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Abstract. The teaching of optical phenomena can be enhanced
through the use of analogies to the motion of a bi-frequency
pendulum. In this text we target demonstrations to four groups
of students and scientists: younger schoolchildren to high school
seniors; 7th graders to college juniors; college juniors to final-
year graduate students in physics, optics and engineering; and
college seniors to research scientists. The main difference be-
tween the groups is in the level of mathematics required to make
the analogy to optical phenomena. Most of the physical ideas
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may be understood and appreciated even in junior high school
and serve as a motivation for deeper study of mathematics and
science.

1. Introduction

Teaching various phenomena of optics and explaining their
relationship to physics and engineering are noble and
challenging tasks. Excellent university-level textbooks in the
field of optics [1—6] coexist side-by-side with lay-level
descriptions of fascinating optical phenomena in nature and
in man-made devices [7—10]. Analogies with mechanical
motion help students to better digest the ideas of both optics
and mechanics.

A favorite mechanical demonstration is the propagation
of transverse waves along a rope or a string kept at a certain
tension; see, e.g., [6, p. 18]. Qualitative observation of the
mechanical motion is accompanied by demonstrating the
transverse nature of light by watching light pass through
polarizing sunglasses; this is suitable even for kindergarten
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children and is quite affordable for their parents or super-
visors. In addition, with only a minor degree of complexity
one can demonstrate the effect of polarization selectivity
using a simple mechanical construct. At the Middle-School
level one can perform quantitative measurements of the speed
of mechanical wave propagation and its functional depen-
dence on the tension strength.

This paper is devoted to the description of a particular
mechanical device, the bi-frequency pendulum. This versatile
device can be used to demonstrate motion and its relation to
phenomena in optics to diverse levels of audiences: from
younger schoolchildren to research scientists.

2. The device

The main object of this paper’s study is a pendulum that can
swing in two directions, denoted below as x and y, with
gravity serving as the restoring force. The x- and y- directions
of mechanical motion serve mostly as substitutes for the
polarization directions of an optical wave. Other analogies
will be discussed below as well.

A pendulum hanging from a single pivot point yields the
same periods of small oscillations in both directions, x and y,
and, as a consequence, the same period for any other
superpositions of the above motions. The demonstrations
described below are based on the fact that the design shown in
Figure 1 is comprised of slightly different lengths to the
effective pivot point, L, < L, for small oscillations in the
x- and y-directions. A doorframe with two nails in it (Fig. 1a)
is quite suitable for this demonstration, if rotation of the
frame is not required. The length of the string may be about 1
to 2 m, yielding a period of oscillation T'= 2n+/L/g, about 2
to 3 s, which is convenient for measurements. A small
n-percent change in the effective length leads to an n/2-
percent change in the period. Therefore, the length difference
L, — L,, about 0.1 m for the I-meter pendulum, yields the
frequency difference f, —f, = (1/Ty) — (1/T,), about
0.025 Hz. Thus, the period of beats T3, is about 40 s, which
gives plenty of time to watch the gradual changes in the
‘polarization state’, see below. Some familiar household
devices can be easily converted to effective and inexpensive
teaching tools. A builder’s plumb bob offers a well-centered
way to attach the string. A rather heavy bob, 140 to 230 g (5 to
8 0z.) may be used to diminish the damping. A tabletop ‘Lazy
Susan’ makes a good platform; it has a ball bearing providing

~2m 0.3-1m

<

Figure 1. Bi-frequency pendulum. (a) A rather heavy plumb bob, 140 to
230 g (5 to 8 0z.) was used with the aim of diminishing the damping. A door
frame with two nails in the top bar served as an excellent support. (b) The
‘Lazy Susan’ food serving device provided a reasonably good platform
with a ball bearing for its rotation. We used mostly L, ~ L, ~ 1 m,
Ly — L, =~ 0.1 m, so that Ty =~ 2's, Tpeas = 40 s. Some models were built
with smaller mass and with L about 0.3 m, but then the damping could be
uncomfortably large.

rotation. Iron plumbing pipes (1.27 cm or 1/2” in diameter)
with angular or T-couplers may be used to make a frame,
which is affordable and is made of parts available at any
hardware store. It can be attached to the platform by wide-
diameter iron flanges (for rigidity). Pipes about 1 meter in
height can be made using two 0.5 m pipes tightly connected
together, making them easier to transport. Some models were
actually built with a smaller mass and with L about 0.3 m,
based on the ‘Health’ disc of old Soviet production. These
models are easier to transport; however, the damping may be
uncomfortably large.

The pendulum can be easily excited by using small fans
(from microchip coolers) to blow air in a prescribed direction
with precise frequency. The fans used were fed by a DC power
supply, 12 to 26 V, and the periodicity was achieved by
controlling the current by a MOSFET; in particular, Radio
Shack’s IFR-510 served quite well. The low-current signal,
which was controlling the current supplied to the fans, had the
amplitude of several volts applied between MOSFET’s gate
and source. The main current was flowing from drain to
source and was thus controlled by the signal. A frequency-
tunable signal generator produced the control signal. We
successfully explored the possibility of generating a control-
ling signal from a computer via its standard (and hence, at no
extra cost) sound card, and later used that approach
exclusively. Particular implementation used specially
designed freeware ‘Square pulse’ [11], which produced
rectangular AC pulses of about 1.5 V in amplitude at the
output of the sound card. Rectifying those AC pulses with a
voltage doubling scheme and using DC bias from two AAA
batteries, we could get stable control of periodic air flow.
Several small fans have a faster response to time-varying
voltage than does one large fan. This is important if the
frequency in question is higher than or about 0.5 Hz, as
above.

The following sections of this paper are devoted to the
description of various demonstrations with the pendulum and
their relations to optical phenomena.

3. First level: from younger schoolchildren
to High-School seniors

3.1 The superposition principle

as derived from isochronism

A mono-pivotal pendulum on a stationary frame is simple
and quite suitable for a variety of important demonstrations.
One should measure the period of motion for a l-cm
deflection (zero-to-maximum) of, e.g., a 1-meter long pendu-
lum. The period is about 2 s; the exact value depends on the
details, for instance, how the bob is attached to the string.
Measuring the time of about 10 or 20 full oscillations yields
good accuracy if the starting and ending points of the count
are at the same phase of motion and the count is started by an
exclamation ‘zero’ after one or two initial oscillations. A
larger number of swings may lead to a noticeable decrease in
the amplitude, and thus contradicts the purpose of the
experiment. The next step is to measure the period for a
3-cm deflection. The period and the character of motion, as
depicted by the approximate graph x(¢), turn out to be the
same as for the 1-cm deflection (Fig. 2a). Then the same is
done with 2-cm and 4-cm amplitudes, obtaining the same
results (Fig. 2b). A plausible conclusion can be made by the
teacher: one can add (1 cm+3 cm =4 cm), subtract
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Figure 2. Illustration of the superposition principle. (a) Oscillations with
the amplitudes 1 cm and 3 cm have the same period and, plausibly, the
graphs of the motion are different by the vertical scale (factor 3) only.
(b) One can add (1 cm+3 cm =4 cm), subtract (3 cm —1 cm = 2 cm),
and multiply by a number (1 cm x3 = 3 cm) various motion functions
x(1), and each time obtain valid motion functions.

(3 em—1 cm =2 cm), and multiply by a number
(1 em X3,ymper = 3 ¢cm) various motion functions x(z) and
each time obtain valid motion functions. The teacher should
tell the audience that the ‘superposition principle’ is thus
established.

3.2 Resonance

A student should be asked to deflect the pendulum by blowing
in a constant way (DC, in electronic terminology). A
relatively heavy plumb bob, 150 to 250 g, can be deflected in
this way at a very small angle only. The next step is to ask the
students if they can invent a way to get a larger deflection.
Quite soon they discover the idea of blowing ‘in resonance’.
Two students excite the oscillations especially effectively
when they blow from opposite sides of the pendulum
periodically one after another.

3.3 Polarization

Using a single-pivot pendulum, the teacher should suggest to
the students that they generalize the Superposition Principle
to an area that has not yet been covered by experiment:
superposition of x- and y-oscillations, say, with equal
strengths. Adding x(z) and y(¢) ‘in-phase’, one gets
‘+45°-polarization’, using optical terminology. Adding x(z)
and p(¢) with 180° phase shift, one gets ‘—45°-polarization’.
With a time delay +7/4 or —T/4 between the original x(7)
and y(7), one gets ‘right circular’ and ‘left circular’ polariza-
tions. Elliptical polarizations of all types constitute a natural
continuation of these observations.

Playing with polarizers is real fun, and should definitely
accompany mechanical experiments with the pendulum and
the waves on a rope or a string. Class-wide optical demonstra-
tions are more cost-effective if a large sheet of polarizing film
is bought (e.g., from Edmund Scientific) and then cut into
small pieces. Demonstrations can also be facilitated by
commercial polarizing sunglasses, about $10 apiece. A
combination of polarizing glasses and polarizing filters that
can hang on one’s regular glasses is especially convenient.
Glasses offer the advantage of sitting firmly on one’s face and
do not require an extra hand to hold them, while filters can be
easily manipulated by one hand, leaving the other hand for

further experiments. The blue color of the sky and specular
reflections from dielectric surfaces (not necessarily transpar-
ent ones) are natural and important sources of polarized light
(the Brewster effect). These must be compared to metallic
reflections, diffusive reflections, and white clouds, which
generate non-polarized light.

3.4 Dependence of the oscillation period T
on the pendulum’s length L
Quite traditional (albeit important) experiments should be
done to measure the dependence of the oscillation period T on
the pendulum’s length L. The qualitative character of this
dependence, that T grows as L grows, is easily observed and
understood even at the kindergarten level. An exact graph of
the square of the period T2 versus the length L should give
straight line; this allows visualizing experimental errors.
After that short introductory study of and playing with
the mono-pivotal pendulum, we now return to the bi-
frequency pendulum.

3.5 Beats of the bi-frequency pendulum

The basic experiment is started by launching ‘+45°-polarized’
motion. The relative phase delay between x- and y-oscilla-
tions gradually grows. When it reaches 1/2, one observes
‘circularly polarized’ motion. The evolution of motion up to
this moment is analogous to the action of a quarter-wave
plate upon a monochromatic light beam. At the moment
when the phase delay reaches m, one observes ‘—45°-
polarization’; this is equivalent to the action of a half-wave
plate in optics. Then the process goes through ‘elliptically
polarized’ stages to the circular motion of opposite sign, 3r/2
phase shift. The complete period of beats T}, corresponds to
the return to the original ‘+45°-polarized’” motion. Good
observation conditions are achieved if the period of beats Ty,
is much longer (30 to 50 times) than the basic period T of the
pendulum’s oscillations. Then one can appreciate the
‘instantaneous view’ of the polarization state, as if it
consisted of the discrete stages depicted in Fig. 3.

3.6 Colors of stressed plastic positioned

between crossed polarizers

This demonstration requires a piece of plastic in which strong
anisotropy was induced in the thermo-manufacturing pro-
cess, or is induced by applying a bending force to the piece. An
audiocassette case or a transparent plastic ruler usually have

7 0-0-8-y
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Figure 3. Sequence of the motion patterns of a bi-frequency pendulum.
The ‘instantaneous view’ of the polarization state, as if it consists of
discrete stages, is depicted in the figure. We start with the value
x(t=0)=y(t=0) =a, dx/dt|, = dy/dt|, = 0 (upper left entry, +45°-
polarization), i.e., with zero phase difference between x and y. Each
subsequent pattern corresponds to a (m/4)-increment of the phase
difference, so that in the last entry (lower right), this difference is equal
to 2m + m/4.
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the needed anisotropy. One should place this piece between
crossed polarizers. The best way to watch the resulting color
patterns (usually very beautiful) is to look at a spatially
extended source of white light, e.g., a white ceiling or a
fluorescent lamp. One should take the time to watch the
patterns under independent changes of orientation of both
the plastic element and polarizer. Use of the blue scattered
light of the sky as the source of reasonably well-polarized light
refreshes the knowledge of the properties of Rayleigh
scattering; in this case only one analyzer is sufficient.
Another well-accessible source of polarized light is a beam
of specular reflection from a dielectric (glass, a floor tile, etc.).

The teacher may discuss the time delay of one polarization
component in comparison with the other one. The delay is
almost the same for all visible colors. However, the same time
delay constitutes different fractions of the optical cycle for
different wavelengths and that is the explanation for the nice
color patterns.

4. Second level: from 9th grade of High School
to 4th year of undergraduate program

4.1 Measurement and calculation of the beat period T
First, one should separately measure the periods for x- and
y-oscillations with the best possible accuracy. Using a larger
number of periods, almost down to a complete stop, is
permitted here, since the isochronism of small oscillations
has already been established. Important reminder: make sure
to start all counts with ‘zero’ instead of ‘one’. The next step is
to measure the complete period of beats T}, the time when the
polarization comes back to its original state.

Here is the reasoning, which even the least math-oriented
students will probably understand. One complete extra
period of x-oscillations is covered during the time T} in
comparison with the y-oscillations:

Ty =NT, = (N+ 1)Tx.
Hence,

N(T, — Ty) = Tx.
Therefore,

T.T,
Ty =—-21—.
T, T,

This actually means that the beat frequency
1
fo= T =fi—1f-

It is important to compare the measured period of beats with
the value from the above calculations. It is also worth
discussing the formula

T2
Tb ~ -0 .
T\f - Tx

Any formula claiming better accuracy is senseless, since T} is
not well defined experimentally for incommensurate 7 and
T,

! According to legends about L D Landau, he could forgive somebody for
making an honest mistake in a scientific work, but ‘overestimation of

accuracy’ (i.e., not taking into account all the terms of the given order of
perturbation theory) was considered by him to be a deadly sin.

One should also teach students how good accuracy may
be achieved. Individual effective lengths for x- and
y-oscillations cannot be measured very accurately, since the
position of the bob’s center of gravity, first, cannot be well
observed, and, second, is not directly connected with the
oscillation period (e.g., one must calculate the moment of
inertia). To the contrary, the small difference AL between L,
and L, can and should be measured with good accuracy.

4.2 Lissajous figures, the Foucault pendulum,
and uniaxial crystals
Senior participants in the demonstrations declare quite
frequently that this is a Foucault pendulum and that the
motion observed may be classified as Lissajous figures.
Teacher, beware: none of the above statements is true; see
comments in Appendix 8.1. Besides that, Appendix 8.2
contains comments on depicting the properties of uniaxial
crystals with the use of a bi-frequency pendulum. However,
the analogy is purely visual.

We present below in Sections 4.3 and 4.4 the description of
two mechanical experiments aimed at understanding how a
Liquid Crystal Display works.

4.3 Preservation of polarization direction

under fast turning of the platform

One should start with a pure-mode motion, e.g., with pure y-
motion (lower-frequency mode). Fast turning of the platform
by 90° keeps the polarization unchanged in ‘absolute space’
and hence the motion is switched into high-frequency mode:
into x-mode, from the point of view of the platform. The same
situation occurs with the x — y transformation under fast
turning of the platform by 90°. Such behavior is described in
scientific literature as ‘anti-adiabatic’ motion. Actually, the
preservation of polarization in absolute space also holds for
fast turning by any angle, but then the resultant motion will
demonstrate typical beats, shown previously in Fig. 3.

4.4 Adiabatic following

Start the rotation of the platform gradually: by much less
than 90° for a time equal to the period of beats. Then one sees
a surprising result. Namely, the original ‘linear polarization’
stays linear and seems to follow adiabatically the instanta-
neous orientation of the frame. (By the way, here one should
reject any recollections about the use of the word ‘adiabati-
cally’ in molecular physics.) The same result is equally valid
with the other linearly polarized eigenmode. The important
thing is the smoothness and slowness of switching the rotation
‘on’ and ‘off’. During the rotation, in-between ‘on’ and ‘off’,
the polarization becomes slightly elliptical, but at the end it
will be restored to the original linear type of polarization, to
the original eigenmode.

There are additional experiments for preparing the
audience for the explanation of the adiabatic following
regime. One should start a linearly polarized (e.g., low-
frequency) y-eigenmode, and then quickly turn the platform
by a small angle, e.g., by 15°. The performer should direct the
audience’s attention to excitation of the other mode
(x-mode). This excitation, even if small, reveals itself clearly
by the subsequent rise in elliptical motion, as in Fig. 3.
Launch the pure y-eigenmode again, at this new position of
the platform, and again quickly turn the platform in the same
direction, at the same small angle, and with the same result.

Here is the explanation of adiabatic following that is both
scientifically correct and may be understood at the lowest
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level of mathematics comprehension. Under slow rotation,
the device continuously ‘tries’ to excite the ‘wrong’ mode (see
the above preparatory experiments). However, it tries to
excite the high-frequency mode using for that purpose the
low-frequency excitation force from the actual oscillations
present. But we have seen in the experiment in Section 3.2 that
excitation out of resonance is not effective. Therefore, the
‘wrong’ mode is not excited to any considerable level. This is
not an easy point, and time should be allocated to digest it.
Actually, there is a one-to-one correspondence between this
seemingly primitive explanation and the Slowly Varying
Envelope Approximation (SVEA) of the Maxwell equations
in a twisted anisotropic medium (shortened equations in
Russian scientific terminology; one of the authors, B Ya Z,
learned these from his informal teachers, R V Khokhlov and
S A Akhmanov). Therefore, this explanation is worth
learning; it introduces the general notion of adiabatic
following.

An additional pendulum demonstration is related to the
explanation of how Liquid Crystal Displays work. Pulling
two supporting strings strongly in opposite directions, one
can effectively transform our pendulum into a mono-pivotal
device. Symmetry implies that this new pivot point will be on
the platform’s axis. Then, no rotation, be it slow or fast, can
influence the pendulum’s oscillations in absolute space.
Interpretation of this in the platform’s frame is that now all
eigenmodes are degenerate, i.e., have the same frequencies
and, hence, excitation of the ‘wrong’ mode (by the Coriolis
force, by the way) is always in resonance.

Appendix 8.3 contains an everyday analogy for explaining
the qualitative difference between the two regimes, adiabatic
and non-adiabatic. However, that example does not have an
underlying similarity of equations.

4.5 How Liquid Crystal Displays (LCDs) work

Switching from the regime of adiabatic following to the
regime of plane preservation for a pendulum in absolute
space is analogous to the principle of operation of LCD-
displays in watches, calculators, and a multitude of other
devices. Numerous excellent descriptions of the mechanism of
LCDs exist in the literature; we can recommend, for example,
monographs [12, 13]. One should first demonstrate the
presence of the input polarizer inside the display by watching
it through another polarizer, e.g., sunglasses. Most people are
actually surprised by this observation. Next, one should give a
short description of the Nematic Liquid Crystal (NLC),
whose anisotropic molecules produce a noticeable difference
in the speed of light for two mutually orthogonal linear
polarizations. A discussion of the softness of the orientation
of the NLC and polishing technology to fix the orientation at
the cell walls explains the design of the Twisted Nematic LCD
(TNLCD). This can be followed by a description of the
second polarizer (working actually as an analyzer) oriented
at 90° to the input polarizer. Then matted aluminum foil
should be mentioned, which reflects light in a diffuse manner
but preserves its polarization. Finally one should describe the
role of miniature flat electrodes, which are electrically
conductive but surprisingly transparent.

The TNLCD works in the following manner. When no
voltage is applied to the electrodes, adiabatic following leads
to a 90° rotation of polarization by the 90°-twisted nematic,
and a crossed polarizer/analyzer pair transmits light back and
forth — this is the ‘white’ background of the display (Fig. 4a).
When the voltage is applied to a particular group of
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Figure 4. How a Liquid Crystal Display (LCD) works. (a) An input
polarizer polarizes incident light. During propagation the electric vector of
light follows adiabatically the orientation of the twisted nematic. There-
fore, light is transmitted by the crossed analyzer, diffusely reflected and
transmitted back. This is the white background of a display. (b) Applica-
tion of voltage to the cell’s transparent electrodes yields vertical isotropic
orientation of the nematic. As a result, propagation does not change the
electric vector of light, and the crossed analyzer absorbs the light. This is
the blackened element of the display.

electrodes, the electric field orients the NLC vertically, just
as pulling two ends of the string makes the pendulum
isotropic. Then, the polarization stays intact in absolute
space and the crossed analyzer blocks the transmission of
light — this is the dark part of a digit or letter (Fig. 4b).
Actually, AC voltage is commonly used to suppress the
electrolysis processes.

Two limiting cases will help in digesting and remembering
this information. If the battery is dead or removed from the
device altogether, the adiabatic following is in place all over
the screen and the entire surface is ‘white’. If the liquid
crystalline material leaks out of a part of the cell, then the
corresponding part of the display is dark due to the action of
crossed polarizers, independently of the presence or absence
of the battery.

4.6 Notions of the carrier frequency

and the modulation envelope

Launching +45°-polarization means excitation of both
modes, x and y, with equal amplitudes. It is easy to arrange
an observer’s position by the pendulum in such a way that
they see +45°-projection only. Then, the signal Sys(¢) is equal
to

Sus(1) = 0.5A4¢[cos (2mt fx) + cos (2mtf,)]

[t )] g [ 4511,

=4
0 COS 5

(1)

A simple trigonometric identity was used to get the second
expression. It contains the product of two factors. The first is
the envelope that describes beats. The second is the carrier-
frequency cosine function. The period of beats, as we know, is

1
_f:x _f;’ '

Meanwhile, the envelope reproduces itself after two complete
beat cycles only, 2T, (see the graph in Fig. 5). It is only the
square of the envelope, or intensity, which has the standard
beat period T,. The human eye does not recognize the change
in the sign of the envelope, since the phase of the carrier is not
captured by human perception. To elucidate this change of
sign, one can attach a second pendulum to the same frame (see

Ty
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Figure 5. Beats as observed in the projection to the +45° axis. Carrier-
frequency oscillations are multiplied by the amplitude envelope. The sign
of the envelope is restored after two (2!) complete periods of beats of the
intensity.

Figure 6. Setup demonstrating the sign of the envelope for the interference
case. The auxiliary pendulum is tuned to the ‘carrier’ frequency, i.e., the
frequency equal to the arithmetic average (fy + f;,)/2 of the frequencies of
x- and y-oscillations.

Fig. 6) and spend some time adjusting its frequency to the
carrier, i.e., to the arithmetic average (fy + f,)/2. Then one
launches both the bi-frequency pendulum and the reference
one in the same +45°-direction and with the same initial
phase. Watching the +45°-projection only, one observes a
visually surprising result described by unsurprising formula
(1): the envelope of beats changes its sign after one cycle of
beats; the sign is restored after two complete beat cycles only!
Two phenomena (and maybe more) in physics produce
this change of sign after one cycle and complete restoration
after two cycles; they are discussed in Sections 6.8 and 6.9.

5. Third level: from 3rd-year undergraduate
to Sth-year graduate students

5.1 Resonance curve and phase shift under detuning

One should write Newton’s Second Law equation for a
frictionless harmonic oscillator, which has an eigenfrequency
fo and is subjected to the action of monochromatic external
force A cos (2nf1):

2

m % + (2nfo)’x(1)| = Acos (2nf7). @

Generally, the frequency f of this external force is not
equal to the eigenfrequency f; of the oscillator. The steady-

Figure 7. Standard resonance curve: response of a linear harmonic
oscillator versus frequency f of the applied force. The phase change by
180° at the passage of the resonance should be emphasized.

state solution of this equation is reached if one considers the
presence of an infinitesimally small friction; however, the
solution itself is finite even in the approximation of zero
damping:

A cos(2nft)

O = G R fT (3)

The graph of this simple but important function,
1/(f¢ —f?), is shown in Fig. 7. Quantitative measurement
of this curve for the pendulum is rather difficult: one should
change the frequency f of the applied force while keeping its
amplitude 4 constant, the latter requirement providing the
main obstacle. However, one can demonstrate the striking
character of the curve. The response is ‘in phase’ with the
force when the external force has the frequency f below
resonance, f < fy, and the response is ‘counter-phase’, i.e.,
with a phase shift 180° to the force, when the external force is
above resonance, f > fj. In the vicinity of the resonance one
may use the approximation

1 1 1
2= (- +) " 26l —1)"

4)

Then, equal small detuning values | fy — f| above and below
resonance produce equal responses, but one is 180° phase
shifted with respect to the other (see Fig. 7).

It is here that the setup with small fans controlled from a
signal-generator or from a computer’s sound card is used for
the first time. The moments of the positive maximums of the
force are clearly recognized if one listens attentively to the
buzz sound generated by the fans.

By the way, the 90° value of the phase shift at exact
resonance, as well as the finite value of the response amplitude
at exact resonance, requires taking friction into account. This
90° phase shift at exact resonance is also easily observable
with the use of the excitation device described above.

Certain ingenuity is required to demonstrate equal moduli
and 180°-shifted phases of the responses at the small detuning
values above and below the resonance, Eqn (4). Here, the bi-
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frequency pendulum may be used. If monochromatic force is
applied in the +45° direction, then the moduli and the phases
of the x- and y-components of the force are the same.
Meanwhile, if at the same time the frequency f of this force
exactly equals the arithmetic average of two eigenfrequencies,
f= (fx +/,)/2, then the moduli of x- and y-responses are the
same, but the phases are shifted by 180°. As a result, steady-
state oscillations are oriented at —45°. Such a motion of the
pendulum looks extremely counter-intuitive and hence gives a
lot of food for thought!

The following optical and electromagnetic phenomena
may be discussed after the above demonstrations. The
refractive index of glass and of most other materials
transparent in the visible range is due to strong resonance
transitions in the UV range. That is why the response of the
medium is positive, and the relative dielectric constant &/¢,
along with the refractive index #n, are greater than 1.

On the contrary, plasma (e.g., free electrons in the
ionosphere) has zero eigenfrequency of the equivalent
oscillators, since the restoring force is zero for free electrons.
Therefore, the response of the medium is negative. The
dielectric constant /¢y and the refractive index n are below
their vacuum value 1. Polarizability is proportional to
¢/eo — 1 and it is negative for almost any material if the
wavelength of incident radiation is in the X-ray spectral
range.

5.2 Violations of the superposition principle

and nonlinear self-precession of an ellipse

Being extremely important, the superposition principle still
looks rather bland until an example of its violation is shown.
Take the circularly polarized motion of a 1-meter long
pendulum with a deflection of about 0.5 m, i.e., ¢ = 30°
from the vertical axis. An attempt to superimpose two such
motions, i.e., to get the 60°-motion, leads to a considerably
faster rotation: T,, = Tp(cos (p)l/z, so that T3p = 0.931 - T,
while T¢y = 0.707 - Ty. One can easily obtain as high a
frequency as safety allows by making the angle close to 90°.
A shorter string helps for this demonstration.

Actually, violation of the superposition principle for
linearly polarized motion can be deduced ‘theoretically’
from the approximate representation of linear motion as a
superposition of two circular motions, right and left, with
equal amplitudes. Nevertheless, a direct demonstration of
nonlinearity is preferable.

For a visible demonstration of nonlinearity one can start
with a simple (mono-pivotal) isotropic pendulum. Linearly
polarized motion stays linear at any amplitude. Similarly,
circularly polarized motion stays circular at any amplitude.
A qualitative difference is observed for elliptical motion of
finite amplitude. The size of the ellipse is preserved; it is
equivalent to the energy conservation. The ratio of the small
axis of the ellipse to the large one stays constant; this is due
to the conservation of angular momentum. However, the
orientation of the ellipse shows gradual precession and this is
the manifestation of nonlinearity. Indeed, this slow preces-
sion of elliptical motion can not be described as a super-
position of two linearly polarized motions of fixed orthogo-
nal directions — the description that worked perfectly for
infinitesimally small amplitudes. The precession is actually in
the same direction in which the bob revolves along the ellipse
but it takes many oscillations to get a noticeable precession
angle, if the amplitude of motion is much smaller than
1 radian.

The nonlinear-optical analog of this precession is the
phenomenon of the self-rotation of polarization ellipse,
observed in 1964 by Maker, Terhune, and Savage [14]. The
rate of self-rotation (radians per meter of propagation) was
proportional to the expression that was similar to the result
described by equations (28)—(30) in Section 6.11 of the
present paper.

5.3 Rotary Doppler effect

In this demonstration the rotary platform is used but the
pendulum should be mono-pivotal. Begin by launching a
linearly polarized motion, and then rotate the platform with
constant angular velocity Q = e.Q. Since a single pivot is
situated exactly on the axis of rotation, polarization stays
intact in ‘absolute space’. This means that the plane of linearly
polarized motion changes its orientation with respect to the
platform. Hence, it is not an eigenmode from the point of view
of the platform’s coordinate frame. However, circular
motions are equally circular in any rotating or non-rotating
frame. Thus, one can say that the circular motions of a mono-
pivotal pendulum constitute eigenmodes even in a rotating
frame. One important observation should be made during
this demonstration. If the pendulum rotates in ‘absolute
space’ in the same direction as the platform (co-rotation),
then an observer at the platform perceives a smaller angular
frequency of rotation: w(co-rotation) = wy — 2, where
wo = +/g/L. In fact, counter-rotation of the platform and
pendulum is perceived as circular motion with higher angular
frequency: w(counter-rotation) = wgy + Q. This is a reasonably
good analog of the Doppler effect, as applied to rotary
motion. A dynamic description of this essentially kinematic
phenomenon from the point of view of an observer at the
rotating platform is rather complicated. Namely, one should
add the gravity-induced restoring force of the string to
centrifugal and Coriolis inertia forces, and then equalize this
sum to mass times centripetal acceleration.

5.4 Magneto-optical rotation of polarization

The notion of rotary Doppler effect has an important
application in the optics of a medium placed in external
magnetic field B. Consider first the small angular velocity of
the rotating frame, Q2 < wq. One may then neglect centrifugal
force as a quantity o< Q?, and take into account the linear part
of the inertia force only: the Coriolis force Fc = 2m[v x Q.
One may choose the value and direction of Q in such a way
that this Coriolis force will exactly compensate the Lorentz
force FL = ¢[v x B], with which the externally applied
magnetic field B influences the motion of electrons. Here, m
and ¢ = —|g| are the mass and charge of an electron,
respectively. This statement constitutes Larmor’s famous
theorem, and the corresponding angular velocity vector
Q.mmor Characterizes Larmor’s precession of electrons in a
weak (no Q*-terms) magnetic field B:

qB
2m

(5)

QLarmor =

Henry Becquerel used the idea of Larmor’s precession to
estimate (calculate) the strength of Faraday’s effect of the
magnetically induced rotation of polarization. Consider an
electromagnetic wave, which has angular frequency
o = 2me/ Ay in the laboratory frame and propagates along
an externally applied magnetic field B; here, 4y is the
wavelength of light in a vacuum. If the wave has right circular
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polarization, the medium in the Larmor-rotating frame
‘perceives’ this wave at the Doppler-shifted frequency
WR = 09 + QLarmor- Similarly, the left circularly polarized
wave is ‘perceived’ by the medium in a rotating frame as if
there were an opposite rotary Doppler shift: wp =
@0 — PLarmor- Since Lorentz and Coriolis forces compensate
each other, one may assume that effective refractive indexes
for those two waves, ng and 7y, ‘know’ nothing about any of
the forces, Fc and Fi. Therefore, one can use unperturbed
refractive index n, but at the frequencies shifted due to the
rotary Doppler effect:

HnR = 7’1(60() + QLarmor) ; ny = I’l(())() - QLarmor) .

The linearized approximation yields

dn
nR,L = n(w() + QLarmor) ~ n((l)()) + @ -QLarmor
dn ¢B
=n(ly) £ e — — . 6
( 0) d;v() m/.% ( )

The rate of Faraday’s rotation of polarization, in radians per
meter of propagation, is thus

d£ _ TE(”R - nL) _ QLarmor » dn

dz 0 % dawg
QLarmor N dn dn 1
— _ Zlammor p G By 7
¢ VT TP G 2mee ™

This is Becquerel’s approximate formula, connecting the
Faraday rotation constant (the so-called Verdet constant) to
the dispersion Ao dn/d/ of the material. The accuracy of this
formula, at least outside the very vicinity of resonance, is
surprisingly good: usually 20% or better for the majority of
transparent materials. It means that the approximation of
mutually non-interacting isotropic atoms (to which the
Larmor theorem is really applicable) describes the Faraday
effect reasonably well. This correlates with the well-regarded
law of chemists: the refractivity (n — 1) of a medium is
approximately the sum of refractivities of the constituting
atoms.

Here is an easy way to remember the sign of the Verdet
constantin Eqn (7). Magnetic field B = Be, may be created by
the flow of electrons in a wire spooled as a solenoid. Larmor’s
precession of electrons in the transparent material inside the
solenoid was built up when the magnetic field was gradually
‘switched on’. By Lenz’s rule, the sign of this precession is
such that there is at least partial compensation of the increase
in the magnetic flux through the solenoid. This means that the
precession is opposite to the circular flow of electrons in the
wires and, hence, coincides with the direction of electric
current in the wires. Polarization of light is partially
‘dragged’ by the precessing electrons, and that prescribes the
sign of Faraday’s rotation by the external magnetic field. It is
also instructive to mention that the Faraday effect must have
an opposite sign for antimatter, as shown by the odd power of
charge q in Eqn (7).

5.5 Parametric resonance

This topic is often raised during the demonstrations. Indeed,
suppose that one pulls the string (and thus changes the length
of the pendulum) to a periodicity two times shorter than the
period of linearized oscillations. If friction and detuning are

small enough or if the amplitude of length modulation is large
enough, then parametric instability develops. Unfortunately,
this particular demonstration with a pendulum has at least
two drawbacks. First, to achieve small damping, one should
use a sufficiently heavy bob. Under this condition, it is not
easy to pull the string with a large enough amplitude and with
very precise periodicity. Second, the most interesting applica-
tion of parametric generators in optics deals with the
possibility of generating light of a tunable wavelength,
1/A(pump) = 1/41 + 1/22, ie., f(pump)= fi +/f>. The
authors of the present study do not know how one can easily
demonstrate tunable nondegenerate parametric oscillation or
at least nondegenerate parametric amplification.

6. Fourth level: from second-year graduate
students to research scientists

6.1 Device for modeling electromagnetically induced
transparency (EIT) and the mathematics of damped
coupled oscillators

Here is the mechanical device that was used for modeling
electromagnetically induced transparency (EIT) — one of the
most interesting phenomena of modern nonlinear optics. This
device is a modification of the original bi-frequency pendu-
lum, and no rotary platform is needed. The pendulum
depicted in Fig. 8 has two slightly different effective lengths
for two orthogonal oscillations, so that if one ignores damping
(friction), one gets x- and y-axes as eigen-directions for the
undamped modes, which have slightly different frequencies,
Sy <fe

The mechanical design is based on the use of screws with
sharpened ends that are attached to aluminum planks at an
adjustable height. A vertical rod was attached to the lower
plank in such a way that the rod could not rotate around the
vertical axis, and a thin rigid sheet could be attached to the
pendulum, playing the role of a ‘sail’. The sail’s purpose is to
provide strong aerodynamic friction, i.e., damping with
respect to the motion perpendicular to the sail’s plane. Figure
8 shows an alternative variant of the design of a bi-frequency
pendulum with a ‘sail’; this design uses miniature ball-
bearings.

Meanwhile, the friction with respect to the motion in the
direction of the sail’s plane is assumed to be very small. The
particular choice of the sail’s orientation was such that the
motion in the +45°-direction was strongly dampened, while
the —45° motion was supposed to induce almost no loss of
mechanical energy. If one ignores the x/y frequency splitting,
then the +45° and —45° directions correspond to the
eigenvectors of the damping operator.

One may say then that x and y motions are coupled via
anisotropic (+45° versus —45°) friction. At the same time, one
may say that +45° and —45° motions are coupled via an
anisotropic (x versus y) restoring force. To display the
properties of our particular system more clearly, a general
approach to the theory of coupled damped anisotropic
harmonic oscillators is reviewed below.

Essential information about a general system is reduced to
three positive-definite quadratic forms: the mass matrix My,
the elasticity matrix Ej, and the damping matrix Rj. These
matrices define, respectively: kinetic energy

dg; %

OSM,k g dl‘ 5
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E\‘ = +Fy

Fas(1) = cos2ne(fy + £+)/2)]

Figure 8. The design of a bi-frequency pendulum that uses, instead of threads, rigid aluminum elements and miniature ball bearings with minimum friction
in them. This design prevents rotation of the pendulum around the vertical axis. A thin rigid sheet plays the role of a ‘sail’, providing strong aerodynamic
friction, i.e., damping with respect to the motion perpendicular to the sail’s plane. The particular choice of the sail’s orientation was such that the motion
in the +45° direction was strongly dampened, while —45° motion was supposed to induce almost no loss of mechanical energy. When the force at the mid-
point frequency is applied in the +45° direction, the steady-state response is generated in the —45° direction. This results in almost zero loss of energy.

potential energy

0.5Eiqiqy ,

and dissipation function (half of the rate of energy dissipa-
tion, Joules per second)

dg; dgx

05Ri ' 4

As usual, in all of these expressions summation over the
repeating indexes is implied.

One can use the positive-definite quadratic form My to
define the scalar product in the linear space of generalized
coordinates ¢;. In other words, one can choose such
combinations x; of the original coordinates ¢;, i.e.,
X; = gk, that the mass matrix becomes the unit matrix in
new coordinates x;, and the linear space becomes Euclidean
linear space with the scalar product x;x;. The next step is to
use not just any combinations of new coordinates x;, but to
perform rotations in the above Euclidean real linear space. By
definition, rotations preserve scalar product, i.e., the new
mass matrix remains a unit matrix. Rotations in real
Euclidean space allow diagonalization of any symmetric
matrix. However, one can do this procedure with only one
matrix at a time. If matrices £ and R;; do not commute, one
cannot reduce both of them to diagonal forms simultaneously.

This is exactly the physical situation with the mechanical
device depicted in Fig. 8. Eigen-axes for the restoring force
(for the potential energy matrix) are x and y. Meanwhile,
eigen-axes for the friction force (for the dissipative function
matrix) are +45° and —45°. Diagonalization of these two
matrices simultaneously via rotation of the coordinates x; is
impossible. One can formally define modes as such combina-
tions of complex x- and y-amplitudes (or equivalently, as such
combinations of +45° and —45° complex amplitudes), so that

they evolve in time according to the exponential law,
o< exp (—A*1), 2F = Re (2F) +iIm (). These modes coin-
cide neither with pure x and y motions, nor with pure +45°
and —45° motions. Moreover, these modes are not orthogo-
nal anymore. One cannot claim that total dissipated energy is
the sum of squares of the amplitudes of each mode times
dissipation rate 2 Re (2/) > 0 for the corresponding mode. On
the contrary, interference terms appear in the expression for
the dissipation, and in some sense just those interference
terms are responsible for the phenomenon of EIT.

6.2 Counterintuitive motion that models EIT

Suppose that the device above is subjected to a force at the
‘carrier’ frequency f= (fy+f;)/2, and that this force is
applied in the +45° direction (see Fig. 8) just as described in
Section 5.2 The difference is that Section 5.2 dealt with a
frictionless device.

Let us make an assumption, the validity of which will be
confirmed by the results of subsequent calculations. Let us
assume that this strongly damped system somehow ignores
damping completely. Then one can use the counter-intuitive
result from Section 5.1. Namely, steady-state motion will
have a pure —45° direction. But the motion in the —45°
direction does not result in any friction!

Two consequences follow from the above statement.
First, one has justified the ‘strange assumption’. Second, the
force is applied in the direction of the strongest friction and
the motion in this ‘dissipative’ direction is observed during the
transient process. However, this system eventually comes to a
counter-intuitive steady-state, in which dissipation is com-
pletely absent. Power transferred from the force to the device
is zero, since the velocity vector is perpendicular to the force
vector at all times. A very close analogy between this counter-
intuitive behavior of our mechanical device and the EIT
phenomenon exists; it will be discussed in Section 6.6.
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Discussion of the mathematics and physics of the process
should not detract the reader’s attention from the most
important pedagogical facts. First of all, the device which
uses the screws with sharpened ends has actually been made
by one of the authors in his garage out of easily available
materials. Hence it may reasonably easily be made by
students and teachers at the High-School level. Second, the
device with all the electronics and computer support really
and reproducibly demonstrated and continues to demon-
strate the counter-intuitive features of motion described
above.

6.3 Newton’s Second Law for the system

that models EIT

The equations describing Newton’s Second Law for the above
system are presented below. Cartesian axes x and y are
assumed to be in the direction of the frame’s plane and in
the perpendicular direction, respectively. The choice of units
allows the mass to be considered equal to 1. The motion of the
pendulum in x and y directions is presented in the form

x(t) = 0.5[ay(t) exp (—iwor) + a;(t) exp (+iwot)],  (8)

y(1) = 0.5[a, (1) exp (—iwot) + a; (1) exp (+iwot)] . (9)

Here, wy = (wy+ w,)/2 =2n(f; +/f,)/2 is the ‘carrier’
angular frequency, while the amplitudes a.(¢), a,(¢) and
their complex conjugate values a;(7), a; (1) are supposed to
be slowly varying functions of time. Introduce the notation
A = (wy — w,)/2 for half of the angular frequency difference
between x- and y-eigenmodes. We will use the following
method of ‘deriving’ the equations to the necessary degree of
approximation. We suggest approximate equations to
describe several limiting cases separately, and then we
combine all the right-hand-side terms together.

If one ignores damping, here are the equations for slowly
varying complex amplitudes a,(7), a,(1):

da (1) da, (1)
d¢ ds

= —iAay(r), = +HAay(r). (10)

Instead of deriving this approximate system of first-order
differential equations, one can rely on the fact that equations
(10) yield correct solutions in the absence of damping and of
external forces:

ax(t) = a.(0)exp (—iAt),  a,(t) = a,(0) exp (+iA7),
| cos [wt — ],

x(t) = |ax(0)
y(t) = |a,(0)| cos [wyr — ] .

(11)
(12)

As for the damping, it was already assumed that strong
friction takes place for the motion in the +45°-direction, with
the amplitude damping constant I" (s~!), while the motion in
the —45°-direction yields much weaker damping y,i.e.,y < I
So, if one ignores x/y splitting of restoring forces but takes
damping into account, these assumptions lead to the follow-
ing equations and corresponding solutions:

st =S =
dajist(t) — —Tas(t), da%;(t) = —ypa_ss(1), (14)

a-4s5(1) = a-4s5(0) exp (—y1).
(15)

ass(t) = ass(0) exp (—I'1),

The external force is represented in the form

Freal(1) = 0.5[F(1) exp (—iwgt) + F* (1) exp (+iwp1)] . (16)

Here, F(1) = {F.(t), F,(1)} is the slowly varying complex
amplitude of the force. The system of Newton’s Second Law
equations for the motion of a frequency-degenerate friction-
less pendulum under the influence of almost resonant force
(16),

d’r

@ + wgl' = Freal(t) 5

(17)
may be reduced to first-order equations for the slowly varying
complex amplitudes:

daN

_iF(z)
LR (OF (O

= S0 (18)

Finally, derivation of the system of equations taking into
account all these factors, angular frequency splitting A,
damping I' and y, and the external force F, is performed
under the assumption that all these factors act slowly, i.e.,
have a relatively small instantaneous effect on the amplitudes,
the effect being accumulated during many oscillations. Then
one can simply add corresponding terms in the equations for
the evolution of the slowly varying amplitude da/dz. For
subsequent discussion, it is convenient to choose the equa-
tions in the +45°/ — 45° axes:

daji—st(t) + Fays (1) +1Aa_ss(1) = fas(1) ,
19
daﬁ;(t) +ya_ss(t) + 1Aass (1) = fas(1) . "

If a monochromatic force is applied exactly at the ‘carrier’
frequency, then

fas(t) = consty,  f_4s5(f) = consty,

and the steady-state solution is

ags = (iyfas +Afss),

1
A’ +Ty
(20)

1 .
a-45s =5 (Afas +1l f-s5) .
Iy

A+
The most interesting result deals with the time-averaged
power P dissipated by the pendulum:

P =0.503 [i( fasajs + [-asa”45)] + c.c. (21)

Substitution of the above solutions into the expression for P
yields
_mop
A*+ Ty

2 2
(7l fasl” + T[ f-as]7) - (22)

When the excitation occurs at the exact middle-point
‘carrier’ frequency [as was implied in Eqn (22)], one gets a
very interesting result. Namely, the +45°-force results in
dissipation proportional to the small friction constant
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Y = y_45, and vice versa, the force applied in the direction a b c
—45° vyields dissipation proportional to the large friction >

= ; ; 2s) + |2 2
constant I' = I'4s. It should be emphasized that, in a 12p) |2s) 2p)  |2s) (I2s) + 12p))/

counter-intuitive manner, low dissipation appears when
applying the force in the direction of strong friction. It is the
statement about the unexpectedly small power dissipation
that is so similar to the EIT phenomenon.

Equations (19) are simple enough, so that explicit
analytical solutions may be found for any direction and
frequency of the applied force: solutions that include both
steady-state and transient processes. Comparison of analy-
tical and numerical solutions of those equations may
constitute a nice exercise for the students. Actually, the
above SVEA equations for the complex amplitudes ay, a,
are identical, up to the proper substitution of parameters, to
the equations for a 3-level system’s density matrix elements, if
one limits oneself to the weak signal-field approximation.

6.4 Zero polarizability and vanishing scalar scattering

of light

One can introduce the susceptibility tensor oy of the
mechanical system depicted in Fig. 8, the ith component of
vector a of the steady-state response to the kth component of
the applied force vector f. The results of the demonstrations
and calculations in Sections 5.1, 6.2, and 6.3 are counter-
intuitive indeed. They may be described in the following
terms. If y =y_4s is negligibly small, and if the force is
applied at exactly the carrier frequency o = wy=
(wx + wy)/2, then the component o 4s 145 of the suscept-
ibility tensor aj is identically zero. This is easily interpreted.
Indeed, force at the carrier frequency wy is equidistantly
below x-resonance and above y-resonance, so that positive
and negative contributions by those resonances are cancelled
identically (compare to Fig. 7). The component o, 45 _45 of the
susceptibility tensor is non-zero, but this component does not
result in energy dissipation.

A similar situation may be found in resonant optics of
alkali metals. Consider, for example, doublet resonance
transition in sodium, Fig. 9. In the vicinity of resonance one
can write the expression for the scalar part of polarizability in
the form

Jip2 f3 }
Wyp -0 W3H—0 '

o(w) = const - { (23)

Na atom

|351/2>

Figure 9. [llumination of a sodium (Na) atom by a resonant optical beam
at the intermediate frequency point. The specific choice of that point
S=2/3)f(s = pij2) + (1/3)f(s — p3/2) allows obtaining a zero scalar
part of polarizability due to compensation of the contributions of the
states [3p;/;) and [3p;;). As a result, the scalar part of the resonant
Rayleigh scattering is completely suppressed, and thus transparency of
sodium vapor gas is increased [15].

_ J — AT - =
Lyman-o (I2s) = 2p))/V2
transition

) = (125) = 12p))/v2

in a hydro- Eigenstates of
genatom d(azm;) m%: | are eigenstates of
7(2s) = 0.1s,
7(2p) ~ 10~ s energy: Hy = +d,E
|1s)

Figure 10. Electrostatically-induced transparency. (a) Resonant scattering
(absorption) of Lyman-o light by a hydrogen atom in a weak external
electrostatic field. (b) If the electrostatic field is ignored, then |2s) and |2p)
are the eigenstates of the damping operator. (c) If damping is ignored, then
the ecigenstates of the Hamiltonian are |y, ) = |2p) + |2s) and |y_) =
|2p) — |2s) and the energy of the incident quanta is exactly at the mid-point
between these two eigen-energies. As a result, polarizability is zero due to
compensation of the contributions of the states |y, ) and |i/_), and the
scattering/attenuation of light is suppressed completely: electrostatically-
induced transparency.

Here, fi/» = 1/3and f3,, = 2/3 are the oscillator strengths of
the corresponding transitions {s < p}. If the frequency w is
chosen between these transition lines, and w is twice as close
to the transition {s < p(1/2)} than to the transition
{s < p(3/2)}, then the scalar part of the polarizability is
exactly zero. This nice and clear effect was predicted and
observed experimentally about 3 decades ago [15]. The
antisymmetric fluctuating part of polarizability still remains,
since the ground state has spin 1/2; it leads to the antisym-
metric scattering of light and, hence, to certain attenuation of
the light beam.

6.5 Zero polarizability and electrostatically induced
transparency

Consider Lyman-a transition in atomic hydrogen (Fig. 10a)
and, for the purpose of the present section, let us ignore the
electron’s spin [16].

If one ignores the external electrostatic field (ignores the
linear Stark effect), then |2s) and |2p) are the eigenstates of the
damping operator (Fig. 10b). Indeed, the |2s)-state is
metastable with a very long lifetime, about 0.1 s. Mean-
while, the |2p)-state exhibits strong damping due to sponta-
neous radiation at the transition |2p) — |1s), so that the
lifetime is about 1077 s.

On the contrary, if one ignores damping, but takes external
electrostatic field into account, then the eigenstates of the
Hamiltonian are (|2s) +[2p))/v2 and (|2s) — |2p))/v2, and
the eigenvalues are symmetrically split by this linear Stark
effect around the unperturbed energy of the originally
degenerate pair of states |2s) and |2p).

The reader should be reminded: there is no orthogonal
basis that allows one to diagonalize simultaneously both the
damping operator and the Hamiltonian. This situation is very
similar to the one considered in Section 6.1. Modal combina-
tions that behave as exp (—4*7) do not coincide with any of the
states mentioned above. Moreover, these modal combina-
tions are both damped, Re(i¥) >0, and they are non-
orthogonal.

Just as in Section 6.2, let us assume that this strongly
damped system somehow ignores damping completely. Then
one can use the orthogonal Stark-split basis (|2s) + \2p>)/\/§
and (|2s) — |2p))/v2. In general, these states are not the
‘modes’ of the system. Since the weight of the dipole-active
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|2p)-state is the same in each of these states, the correspond-
ing oscillator strengths are the same for the transitions from
the |Is)-state to each of the Stark states. If one tunes the
frequency of incident light to the exact midpoint between the
Stark-split transition frequencies, then polarizability becomes
zero due to the exact compensation of the two contributions.

Zero polarizability has at least two important conse-
quences. First, a zero induced dipole moment at the light
frequency means that the Schrédinger’s amplitude of the
|2p)-state is not excited in the steady state. This justifies the
assumption about the possibility of ignoring the damping,
since it was only the |2p)-state that had anything to do with
damping at all. Second, zero polarizability means the absence
of absorption, i.e., it means transparency. Quad erat demon-
strandum.

6.6 Electromagnetically induced transparency:

spectral approach

The standard A-scheme of EIT is shown in Fig. 11 (see, e.g.,
[17, 18] and the details and references therein). Weak probe
light is in resonance with strong dipole-active transition
|0) — |1} and therefore is usually absorbed very strongly by
the medium. A strong field of the so-called pump is applied to
the medium; it is chosen to be in resonance with another
strong transition, |1) < |2). The pump is not absorbed by the
medium, since the states |1) and |2) are not originally
populated. State |0) is stable in the absence of any fields,
while state |2) is supposed to be metastable.

If one ignores damping, then the pump field leads to Rabi
oscillations, so that the eigenstates of the Hamiltonian are
(12) +11))/v2 and (|2) — [1))/V2. If the pump is in exact
resonance with the transition frequency i, then the
eigenvalues of effective energy are split symmetrically
around the original position of level |1). This the linear AC
Stark effect, similar to the linear DC Stark effect.

If one ignores the AC Stark effect, then the eigenstates of
the damping operator are |1) and |2), with strong damping in
the |1)-state and negligible damping in the |2)-state. Actually,
there is no orthogonal basis that allows the simultaneous
diagonalization of both the damping operator and the
Hamiltonian. Modal combinations that behave as
exp (—4¥r) do not coincide with any of the states mentioned

a b ¢
1) ) (1) +12))/v2
) (1) —12)/v2
2
[2) 1) and |2) Nre) = (1) £ 2)/v2
are eigenstates are eigenstates of
of damping: quasi-energy:
7(2) is long, H: = +dpEpump
0); co(1) = 1 7(1) is short

Figure 11. EIT: Electromagnetically induced transparency. (a) The so-
called A-configuration for the observation of EIT. (b) If the external pump
field at the frequency of the 1 -2 transition is ignored, the eigenstates of the
damping operator are |1) and |2). (c) If the damping of state |1) is ignored,
then eigenstates of quasi-energy are [y, ) = [1) +[2) and |yy_) = |1) — |2),
and the energy of the incident light quanta lies exactly at the mid-point
between these two eigen-energies. As a result, polarizability is zero for the
weak signal at the 0—1 transition due to the compensation of the two
contributions from states [y, ) and [_). Resonant absorption of the
signal at the 0— 1 transition is thus suppressed by the presence of the pump
at the 1 -2 transition.

above. Moreover, these modal combinations are both
damped, Re (/%) > 0, and they are non-orthogonal!

Just as in the above example, let us assume that this
strongly damped system somehow ignores damping comple-
tely. Then one can use the Rabi-split basis (|1) + |2))/v2 and
(]1) — |2))/V2. Since the weight of the dipole-active |1)-state
is the same in each of these states, the corresponding oscillator
strengths are the same for the transitions from the |0)-state to
each of the Rabi states. If one tunes the frequency of incident
light to the exact midpoint between the Rabi-split transition
frequencies, then polarizability becomes zero due to the exact
compensation of the two contributions.

Zero polarizability has at least two important conse-
quences. First of all, a zero induced dipole moment at the
frequency of the weak probe light means that the Schrodin-
ger’s amplitude of the |1)-state is not excited in the steady-
state regime. This justifies the assumption about the possibi-
lity of ignoring damping, since it was only the |1)-state that
had anything to do with damping at all. Second, zero
polarizability means the absence of absorption, i.e., it means
transparency.

6.7 Why now, and not in the 1920s?

Dr. H Schlossberg once asked us a pedagogically important
question: “Why was such a simple and clear phenomenon
(e.g., as in hydrogen) not discovered by the creators of
quantum mechanics in the 1920s?”” The answer may be
divided into two parts related to two different limiting cases.

Case 1: splitting 2A of real parts of frequency eigenvalues
is about 10 times larger than the linewidth I'. Then, the
suppression of the original absorption at the wavelength 4
of the ‘old resonance’ is not so surprising. A naive super-
position would give a decrease in the absorption coefficient by
the factor 4(I'/A)* = 1/25. Modern refined theory predicts
the decrease of absorption not to 4%, but down to exactly
zero. Apparently, the creators of quantum mechanics had
more important things to ponder in the 1920s than 4%
corrections to intuitively clear predictions.

Case 2: splitting 2A of real parts of frequency eigenvalues
is about 10 times smaller than the linewidth I'. Here, the
transition from absorption to transparency at the old
resonant wavelength 4y is absolutely astonishing: a 100%
drop in absorption, down to exact zero (if the coupled state
was metastable). This should be compared to almost no
change in absorption in the naive approach with a simple
overlapping of two lines. So, why did the creators of quantum
mechanics not notice such a large effect? Here is our (M J S
and B Ya Z) hypothesis.

It was in the early 1900s when Michelson demonstrated
experimentally that atomic spectral lines have finite width or
structure. It was hard even to imagine? any experiments with
spectral features narrower than radiative linewidths, which
were still unresolved at the time. Meanwhile, the creators of
quantum mechanics were very proud to understand and to
explain to everybody the “Principle of Spectroscopic Stabi-
lity’: small perturbations do not change the integral of
absorption coefficient f§ over the frequency. Indeed, a small
spectral ‘smear’ of the new profile (which is the profile with a
very narrow EIT-dip) kills this dramatic phenomenon. So,
within the spectral accuracy available at the time, the creators

2 Citing a Russian-language joke about a student: ‘“The examiner asked
me to describe a square trinomial, but I could not even imagine such a
thing.”
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of quantum mechanics subconsciously felt right away that
small splitting (2A < I') does not matter much.

6.8 Carrier frequency and the envelope, x/y beats,

and spin 1/2 in quantum mechanics

One of the previous sections (4.6) was devoted to a
demonstration showing an apparently surprising phenom-
enon: the envelope of the beats changes sign after one period
of beats Ty and returns to the original value after 27}, only.
Several physical systems show analogous behavior.

The first example is the particle with spin 1/2. Consider
the quantum-mechanical wave function that corresponds to
the z-projection m. of the angular momentum. This wave-
function is transformed under the rotation by angle ¢ around
the z-axis in a very simple way: it is multiplied by the factor
exp (im.¢). Since m, = +1/2 or m, = —1/2 for the spin-1,/2
particle, rotation by ¢ = 360° yields the change of sign of the
wave function; it is only after a 720° rotation that the
wavefunction comes to its original value.

The second example deals with the so-called 2rn-pulse,
which may be considered 360° rotation around a certain
coordinate axis in the equivalent spin space. The 2n-pulse,
well-known in magnetic resonance and later in the optics of
two-level systems, is described by the following solution of the
Schrodinger equation for the amplitudes ¢; (¢) and ¢;(¢):

(1) (1)

— Cz(f):isinT,

¢ (1) = cos 7

_ Y

o(1) = Ji E(t')dt'.

Elements of the density matrix, such as populations,

2

pu(t) = |Cl(t)’ )

pa(t) = |C2(f)|27

and the polarization,
P21 (1) = e2(0)ey (1)

are restored after the action of a 2n-pulse, i.e., of a pulse with
¢(00) = 2n. Meanwhile, the amplitudes themselves, ¢ (¢) and
(1), both change signs at ¢ = 2m; the sign is restored after
two (2!) complete 2n-pulses only. This change of sign cannot
be observed if one is really dealing with a two-level system.
The presence of other levels, just like the presence of the
reference pendulum in Section 4.6, allows one to get
observable effects, including such an important effect as EIT.

6.9 Electromagnetically induced transparency:
time-dependent approach
Consider again the simplest A-scheme of EIT, shown in
Fig. 11. A strong auxiliary pump wave induces rapid Rabi
oscillations with angular speed Q) = dj,E|,/% between levels
1 and 2. However, those levels are originally empty and that is
why the pump easily penetrates the medium at a large depth.
The system originally occupies the ground state |0) only. A
weak probe field is sent into the medium at the wavelength of
the strong transition wp; and, if the pump is absent, this
transition results in the strong absorption of the field E(wq; ).
If the probe field is switched ‘on’ stepwise at 7 = 0, and
originally the amplitude ¢y(0) = 1, then the amplitude ¢;(¢)
starts growing as idy; Eo1¢/(2h). It is this i-factor, which in the
case without the pump would determine a positive imaginary
part of the induced dipole and thus strong absorption at wy;.

However, this m/2-phased amplitude ¢;, being exposed to
pump E\,, changes its sign after one cycle of Rabi oscillations
through level |2) (see Section 6.8 above). This means that
absorption is changed into stimulated emission after one
period of Rabi oscillations. The absorption is exactly
balanced by emission after averaging over many Rabi cycles.

A particular demonstration of this idea with the use of the
pendulum model from Section 6.1 may serve as an illustration
of Ramsey’s method of separated fields in magnetic reso-
nance and atomic clocks. One starts with the pendulum at
rest, and then switches ‘on’ the +45° force at the carrier
frequency. It should be ‘on’ for a short pulse only, of the
duration 8¢ <€ Ty, and then turned ‘off’. Then one watches for
the pendulum to perform a complete period of beats 1 = Ty,
and switches the same +45° carrier-frequency force ‘on’ for
the same time duration dz. It is important that the signal-
generator continues to generate a monochromatic ‘carrier’
signal with a stable phase; it is just needed that this signal has
not been fed to the fans. This second short pulse of
monochromatic force turns out to be in such a phase with
respect to the oscillations that it results in almost a complete
halt of the pendulum.

6.10 Wigner —von Neumann’s theorem: level anti-crossing
Quantum-mechanical theorem about anti-crossing of the
molecular terms with the same symmetry, by E Wigner and
J von Neumann in 1929, may be illustrated via a bi-frequency
pendulum on a rotary platform.

One should first use a mono-pivotal (and hence mono-
frequency) pendulum, hanging at the center of a frame, and
start the rotation of the platform. From the point of view of
the rotating frame, each (of two) circularly polarized motion
constitutes an eigenmode, as in Section 5.3. Co-rotation of the
pendulum and the frame leads to a negative ‘rotary Doppler
effect’: the frequency of rotation with respect to the frame is

Weo = o — 2,

where Q is the angular velocity of the frame rotation.
Counter-rotation yields a positive ‘rotary Doppler effect’:

Wcounter = Wo + Q.

Consider now a bi-frequency pendulum, which has non-
zero splitting of eigenfrequencies,

Wy —w, =2A>0,

i.e.,w+ = wo £ Aatzero angular velocity of the platform, i.e.,
at Q = 0. However, if this pendulum is rotating fast, @ > A,
the situation must be almost the same as it was for the mono-
frequency pendulum. The question is, will the two curves,
which represent the dependence of eigenvalues on the angular
velocity Q, intersect? A theorem from quantum mechanics
gives a hint: they will probably not cross each other.

Here, just as in Section 6.3, we will not derive the SVEA
equations ‘from first principles’, i.e., from Newton’s Second
Law. Instead, we will ‘guess’ the appropriate right-hand-sides
of these equations in such a manner that they yield correct
solutions in the appropriate limiting cases.

We expect that a mono-pivotal pendulum, if considered in
the rotating coordinate frame X,p, is described by the
solutions:

ax(t) = a.(0) cos (Qt) — a,(0)sin (Q1) ,
a,(t) = a(0) sin (Q¢) + a,(0) cos (1) .
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The following elementary system of equations yields such
a solution:

day

dt

. da,
= _Qa}’(t)7 di =

Qa(1).

As a result, the system of equations for a,(f), a,(f) taking into
account both splitting 2A = w, — w, and rotation (the
Coriolis force), becomes

5?+m@+9@:0,
da, ...
%— iAa, — Qa, =0.

Eigen-solutions of this system, i.e., solutions with the
time-dependence exp (—iuf), yield two eigenvalues, u, =
+(A% + Qz)l/z. Keeping in mind the fact that the position
vector r in the (X, y)-plane is

(1) = 0.5[a(r) exp (—iwot) +a* (1) exp (iwp1)] ,

we come to two eigenfrequencies:

o=+ A+ )7, o=aw)— (AP +0H)'. (25

The validity of this theorem is demonstrated with a
pendulum by adiabatic transition from Q = 0 to Q > A. The
corresponding experiment is simple, but requires very smooth
(very low) angular acceleration from Q =0 to Q > A. One
can show in a simple experiment that, if started with the non-
rotating low-frequency mode, the motion is adiabatically
transformed into low-frequency circular motion, i.e., into
co-rotation. And vice versa, the high-frequency linearly
polarized mode is transformed adiabatically into a high-
frequency circular motion, i.e., into counter-rotation. The
possibility of predicting where the system will go is based on
correct intuitive knowledge that the levels should not cross.
This demonstration usually produces a very positive reaction
among the audience at the high end of the education spectrum
in quantum mechanics and mathematics.t

6.11 Nonlinear self-precession of an ellipse:

quantitative consideration

Small deviations from equilibrium in the x- and y-directions
are denoted as in Eqns (8), (9). We have derived the equation
for a slowly varying envelope vector a = (ay, a,) accounting
for nonlinearity in the first non-vanishing order of nonlinear-

T The corresponding optical phenomenon, adiabatic transformation of
linear (x or y) polarizations into circular (right or left) polarizations, may
be and actually was observed with the use of an interesting medium
consisting of gel with a large concentration of sugar. That created circular
birefringence: right circularly polarized light had a lower phase velocity of
propagation. The specimen was mechanically squeezed in such a way that
deformation was zero at one end of the specimen and maximum at the
other end. Strong deformation created linear birefringence: one of the
linear polarizations (x-polarization to be exact) had lower phase velocity.
When right circular polarization was sent to the specimen’s non-deformed
end, adiabatic transformation yielded linear x-polarization output at the
strongly deformed end. Similar action took place for the transformation of
left polarization into the y-linear one. Cells with deformed cholesteric
liquid crystal are devices that potentially may use this optical phenomen-
on.

ity, i.e., in the 3rd order in the amplitude:

% = —iwy (é) (a-a")a+iwg <ﬁ) (a-a)a" 4+ 0(a").
(26)

There are many ways to get this SVEA equation. The
method described below is typical for theoretical considera-
tion of nonlinear optical phenomena. Namely, one can write
this type of equation phenomenologically, with unknown
coefficients, in the first non-vanishing order in amplitude
(i.e., in cubic order), using time-shift invariance and axial
symmetry:

da
E:cl(a-a*)a—kcz(wa)a*. (27)

Consider now particular limiting cases.

1. Planar motion; e.g., a,(f) = 0, a,(¢) # 0. The problem
of planar motion of a pendulum with an account for
nonlinearity is well discussed in textbooks on classical
mechanics (see, e.g., [19]). The maximum deflection angle
Qmax (zero-to-top amplitude) is related to the complex
amplitude a, as

‘ax| - |ax|

Pmax = arcsin T ~ T .

The equation of motion of a planar pendulum is
é+olsing =0, (28)

and, as is shown in numerous textbooks on mechanics, the
frequency of weakly nonlinear oscillations decreases when the
amplitude grows:

a-a*

“Terz T O(@ay)

(29)

2
® = wy l—wngx—i—O(qoﬁm)} =~ Wy {1

It is worth noting that the use of slowly varying complex
amplitudes from equations (8), (9) considerably simplifies the
derivation of result (29) from equation (28) Here is this
derivation. Taking the nonlinearity in its first non-vanishing
approximation, one may reduce equation (28) to
w}p?

3!

One can present the real function ¢(¢) in the form

@(1) = 0.5[y(1) exp (—iwor) + (1) exp (iwot)]

0] +w%(p ~

where () is the slowly varying complex amplitude,
@max = [¥|. Then, the SVEA equation for dy//dr may be
found, if one neglects the term d*y /dr?, so that

. d 2 .
—2iwy d_lf = % 2<q03(t) exp (1woz)>t ,
where ( ), means averaging over many periods of Ty =

2nt/wy. Substitution of the expression for ¢ via Y and
averaging yields

Ay _imoly Py
ds 16

2. Circular motion of a particle on a string in the presence
of gravity is a problem from high-school physics. Conical
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rotation of a pendulum with an angle ¢,,,,, measured from the
vertical axis corresponds to

ay = Lq)max ) ay = :l:iLq)max 5
so that
) a-a*
(pmax:W’ a-a=20.

The frequency of such rotation is

2
~1)2 Pr
Mconical rotation = wO(COS QDmax) / W <] + %)

- 0 8L2 b

so that ¢; = —iwg/(8L?). Combining this result with the
result of equation (29), one comes to equation (26).

Let us return to the problem of self-precession of an
elliptical orbit. If one denotes the maximum and minimum
deflection angles from the vertical line for our almost elliptical
motion by x;/L and x;/L, respectively, then the general
solution to vector equation (26) is

(30)

a(1) = exp (iut) [x1€1 (1) + ixzex(1)] , (31)
e (t) = e, cos (Qf) +e,sin (Q1), (32)
ex(t) = —e,sin (Qf) + e, cos (Q1),

wy X+ x3 3wy x1x
H= l_g ]Tzz 3 Q= -Qprecession = TO 114_22 . (33)

The problem of a spherical pendulum has a well-known
explicit analytical solution, which is found by taking into
account conservation laws for energy and for the z-compo-
nent of angular momentum. It should be noted, however, that
it is impossible to reduce this problem to any equivalent
problem of the motion of a particle in a weakly anharmonic
field. The reason is that the kinetic energy term in the
Lagrangian contains non-removable nonlinearity for the
motion of a spherical pendulum. Apparently, that is why
these simple expressions, Equations (31)—(33), which are
valid with an accuracy on the order of (x? + x3)/L?, are
absent in published textbooks on classical mechanics (at least
we could not find them there).

6.12 Second harmonic generation

The mechanical analog of this important optical process was
also demonstrated with the use of the bi-frequency pendulum.
First of all, one has to adjust quite precisely the ratio
wy/w, =2, ie., Ly/L, =1/4, otherwise, weak nonlinear
interaction will not be able to overcome even the small
frequency mismatch 6 = 2w, — w,. The situation here is
quite similar to the phase-matching problem in the crystals
used in nonlinear optics.

Second, one must create the type of nonlinearity that
would be non-symmetric with respect to x — —x, y — —y,
similar to y®-nonlinearity in optics; this nonlinearity
requires the absence of the center of symmetry of the
medium. The nonlinearity explored above in Sections 5.2
and 6.11 is analogous to y)-nonlinearity in optics and
therefore can not generate a second harmonic. The simplest
way to arrange x (-nonlinearity for the pendulum is to put a
finger (or a pen or a knife) close to the vertical equilibrium
position of the string. Then half of the cycle, the stage with
y > 0, corresponds to the full length of the pendulum, while

the other half of the cycle, the stage with y < 0, corresponds to
a shorter length, the length from the finger to the bob.
Unfortunately, while this arrangement produces the compo-
nent of the force with a frequency 2w,, the projection of this
force on the x-mode, w, = 2w, is zero. This is similar to the
search for the component of x %), which is needed to provide
for the interaction of the phase-matched o and ¢ waves in
optics. Therefore, we positioned two obstacles at opposite
sides of the strings connecting the pivot to the central knot.

Here is what was observed. At a small amplitude of the
fundamental-frequency mode (y mode), no energy transfer
into the second harmonic mode (into the x mode) was visible
during about 4 min of observation. At an amplitude around
vy~ 0.2L (¢, about 0.2 rad) we observed quite a noticeable
excitation of the second harmonic after about 30 s. The actual
experiment was relatively difficult to set up and did not look
very exciting, especially if the audience was uninitiated in
optical second harmonic generation.

7. Conclusion

To conclude, the bi-frequency pendulum described above
allows visualizing and better understanding numerous phe-
nomena in physics and optics. It is a versatile educational
tool: it allows teachers to provide something interesting,
understandable, and emotionally gratifying for almost any
point of the learning curve?, from junior schoolchildren to
research scientists. The authors have multiple years of
experience in successfully using this device for teaching. A
Microsoft Power Point presentation describing this device
more in terms of pictures than in words and formulas can be
downloaded from the URL http://admin.optics.ucf.edu/
Soileau_Zeldovich_pendulum.ppt. Suggestions for further
modifications and experiments are wholeheartedly wel-
comed.
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8. Appendices

8.1 Appendix to Section 4.2: Lissajous figures

and the Foucault pendulum

Senior participants in the demonstrations declare quite
frequently that this is a Foucault pendulum and that the
motion observed may be classified as Lissajous figures®*.
Teacher, beware: neither of the above statements is true.
The Foucault pendulum was designed to demonstrate the
Earth’s rotation without watching the sun, moon, or stars.
Being positioned at the Earth’s North or South Pole, the
Foucault pendulum must preserve the oscillation plane in the
coordinate system of distant stars. Therefore, the oscillation
plane will slowly rotate with respect to an observer on the
Earth: one complete 360° turn in 24 h. Less trivial is the fact
demonstrated by Foucault: a similar rotation at any other
point on the Earth must also be observed, but with the
perceived angular velocity diminished (multiplied) by factor
sin 0, where 6 is the latitude of the point; 8 = +90° and —90°
at the North and South Poles, respectively’. From our point
of view, this result is derived much more easily by decompos-
ing the total vector of the Earth’s angular velocity
Q = Qg pe. into two components, the normal and the
tangential to the local surface of the Earth:

Q = Qparn(nsin @ 4 tcos ).

The next step is to declare that by symmetry and in the first-
order approximation with respect to Q only the normal
component, Qg,.h sin @n, works, and then one reduces the
problem to the evident case of the North Pole. The same logic
lies behind the effect of Faraday rotation of polarization by a
medium, when the external magnetic field vector B is tilted
with respect to the propagation direction n. If one is interested
in the linear effects with respect to B, only the longitudinal
component n (B - n) works for Faraday rotation.

To function as a Foucault pendulum, a device must satisfy
at least two conditions. First, once excited, free oscillations
should not stop for at least a quarter of an hour, otherwise
there will be nothing to observe. (Reminder: Qga., = 15°/h.)
As a consequence, a typical Foucault pendulum is more than
10 m long and is usually very heavy (more than 50 kg).
Second, the design must guarantee that the polarization plane
would be preserved if the Earth were not rotating. Our
pendulum satisfies neither of these requirements. First, the
length and weight are limited in our case, and hence damping
stops oscillations typically after several minutes. Second, by
the very design, the oscillation plane for our pendulum

4 According to legends, the late Academician Shalnikov used to say
“Enough already. These are Lissajous figures,” when pretending that
something was beyond his understanding.

3 Unfortunately, the derivation of this simple factor is obscured in most
textbooks by excessive use of the vector product for the Coriolis force.
Compare the citation from the book by V 1 Arnold, Mathematical
Methods of Classical Mechanics, Springer-Verlag, p. 246: “In almost all
textbooks, even the best, this (Maupertuis) principle is presented so that it
is impossible to understand.” (K Jacobi, Lectures on Dynamics, 1842—
1843). V I Arnold continues: “‘I do not dare to break the tradition.”

periodically changes every half minute or so, without any
influence from the rotation of the Earth or the platform.

Lissajous figures are 2D parametric-plot curves, for which
x- and y-coordinates are oscillating as sinusoidal functions of
commensurate frequencies. Our mechanical pendulum does
not help in memorizing complicated trajectories. In this case,
computer graphics or the use of an electronic oscilloscope is
much more instructive.

8.2 Appendix to Section 4.2

Regarding the pendulum analogy with light propagation in
uniaxial crystals, one should tilt the frame, so that the two
ends of the thread are pivoted at different heights. Attentive
consideration shows that a high frequency, f, is not changed
at all (analog of an ordinary wave), while a low frequency, f,,
is diminished under such a tilt (analog of an extraordinary
wave in a uniaxial crystal). Calculation of f,(0) is an
interesting exercise for a classical mechanics course; we have
not seen a corresponding solution in textbooks. Unfortu-
nately, this analogy is superficial, since the underlying
equations are dissimilar.

8.3 Appendix to Section 4.4:

Adiabatic/non-adiabatic following

A very primitive example of the difference between fast (anti-
adiabatic) and slow (adiabatic) processes uses the motion of a
car under two different conditions. One is fast motion on ice,
with a turn in the road denoted by shallow ruts. Inertia does
not allow the car to turn, since the ice is slippery, and the car
goes straight ‘in absolute space’, deviating from the curved
road. In the other case, the car is in low-speed motion along a
muddy road with very deep ruts. Here the car follows the
curved road ‘adiabatically’ even if the driver tries to move
straight. However, this analogy is also superficial, without
similarity of the governing equations.
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