this
approximation for the problem in question is close in ‘spirit’
to Chernov’s local method [6]; it is physically more relevant
than the formal approximation of the delta-correlated field
¢(x,R), takes the finiteness of the longitudinal correlation
radius of &(x,R) into consideration, and describes wave
propagation in a medium with inhomogeneities elongated
parallel to the direction of propagation [39, 40]. It is assumed
in the diffusion approximation that effects of random
inhomogeneities at scales of the order of / are insignificant.
In this case, equations for average values of products of wave
fields are written down exactly, and the functional depen-
dence of all quantities at scales /| is defined by dynamic
equations in the absence of fluctuations of the medium
parameters (see, e.g., Ref. [13]).

Thus, in the diffusion approximation, the variational
derivative is described by the deterministic equation

o i du(x,R) _0
ox 2k %) &e(x',R")

with the stochastic initial condition

du(x,R) ik , ,

— =—o0(R—R R).

SS(X/,R') . ) 5( )u(x7 )
Therefore,

du(x,R) ik i(x —x") , ,
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In the framework of the diffusion approximation, the
wave field u(x’, R) is related to the field u(x, R) by the equality

u(x',R) = exp {—% AR} u(x,R),

which results from the solution of problem (20) in the absence
of fluctuations. Therefore,

(e o)

X {5(R —R')exp {—% AR}<u(x, R))] ;

and it can be shown that

(u(x,R)) = %quJdR’uo(R’)exp {iq(R —R)

(2m)
2x 2 rx
71“77%L D(x’,q)dx’} (57)

in the diffusion approximation.

At path lengths x> /|, where /| is the longitudinal
correlation radius of the field &(x,R), expression (57) is
simplified and takes the form

(u(x,R)) = ﬁjqudR’ up(R') exp {iq(R -R’)
Cq*x k2
2 2

D). (58)

where
1
D(q) = RJ@ <ﬁ (q”° - 2q’q),q’) dq’,

and @.(q1, q) is the three-dimensional spectral function of the
field ¢(x, R):

o0

B.(x,R) :J dg, qu ®.(q1,q) exp (ig1x +iqR) .

—00

We note that the delta-correlated approximation corre-
sponds to the coefficient D(q) of the form

D(y) =nj¢g(0,q/)dq’.

For an incident plane wave uy(R) = uy; therefore, equality
(58) yields the R-independent expression

(. R) = wexp {5 K2400) .

D(O):nJ@ a” q' | dq’
3 2k ) )
for which the applicability condition is

k2

Similarly, it is possible to derive equations for higher-
order moments of the field u(x, R).

We note that neither the approximation of the field ¢(x, R)
delta-correlated in x nor the diffusion approximation is
applicable in the case of ¢(x,R) = ¢(R) or stratified media
¢(x,R) = ¢(z). In either case, the field ¢(x, R) has a formally
infinite correlation radius along the x axis.

3.5 Amplitude and phase fluctuations of the wave field
(method of smooth perturbations)
We now consider a statistical description of amplitude and
phase fluctuations of a given wave.

We introduce the phase and the amplitude of the wave
field and the complex wave phase using the formula

u(x,R) = A(x,R) exp {iS(x,R)} = exp {ip(x,R)},

where

o(x,R) = z(x,R) +iS(x,R),

7(x,R) =In A(x,R) is the level of wave amplitude, and
S(x,R) is the wave phase fluctuations relative to the phase
kx of the incident wave. Proceeding from parabolic equation
(20), it is possible to obtain a nonlinear equation of the so-
called method of smooth perturbations (MSP) of Rytov for
the complex phase ¢(x,R),
S 04 R) = o AR (5, R) + o [Vao(x R % s(x R).
(59)

In the case of a plane incident wave considered below, it
may be assumed that uy(R) = 1, and hence ¢(0,R) = 0.

The separation of Eqn (59) into real and imaginary parts
leads to the system of equations

105 R) 5 ARS(xR) + 1 [V 25 R)] [V S, R) =0,

0x 2k
(60)
0 R 1 Awr(x. R 1 R
ox S(x,R) — 2% rz(x, R) — % [VR 1(x, )]
+i[VRS(X7R)}2:§8(X7R)' (61)

If the function ¢(x,R) is sufficiently small, the iteration
series in the field ¢(x, R) can be constructed for the solution of
Eqns (60) and (61). In this case, the so-called first MSP
approximation corresponds to Gaussian fields y(x,R) and
S(x,R), whose statistical characteristics are found by statis-
tically averaging the respective iteration series. For example,
the second moments of these fields (including variances of all
quantities) are derived from a linearized system of equations
(69) and (61), that is, from the system of equations

1
a XO(AvR) - _ﬂ ARSO(x7 R) ) (62)
% S0 R) = 2 Ag (. R) + X e, R)
ox olX, 72/( R X0 (X, 28x7 .

The mean values are then obtained by directly averaging
Eqns (60) and (61). A wave field in a randomly inhomoge-
neous system was first described in this way by
A M Obukhov [1].

The linear system of equations (62) can be solved with the
use of the Fourier transformation in the transverse coordi-
nate. Introducing Fourier transforms of all the fields and the



February, 2004

Electromagnetic wave propagation in a randomly inhomogeneous medium as a problem in mathematical statistical physics 179

Fourier transform of the random field ¢(x, R) as

fo(x.R) = [xﬁf(x) exp (iqR) dq
So(x.R) = jsﬁm exp (iqR) dq

o(x.R) = [sq(x)xp (aR) da,

we obtain the solution of the system of equations (62) in the
form

KO

A =5 [ a@sin T - 9, o
k[ 2

Se00) =5 | s(@eos Tox— )z,

In computing concrete integrals involving the random
field ¢(x,R) delta-correlated in x, it is easy to obtain the
correlation function of a Gaussian random field &q(x):

(g, (x1)2q, (x2)) = 2md(x1 — x2)0(q; + ) P:(0,qy) - (64)

We note that if the field ¢(x, R) is nonvanishing only in a
finite layer (0, Ax) and &(x,R) = 0 at x > Ax, then formula
(64) is replaced by the expression

(eq, (¥1)zq, (x2)) = 28 (x1 — x2)0(Ax — x)3(q; + ) P:(0, q;) -

For the fluctuations of &(x,R) caused by turbulent
temperature pulsations in the earth’s atmosphere, we obtain
that in a broad range of wave numbers, the three-dimensional
spectral density is given by

?,(q) = AC}?(]qlB (¢min < ¢ < dmax) » (65)
where 4 =0.033 is a numerical constant and C? is the
structural characteristic of dielectric permittivity fluctua-
tions depending on external parameters of the medium. In
certain cases, the integrals describing statistical characteris-
tics of the wave field amplitude and phase fluctuations and
those containing the spectral function of form (65) diverge.
Then the phenomenological spectral function of the form

2
D,(q) = D.(q) = AC2q " exp (— q_2>

’{!11

(66)

is used, where x,, is the wave number corresponding to the
turbulence microscale.

For a medium that occupies a finite portion of space Ax,
the statistical properties of amplitude fluctuations in the
approximation being considered are described by the ampli-
tude level variance, i.e., by the parameter

a7 (x) = (15 (v, R)),
which, in accordance with formulas (63) and (64), is given by

o2(x) = ” day da, (70 (022, (x)) exp {i(a, + )R}

n2k2Ax [
=" J q9P:(q)
0

kK [. ¢*x . q*x—Ax)
X{l_qQAx {smT—smT dg. (67)

Equation (24) can be used to find the mean amplitude
level. The ensemble average of this equation over the field
¢(x, R) for an incident plane wave yields the equality

(Ix,R)) =1,
which can be rewritten as

(I(x,R)) = (exp {270(x,R) })

=exp {2<;{0(x, R)> + 20§(x)} =1.

Thus, in the first approximation of MSP,

<X0(X7 R)> = —Goz(x)~
The applicability condition for this approximation is evi-
dently

al(x) < 1.

In the first MSP approximation, the following equation
holds for the wave intensity variance, called the scintillation
index:

Ba(x) = (P2(x,R)) — 1 = (exp {4 (x, R)}) — | ~ dog (x).

This implies that in this approximation, the one-point
probability distribution for the field y(x, R) has the form

P(x;y) = \/% eXp{—ﬁ<x+%ﬁo(x)>2}.

Therefore, the wave field intensity is a log-normal random
field and its one-point probability density is given by

1

1,/2my(x)

X exp {— 5 ﬁol(x) In? <1exp {% ﬁo(x)}>} . (68)

Moments of the wave field intensity are then described by the
equalities

(I'"(x,R)) = (exp {2ny(x,R) }) = exp {2n(n — l)ooz(x)} .

P(x;1) =

Two limiting asymptotic cases are typically considered in
statistical analysis.

The first case corresponds to the assumption that Ax < x
and is called the random phase screen. In this case, a wave,
having passed through a thin layer of the fluctuating medium,
propagates further into an empty space. The thin layer hosts
only phase fluctuations of the wave field that thereafter
undergo transformation into amplitude fluctuations by
virtue of the nonlinearity of Eqns (60) and (61).

The second case refers to a continuous medium, i.e., the
condition Ax = x.

The two cases are considered in more detail below for
weak wave field fluctuations.

Random phase screen (Ax < x). In this case, the amplitude
level variance is described by the expression

202 A~ OO 2
O WA A DA

2

ensuing from Ref. (67).
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If fluctuations of the field ¢(x, R) are caused by turbulent
pulsation of the medium, the function @.(q) is described by
formula (65) and integral (69) is easy to compute. Hence, we
obtain the expression

al(x) = 0.144 C2k /x5 Ax | (70)
and therefore the scintillation index is
BE(x) = 0.563 C2k/Ox3/0Ax . (71)

As regards phase fluctuations, the quantity describing the
wave incidence angle at the point (x,R) is of immediate
physical interest:

2(x,R) = % VeS(x,R) .

The formula for its variance, analogous to (69), is

P Ax [* 2x
(o*(x,R)) = 5 Jo q@g(q){l—l—cos%}dq.

Continuous medium (Ax = x). In this case, the amplitude
level variance is described by the formula

n2hk2x [ k. q%x
a5 (x) = ) J q@a(‘]){l—qQ—xsmT}dW

0

The parameters gg(x) and fZ(x) for turbulent medium
fluctuations are given by the expressions

ad(x) = 0.077 C2k/0x /6 )

B3 (x) = 0.307 C2k/6x /6

The variance of the wave incidence angle at the point
(x,R) is then given by

2 o) 2
(a*(x,R)) = %L qus(q){l —l—% sin qk—x} dqg.

In a similar wayj, it is possible to consider the variance of
the amplitude level gradient; the spectral function @,(g) must
then be described by formula (66). For the variance
aqz(x) = ([Vry(x, R)]2> in the case of a turbulent medium
filling the entire space and under condition that the so-called
wave parameter D(x) = x2x/k > 1, we obtain the equation

(see, e.g., Ref. [8])

k2m2x [*° k q*x
2 3 in ——
oq(x) = 5 L q d?g(q){l pEm sin = }dq

1476
B sz (x)

DVo(x)By(x) (73)
where we introduce a natural and medium-independent
length scale in the plane x = const, i.e., the size of the first
Fresnel zone L¢(x) = +/x/k that measures the transitional
light—shadow diffraction region at the edge of a non-
transparent screen (see, e.g., Refs [8]).

In the general case, the validity condition for the first MSP
approximation for amplitude fluctuations is

ai(x) < 1.

The region of amplitude fluctuations in which this
equality is fulfilled is called the weak fluctuation region. In
the strong fluctuation region [where 6 (x) > 1], it is necessary
to consider the entire system of equations (60) and (61).

As regards fluctuations of the wave incidence angle at the
observation point, which are related to fluctuations of the
quantity

#(x,R) = % VeS(x,R) |

they are fairly well described by the first MSP approximation
even for larger values of the parameter o§ (x).

We note that the approximation of the delta-correlated
random field ¢(x,R) for Eqn (20) imposes practically no
constraints on amplitude fluctuations. This makes the
equations for moments of u(x,R) obtained in the previous
paragraphs also valid in the region of strong amplitude
fluctuations. Statistical characteristics of wave field intensi-

ties in this case are analyzed in what follows.

4. Path-integral description of the solution

We now consider a statistical description of wave field
characteristics in a medium with random inhomogeneities
based on the functional description of the solution of the
problem Eqns (29) and (31).

4.1 Asymptotic analysis
of plane wave intensity fluctuations
We consider the statistical moment of the field u(x, R),

Mnn(xaRla .

..,Rgn) = <ﬁ u(x, Rzk,l)u*(x, R2k)> . (74)

k=1

In the approximation of the delta-correlated random field
&(x,R), the function M,,(x, Ry, ..., Ry,) satisfies Eqn (45) at
n = m; for an incident plane wave, it is written in the variables
Ry as an equation with the initial condition

0 i 2n "
—— ) (-7 AR>M;m(X,R1,...,R2n)
(6x 2k = !

kz 2n

8 Lj=1

(=) D(R; = R)Mp(x, Ry, ..., Ray)

where the function D(R) is described by the formula

D(R) = 4(0) — A(R) = 2r J ®,(0,q)[1 — cos (qR)] dq,

and @.(0,q) is the three-dimensional spectrum of the field
¢(x, R) of the two-dimensional vector q.

Using the path-integral description of u(x, R) in (31) and
averaging over &(x, R), we express M,,,(x,Ry,...,Ry,) as

MRy, Ray) = J...JDvl(i) . Dvan(é)

% ik & 1)+ . d k2 & 1)/
expq - (=D | vA@dE— D0 (1)
j=1 0 Q=1

x JXD<R_,- R+ L (') = vi(x)] dx’) df} . (75)

0



February, 2004

Electromagnetic wave propagation in a randomly inhomogeneous medium as a problem in mathematical statistical physics 181

Formula (75) can be represented in the operator form

2n 3 X 2
Mm(%Rl,...,Rzn):HeXp{;—k( 1)H1J Svﬁ(é) dé}
2 2n

X exp {8 Z (71)”[+1

JI=1

x JO D(Rj ~R/+ J [v;(&) = vi(&)] dé) dx’}

If the points Ry._; and Ry coincide, the function
M, (x,Ry,...,Ry,) becomes

<ﬁ [(vaZk—1)>7

which describes correlation characteristics of wave intensity.
If we now set all R; = R, the function

= (I"(x,R))

(76)
v=0

M (x,R,...,R) =TI,(x,R)
describes the nth moment of the wave field intensity.

Before proceeding to the discussion of the asymptotic
forms of the functions I'»,(x, R) for the continuous random
medium case, we consider a simpler problem of wave field
fluctuations behind a random phase screen.

4.1.1 Random phase screen. We consider an inhomogeneous
medium layer that is thin enough to allow a passing wave to
acquire only a random phase increment

k

Ax
SR) =5 ol Ry dz.

(77)
with the wave amplitude unchanged. We assume, as before,
that the random field ¢(x,R) is Gaussian and is delta-
correlated in x. After passing through the inhomogeneous
layer, the wave propagates further in the homogeneous
environment, as described by the equation derived from (20)
with ¢(x, R) = 0. The solution of this problem is described by
the formulas

u(x,R) = exp {i % AR} exp {iS(R)}

k ik 5, .
_ﬁjexp{gv +1S(R+v)}dv,

which are finite-dimensional analogs of formulas (29) and

(31).
We consider the function M,,(x,Ry,...,Ry,). Substitut-
ing (78) in (74) and averaging, we easily obtain the formula

k 2n
M,m(x,Rl,...,Rgn): <m> J...Jdvl...dvzﬂ

2n
X exp {Z_kZ( 1)]+1 ./2

2n

(78)

j+l+] R R, + A/ V])} (79)

which is an analog of (75).

We first consider the case where n = 2 and the observation
points pairwise coincide,

R1:R2:RI7 R3:R4:RH7 RI—R/’:p
Then the function

y(x;R',R',R",R") = (I(x,R")I(x,R"))

is the intensity covariance I(x,R) = |u(x, R)|*. Introducing

new integration variables

vi—-v>=R;, vi—-vwy=Ry, v —v3=Rs3,

1
5(“ +v;)=R

in (79) (with n = 2), we can integrate over R and Rj and thus
obtain a simpler formula

(I(x,R"I(x,R")

k\* ik
= ) JJ dR] dR2 eXp § — R] (Rz — p)
X X

k2Ax

F(R), R2>} , (80)

where p = R’ — R” and the function F (Ry, R;) is found from

the equality
F(R],R2) = 2D(R1) + 2D(R2)
D(R) = 4(0) — A(R) .

— D(R; +Ry) — D(R; —Ry),

As x — oo, integral (80) has the asymptotic form

s o)}

2
+ mk2Ax J d.(q) [1 — cos q_x]

(I(x,R"I(x,R")) =1 +exp {—

k
) k2Ax qx
Xexp{lqp— 5 D(?>}dq
q’x
+Tck2AxJ<I>s(q) [1 — cos <qp 77)}

2
xexp{szAx D<p q]:)}dq+

We note that in addition to p,,,, the problem has acquired
another characteristic space dimension

(81)

X
kpeog

(82)

ro =

With p = O setin Eqn (81), the following expression can be
obtained for the squared intensity variance:

B(x) = (P(x,R)) ~ 1
:1+nAqu4¢5(q)exp{—k22AxD(q}:)}d ... (83)

If fluctuations of the field ¢(x,R) in an inhomogeneous
layer are caused by turbulence, such that @,(q) is described by
formula (65), equality (83) leads to

BA(x) =1+ 0.429 8, (x), (84)
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where f37(x) is the variance calculated using the first MSP
approximation for a random phase screen, Eqn (71).

The above considerations are readily generalized to higher
moments of the field u(x,R), specifically to the functions
I (x,R) = (I"(x,R)). In this case, formula (79) acquires the
form

) = (L) [

2nx
k&N
j
XeXp{2ij_l(_l) vj—F(vl,...,vzn)}7
where

kZAx 2n X
g > =)Dy -y,

Ji=1

F(Vl,...,Vz,,) =

whence it is easy to derive an asymptotic formula for
(I"(x,R)) as x — oo,

pA(x) — 1

<1n(x,R)>:n!{l+n(n—I)T—i-... , (85)

in which f%(x) is given by expression (84). This formula is
discussed below after the wave propagation in a continuous
randomly inhomogeneous medium is considered, because the
results in both cases are very similar.

4.1.2 Continuous random medium. We consider the asymptotic
form of higher moments of the wave field M,,(x, Ry, ..., Ra,)
propagating in a randomly inhomogeneous medium. The
formal solution of this problem is provided by expressions
(75) and (76). They differ from the formulas for a phase screen
in the preceding section in that ordinary integration is
replaced by a functional one.
In this case, as x — oo, the intensity variance

B*(x) = (I(x,R)) — 1

may be described by an asymptotic formula similar to (83),

P =14 x| axe- ) [dagted

k2" (q ,
X exp{ 3 D(E(xfx )>

k2 : q " 1
_TL,D<E(x—x ))dx +... (86)
For a turbulent medium, Eqn (86) implies that
BA(x) =1+ 0.861(B2(x)) ", (87)

where ﬁg(x) is the wave field intensity variance computed
using the first MSP approximation, Eqn (72).

We next consider the highest moments (I"(x,R)) =
I'5,(x,0). Similarly to the case of a random phase screen, it
is easy to deduce that for waves propagating in a randomly
inhomogeneous medium, the expansion

() — 1

(I"(x,R)) =n! 1+n(n—l)T+... (88)

holds for the variance of wave field intensity; this expansion
coincides with expression (85) for the phase screen. Certainly,
B?(x) is found using different formulas in either case.

Formula (89) gives the first two terms of the asymptotic
expansion of the function (7"(x,R)) as fj (x) — cc. Because
B2(x) — 1 as B3(x) — oo, the second term in (88) is smaller
than the first one at sufficiently large ﬁ(f(x). Expression (88)
makes sense only if

2(x) — 1

n(n—1) 4

<1. (89)

However, at fixed f7(x), there always exist numbers 7 such
that condition (89) fails to be fulfilled. Therefore, formula
(88) holds only for not very large n. Also, it should be noted
that the asymptotic regime (88) as [foz(x) — 0o may be
reached rather slowly.

Formula (88) leads to the probability density for the
intensity with singularities. To avoid them, this formula may
be approximated by the expression (see, e.g., Ref. [22])

(I"(x,R)) = nlexp {n(n -1 %} , (90)
with the corresponding probability density given by
P(x,]) = 1
n(B(x) 1)
* ool _[lnz(ﬁ(x)l)/4]2} .
XL exp{ 1 B0 —1 dz. (91)

We note that generally speaking, probability distribution
(91) is inapplicable in the narrow vicinity of I ~ 0 [the greater
the parameter ﬁ(]z(x), the narrower the vicinity]. This is so
because formula (91) implies infinitely large values for
moments of the quantity 1/I(x,R). However, for a finite
value of [foz (x) (no matter how large), the quantities
(1/I"(x,R)) are also finite; hence, the equality P(x,0) =0
must be obeyed. Certainly, such a narrow vicinity of the point
I ~ 0 has no effect on the behavior of moments (90) for large
values of fZ(x).

Asymptotic formulas (90) and (91) describe the transition
to a saturated intensity fluctuation regime in which f(x) — 1
as ﬁg(x) — 00. Accordingly, in this regime,

(I"(x,R)) =n!,  P(x,I)=exp(—1). (92)
Exponential probability distribution (92) implies that the
complex field u(x, R) is a Gaussian random field, with

u(x,R) = A(x,R) exp {iS(x,R) } = u1(x,R) +iuz(x,R),

where u;(x,R) and u;(x,R) are real and imaginary parts,
respectively. The wave field intensity is then given by

I(x,R) = A*(x,R) = u}(x,R) + u}(x,R).

Because the field u(x, R) is Gaussian, the random fields
u;(x,R) and up(x,R) are also Gaussian and statistically
independent, with the variances

(v R)) = (12 (x,R)) = 1.
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It is then natural to assume that their gradients

pl(x, R) = VRul(x,R), pz(x,R) = VRuz(x,R)

are statistically independent of the fields u; (x, R) and u>(x, R)
and are Gaussian homogeneous isotropic fields in the plane R
with the variances

o (x) = (pi (x,R)) = (p3 (x,R)). (93)
As a result, the joint probability density of the fields u; (x, R)
and u,(x, R) and their gradients p, (x, R) and p,(x, R) has the
form

1 il
P(x;ur,uz, py,pa) = m exXp {—uf — = tlfz(‘f)z
P P
(94)

We now consider the joint probability density of the wave
field intensity /(x, R) and the amplitude gradient

ui (x> R) P (X, R) + le(x7 R) Pz(xa R) )

%(x,R) = VrA4(x,R) =
o) = Ve R V(6 R) + 63 (xR

We then have

P(x;1,%) = (6(1(x,R) — I)é(x(x,R) — %))

Ui, P;

= mj_m du J_w duy Jdpl Jdpz exp {ful —u;

2 2
pi +P; 2 2 u1p; + wop,
—fx}é(ul +u —1)5(——“)

/.2 2
uy +u;

R SR (RPN
- 2n02(x) P 202(x)J

Therefore, the transverse amplitude gradient is independent
of the wave field intensities and is a Gaussian homogeneous
field with the variance

<x2(x,R)> = 205()() . (95)
We note that the transverse amplitude gradient is also
statistically independent of second derivatives of the wave
field intensity with respect to the transverse coordinates.

The second-order coherence function in the regime of
strong intensity fluctuations is independent of diffraction
phenomena and is described by expression (53),

I>(x,R=R") = (u(x,R)u*(x,R"))

= (ur(x,R)u; (x,R")) + (uz(x,R)u5 (x,R"))

:e:)(p{f%lf)cD(R—R’)}7

where D(R) = A(0) — A(R). Therefore, the quantity Jpz(x) in
(93) is given by the expression

(96)

which of course coincides with formula (73) for turbulent
fluctuations of the field ¢(x, R),

R0 = PR

©7)

We note that the path-integral representation of the field
u(x,R) permits us to study the applicability limits for the
approximation of a delta-correlated random field ¢(x, R) for
wave intensity fluctuations. It turns out that all applicability
conditions for a delta-correlated random field ¢(x, R) in the
calculation of (I"(x,R)) coincide with the applicability
conditions of the delta-correlated approximation for the
quantity (/*(x,R)). In other words, the approximation of a
delta-correlated random field ¢(x,R) does not affect the
probability distribution for the wave field intensity.

For turbulent temperature pulsations in the weak fluctua-
tion regime, the approximation of a delta-correlated random
field ¢(x, R) is valid if the inequalities

A<LVix <X

are satisfied, with A = 2n/k being the wavelength.

On the other hand, in the strong fluctuation regime, the
applicability condition for the approximation of a delta-
correlated random field &(x, R) is

/1<pcog<r0<x7

where p.,, and ry are given by formulas (54) and (82). All
these inequalities have simple physical meaning. The delta-
correlated approximation holds as long as the correlation
radius of ¢(x, R) (its role for turbulent temperature pulsation
is played by the size of the first Fresnel zone) is the least of all
longitudinal scales in the problem of wave propagation in a
randomly inhomogeneous medium. When the wave propa-
gates in the strong fluctuation region, a longitudinal scale
~ pcog\/k_x appears that gradually decreases and can even-
tually become smaller than the correlation radius of ¢(x, R) at
a sufficiently large parameter [i’oz(x). The delta-correlated
approximation is no longer applicable in such a situation.

Inequalities in the preceding paragraphs may be regarded
as the lower and upper bounds for the scale of the intensity
correlation function. The delta-correlated approximation
then holds only if any scale arising in the problem remains
small compared with the track length.

4.2 Caustic structure of the wave field

in a randomly inhomogeneous medium

The statistical characteristics of the wave field u(x,R)
considered in the preceding paragraphs, e.g., the mean field
and second-order coherence function, by no means reflect the
actual behavior of the wave field in individual realizations of
medium parameters (see Figs 1 —3). For a detailed analysis of
the random wave field structure, it is possible to apply
methods of statistical topography that help to understand
how the caustic structure of a wave field is formed and which
statistical parameters describe it. We note that the theory of
large deviations of a random intensity field was first applied
to the analysis of the problem of wave propagation in a
turbulent medium in Ref. [44] (see also Ref. [10]).

4.2.1 Elements of statistical topography of a random wave
intensity field. By virtue of spatial homogeneity, all one-point
statistical characteristics of an incident plane wave (including



184 V I Klyatskin

Physics— Uspekhi 47 (2)

probability density) are independent of the variable R. It is
therefore possible to introduce specific (calculated per unit
area) values of selected physical quantities that rather
comprehensively characterize the caustic structure of the
wave field intensity. As mentioned above, the size
L¢(x) = /x/k of the first Fresnel zone then serves as the
natural scale length in the plane x = const independent of
medium parameters.

These quantities include:

e The deterministic curve, called the typical realization
I*(x) of the wave field intensity /(x, R), which is the median of
its probability distribution P(x;I) and is determined as the
solution of the algebraic equation jol P(x;1)dl' =1/2. A
property of the median is that for any segment of distances
(X1, X2), the mean value of all segments of distances with
I*(x) < I(x,R) is equal to the mean value of all segments of
distances with I*(x) > I(x,R), i.e.,

1
(X) 1 <1er) = X (o> 160) = E(Xz -X).

e The specific mean total area of regions in the plane {R}
bounded by level lines with I(x,R) > I,

(st.0) = |

I

o0

P(x;I')dI’ .

Here, P(x;I) is the probability density of the wave field
intensity 7(x, R).

e The specific mean field power contained in these
regions,

(e(x,D)) = J:o I'P(x;I')dr.

e The specific mean length of these contours,
(x, 1)) = Le(x){|p(x, R)[5(I(x,R) = ) ),

where p(x,R) = VrI(x,R) is the transverse gradient of the
wave field intensity.

e The estimated mean excess of contours with the
opposite orientation of normal vectors within the first
Fresnel zone,

(n(x,I)) = % L7 () (ae(x, R;1)[p(x,R)[6(1(x,R) = 1)),

where »(x, R; I) is the level line curvature,

1 o*I(x,R)
, RJI) =—— | —p2(x.R) 2222
x(x,R; 1) PR p, (x,R) 2.2
0%I(x,R) 0%1(x,R)
- p? - e
p: (X,R) 6}’2 +2p}"(x7R)pZ(va) 6)/62 :|

We now consider the dynamics of all these quantities as
functions of the distance x traveled by a wave [of the
parameter f,(x)].

4.2.2 Region of weak intensity fluctuations. The weak intensity
fluctuation region is bounded by parameter values ff(x) < I;
in this case, the wave field intensity has a log-normal
character and is described by expression (68).

The typical realization of random intensity for this log-
normal process falls off exponentially with path length,

r@=exp {3 a0},

On the other hand, (/(x)) = 1, and statistics (e.g., moments
(I"(x,R))) are formed by large deviations of /(x,R) with
respect to this curve.

Moreover, various majorant estimates exist for the
realizations of a log-normal process. For example, the
inequality

105) < exp {5 o)}

is fulfilled with probability p = 1/2 for individual realizations
of the wave field intensity over the entire range of distances
x € (0,00). Taken together, these facts suggest the onset of
the formation of the caustic structure of wave field intensity.

As mentioned before, the description thus obtained holds
at values of fj(x) < 1. The method of smooth perturbations
becomes invalid as the parameter f§,(x) continues to grow and
nonlinearity of the equation for the complex phase of the
wave field must be taken into consideration. This fluctuation
region, referred to as the strong focusing region, is very
difficult for analytic studies. A further rise in parameter
Bo(x) (Bg(x) = 10) leads to the saturation of statistical
characteristics of intensity; this region of ff,(x) variations is
called the region of strong intensity fluctuations.

4.2.3 Region of strong intensity fluctuations. It follows from
the expression for probability density (91) that the mean
specific area of the regions inside which I(x, R) > [is given by

1
=B — 1)

o0 L [z (B - 1)/4 dz
XL exp{ zl B =1 } 2 (98)

while the specific mean power concentrated in these regions is
described by the expression

1

(s(x, 1)) =

le(x,1)) = ——e—

=B — 1)
o g
(99)

We note the very slow dependence of the parameter ff(x) on
Bo(x). Specifically, (x) =1 corresponds to the limiting
transition f,(x) — oo, while the value f(x) = 1.861 corre-
sponds to ff(x) = 1.

Asymptotic formulas (98) and (99) describe the transition
to a saturated intensity regime (B(x) — 1). Accordingly, in
this regime,

P(I)=exp(=1), (s(I)) =exp(~1),
{e(I)) = (I+ 1)exp(~I),

and hence specific values of the mean area and mean power
above the level line depend only on 1.

(100)
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For the specific mean contour length, we obtain the
expression

(I(x, 1)) = Le(x){|p(x,R)[§ (I(x,R) = I))
= 2L¢(x)VT (|se(x,R)[S <I(x, R)-1))

= 2Li(x)VI{|q(x,R)[) exp (1)

= Li(x)y/2nad(x)l exp (—1),

where the variance of the amplitude level gradient in the
saturated fluctuation regime coincides with the variance
computed using the first MSP approximation. The max-
imum value in (101) is reached at 7 = 1/v/2.

The mean specific number of contours in this region is
estimated as

(101)

L3(x)
(n(x,1)) = 5 (x(x, R, 1) |p(x, R)[5(I(x,R) — I))
_ LW , _
= == VI(ARA(x, R)S(I(x, R) = 1))

(102)

The maximum value in (102) is reached at I = 3/2; the
value at which the mean specific number of contours
delineating the region I(x,R) > I, coincides with the mean
specific number of contours for which I(x,R) <y is
Iy=1/2.

We note that formula (102) is inapplicable in the narrow
vicinity of 7 ~ 0. For I = 0, it must be that (n(x,0)) = 0.

It follows from expressions (101) and (102) that the mean
length of level lines and the mean number of contours in the
saturated fluctuation region continue to increase as the
parameter f§,(x) increases, even though the mean contour
areas and the powers enclosed therein remain constant. The
explanation lies in the dominant role played by the inter-
ference of partial waves coming from different directions.

The dynamics of level lines strongly depends on the
balance between the focusing and defocusing of radiation by
different portions of a turbulent medium. Focusing by large-
scale inhomogeneities results in high-intensity peaks on the
random relief. In the maximum focusing regime (f,(x) ~ 1),
about half of the total wave power is concentrated in such
high narrow peaks. As the parameter f,(x) increases,
defocusing of radiation prevails, which tends to smooth out
high peaks and create a highly fragmented (interferential)
landscape with a large number of smaller peaks near 7 ~ 1.
Such a dynamic picture has been obtained both in laboratory
experiments (Fig. 1b) and by numerical simulation (Fig. 2b).

The mean length and the mean number of contours
depend on the wave parameter D(x), in addition to f,(x); in
other words, both grow as microscale inhomogeneities
decrease. This dependence is due to small ripples generated
by scattering from small inhomogeneities superimposed on
the large-scale relief.

To summarize, we have attempted to provide a qualitative
explanation of the field caustic structure of a plane light wave
as it transversely propagates in a turbulent medium, as well as
to quantify and estimate parameters characterizing the
development of such a structure. Generally speaking, this
problem may have many parameters. However, by confining
its analysis to a fixed cross section, the solution for a plane

wave at a constant parameter value can be described by a
single parameter f,(x) — the intensity variance in the weak
fluctuation regime. We have analyzed two extreme asymptot-
ic cases corresponding to weak and strong intensity fluctua-
tions. It should be borne in mind that the above asymptotic
formulas are most likely applicable within a certain range
depending on the intensity level /. Naturally, the applicability
limits should extend as this level decreases.

The analysis of an intermediate case corresponding to the
developed caustic structure region (most interesting in
applications) would require the knowledge of the probability
density of intensity and its transverse gradient for an arbitrary
distance traveled by the wave. Such analysis is feasible using
approximating expressions for the probability density of all
parameter values or by means of numerical simulation.

5. Conclusion

We have considered the principal propositions of the theory
of wave propagation in randomly inhomogeneous media
developed during the past 50 years and have identified the
main parameters characterizing wave propagation in a
turbulent atmosphere. It is only natural that many questions
either were discussed only in brief or were beyond the scope of
this review. In our opinion, statistical analysis of the spatial
caustic structure of wave fields appears to be one of the most
promising lines of further research. Moreover, it is necessary
to reconsider the problem of magnetic field depolarization in
random media. As mentioned in Section 2.1, variances of
parameters characterizing these effects are rather small (e.g.,
the mean value of the Umov—Pointing vector). But the
problems concerning the spatial structure of correlational
dependences of vector fields described by Maxwell equations
(3) and (4) in the region of strong wave field fluctuations
remain to be investigated. These problems can be examined
by passing from Eqn (3) to a vector parabolic equation and
thereafter using the approximation of delta-correlation of the
dielectric permittivity field along the x axis.

This work was supported by the Russian Foundation for
Basic Research (projects 04-05-64044, 02-05-64375) and
completed at the University of Padova with the support by
the Italian GNFM-IN-dAM. The author is grateful to
J A Tcebron and R Spiegler who directed his attention to the
problems concerning electromagnetic field depolarization in
randomly inhomogeneous media.
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