Physics— Uspekhi 47 (2) 109—-116 (2004)

© 2004 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 12.38.Aw, 12.38.Lg, 12.60.Jv

Nonperturbative QCD and supersymmetric QCD

V A Novikov
DOI: 10.1070/PU2004v047n02ABEH001632
Contents
1. Introduction 109
2. Nonperturbative dynamics 109
2.1 The Higgs phase; 2.2 The confinement phase; 2.3 The Meissner effect; 2.4 The dual Meissner effect;
2.5 Nonperturbative vacuum in QCD
3. Nonperturbative operator expansion 111
4. Hidden scale in QCD 111
5. Preliminary results 112
6. Supersymmetric QCD 112
7. Gluino condensate 113
8. Strong coupling regime 113
8.1 The power of holomorphy; 8.2 N' = 2 SUSY gluodynamics; 8.3 Condensation of monopoles; 8.4 Recent progress
9. Conclusion 115
References 116

Abstract. Nonperturbative phenomena in quantum chromody-
namics (QCD) and, in particular, confinement are reviewed.
As an example of the treatment, an exact solution of the
N =2 supersymmetric Yang—Mills gauge theory is pre-
sented. Prospects for application of the duality idea in QCD
are discussed.

“Thank God for creating the world with
anything significant being simple, and any-
thing complicated having no significance”
Grigory Skovoroda, XVIII century peripatetic
Ukrainian philosopher

1. Introduction

I belong to the generation of ITEP theorists who never met
Isaac Yakovlevich Pomeranchuk, but have heard his closest
friends retell numerous jokes, utterances, or cock-and-bull
stories about him or liked by him. Many theorists of the older
generation claim that the above quotation from Grigory
Skovoroda! was one of the most often repeated by Pome-
ranchuk. It complied with his ideas of physics, of the
relationship between complexity and simplicity in science.

! Quoted arbitrarily, reproduced from narratives by the staff of the ITEP
theoretical division.
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In the present review, nonperturbative phenomena are
discussed. The importance of this subject is clear, at the very
least, from the fact that our flesh and the mass of numerous
objects surrounding us owe their origin by 99% to non-
perturbative phenomena. Somehow, contrary to the words
of Skovoroda, nonperturbative phenomena represent an
extremely complex subject. The advance toward understand-
ing it is very slow (somewhat like in the case of turbulence).
However, an enormous amount of work has been performed
during the past 25 years, and the contours of simplicity have
started to show through. The picture is not complete, yet, but
certain fragments are quite visible. Some of these fragments
are dealt below with.

2. Nonperturbative dynamics

2.1 The Higgs phase
Our world is described by the Standard Model with the gauge
group U(1) x SU(2) x SU(3). Interactions are mediated by
the respective vector gauge bosons: photons, the W- and
Z-bosons, and gluons. Gravity is also described by a gauge
theory — GRT (general relativity theory). Its mediator is a
massless boson of spin 2 — the graviton. Matter consists of
quarks and leptons. The Standard Modelis arranged in such a
way that neither quarks nor leptons can be assigned mass ‘by
hand’. The mechanical (current) mass of quarks and leptons
originates from interaction with the scalar Higgs field ¢(x).
According to the existing dogma, the Higgs field under-
goes condensation in space, so that the vacuum expectation
value of the field differs from zero: (0|¢(x)|0) = 5 # 0. Thisis
a well understood nonperturbative phenomenon — the Higgs
effect. Itis said that gauge theories are in the Higgs phase. The
nonzero Higgs field vacuum expectation value leads to
nonzero masses of the gauge W- and Z-bosons, quarks, and
leptons. It appears that the Higgs field is a fundamental field
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of the Standard Model. All attempts at constructing the field
¢(x) as a composite field (like the condensate in the
Bardeen — Cooper — Schrieffer theory of superconductivity)
led to contradictions with experimental data. The boson
corresponding to the Higgs field has not yet been found
experimentally. Its revelation is the main task of experimental
physics of the next decade.

Nuclei, protons, and neutrons are composed of light u-
and d-quarks. The mechanical (current) mass of the three
quarks in a nucleon amounts to about 10 MeV, which is to be
compared with the nucleon mass on the order of 1000 MeV.
Thus, the Higgs effect (which is well understood) explains 1%
of the mass of matter surrounding us. The remaining 99% are
related to a much less understood phenomenon — confine-
ment.

2.2 The confinement phase

The fundamental fields of the SU(3), theory of strong
interactions (chromodynamics) are eight gluons Aj (a =
1,...,8) and quark triplets qfi (i=1,2,3 f=1,...,N).
Neither gluons nor quarks are observed in the form of free
states. At small distances quarks are clearly seen (in experi-
ments on deep-inelastic scattering). However, at large
distances only colorless hadrons [SU(3), singlets] are
observed. This phenomenon has been termed color confine-
ment.

A qualitative explanation of confinement resides in that
the force lines of the chromoelectric field between two static
color charges squeeze to a force tube of constant thickness, so
that all the field energy is concentrated within this tube and is,
therefore, proportional to its length: V(r) ~gr. Such a
potential corresponds to a constant interaction force
between two quarks, so they can never become free from
this interaction, i.e., they never leave each other. The potential
interaction energy of light quarks is concentrated in the
energy of the tube, and 99% of the nucleon mass consists of
the chromoelectric field energy inside the tube.

2.3 The Meissner effect

A similar phenomenon takes place in the theory of super-
conductivity. In superconductors, the charged condensate
¢~ (Cooper pairs) differs from zero at temperatures below
the phase transition temperature: (¢~ ") # 0. As a result, a
magnetic field cannot penetrate deep into the superconductor
(the Higgs effect in 3D U(1) theory). Therefore, if a magnetic
charge g (monopole) and an antimonopole ¢ are inserted into
a superconductor, then (to minimize the free energy) the
magnetic force lines form a tube — the Abrikosov tube —
so that the interaction energy between the monopole and
antimonopole is proportional to the distance between them.

2.4 The dual Meissner effect

The analogy to confinement was immediately noticed by
’t Hooft [1], Mandelstam [2], and Gribov [3]. Confinement
looks like the dual Meissner effect when all electric (gauge)
charges ¢ have to be replaced by magnetic charges g (and vice
versa), and the electric field £'is replaced by the magnetic field
B (and vice versa). Thus, the qualitative picture of confine-
ment is that monopoles condensate in a vacuum, and the
charges do not escape.

To answer the questions of what kind of monopoles in
SU(3), chromodynamics are, why they condensate, and so
on, is quite difficult. It is possible to receive direct answers to
these questions with the help of supercomputers. Gauge

theories in continuous spacetime are replaced by gauge
theories on a discrete lattice of finite length. Computers
simulate feasible fluctuations within such a field theory. If
the sizes of significant fluctuations turn out to exceed the size
of the discrete lattice, then one can assume discretization not
to be important and computer simulation not to be far from
real field theory in real spacetime. The success achieved in this
direction has been great (a review of this work is presented in
the article by Bornyakov et al. [4]).

It is possible, however, to understand some properties of
nonperturbative physics without turning to supercomputers.
Here, it is necessary to leave the straight road toward the goal
and to move along detour paths. The main tools along these
paths are the concepts of analyticity and duality.

A good example of ‘detour maneuvering’ in physics is
represented by the work of Gribov, Ioffe, and Pomeranchuk
[5] on the e*e™ annihilation into hadrons, in which analyticity
was applied for relating the behavior of the cross section
(ete” — hadrons) and the properties of electromagnetic
current commutators at small distances.

Similar approach in QCD resulted in the creation of the
method of QCD sum rules, which has permitted the
calculation of hadron parameters in terms of the parameters
of a nonperturbative QCD vacuum.

2.5 Nonperturbative vacuum in QCD
The main elements of the method of QCD sum rules comprise
asymptotic freedom, analyticity (holomorphism), and du-
ality. The first success achieved by this method consisted of
the construction of the dispersion theory of charmonium in
1977 [6]. We shall deal with this example is greater detail.

Of the total electromagnetic current, we single out the part
related to the heavy c-quark, J; = ¢y ¢, and consider the
polarization operator corresponding to this current:

g, =i Jd4x exp (igx) (0| T{J¢(x) J(0) }]0)

= (gwq” — 4uqv) 1°(47) - (1)

It is readily shown that IT¢(¢?) is an analytical function of the
variable ¢ with singularities at g > 0. The discontinuity of
I1¢(¢%) is related to the production of resonances J /\s, /', and
V", as well as of D-meson pairs and so forth.

With the help of analyticity (i.e., dispersion relations) one
can calculate function IT¢(¢?) throughout the entire ¢2-plane
in terms of masses and widths of resonances, and of
parameters of the continuous spectrum. On the other hand,
owing to asymptotic freedom, it is also possible to calculate
the same function IT1¢(g?) far from singularities in perturba-
tion theory, dealing with quarks and gluons.

In the case of heavy c-quarks, the point ¢ = 0 resides
sufficiently far from the threshold, and comparison of the two
different calculations of IT¢(g?) in the vicinity of g% = 0 leads
to the QCD sum rules:

1 1
dg’ nRCp‘:sz 7 RSP, 2
Jor 5 @) @

where RP* and RSP are the cross sections (normalized) of
ete” annihilation, taken from perturbation theory and
experiments, respectively.

This is an example of duality. One and the same physical
reality can be described either in terms of interacting quarks
and gluons, or in terms of hadrons. If relation (2) were valid
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for all n values, then we would have pointwise (local) duality:
RP' = RSP _which certainly does not conform to reality. But,
if relation (2) holds valid for several nearest n values, then
integral duality takes place, where the averaged physical cross
sections differ insignificantly from the averaged theoretical-
perturbative cross sections.

However (and this was a completely unexpected present
from nature), if real masses and widths are substituted into
relation (2), then the lowest J/\y resonance already turns out
to be dominant in the sum rules for the first few n values. As to
theoretical computations, they are represented as an expan-
sion in terms of the small parameter os(m.) — the running
constant of strong interactions at the scale of m,.. Therefore,
in the left-hand side of Eqn (2) one can deal with only the first
term of the expansion, if one is not too interested in an
accuracy exceeding 10%. As a result, it is possible to
‘calculate’ the parameters of the J/\y resonance within
perturbation theory. These calculations are in quite good
agreement with experimental data. Such was the theory of
charmonium in 1977 [6].

The theory described above does have one essential defect.
Within the theory itself it is impossible to find any indications
as to when the duality relation (2) stops being valid. Indeed, as
the number »n increases, the contribution from the J/\
resonance saturates the dispersion integral with a higher and
higher accuracy. On the other hand, neither does the accuracy
of theoretical-perturbative calculations deteriorate as the
number # increases. Therefore, the impression is created that
relation (2) holds valid at all n values, which is, naturally,
wrong. No local duality exists, the narrow J/\y resonance is in
no way similar to the production cross section of cc-quarks in
perturbation theory, and equality (2) must break down at
large n values.

A way to resolve the paradox was proposed in Refs [7, 8].
The idea is that, besides perturbation theory, nonperturbative
fluctuations are also important. A QCD vacuum contains
gluon condensate <OtsG[[vGﬁv> # 0, where G e is the gluon field
tensor, and o is the strong interaction coupling constant. Itis
precisely the interaction of quarks with the vacuum con-
densate that is responsible for violation of the duality relation
(2). At small n, this interaction is small, as compared with
perturbation theory, and relation (2) works well. However,
starting from a certain nc;, the interaction with nonperturba-
tive condensates increases drastically, and duality relation (2)
must be renounced.

The mechanism of duality violation is especially transpar-
ent in the case of polarization operators with light quarks. In
this case, far from physical singularities, the duality relation
has the form

c
Hexp(qz) ~ TP +? <OCSGZVG;‘,> + ... (3)

Here, function IT(g?) is normalized so as to be dimensionless,
the coefficient ¢ is determined by the concrete form of light
quark currents, and the suspension points correspond to the
contribution from operators of higher dimension.

The perturbative contribution of ITP'(g?) depends on
slowly varying functions such as In¢?, i.e., the function IT™
is nearly a constant throughout the entire range of g2 values.
At large ¢ values, the nonperturbative contribution behaves
like an expansion in terms of small power corrections to the
main perturbative term. However, when ¢ decreases, the
power terms ‘burst’ and start to dominate in the right-hand
side of formula (3). The scale separating large and small ¢>

values is obviously determined by the condensate value. The
transition is made very rapidly — it is exponential. This is
what the modified duality looks like.

As was already mentioned, nature is such that power
corrections permit us (in a number of cases) to go so close to
the physical region that resonances start to dominate in the
dispersion integrals. Here, the corrections to the perturbative
computations still remain small. As a result, it is possible to
calculate the parameters of the resonances. This is precisely
what the QCD sum rules are. Thus were the masses and
widths of light mesons calculated [9], as were the masses and
magnetic moments of nucleons [10], and many other things.
The number of articles on the QCD sum rules amounts to
hundreds.

3. Nonperturbative operator expansion

Operator expansion outside the framework of perturbation
theory [11] represents the theoretical justification for the sum
rules. Such an expansion is very similar to the procedure
proposed by Wilson for constructing the effective action. All
theoretical-field fluctuations are assumed to be separable into
short-wave and long-wave fluctuations. The QCD asymptotic
freedom guarantees that the short-wave fluctuations can be
described with sufficient accuracy within perturbation theory
and that their contribution can be calculated explicitly. As to
the long-wave fluctuations, their computation is difficult,
since they correspond to the strong coupling regime. How-
ever, the behavior of such fluctuations is formally described
by effective action with an infinite series expansion in local
operators.

For the T-product of currents J(x) at small distances, the
procedure reduces to the relation

in“x exp (igx) T{J(x),J(0)}

0,
~ zﬂ:cn(uwf) W]Dm% @

g% —00

Here, the parameter pu separates small distances from large
ones. The coefficients c, (i, ¢*) explicitly take into account the
contribution of small distances, i.e., of perturbation theory, of
small-sized instantons, and so forth. They are similar to the
running coupling constants in front of the new operators in
the effective action. Operators O, (u) are similar to the new
terms of the effective interaction for long-wave fluctuations in
the Wilson effective action. The powers in [¢2]~(P™ /24 gre
singled out so as to make the coefficients ¢, (u, ¢2) dimension-
less. Their dependence upon ¢? is very weak (via In ¢2, etc.).

In the case of processes such as annihilation (eTe™ —
hadrons or Z — hadrons), one should consider the vacuum
expectation of the T-product of the appropriate currents.
Precisely the vacuum expectations of operators O, are the
condensates (a;G?), (gq),... All the ignorance concerning
strong interactions is encoded in the form of a series of
unknown condensates. Given a certain level of ingenuity,
this turns out to be sufficient to calculate certain parameters
of certain hadrons.

4. Hidden scale in QCD

It is, however, possible to do without ingenuity and to obtain
important information about strong interactions for nothing.
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Indeed, the interaction of various currents with vacuum fields
is not universal. A p-meson, say, may be produced from a
vacuum by the current j, = iy,u — c?y#d. Perturbation theory
is described by a loop (the polarization operator). Interaction
with gluon fields is also described by a loop and is
proportional to (as/16m)G G 5.

If one now turns to gluon currents, for example, to the
scalar current J = 05G,, G . then perturbation theory is again
described by a loop, while the interaction with vacuum fields
is enhanced: it proceeds in the tree approximation. Thus, the
gluon corrections to gluon currents turn out to be enhanced
with respect to the gluon corrections to the quark currents by
factors on the order of 21/a. Therefore, the scales of duality
violation (which also means the mass scale of resonances) for
ordinary mesons and glueballs are essentially different.

A confirmation of this observation can be found in exact
low-energy theorems. By introducing new objects — con-
densates — into field theory, one can expect new relations to
arise for these objects. One such theorem assumes the
following form [12]:

in4x <T{% G2(x), % G2(0)}> _ %<°‘; G2> (5

In perturbation theory, the left-hand side of relation (5) starts
with terms on the order of 13, however, the right-hand side is
proportional to og (actually, to ocs(o , since a;G? is a
renormalization invariant).

Substituting concrete numbers, one readily verifies that,
while the mass scale for the ‘old” hadrons is A ~ 1 GeV?2, the
mass scale for glueballs in certain channels amounts to
A? & 16 GeV? [12]. This prediction stills awaits confirmation
either from direct experiments or from computer simulations.
(It must be noted that a large scale of duality violation does
not always mean that the lowest resonance has a large mass.
The distance between resonances must be large.)

5. Preliminary results

All these exercises with QCD may provide several lessons.

(1) A ‘physical’ vacuum is not like emptiness. It is filled up
with nonperturbative condensates. The interaction of quarks
and gluons with vacuum fields turns out to be decisive in the
formation of colorless hadrons.

(2) There exist numerous exact theorems for nonpertur-
bative condensates. This subject has not yet been exhausted.
The most recent theorem was revealed at the beginning of
2003 [13].

(3) There exists a natural restriction for the applicability
of QCD sum rules. The procedure for dividing large and small
distances seems trivial and gives rise to no unpleasant
obstacles. However, in spite of asymptotic freedom, the
knowledge of small distances happens to be insufficient.
Besides perturbation theory, it is necessary to take into
account small-sized instantons [11]. These fluctuations are
well known, and they can be taken into account. There also
exist less known objects. Thus, for instance, the divergence of
perturbation theory series (ultraviolet and infrared renoma-
lons) lead to power corrections to the coefficient functions,
which confuses the analysis of power corrections (see the
works of V I Zakharov, starting from the middle of the
1990s).

(4) QCD seems to be too complicated a theory for the
theoretical evaluation of condensates and of other vacuum

structures without turning to supercomputers. More simple,
but still interesting, theories must be sought.

6. Supersymmetric QCD

Such a possibility is presented by supersymmetric theories.
Below follows the outline of a concise introduction to
supersymmetry.

Supersymmetry (SUSY) is the symmetry between the
bosons and fermions:

|boson) SBY |fermion) ,
Ep < Eg, (6)
gluon g « gluino g,

quark q < squark q.

In addition to spacetime x,, superspace contains odd
dimensions described by Grassmann (odd) coordinates 0,,

00‘C (0670'( = 172; {010/;} = 0)
Supercalculus is quite simple, here are all the rules:

Lot L1

0 0 (differentiation),

Jd() 0=1, Jd0~ 1 =0 (integration).

Since the variables 6, anticommute, all superfields have finite
expansions in 0. The scalar chiral superfield has the form

O (x,0) = ¢(x) + 0,9 " (x) + 0,0%F (x) .

It contains two fermion fields y *(x), the scalar field ¢(x), and
an additional scalar field F (x). Thus, the number of fermion
degrees of freedom is always equal to the number of boson
degrees of freedom.

Nonrenormalization theorems represent a key property of
supersymmetric theories. The creators of supersymmetry
Gol’'fand and Likhtman already noted [14] that a significant
reduction of divergences takes place in such theories.

Let us ‘prove’ the theorem that the energy of a vacuum
within supersymmetry is equal to zero.

Proof 1. The numbers of boson and fermion degrees of
freedom coincide, boson and fermion masses are equal to
each other. The boson and fermion loops are present with
opposite signs, so corresponding loops cancel each other out
exactly.

Proof 2. Due to supersymmetry, the energy of vacuum
boson modes, EP, is precisely equal to the energy EI of

n?

fermion modes:

Evac:ZEf?_ZEf:Z(E/?_Ef)EO' (7)

And, finally, we give the superfield proof.

Proof 3. The energy of the vacuum is equal to the integral
over superspace of the vacuum energy density &y,.. By virtue
of the homogeneity of space, the vacuum energy density &y,
cannot be dependent upon coordinates x, and, consequently,

coordinates 0,, 0,. Therefore, one finds that

Eqyae = Jd4x d?0d*0 ey =0 (8)
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due to the rules for integrating Grassmann variables:
[do=o.

All this reasoning provides hope that supersymmetric
theories can be resolved exactly, which, doubtless, is a very
attractive feature of the theory. On the other hand, no exact
supersymmetry is observed in our world. For this, there is no
need to perform special experiments. No one has ever seen a
scalar electron of mass 0.5 MeV. For this reason, theorists
made the assumption that supersymmetry exists (only at
small distances) at high energies, while at low energies it is
violated, so that the masses of the electron and scalar electron
differ from each other. But the high-energy contributions of e
and € cancel out. During the past decade, enormous effort has
been made in searching for supersymmetric particles. The
bounds imposed on their mass exceed a hundred GeV. No
traces of supersymmetry exist yet. And the main argument in
favor of SUSY is its beauty.

In one of his works, N Seiberg wrote: “It would be a pity if
nature did not take advantage of such an excellent idea like
SUSY”. However, as N Bohr wrote on another occasion, ‘it
is not up to us to instruct God on what to use in creating the
world”.

Let us now go back to supersymmetric theories.

7. Gluino condensate

Let us start with SU(2) supergluodynamics. It contains three
gluons Aj (massless, transverse) and three gluinos Ay (two
spin orientations). The gluino field A is the lower component
of the chiral superfield ;. The vacuum averages of the lower
components of chiral fields can be readily shown to be
independent of coordinates. Thus, in particular, the vacuum
correlator

II(x,y) = <0‘T{22(x),22(y)}]0> = const. (9)

Due to the asymptotic freedom at small distances
x —y| € 1/4, where A is a parameter determining the run
of the coupling constant, it is possible to calculate the
contribution to the vacuum correlator I1(x, y). The contribu-
tion of perturbation theory is zero, since correlator (9) emits
two fermions at point x and emits (but does not absorb) two
fermions at point y. No such Feynman diagrams exist. On the
other hand, the SU(2) instanton contains precisely four zero
fermion modes and gives a nonzero contribution to relation-
ship (9).

Let us now consider large distances: |x— y|> 1/4. In the
limit of infinite distances, one should expect the decay of
correlations:

Mxy) = (7). (10)
xX—y|— o0
Thus, for SU(2) one obtains [15]
21074 MS 144
(0Tr 220 = =" ex (—8—7;>—4:—A6. (11)
8o/ &o 5

Similar calculations for SU(N,) yield
i
(2979) = eA® exp (% k> .

The coefficient ¢ is calculated exactly, and the number
k=0,1,..., N. — 1 ‘counts’ the various vacuum states.

Instantons lie in one of the SU(2) subgroups of the
0O(4) = SU(2) x SU(2) group, and precisely one half of the
supersymmetry is not violated by the external instanton field.
This half of supersymmetry is readily shown to be sufficient to
demonstrate the absence of perturbative corrections to
expression (11), just as there are no corrections to the
vacuum energy [15]. Consequently, instanton calculation of
the gluon condensate is a precise calculation.

In relation (11), we first expressed the gluino condensate
in terms of the cut-off parameter M2 and the bare coupling
constant g, and then in terms of the physical parameter A.

Clearly, the physical quantity (4*) must not depend on the
cut-off procedure. Hence, one immediately obtains the ‘exact’
p-function (NSVZ [16]):

o2 1

s) = _3NL B .
Blas) 21 1 — Neo /21

(12)

Such was the state of the theory in the years 1983 —1984.
Ten years later a new revolution took place in supersymmetric
field theories: in a certain sense a breakthrough into the
strong coupling region was achieved.

8. Strong coupling regime

The revolution in supersymmetric field theories is based on
two constituent parts: holomorphy and electric—magnetic
duality.

Holomorphy asserts that the superpotential W, depends
holomorphically on all chiral fields, as well as on the coupling
constants (i.e., it depends on the chiral fields, but not on the
complex conjugate fields).

Electric—magnetic duality signifies that one and the same
physics can be described within either the electric or magnetic
formulation. A well-known example is the Zwanziger
formalism for describing the electrodynamics of electric and
magnetic charges (monopoles).

8.1 The power of holomorphy

The principle of holomorphy, known since the 1980s, started
to be really and fully applied during the revolution of the
1990s [17]. We shall show how it works, taking advantage of
the Wess —Zumino model. The superpotential W(¢) takes the
form

W(g) =me> +g¢>. (13)

If the mass m and charge g are dealt with like external
fields, then the superpotential W(¢) is symmetric relative to
the two U(1) symmetries:

m—exp(io)ym, g—exp(if)g,

with charges

U(1) charge | U(1)g charge

¢ 1 1
0 0 1
m -2

g -3 -1

Interaction does not violate the symmetries, therefore, the
effective action must also satisfy these symmetries. There
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exists only one combination of fields and constants that meets
such requirements:
g¢
Weir = m¢2f[—] ,
m
where f is an arbitrary function.
Let us, however, consider the limiting case: the coupling
constant g — 0, while g¢p/m is an arbitrary number.
In the limit g — 0, the effective action coincides with the
tree action:

Weff = Wtree .
g e 0

Hence, we immediately obtain

g¢

t=°"
m

ST = firee() = 1+ 1,

for all values of . Therefore, the following relationships hold
true:

Weir = m¢2 + g¢3 = Wiree (14)
i.e., the superpotential does not undergo renormalization.
The proof was obtained beyond the framework of perturba-
tion theory. It looks somewhat simplified, but, apparently,
contains no shortcomings.

8.2 N =2 SUSY gluodynamics
Let us describe the ‘exact solution’ obtained by Seiberg and
Witten in 1994 in work [18], which marked the beginning of
the revolution of the 1990s.
Consider N/ =2 SU(2) supergluodynamics. In terms of
N =1 superfields, the theory contains the chiral gauge
supermultiplet W = (2% 4j) and the chiral multiplet
&Y = (o "), where a=1,2,3. Thus, there exist three
vector fields, six spinor fields, and three complex scalar fields.
The interaction Lagrangian has the form

_ i 2 2 L 20 28 g+ V.
L= —16n2Jd Otw —i—ngd 0d° 0D e" D, (15)
where
0 4ri
T=—+—
2n g2

determines the charge and 0-term in the gluon interaction
Lagrangian.

The scalar field ¢“ condensates (the interaction potential
contains flat directions in ¢“¢$“):

(¢°9") =u#0,

and SU(2) symmetry is violated down to U(1). Massless states
arise: the photon Ai, photino (43, ), and massless scalar ¢°.
In addition, massive W *-bosons, a massive Dirac spinor 1#*,
and massive scalar field ¢ exist. This is not the end of the
story: the theory contains massive 't Hooft—Polyakov
monopoles that represent one of the components of the
respective A = 2 supermultiplet. Thus, besides an ‘empty’
monopole, there is a monopole with an occupied fermion

mode and a monopole with two occupied fermion modes.

At low energies, it is possible to integrate out the degrees
of freedom corresponding to heavy W-bosons, monopoles,
and their superpartners. There remain the massless photon,
the photino, and the neutral boson. At a classical level, these
light degrees of freedom do not interact and the theory seems
trivial and uninteresting. However, taking into account
quantum mechanics leads to interaction. The exact Sei-
berg — Witten solution pertains precisely to this ‘noninteract-
ing’ system.

The effective action for the light A/ = 2 supermultiplet
appears as follows:

b 21y 27 -4 OF(P) ljzazf >
ﬁeff—4n1m{Jd0d9¢) 20 +2 d96q52W .
(16)

Here, the function F(¢) is holomorphic. The form of action
(16) is fully determined by N =2 supersymmetry. The
‘charge’ in the effective action is the effective ‘charge’, i.e.,
one finds

FF 1 4mi
() :6752:% 0(¢) +m :

At a ‘classical’ level, the masses of heavy particles can be
written down in a symmetric form

m:\/i|aQe+aDQm|7 (17)
where Q. and Q;, are the electric and magnetic charges,
respectively, and the functions

a=+u,

are holomorphic functions of the variable u = ($“¢“).
At large values of the variable u, the effective charge tends
toward zero and perturbative calculations are reliable:

_ 2
w=a, (18)
CoF i

2
ap(u) faf%a(lnPJrl)‘

The point u = oo is a singular point of functions (18),
namely, the branch point. When the detour around a point
u = oo is performed, functions ap and «a transform into each
other:

() (). e (h 3)
a(u) a(u) )’ 0 -1
Matrix M, is termed a monodromy matrix. The form of
matrix M, follows from the explicit form (18) of the quasi-
classical functions a(u) and ap(u). Clearly, the branch point
cannot be alone: the cut having started somewhere must also
terminate somewhere. This means that functions a(u) and
ap(u) must possess additional singularities.

Simple arguments can be made in favor of one additional
singularity leading to a contradiction. (We shall not dwell
upon a detailed demonstration. As a hint we can say that from
the definition of function t(¢) it is clear that the function

Imt(¢) is always positive and increases at large ¢. On the
other hand, Im 7(¢) is a harmonic function and cannot have a
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minimum.) Let there exist two additional singularities. The
effective action of SU(2)-gauge theory is Z,-symmetric, i.e.,
the theory is symmetric under the substitution u — —u.
Therefore, the singularity points reside at the symmetric
points uy and —uy.

Assume the singularities in Se to be related to the
appearance of massless states. In Ref. [18], the singularity u
was considered to correspond to a massless monopole with
charges (Qc, Om) = (0, 1), so that

ap(ug) =0,  a(ug) #0.

This seems to be insufficient for calculation of the
monodromy in the vicinity of point uy. However (and this is
a very bold step), one can switch from the electric description
of the remaining U(1)-theory to the dual (magnetic) descrip-
tion: ¢ — ¢, W — Wp. In these variables, the interaction of
monopoles looks like QED electrodynamics with charge
unity. QED is an infrared-free theory, therefore, perturba-
tive calculations in the vicinity of ap = 0 are reliable. The
monodromy matrix M, is found in a manner similar to M.

The monodromy near point —u can be reconstructed on
the basis of a detour around points oo and uy, being
equivalent to a detour around point —uy in the opposite
direction, i.e., one has

Mo My M_y = 1.

Thus, duality permits us to fix the monodromy matrices.

The Riemann-— Gilbert theorem is known from mathe-
matics. Consider functions F;(z) to transform as follows when
a detour around z is performed:

Fi[(z — z0) exp (2mi)] = M;;(z0) F(z) -

If {zo} and {M;(z0)} are known, then functions F;(z) can be
reconstructed in one and only one way. In our case, the
monodromies are determined, therefore, Gilbert and Rie-
mann guarantee that mpy(u), m,,(u), and ap(u) can be
calculated in terms of .

The problem seems complicated. In Ref. [18], excellent
mathematics are presented, permitting us to find the exact
solution. However, the solution of an even more general
problem has been known since the 1930s, when problems
concerning the motion of particles in periodic potentials in
solid-state physics were being resolved. In the case of a shift
by a period, monodromy matrices arose for two independent
solutions of the Schrédinger equation. And all (at least,
many) interesting and solvable problems were solved
70 years ago.

Forinformation, we give the exact solution corresponding
to our problem:

a(u) _Qj_lld XU

X )
n Vxz—1
V2 [ VX —u
o) =2 [ o =

Here, uy = 1 (i.e., the variable u is measured in units of u).
One can verify that the ‘exact’ charge t(u) = dap/da
differs from the ‘exact’ perturbative charge, found in Section
7, by nonperturbative power terms. It has been demonstrated
explicitly that the respective first terms of this power

expansion correspond to one-, two-, ... instanton contribu-
tions to the effective charge [19]. This assertion is most likely
correct for all terms of the power series.

Similar solutions have also been obtained for N =2
theory with an arbitrary gauge group and for SU(N;)-gauge
theory with matter [20].

8.3 Condensation of monopoles

It is interesting to break A =2 supersymmetry down to
N = 1. To this end, it is sufficient to add a mass term for
matter to the action:

AW =mTr ¢* = mu.

If the mass is small, one could expect that variation of the
effective action can be taken into account by applying
perturbation theory.

In terms of the dual description, the effective theory in the
vicinity of point # = uy can be represented in the form

Weir = V2apMM + mu(ap)

where M and M are the chiral fields for the monopole and
antimonopole, respectively. The first term corresponds to the
mass term of the monopole, and the second corresponds to
the mass term of matter. The extremality condition of Weg in
variable ap, M, and M is written down as

V2MM + mu' =0,
apM =aM =0.

The solution of the set of equations has the form

m
—u'

V2

(M) = (¥1) = (0) £0.

Thus, we have obtained the Higgs phase of the magnetic
U(1) theory.

For a complex value of 1, the monopole field undergoes
condensation. Recall what we started from. For u = 0 we had,
at the Lagrangian level, massless gluons and gluinos and a
massive (with mass m) matter field. In the exact solution, the
point u = 0 is not singled out in any way, and no massless
charged states exist. Thus, confinement is realized in the
initial theory. The initial hypothesis for monopoles conden-
sating under confinement has been confirmed, in a certain
sense. If u = uy has a complex value, the scalar component of
the chiral monopole field has a nonzero vacuum expectation
value.

8.4 Recent progress

At the beginning of 2003, exact solutions were found for
N =1 supersymmetric SU(N,)-gauge theory with matter in
the adjoint representation and with arbitrary interaction [21],
as well as with matter in the adjoint and fundamental
representations [22]. Apparently, in this direction it turns
out to be possible to obtain certain exact results for
nonsupersymmetric theories [23].

9. Conclusion

In conclusion, it is to be emphasized that:

e the idea of a relationship between confinement and
monopole condensation has been confirmed in supersym-
metric theories;
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e the origin of confinement still remains unclear within
QCD;

e the progress achieved in understanding the issue is,
nevertheless, remarkable;

e the time scale for progress in the theory is on the order of
8 —10 years, and this gives rise to hope.
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