
Abstract. This paper discusses theoretical and experimental
results of the investigation of light beams that retain their
intensity structure during propagation and focusing. We de-
scribe a family of laser beams termed spiral whose intensity
remains invariable, up to scale and rotation, during propaga-
tion. Several properties of spiral beams are of practical interest
for laser technologies, medicine, and microbiology. The pro-
blem of synthesis of spiral beams with the intensity distribution
given by an arbitrary planar curve is considered. We emphasize
the feasibility, in principle, of making lasers that directly gen-
erate beams with desired properties without additional uncon-
ventional optics.

1. Introduction

It is well known that the propagation of a light field is a wave
phenomenon and, like any oscillatory process, is character-
ized by a complex-valued amplitude.When the distribution of
a complex field amplitude is defined in some plane, the
subsequent field evolution in the course of its propagation is
described by some differential equation.Hence, it follows that
the light field, generally speaking, undergoes quantitative and
qualitative changes.

However, with the discovery of lasers and the advent of
coherent optics describing the propagation of laser beams, it
was theoretically and experimentally shown that lasers can

radiate light beams that are self-consistent such that they
retain, up to scale, their structure during propagation and
focusing [2]. Such beams are the eigenmodes of laser
resonators, have a strictly defined form, and are described
by two families of special functions with different types of
symmetry: Hermite ±Gauss and Laguerre ±Gauss beams.
The lowest oscillation type in these families is the same and
is the well-known two-dimensional Gaussian function.
Retention of the structure of these beams during their
propagation and focusing may be associated with uniform
tensile ± compressive deformations: convergent and divergent
beams.

This brings up the legitimate question: Is there some
optical analogy to a torsional strain for beams with a
nonuniform divergence or a complicated phase distribution?
It turns out that this analogy is justified owing to the generally
vortical character of the vector field of light energy flux. This
was shown in Refs [3, 4], which were concerned with the
investigation of the interrelation between the energy and
phase properties of a two-dimensional wave field in the
Fresnel zone.

This formulation of the problem is due to the specific
character of the optical range, whereby amenable to
recording is not the complex amplitude of the optical signal
but only its intensity, which is not a complete characteristic
of the light field in general. Traditional interferometric
techniques allow indirect phase measurements. But in a
number of problems, it is impossible or difficult to realize
the interferometric principle of obtaining information on the
complex amplitude or phase of the field. The problem of
recovering the phase information from intensity measure-
ments is known as the phase retrieval problem in optics. This
situation occurs, for instance, in astronomy and in X-ray and
adaptive optics.

In this connection, the problem of how many and what
additional intensity measurements should be made to gain
complete information on the field was investigated in [3, 4].
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Because the field changes during propagation, the natural
problem setting consists in the field reconstruction from the
intensity and the directional derivative taken in the direction
of propagation. A comparative analysis of this problem for
two- and one-dimensional fields revealed a radical difference
between these two cases. It turned out that the problem for a
two-dimensional light field reduces to the reconstruction of
the vector field of light energy flux from its divergence and
curl (the well-known Helmholtz theorem [5]). Therefore, the
field of the light energy flux is generally vortical in character,
the vortical nature of the flux being most pronounced in the
vicinity of zeroes of the complex amplitude, which are
referred to as optical vortices. It is significant that similarly
to the field energy itself, the curl of the light energy flux
vector obeys a conservation law: the integral of the curl's
projection on the direction of propagation is equal to zero in
any plane in the Fresnel zone. As is also shown in Refs [3, 4],
it is impossible to find the vortical component from the
measurements of the intensity and its derivative and,
accordingly, to reconstruct the initial field. At a qualitative
level, this can supposedly be explained as follows. In the one-
dimensional case, a nonzero phase gradient is always
responsible for local intensity changes during propagation
(the energy goes either to the right or to the left), but in the
two-dimensional case, energy circulation due to the vortical
component is possible such that it is not necessarily
manifested in the form of a local intensity change. This
consideration is also supported by the fact that a two-
dimensional field devoid of the vortical component, for
instance, a radially symmetric field, can be reconstructed
from intensity measurements. The variation in such fields
during propagation may in a sense be associated with
tensile±compressive deformations (without torsion).

Optical vortices are zeroes of the complex amplitude of
the light field, at which the phase distribution has singula-
rities. They are termed wavefront dislocations. Initially, this
term was introduced and considered from a geometrical
standpoint by J F Nye and M V Berry [6], who called
attention to the fundamental difference between the zeroes
of the complex amplitude of the wave field in one- and two-
dimensional cases. The meaning of this difference is as
follows. For a one-dimensional field, the locus of the zeroes
of the real and imaginary parts of the complex field amplitude
is a set of points, but for a two-dimensional field, the loci of
the zeroes of the real and imaginary parts are lines. That is
why the behavior of isolated amplitude zeroes becomes
different on small variations (stirs) in the field: in the one-
dimensional case, the zero points of the real and imaginary
parts easily `lose sight' of each other and the amplitude zero
disappears; in the two-dimensional case, the zero lines of the
real and imaginary parts are deformed, but the points of their
intersection, i.e., the isolated amplitude zeroes, remain stable.
The field phase is undefined at the zeroes of its amplitude and
has a helical structure in the vicinity of each zero, while the
circulation of the phase gradient around them is an integer
multiple of 2p. Such isolated points have come to be known as
wavefront dislocations, or phase singularities. The sign of a
wavefront dislocation is determined by the sign of the phase
incursion in going round it.

Of compatriot scientists, B Ya Zel'dovich et al. [7, 8]
placed emphasis on these optical objects. They studied the
density and sign of dislocations in a random light field (a
speckle field). In particular, they showed that the number of
dislocations of either sign in the speckle field is approximately

equal, while the dislocation density is one dislocation per
speckle (i.e., the characteristic average dimension of field
irregularity).

Light fields with phase singularities are being investigated
by the scientific groups of M S Soskin, A V Volyar, and
A Ya Bekshaev. They have investigated the topological
properties of these fields [9 ± 12], the methods for synthesiz-
ing them with the aid of specific holograms [13], the
magnitude and structure of the angular momentum of
beams with phase singularities [14, 15], and the propagation
of vortical beams through few-mode fibers [16]. Of other
publications on this subject, we note Refs [17 ± 25]. Presently,
the area of investigation concerned with such fields is
commonly referred to as singular optics. Three international
conferences have been organized on this subject [26 ± 28].

The nonlinear optics of light fields with wavefront
dislocations is an important branch of singular optics in its
own right, where the fields, while retaining the vortical
character during propagation, typically undergo qualitative
changes. In this review, we discuss only those vortical light
fields in a linear optical medium that are self-similar in
intensity. The nonlinear optics of light beams with phase
singularities has a specific character of its own and deserves a
special review. We nevertheless consider it necessary to
mention Refs [29 ± 37] on this subject.

Taking the vortical component of the vector field of light
energy flux into account, one can extend the notion of
structural stability and investigate the question of the
existence of light fields retaining, up to scale and rotation,
the form of intensity during propagation. This problem is
formulated and investigated in Section 2. Also given in
Section 2 is the complete description of such beams, which
are termed spiral. Section 3 is concerned with the theoretical
and experimental investigation of the feasibility of synthesis
of structurally stable rotating fields with a desired intensity
distribution. Also shown in Section 3 is the application of the
results obtained on the optics of spiral beams to the problem
of the synthesis of phase elements that focus the radiation on
some flat curve. Considered in Section 4 are the issues related
to the angular momentum and other integral invariants of
spiral beams.

2. Spiral laser beams

2.1 Light fields rotating during propagation
Let a coherent light field with a wavelength l be specified by
its complex amplitude F�x; y; l �. We consider the problem of
searching for structurally stable light fields in the paraxial
approximation, i.e., under the assumption that during the
propagation, the field F�x; y; l � varies along x and y much
more weakly than along l. In this case, the l variable is referred
to as the propagation variable and the field evolution is
described by the parabolic equation1

q2F
qx 2
� q2F
qy 2
� 2ik

qF
ql
� 0 ; �1�

where k � 2p=l is the wavenumber. For a helium ± neon
laser, for instance, l � 0:63 mm, and hence k � 107 mÿ1.

1 This term does not correspond to the mathematical classification of

second-order partial differential equations but is universally accepted in

optics [38].
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It is well known [38, 39] that the fundamental solution of
Eqn (1) is

G�x; y; l � � k

2pil
exp

�
ik

2l
�x 2 � y 2�

�
;

and therefore the solution of the parabolic equation subjected
to the initial condition F�x; y; 0� � F0�x; y� is given by

F�x; y; l � � k

2pil

��
R2

exp

�
ik

2l

��xÿ x�2 � �yÿ Z�2��
� F0�x; Z� dx dZ : �2�

Here, the integral on the right-hand side is termed the Fresnel
transformation of the function F0�x; Z�. The transformation
inverse to transformation (2) also bears the name of Fresnel:

F0�x; Z� � ÿ k

2pil

��
R2

exp

�
ÿ ik

2l

��xÿ x�2 � �yÿ Z�2��
� F�x; y; l � dx dy :

With the use of Fresnel's integral operator, equality (2)
takes the form F�x; y; l � � FRl

�
F0�x; Z�

�
and the inverse

transformation becomes F0�x; Z� � FRÿl
�
F�x; y; l ��. Both

formulas are special cases of a more general equality that
relates the complex-valued distributions of the light field F in
the planes l1 and l2:

F�x; y; l2� � FRl2ÿl1
�
F�x; Z; l1�

�
: �3�

For functions F0�x; Z� 2 L2�R2�, the Parseval equality��
R2

��F�x; y; l ���2 dx dy � ��
R2

��F0�x; Z�
��2 dx dZ

expresses the energy conservation law for light fields: the total
energy of a light field is constant and independent of the
chosen plane l.

In the subsequent discussion, we use the following
terminology: I�x; y; l � � F�x; y; l �F�x; y; l � is called the inten-
sity and j�x; y; l � � argF�x; y; l � the phase of a function F.
(Hereinafter, the bar denotes complex conjugation.) As a
consequence, the representation of F�x; y; l � in terms of the
intensity and phase is given by

F�x; y; l � �
�����������������
I�x; y; l �

p
exp

�
ij�x; y; l �� :

The structural stability condition for the intensity of a
light field rotating during propagation can be written as

I�x; y; l �

� D�l �I0
�
x cos y�l � ÿ y sin y�l �

d�l � ;
x sin y�l � � y cos y�l �

d�l �
�
;

�4�
where y�l � is the dependence of the rotation angle of the
intensity distribution during propagation of the field
F�x; y; l � and d�l � > 0 is the scaling intensity variation. We
define real variables X and Y by the equality

X� iY � �x� iy� exp �iy�l ��
d�l � :

Using the variables X, Y, and l instead of x, y, and l, we
can write the structural intensity stability condition in the
most compact form: the function I0�X;Y� is independent of l.
Applying the energy conservation law allows expressing D�l �
in terms of d�l �:��

R2
I�x; y; l � dx dy � D�l �d 2�l �

��
R2
I0�X;Y� dX dY � const :

Consequently, D�l � � 1=d 2�l �.
Therefore, the problem of searching for structurally stable

light fields F�x; y; l � whose intensity may only rotate or vary
in scale during propagation also requires finding the func-
tions d�l � and y�l � that characterize the behavior of I�x; y; l �
with l.

The starting point in the solution of the above problem is
rewriting Eqn (1) in the real notation. In terms of the intensity
I�x; y; l � and phase j�x; y; l �, this equation is equivalent to
the system

q
qx

�
I
qj
qx

�
� q
qy

�
I
qj
qy

�
� k

qI
ql
� 0 ;

2I

�
q2I
qx 2
� q2I
qy 2

�
ÿ
�
qI
qx

�2

ÿ
�
qI
qy

�2

ÿ4I 2
��

qj
qx

�2

�
�
qj
qy

�2

� 2k
qj
ql

�
� 0 :

8>>>>>>>><>>>>>>>>:
�5�

We substitute expression (4) for the intensity in the first
equation of this system and rewrite it in terms of the variables
X, Y, and l,

HH
�
I0HH
�
jÿ 1

2
k d�l �d 0�l ��X 2 � Y 2�

��
� ky 0�l �d 2�l �

�
X

qI0
qY
ÿ Y

qI0
qX

�
� 0 ;

where HH � �q=qX; q=qY�. We then define the function
j0�X;Y; l � by the equality

j�x; y; l � � 1

2
k d�l �d 0�l ��X 2 � Y 2� � j0�X;Y; l � ;

with the result that the structurally stable light field F�x; y; l �
assumes the form

F�x; y; l � � 1

d�l �
�����������������
I0�X;Y�

p
� exp

�
1

2
ik d�l �d 0�l ��X 2 � Y 2� � ij0�X;Y; l �

�
: �6�

In terms of the variables X, Y, and l and the functions I0 and
j0, system (5) then becomes

HH�I0HHj0� � kd 2�l �y 0�l �
�
X

qI0
qY
ÿ Y

qI0
qX

�
� 0 ;

jHHj0j2 � k2d 3�l �d 00�l ��X 2 � Y 2� � 2kd 2�l � qj0

ql

�2kd 2�l �y 0�l �
�
X

qj0

qY
ÿ Y

qj0

qX

�
ÿ 1

2I0

�
HH 2I0 ÿ jHHI0j

2

2I0

�
� 0 :

8>>>>>>>>>>><>>>>>>>>>>>:
�7�

The fact that the phase j0, unlike the intensity I0, depends on
all the three variables X, Y, and l does not allow simplifying
nonlinear system (7) and turns the search for its solutions into

December, 2004 Spiral light beams 1179



an extremely complicated task. However, under an additional
assumption about the asymptotic behavior of the intensity for
large x 2 � y 2, invoking complex analysis (namely, the results
that relate the properties of functions to the properties of their
Fourier transforms) enables the solution of the problem to be
brought to specific analytic expressions.

2.2 Order of growth and structural form of solutions
The following statement is of significance for the determina-
tion of the form of solutions. Let F�x; y; l � be a solution of
parabolic equation (1) and let it be structurally stable in the
sense specified in (4). For all �x; y� 2 R2, let the intensity on
the plane l � 0 satisfy the inequality

I�x; y; 0�4C exp
�ÿAÿjxja � jyja�� �8�

for some A > 0, C > 0, and a5 2. Then, the analytic
continuation of F�x; y; l � in the variables x, y is an entire
function of the second order of growth 2 and a � 2. In
particular, there exist no structurally stable light fields
whose intensity decreases faster than the Gaussian function.

To prove this, we rewrite the integral Fresnel transforma-
tion (3) as follows:

F�x; y; l2� � k

2pi�l2 ÿ l1� exp
�
ik�x 2 � y 2�
2�l2 ÿ l1�

�
�
��

R2
exp

�
ÿ ik�xx� yZ�

l2 ÿ l1

�
� exp

�
ik�x 2 � Z 2�
2�l2 ÿ l1�

�
F�x; Z; l1� dx dZ :

This allows us to consider the respective functions F�x; y; l1�
and F�x; y; l2� for arbitrary l1 and l2 as the initial field and its
Fourier transform with some purely phase factor, and vice
versa. As shown in Ref. [42], if f �z;w� is an entire function of
two complex variables that satisfies the inequality�� f �x; y���4C exp

�ÿAÿjxja � jyja�� �9�

for some C > 0, A > 0, and a > 0 for all �x; y� 2 R2, then
rf 5a.

Furthermore [43], if f �x; y� is a square-integrable function
that satisfies inequality (9) for some C > 0, A > 0, and a > 1,
its Fourier transform

F�x; y� �
��

R2
exp

�ÿi�xx� yZ�� f �x; Z� dx dZ
is continued to an entire function F�z;w� of two complex
variables z, w and the order of growth of this function does
not exceed a=�aÿ 1�.

Therefore, the structural stability condition for the
solution F�x; y; l � of the parabolic equation implies that the
order of growth of F�x; y; l � must simultaneously satisfy the
conditions a4rF 4 max

ÿ
2; a=�aÿ 1��. Because a5 2, it

follows that a=�aÿ 1�4 2 and the field F�x; y; l � is a

function of the second order of growth. The strict inequality
a > 2 leads to the contradiction 2 < rF 4 2 and thereby
prohibits the existence of structurally stable solutions of the
parabolic equation whose intensity decreases faster than the
Gaussian function.

It is pertinent to note that the question of whether there
exist structurally stable fields whose intensity decreases
slower than the Gaussian function exp

�ÿA�x 2 � y 2�� is still
open,3 and the subsequent discussion is dedicated to
structurally stable solutions of the parabolic equation that
are described by entire functions of the second order of
growth.

It can be shown [45, 46] that if F�x; y; l � is a solution of
parabolic equation (1) possessing structural stability and
satisfying inequality (8), then the X, Y, and l variables in
representation (6) separate and the phase j0�X;Y; l � assumes
the form

j0�X;Y; l � � j0�X;Y; 0� � g�l � ; �10�
where g�l � is some function.

Therefore, the exponential intensity decrease at infinity
allows revealing the structure of the phase j0�X;Y; l � and
makes the form of expression (6) specific,

F�x; y; l � � 1

d�l � F0�X;Y�

� exp

�
1

2
ikd�l �d 0�l ��X 2 � Y 2� � ig�l �

�
; �11�

where F0�X;Y� �
�����������������
I0�X;Y�

p
exp

�
ij0�X;Y; 0�

�
is an entire

function of the second order of growth. The structural
stability of the intensity, Eqn (4), therefore implies structural
phase stability up to defocusing.

2.3 Basic equations and parameters of solutions
In this section, we find the scaling d�l �, rotation y�l �, and
phase incursion g�l � functions and also indicate the way to
derive the function F0�X;Y�, which plays the decisive part in
representation (11) of structurally stable solutions of the
parabolic equation [45].

Using equality (10) in Eqns (7) enables us to determine the
l-dependences of d, y, and g. It is easily shown that these three
functions satisfy the following system of differential equa-
tions:

d 3�l � d 00�l � � const ;

d 2�l � y 0�l � � const ;

d 2�l � g 0�l � � const :

The general solution of this system is given by

d�l � � d0

���������������������������
1� 4�lÿ l0�2

k 2r4

s
;

y�l � � y0 arctan
�
2�lÿ l0�
kr2

�
� y1 ;

g�l � � ÿg0 arctan
�
2�lÿ l0�
kr2

�
� g1 ;2 The order of growth rf of an entire function f �z;w� is defined as [40, 41]

rf � lim
R!1

ln ln max
jzj � jwj �R

j f �z;w�j
lnR

:

As a consequence, for any e > 0, there exist positive constants C0 and A0

such that the inequality j f �z;w�j < C0 exp
�
A0

ÿjzjrf�e � jwjrf�e�� is satis-
fied for all complex z and w.

3 More precisely: there exist no structurally stable fields with the order of

growth rF 4 1, because the Fourier transform of such fields has singula-

rities and is therefore not an entire analytic function [44]. Therefore, the

interval rF 2 �1; 2� remains unexplored.
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where d0, y0, y1, g0, g1, l0, and r are arbitrary constants. 4

Without losing the generality, it may be assumed that d0 � 1
and l0 � y1 � g1 � 0. Representation (11) then takes the form

F�x; y; l � � 1

jsj F0�X;Y� exp
�
2il

kr2
�X 2 � Y 2� ÿ ig0 arg s

�
;

�12�

where X� iY � �x� iy� exp �iy0 arg s�=rjsj and s �
1� 2il=kr2 is a complex parameter introduced for compact-
ness of notation. Upon substitution of expression (12) in
Eqn (1), we obtain the equation for the function F0�X;Y�:

HH 2F0 � 4iy0

�
X

qF0

qY
ÿ Y

qF0

qX

�
ÿ 4F0�X 2 � Y 2 ÿ g0� � 0 :

�13�

For y0 � 0, this equation is a stationary SchroÈ dinger
equation for a harmonic oscillator and its solutions are well
known [48, 49]. These are the Hermite ±Gauss functions
F0�X;Y� �hn;m�X;Y�, g0 � n�m� 1 and the Laguerre ±
Gauss functions F0�X;Y� �ln;�m�X;Y�, g0 � 2n�m� 1.
Here,

hn;m�X;Y� �def exp �ÿX 2 ÿ Y 2�Hn�
���
2
p

X�Hm�
���
2
p

Y�
�n;m � 0; 1; . . .� ;

ln;�m�X;Y� �def exp �ÿX 2 ÿ Y 2��X� iY�mLm
n �2X 2 � 2Y 2�

�n;m � 0; 1; . . .� ;
where

Hn�t� � �ÿ1�n e t 2 dn

dt n
�eÿt 2� ;

Lm
n �t� �

1

n!
tÿm e t

dn

dt n
�t n�meÿt�

are the Hermite and Laguerre polynomials, respectively.
We seek the solutions of Eqn (13) in the form of the

expansion

F0�X;Y� �
X1
n� 0

X1
m�ÿ1

cnmln;m�X;Y� ; �14�

which is always possible owing to inequality (8) and
the completeness of the system of functions
fln;m�X;Y�; n;�m � 0; 1; . . .g in the space L2�R2�. We
substitute expansion (14) in Eqn (13) to obtain the identityX

n;m

cnmln;m�X;Y��2n� jmj � y0mÿ g0 � 1� � 0

or, in view of the completeness of the system of Laguerre ±
Gauss functions, an infinite set of constraints on the
coefficients cnm and the numbers n, m:

cnm�2n� jmj � y0mÿ g0 � 1� � 0 :

Once some pair �n0;m0� is fixed, the problem of searching
for F0�X;Y� reduces to determining the integers n andm from

the equation

2n� jmj � y0m � 2n0 � jm0j � y0m0 : �15�

In this formula, n and n0 are nonnegative integers, m and m0

are integers, and y0 is a real number. We then have
g0 � 2n0 � jm0j � y0m0 � 1 and the coefficients cnm are
arbitrarily selected for those pairs �n;m� that satisfy Eqn (15)
and are equal to zero otherwise.

We next show that Eqn (15) is solvable for any y0 and find
the corresponding solutions of Eqn (13).

2.4 Spiral beams and their quantum-mechanical analogs
We letn�y0� denote the ensemble of all pairs �n;m� satisfying
Eqn (15). The complete specification of the ensemble n�y0�
for different y0 and the definition of the functions F0�X;Y�
reduce to the following three cases.

1. If y0 is an irrational number, the ensemble n�y0�
consists of a single pair �n0;m0�. By invoking the definition
of Laguerre ±Gauss functions, it is easily shown that the
structurally stable field F�x; y; l � is independent of y0 and can
be represented as

F�x; y; l � � 1

jsj exp
�
2il�x 2 � y 2�

kr4jsj2 ÿ i�2n0 � jm0j � 1� arg s
�

�ln0;m0

�
x

rjsj ;
y

rjsj
�
: �16�

Obviously, the absence of the y0-dependence is the underside
of the radially symmetric form of field intensity (16), because
it makes no difference in this case what rotation to assign to
this field.

2. If y0 � 0, then y�l � � 0 and the corresponding field
F�x; y; l � propagates along l without rotation. In this case,
n�0� � f�n;m�; 2n� jmj � Ng, where N � 0; 1; . . . ; g0 �
N� 1, and

F�x; y; l � � 1

jsj exp
�
2il�x 2 � y 2�

kr4jsj2 ÿ i�N� 1� arg s
�

�
XN
n� 0

cnlmin �n;Nÿn�;Nÿ2n

�
x

rjsj ;
y

rjsj
�
; �17�

where cn are arbitrary constants. The resultant expression
shows that in the paraxial approximation only the fields
whose beam waist is given by a Gaussian function times
some polynomial of a special form can propagate with
retention of their structure and without rotation. Moreover,��F�x; y; l ��� � ��F�ÿx;ÿy; l ��� ;
i.e., the intensity of any nonrotating structurally stable field
has central symmetry. Such fields are exemplified in Fig. 1.
The Hermite ±Gauss mode depicted in Fig. 1a is a real
function, and its phase therefore assumes only the 0 and p
values. The horizontal and vertical straight lines in the phase
distribution of the Hermite ±Gauss mode show the location
of zero lines: in crossing such a line, there occurs a phase jump
by p. The Laguerre ±Gauss modes have both zero lines
(circles) and an isolated zero at the origin.

Isolated zeroes (points of phase singularity) are conve-
niently classified by themagnitude of the shift acquired by the
phase in going round such a zero counterclockwise. If the
phase incursion is positive, the zero is termed a z-type zero,
and if the incursion is negative, a �z-type zero. Although this

4 The special case r � 1 corresponds to nondiffracting beams [47], for

instance, Bessel beams, F�x; y; l� � Jm�
����������
2kg0

p
r� exp �imaÿ ig0l�, where r

and a are polar coordinates. Such beams do not have finite energy and are

not considered in our review.
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classification does not reflect the entire diversity of possibi-
lities (the zero lines of the real and imaginary parts of the
complex amplitude do not necessarily intersect at a right
angle andmay be quite different in form from linear functions
even in a small neighborhood of the zero), it furnishes the
simplest characteristic of phase behavior in the vicinity of
each isolated zero.

The phase singularity point for the l2; 5�x; y� mode is a
z-type zero of the fifth order: in going round it counter-
clockwise, the phase changes five times from 0 to 2p. For
the l3;ÿ3�x; y� mode, a similar point at the origin is an
isolated �z-type zero of the third order. The structurally stable
fields shown in Figs 1d ± f have isolated zeroes of the z-type, as
well as the �z-type. Contrasting black ±white changes in the
phase distributions correspond to splices of the j � 0 and
j � 2p phases.

3.Let y0 � ÿ1. Then, 2n� jmj ÿm is an even nonnegative
number. Setting it equal to 2N, we find the ensemble

n�ÿ1� � ��N;m�;m � 0; 1; 2; . . .
	

[ ��N�m;m�;m � ÿ1;ÿ2; . . . ;ÿN	 ;
the phase incursion parameter g0 � 2N� 1, and the light field

F�x; y; l � � 1

jsj exp
�
2il�x 2 � y 2�

kr4jsj2 ÿ i�2N� 1� args
�

�
"X1

m� 0

cmlN;m�X;Y� �
XN
m� 1

cÿmlNÿm;ÿm�X;Y�
#
; �18�

where X� iY � �x� iy�=rs. For N � 0, the simple form of
the Laguerre ±Gauss functions

l0;m�X;Y� � exp �ÿX 2 ÿ Y 2��X� iY�m

allows representing the solution in a more compact form:

F�x; y; l � � 1

s
exp

�
2il�x 2 � y 2�

kr4jsj2
�

�
X1
m� 0

cm exp �ÿX 2 ÿ Y 2��X� iY�m

� 1

s
exp

�
ÿ x 2 � y 2

r2s

�
f

�
x� iy

rs

�
: �19�

Here, f �z� is an entire analytic function such that
F�x; y; 0� 2 L2�R2�. In view of the formula

y�l � � ÿ arctan

�
2l

kr2

�
;

the evolution of the field intensity F�x; y; l � during propaga-
tion looks like a decelerating rotation Ð the fastest in the
beamwaist region and nearly zero in the far-field zone. In this
case, the total field rotation angle during propagation is
y�1� ÿ y�0� � ÿp=2.

The general expression (18) can also be given a clearer
form using the differential representation of the Laguerre ±
Gauss functions from Ref. [51]:

ln;�m�X;Y� � �ÿ1�
n�m

2 n�mn!
exp �X 2 � Y 2�

� qn

q�X� iY�n
qn�m

q�X� iY�n�m exp �ÿ2X 2 ÿ 2Y 2� :

Finally, we have

F�x; y; l � � 1

jsj exp
�
2il�x 2 � y 2�

kr4jsj2 ÿ i�2N� 1� args
�

� exp �Z �Z� qN

qZN

�
exp �ÿ2Z �Z� f �Z��

� 1

s
exp

�
ÿ x 2 � y 2

r2s
ÿ 2iN arg s

��
q
qZ
ÿ 2 �Z

�N

f �Z� ; �20�

where Z � �x� iy�=rs and �Z � �xÿ iy�=r�s.
4. The y0 � 1 case is completely similar to the previous

one. We set 2n� jmj �m � 2N to find

n�1� � ��N;m�;m � 0;ÿ1;ÿ2; . . .
	

[ ��Nÿm;m�;m � 1; 2; . . . ;N
	
;

g0 � 2N� 1, and

F�x; y; l � � 1

jsj exp
�
ÿ x 2 � y 2

r2s
ÿ i�2N� 1� args

�
�
�

q
q �Z
ÿ 2Z

�N

f � �Z� ; �21�

a b c d e f

Figure 1. Intensities (upper row) and phases (lower row) of structurally stable fields without rotation: (a) the Hermite ±Gauss mode h4; 4�x; y�;
(b, c) Laguerre ±Gauss modes l2; 5�x; y� and l3;ÿ3�x; y�; (d, e) Hermite ±Laguerre ±Gauss modes g4; 4�x; yjp=10� and g5; 3�x; yjp=5� (see Ref. [50]);

(f) the field of form (17) for N � 8 with a special set of coefficients cn to make its intensity look like a regular hexagon. In all drawings, black color

corresponds to the zero intensity and zero phase, white color corresponds to the maximum intensity and the phase 2p.

1182 E G Abramochkin, V G Volostnikov Physics ±Uspekhi 47 (12)



where Z � �x� iy�=r�s and �Z � �xÿ iy�=rs. In particular,
for N � 0, we obtain

F�x; y; l � � 1

s
exp

�
ÿ x 2 � y 2

r2s

�
f

�
xÿ iy

rs

�
: �22�

Here, as in expression (19), f �z� is an arbitrary entire
function that does not destroy the square integrability of
the function F�x; y; 0�. This condition is fulfilled, for
instance, for any entire function f �z� with the order of
growth rf < 2. In particular, some polynomial can be
selected as f �z�. Structurally stable fields in this case
were simultaneously and independently obtained in
Ref. [52].

5. Lastly, if y0 is a rational number different from 0 and
�1, the setn�y0� contains, along with the pair �n0;m0�, some
pair �n1;m1 6� m0�. In this case,

y0 � 2n0 � jm0j ÿ 2n1 ÿ jm1j
m1 ÿm0

;

and the structurally stable solution is given by

F�x; y; l � � 1

jsj exp
�
2il�x 2 � y 2�

kr4jsj2

ÿ i�2n0 � jm0j � y0m0 � 1� args
� X
n�y0�

cnmln;m�X;Y� ;
�23�

where X� iY � �x� iy� exp �iy0 args�=rjsj, and the set
n�y0� of all pairs �n;m� over which the summation ranges
is determined as follows. We assume that sgnm0 � 1 for
m0 5 0 and sgnm0 � ÿ1 for m0 < 0. We represent y0 as a
fraction P=Q, where P and Q are coprime numbers and
Q > 0. The following cases can occur: (i) one of the
numbers P, Q is even, (ii) both numbers P and Q are odd.
In the first case,

n�y0� �
�ÿ

n0 � �P�Q sgnm0�k; m0 ÿ 2Qk
�
;

k 2 Z; n5 0; m sgnm0 5 0
	

[ �ÿn0 � jm0j � �PÿQ sgnm0�k; m0 ÿ 2Qk
�
;

k 2 Z; n5 0; m sgnm0 < 0
	

;

in the second case,

n�y0� �
��

n0 � 1

2
�P�Q sgnm0�k; m0 ÿQk

�
;

k 2 Z; n5 0; m sgnm0 5 0

�

[
��

n0 � jm0j � 1

2
�PÿQ sgnm0�k; m0 ÿQk

�
;

k 2 Z; n5 0; m sgnm0 < 0

�
:

The use of these formulas is illustrated by two examples.
Let y0 � ÿ0:4 � ÿ2=5. Then, P � ÿ2, Q � 5, and the set

n�y0� is constructed according to case (i). Selecting the initial
pair �n0;m0� such that m0 > 0 yields

n

�
ÿ 2

5

�
�
�
�n0 � 3k;m0 ÿ 10k�; k 2 Z; ÿ n0

3
4 k4

m0

10

�

[
�
�n0 �m0 ÿ 7k;m0 ÿ 10k�; k 2 Z;

m0

10
< k4

n0 �m0

7

�
:

In particular, for n0 � 0 and m0 � 9, we obtain n�ÿ2=5� �
f�0; 9�; �2;ÿ1�g and

F�x; y; l � � 1

jsj exp
�
ÿ x 2 � y 2

r2s
ÿ 6:4i args

�

�
�
c1

�
x� iy

rjsj exp �ÿ0:4i args�
�9

� c2
xÿ iy

rjsj exp �0:4i args�L1
2

�
2x 2 � 2y 2

r2jsj2
��

:

Here, c1 and c2 are arbitrary complex constants and
s � 1� 2il=kr2. A spiral beam corresponding to the values
c1 � 1 and c2 � ÿ49i is shown in Fig. 2. During its
propagation from the beam waist region to the far-field
region, the beam rotates by the angle y�1� ÿ y�0� �
py0=2 � ÿ2p=10. The intensity does not change during this
rotation, and this beam therefore exemplifies a field invariant
under a two-dimensional Fourier transformation.

We now assume that y0 � ÿ3. Then, P � ÿ3, Q � 1, and
case (ii) is used to construct n�y0�. Selecting the initial pair
n0 � m0 � 0 gives the set n�ÿ3� � f�k; k�; k � 0; 1; 2; . . .g,

a
b c

Figure 2. Spiral beam corresponding to the rotation parameter y0 � ÿ2=5: (a) experimentally recorded intensity distribution of a spiral beam; (b) level

lines for the function jl0;9�x; y� ÿ 49il2;ÿ1�x; y�j2; (c) fragment of spatial beam propagation in the waist region.
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and the spiral beam is

F�x; y; l � � 1

s
exp

�
ÿ x 2 � y 2

r2s

�

�
X1
k� 0

ck

�
x� iy

rjsj exp �ÿ3i arg s�
�k

Lk
k

�
2x 2 � 2y 2

r2jsj2
�
:

In this case, unlike in the previous one, there are an infinite
number of the degrees of freedom, i.e., of the constants ck
involved in constructing the field F. Accordingly, the number
of phase singularities in such a beam may be infinite. An
example of this kind is provided by a spiral beam constructed
on the basis of themodified Bessel function with the following
form in its waist plane:

F�x; y; 0� � exp �ÿz�z� az� In�2z
������������������
a2 ÿ 2a�z
p

�
�2z

������������������
a2 ÿ 2a�z
p

�n
:

Here, a and n are arbitrary parameters, z � �x� iy�=r and
�z � �xÿ iy�=r are complex variables. Figure 3 shows the
beam F�x; y; 0� � F�y;ÿx; 0� � F�ÿx;ÿy; 0� � F�ÿy; x; 0�
for a � 1:3 and n � 1.

Therefore, we have completed the description of structur-
ally stable solutions of the parabolic equation that satisfy
structural representation (4) and inequality (8). The light
fields corresponding to solutions (16) ± (23) obtained above
rotate in accordance with the law y�l �� y0 arctan �2l=kr2�
and increase in scale in accordance with the law
d�l � � ���������������������������

1� 4l 2=k 2r4
p

during their propagation.
We fix some point �x0; y0� in the initial plane l � 0.

During the propagation of the field F�x; y; l �, this point
traces a spiral path x� iy � �x0 � iy0�jsj exp �ÿiy0 arg s�.
For small jy0j, the term `spiral' is somewhat conventional
and indicates only a tendency toward rotation, but for large
jy0j, the point �x0; y0� executes, during the propagation of
the field F, jy0j=4 rotations about the l-axis in the clockwise
or counterclockwise direction, depending on the sign of y0
(Fig. 4). This nonuniform rotation is completed by an
asymptotic approach to the straight line

x� iy � �x0 � iy0�
�
1� 2il

kr2

�
exp

�
ÿ pi�y0 � 1�

2

�
:

We also note that the isophase contours of the above
solutions are helical outside of the beam waist. These two
circumstances have allowed proposing the name `spiral light
beams' for the light fields obtained [45].

The interrelation between paraxial optics and quantum
mechanics was considered by several authors (see, e.g.,
Refs [48, 53]). What specific quantum-mechanical situation
corresponds to spiral beams? The equation for spiral beams
(13) can be represented in terms of normalized polar
coordinates:

HH 2F� 4iy0
qF
qf
ÿ 4F�R 2 ÿ g0� � 0 :

Here, R and f are determined from the relation R exp �if� �
�x� iy� exp �iy0 arg s�=rjsj.

At the same time, in the standard polar coordinatesR and
f, the SchroÈ dinger equation for the wave function c of a
charged particle of mass M and charge e embedded in a
uniform magnetic field with an intensity H is written as [54]

HH 2c� 4i sgn �eH� qc
qf
ÿ 4c

�
R 2 ÿ 2cME1

�hjeHj
�
� 0 ;

where E1 � Eÿ p2z=2M, E is the particle energy, and pz is the
particle momentum along the field direction. One can see that
these equations are equivalent for y0 � sgn �eH� and g0 �
2cME1=�hjeHj. Therefore, for y0 � �1 and g0 � 1, the wave
functions of a particle in a constant magnetic field with the
ground state E1 � �hjeHj=2cM correspond to spiral beams. It
is noteworthy that the form of the above differential
equations is the same in different coordinate systems.

2.5 Experimental realization of spiral beams
2.5.1 Astigmatic transformation technique. It is well known
[55] that the oscillation frequencies of a stable two-mirror
resonator are defined by the expression

oq � 2c

L0
�g arccos ���������

g1g2
p � pq� ; �24�

where c is the speed of light, L0 is the resonator round-trip
time, g1; 2 � �1ÿ L0=2R1; 2� are configuration parameters,

a b

Figure 3. Intensity (a) and phase (b) of the spiral beam corresponding to

the rotation parameter y0 � ÿ3.

ly

x

Figure 4.Motion path of a point �x0; y0� during the propagation of a spiral
beam F�x; y; l � with y0 � ÿ15.
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R1; 2 are the curvature radii of the mirrors, q is the axial index,
and g is a parameter equal to g � n�m� 1 for the Hermite ±
Gauss modes hn;m�x; y� and to g � 2n� jmj � 1 for the
Laguerre ±Gauss modes ln;m�x; y�. It is easily seen that the
modes for which g � const are frequency-degenerate. If the
resonator is such that arccos

���������
g1g2
p � pM=N, whereM andN

are coprime numbers, the frequency degeneracy condition
turns out to be also valid for the modes satisfying the
condition

gM� qN � const : �25�

That is why a sum of such modes shows no beats and is also a
stationary distribution, which is time-independent at each of
its sections. However, it is easy to see that the parameters g of
the terms in the sum are different, and the intensity
distribution of such a superposition therefore changes during
propagation. For instance, let the generated field be the sum
of Laguerre ±Gauss modesln1;m1

�x; y� andln2;m2
�x; y� such

that g1 6� g2 and let constraint (25) be fulfilled. Then,
according to solution (23), this sum is a spiral beam with the
rotation parameter y0 � �g1 ÿ g2�=�m2 ÿm1�. In real resona-
tors, however, owing to the presence of astigmatism (for
instance, the astigmatism of Brewster windows), Hermite ±
Gauss modes are ordinarily generated, unless special precau-
tions are taken. That is why it is rather difficult to directly
obtain a spiral beam. This situation can be rectified if
advantage is taken of the results in Ref. [56], where it was
theoretically and experimentally shown that any Hermite ±
Gauss beam can be transformed into the corresponding
Laguerre ±Gauss beam and vice versa with the aid of
astigmatic optics. The transformation is of the following

form:��
R2

exp

�
ÿi�xx� yZ� � 2ixZ

r2

�
hn;m

�
x
r
;
Z
r

�
dx dZ

� pr2���
2
p �ÿ1�n�m exp

�
ÿ ir2xy

4

�

�
�2i�nm!lm; nÿm

�
rx

2
���
2
p ;

ry

2
���
2
p
�
�n5m� ;

�2i�mn!ln;mÿn

�
ry

2
���
2
p ;

rx

2
���
2
p
�

�n4m� :

8>><>>: �26�

It can be realized in different ways bymeans of cylindrical and
spherical optics. Examples of the optical schemes and the
results of experiments in the specific implementations of
transformation (26), which are referred to as astigmatic in
what follows, are given in Refs [45, 56].

Let a laser-generated beam be the sum of two Hermite ±
Gauss modes with the indices �n1;m1� and �n2;m2�, and let
n1 �m1 6� n2 �m2. An astigmatic transformation allows the
beam to be transformed into the sum of twoLaguerre ±Gauss
modes with the indices �min �nj;mj�, nj ÿmj�, j � 1; 2. The
result is a spiral beam with the rotation parameter
y0 � �n1 �m1 ÿ n2 ÿm2�=�n2 �m1 ÿ n1 ÿm2�.

As an example, we consider the case where M=N � 1=3
(resonator: R1 � 2 m, R2 � 1, L0 � 3 m). Frequency-
degenerate in it is, for instance, the sum of Hermite ±Gauss
modes of the form

P
k ckh0:3k�2�x; y� (Fig. 5). Such a

combination can be realized by introducing thin (15 mm)
wires into the resonator field. It is easily seen that a spiral
beam with a 2p=3 symmetry is the result of the astigmatic
transformation of this field (Fig. 6).

a b c

Figure 5. Intensity (a) and phase (b) of the coding field exp �ÿr2x 2=8� h�yj42� and experimental intensity distribution (c) of the beam emanating from a

helium ±neon laser. (The definition of a coding field is given in Section 3.3.)

a b c

Figure 6. Intensity (a) and phase (b) of the spiral beam s�z; �zj42� and its experimental realization (c). The intensity distribution (c) was obtained by

astigmatic transformation of the beam whose intensity is shown in Fig. 5c.
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2.5.2 Intracavity synthesis of spiral beams. To determine the
resonator configurations allowing a direct generation of
spiral beams, we consider the behavior of such a beam in a
stable resonator described by the round-trip matrix ABCD.

As shown in Section 2.4, an arbitrary spiral beam Fwith a
rotation parameter y0 is expressed in terms of Laguerre ±
Gauss modes at a distance l from the beam waist as

F�r;f� � w0

w
exp

�
ikr 2

2R
ÿ ig0F0

� X
n�y0�

cnmln;m

�
r

w
;f
�

� w0

w
exp

�
ikr 2

2Q
ÿ ig0F0

� X
n�y0�

cnm

�
r

w

�jmj

� exp �imf�Ljmjn

�
2r 2

w 2

�
; �27�

where ln;m�r;f� � exp �ÿr 2�r jmj exp �imf�Ljmjn �2r 2� is a
Laguerre ±Gauss mode in polar coordinates; F0 is the zero-
mode phase incursion from the waist plane; w0 and w are the
Gaussian parameters of the beam taken respectively in the
waist plane and at the distance l from the plane; 1=Q �
1=R� 2i=kw 2 is the complex beam parameter; k is the
wavenumber; and n�y0� is the set of integer-valued pairs
�n;m� such that 2n� jmj � y0m� 1 � g0 � const.

Hereinafter in this section, in lieu of r, rjsj, and arg s, we
use the respective variables w0, w, and F0, because calcula-
tions involving the ABCD matrix are commonly described in
this notation. Moreover, a polar coordinate system is
employed instead of the Cartesian one, making it possible to
represent the dependences related to rotation angles more
clearly.

After the transformation by an optical system with the
ABCD matrix, field (27) becomes [57]

F1�r;f� � w

w1
exp

�
ikL0 � ikr 2

2Q1

�
�
X
n�y0�

cnm exp
�ÿiÿ2n� jmj � 1

�
F
�� r

w1

�jmj

� exp �imf�Ljmjn

�
2r 2

w2
1

�
; �28�

where L0 is the optical path length along the axis of the
system, w 2

1 � w 2jA� B=Qj2, F � arg �A� B=Q�, Q1 �
�AQ� B�=�CQ�D�, and ADÿ BC � 1. Now let ABCD be
the round-trip matrix of some stable resonator. From the
condition for the self-reproduction of each term of field (27)
in the resonator round trip, Q1 � Q, we obtain

w1 � w ;
kw 2

2
� B��������������������������������

1ÿ �A�D�2=4
q ; F � arccos

A�D

2
:

Then, in view of the relation 2n� jmj � 1 � g0 ÿ y0m, the
evolution of spiral beam (27) in tracing the resonator is as
follows:

F1�r;f� � exp

�
ikL0 ÿ ig0 arccos

A�D

2

�
� F

�
r;f� y0 arccos

A�D

2

�
: �29�

Here, L0 is the resonator round-trip path length. It is evident
from expression (29) that upon tracing the resonator, the

beam rotates by the angle

yN � y0 arccos
A�D

2

and acquires the phase shift

fN � kL0 ÿ g0 arccos
A�D

2
:

Hence, it is clear that it suffices to effect the beam rotation by
the angle ÿyN, or by the angle 2pÿ yN for its self-reproduc-
tion condition to be fulfilled. It is well known that such
rotations are accomplishable in ring resonators, for instance,
with the aid of a Dove prism (the so-called resonators with
field rotation) [55]. Resonators of this type were employed to
improve the uniformity of the transverse laser radiation
distribution. However, in contrast to our work, the angle of
beam rotation in the above-mentioned resonators was
selected irrespective of the resonator configuration para-
meters (commonly p=2 or p). If this resonator effects a field
rotation by an angle ÿyN or 2pÿ yN and the equality

kL0 ÿ g0 arccos
A�D

2
� 2pq

holds, the condition for beam self-reproduction F1�r;f� �
F�r;f� is fulfilled and field (27) is the eigenmode of this
resonator with the oscillation frequency

oq � c

L0

�
g0 arccos

A�D

2
� 2pq

�
: �30�

It follows that in contrast to an ordinary resonator
without beam rotation �y0 � 0�, the Laguerre ±Gauss
modes satisfying the condition 2n� jmj � y0m � const are
frequency-degenerate and the degeneracy condition depends
on the angle of beam rotation in the resonator. This is easily
understood by noting that the rotation of the complex
amplitude distribution of the Laguerre ±Gauss beam
ln;m�r;f� by an angle y is equivalent to the additional phase
shift my:

ln;m�r;f� y� �ln;m�r;f� exp �imy� :

Figure 7 shows a setup assembled for the experimental
testing of intracavity synthesis of spiral beams. The ring laser
was made on the basis of an argon-ion laser with the
wavelength l � 0:488 mm, a plane mirror M1 (with the
reflectivity 0.94) and spherical mirrors M2, M3

(R2 � R3 � R � 3 m, with the respective reflectivities 0.995
and 0.98). The mirror separations were M1M2 �M1M3 �
l � 1:27 m andM2M3 � l0 � 2:4 m. The resonator geometry
in the form of an obtuse-angle triangle was selected to reduce
the effect of astigmatism of mirrors M2 and M3. The field
rotation is effected with the aid of a Dove prism P (rotating

M2

M1

M3 M4

O

M

S

P

Ar�

W

Figure 7. Experimental ring-laser setup involving an argon-ion laser.
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the prism by an angle a rotates the beam by 2a). It is pertinent
to note that the prism P rotates the complex amplitude of the
beam but has a relatively weak effect on the state of beam
polarization. The effect of the prism amounts to introducing a
slight elliptical polarization into the beam. The intensity of
the field component perpendicular to the resonator plane
depends on the rotation angle of the prism P and amounts to
0 ± 4% of the intensity of the component lying in the
resonator plane. The beam polarization ellipticity takes
place only in the portion of the resonator given by
PÿM1ÿM2 ± active element. In the remaining part of the
resonator, the polarization direction is determined by the
orientation of the Brewster windows of the active element and
lies in the resonator plane. The beam generated by the laser
was observed and recorded behind the partially transmitting
mirror M3 with the aid of an objective lens O and a
microscope M in the plane of a screen S. The matrix of
resonator round trip, beginning with M1, is given by

A B
C D

� �

�
1ÿ 4l

R
ÿ 2l0

R
� 4ll0

R 2
2l� l0 ÿ 4l 2

R
ÿ 4ll0

R
� 4l 2l0

R 2

ÿ 4

R
� 4l0
R 2

1ÿ 4l

R
ÿ 2l0

R
� 4ll0

R 2

0BB@
1CCA

� ÿ0:939 0:446
ÿ0:267 ÿ0:939

� �
: �31�

The beam waist is close to mirror M1, and the Rayleigh
length for this beam is

lR � B�
1ÿ �A�D�2=4�1=2 � 1300 mm ;

which corresponds to the Gaussian parameter w0 � 0:45mm.
The phase incursion for the fundamental mode in the empty
resonator is f0 � arccos�ÿ0:94� � 160�. Therefore, the
oscillation frequencies of two neighboring transverse modes
differ by 27 MHz for zero angle of prism rotation, and
accordingly the frequency separation for two neighboring
longitudinal modes is equal to 60 MHz. The transverse mode
composition is varied by introducing a thin wire (W � 15 mm
in diameter) into the beam.

The angle of prism rotation P for the self-reproduction of
a spiral beam with a rotation parameter y0 is

a � ÿ y0
2

arccos
A�D

2

� ÿ y0
2

2 arccos

���������������������������������������
1ÿ 2l

R

��
1ÿ l0

R

�s
� ÿy0 � 79:9� :

In the pursuance of experiments, it was discovered that
spiral beams for different rotation parameters were realized
for a somewhat different value of prism rotation, in
particular, for a � ÿy0 � 78�. This deviation turned out to
be similar in all experiments and is supposedly due to the
presence of an active medium.

Figure 8 shows the theoretical and experimental results
for two spiral beams. Presented in the upper row are the
results of experiments in the formation of a spiral beam
with the rotation parameter y0 � 1=3, a � ÿ26� and the
results of numerical calculations for the field F�r;f� �
l0;ÿ2�r;f� � 2l0; 1�r;f�. The beam phase has four singula-
rities, or wavefront dislocations, the singularity at the center
and those at the periphery being opposite in sign. Given in the
lower row are the results of similar experiments for a spiral
beam with the rotation parameter y0 � 1=5, a � ÿ15:5�
and numerical calculations for the field F�r;f� �
l0;ÿ3�r;f� � 2l0; 2�r;f�. In this case, the beam phase has
seven singular points: a z-type singularity of the second order
at the center (in the experiment, this singularity is slightly
broken) and five �z-type singularities at the periphery.

The possibilities for the realization of different spiral
beams in this experiment were limited by reflection and
diffraction losses. On the one hand, for large angles of prism
rotation (for instance, for beams with y0 � 1, a � ÿ78�), the
angle of beam incidence on the Dove prism is significantly
different from the Brewster angle and the losses in the
resonator become too big. On the other hand, realization of
beams, for instance, with y0 � 1=4, requires the presence of
Laguerre ±Gauss modes ln1 ;m1

�r;f� and ln2 ;m2
�r;f� with

the difference of indices jm1 ÿm2j equal to eight at least, such
that diffraction losses in the resonator become significant.
Changing the A�D resonator parameter in our experiment
was hindered for constructive reasons.

a b c d e f

Figure 8. Experimentally recorded intensities of spiral beams in front of (a), inside (b), and behind (c) the waist region for a prism rotation angle a.
Theoretical intensity (d) and phase (f) distributions, as well as intensity level lines (e) of a spiral beam with a rotation parameter y0. The upper row

corresponds to the values a � ÿ26�, y0 � 1=3 and the lower row to the values a � ÿ15:5�, y0 � 1=5.
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Therefore, spiral beams are the modes of a ring laser with
field rotation, which was experimentally confirmed by the
intracavity generation of spiral beams with different rotation
parameters and a good accord with the results of numerical
experiments [58]. The results obtained are demonstration that
it is basically possible to produce spiral beams with vastly
different spatial characteristics and rotation parameters in a
laser with the appropriate resonator and gain of the active
medium.

3. Spiral beams
with a prescribed intensity distribution

3.1 Beams in the form of plane curves
As noted in the Introduction, the interrelation between the
intensity and phase in the one- and two-dimensional cases is
radically different. The nonzero curl of the light energy flux
vector significantly complicates the relation between the
intensity and the phase in this case. At the same time, this
complexity generates new possibilities as well.

In particular, it was shown in Section 2.4 that in the two-
dimensional case, there exists a class of coherent light fields,
referred to as spiral beams, of the form

F�x; y; l � � 1

s
exp

�
ÿ x 2 � y 2

r2s

�
f

�
x� iy

rs

�
; �32�

which retain their structure up to scale and rotation. Here,
f �z� is an arbitrary entire analytic function, s � 1� 2il=kr2,
l is the distance along the beam propagation direction, k is the
wavenumber, r � const, and the sign in the argument of f �z�
determines the direction of beam rotation during propaga-
tion.

From this representation, it is clear that the class of fields
is rather broad. But to prove the existence of such beams with
a predetermined intensity and to define a constructivemethod
for producting them are nontrivial tasks. This section is
dedicated to a feasibility study of the purposeful synthesis of
beams (32) (see also Ref. [59]).

The structural intensity stability of spiral beams (32) for
all l allows us to restrict ourselves, without loss of generality,
to the consideration of the beam in the waist plane l � 0
(which corresponds to s � 1) and the `�' sign in the argument
of f. We introduce the notation

s�z; �z� � exp

�
ÿ z�z

r2

�
f

�
z

r

�
; �33�

where z � x� iy and �z � xÿ iy are complex variables. Then,
s�z; �z� defines the spiral beam F�x; y; l � in the l � 0 plane and
its evolution during propagation. In the subsequent discus-
sion, we therefore refer tos�z; �z� as the spiral beam (32).

We consider several properties of this class of spiral
beams, which follow from representation (33) and are used
in what follows.

Property A. Ifsn�z; �z� � exp �ÿz�z=r2� fn�z=r� is a collec-
tion of spiral beams, their linear combination
s�z; �z� �Pn cnsn�z; �z� is also a spiral beam. Moreover, if

s�z; �z; a� � exp

�
ÿ z�z

r2

�
f

�
z

r
; a

�

is a parametric family of spiral beams,s�z; �z� � � s�z; �z; a� da
is also a spiral beam.

Property B. If s0�z; �z� � exp �ÿz�z=r2� f �z=r� is a spiral
beam, then

s�z; �z� � exp

�
ÿ z�z

r2

�
f

�
z exp �ÿia�

r

�

is a spiral beamwith the same intensity distribution ass0�z; �z�
but rotated by the angle a.

Property C. If s0�z; �z� � exp �ÿz�z=r2� f �z=r� is a spiral
beam, then

s�z; �z� � exp

�
ÿ z�zÿ 2z�z0 � z0�z0

r2

�
f

�
zÿ z0
r

�
�34�

is a spiral beam that has the same intensity distribution as
s0�z; �z� but is shifted to the point z0. In this case, in contrast
to property B, the change of variable z! zÿ z0 does not lead
immediately to the desired result. It is easy to see that

exp

�
ÿ�zÿ z0���zÿ �z0�

r2

�
f

�
zÿ z0
r

�
� exp

�
ÿ z�zÿ �zz0 ÿ z�z0 � z0�z0

r2

�
f

�
zÿ z0
r

�
is not a spiral beam, because it contains the factor
exp ��zz0=r2�. Multiplication with the linear phase function
exp

�ÿ��zz0 ÿ z�z0�=r2
�
has no effect on the intensity distribu-

tion and leads to spiral beam (34).
For f �z� � 1, spiral beam (34) becomes an `elementary

spiral beam'

sz0�z; �z� � exp

�
ÿ z�zÿ 2z�z0 � z0�z0

r2

�
; �35�

which has a Gaussian intensity distribution shifted to the
point z0. The beam phase is a linear function of coordinates
and the beam, of course, travels along a straight line. In this
connection, it is instructive to consider how its `rotation' is
realized during propagation. Using representation (32), it is
easily found that the trajectory of the intensity peak of beam
(35) in the �x; y; l � space is expressed as

x� iy � z0jsj exp �i args� � �x0 � iy0�
�
1� 2il

kr2

�
; �36�

where x0 and y0 are the coordinates of the intensity peak z0 for
l � 0.

We consider several `elementary spiral beams' for
jz0j � const. It follows from (35) that in the �x; y; l � space,
the trajectories of the peaks of the beams Ð straight lines Ð
form the surface of a one-sheet hyperboloid of revolution

x 2 � y 2 ÿ 4jz0j2
k 2r4

l 2 � jz0j2 :

The trajectories of the peaks of individual beams and their
location on the hyperboloid surface are shown in Fig. 9. For
the spiral beams of the general form considered in Section 2.4,
the motion trajectories of the points emanating for l � 0 from
the z0 point also lie in this hyperboloid surface during beam
propagation and are helices in the general case.

It is of interest to compare spiral beams with coherent
states jai in quantummechanics and optics [60]. For instance,
in the space L2�R2�, the scalar product of `elementary' spiral
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beams

�sz0 ;sz1� �
1

2
pr2 exp

�
ÿ jz0j

2 ÿ 2�z0z1 � jz1j2
r2

�
is similar to the scalar product of coherent states

haj bi � exp

�
ÿ 1

2
�jaj2 ÿ 2�ab� jbj2�� :

In a more general case, where

s�z; �z� � exp

�
ÿ z�z

r2

�
f

�
z

r

�

is some spiral beam, we have

�s;sz0� �
1

2
pr2s�z0� :

For coherent states, this is analogous to the equality
hajci � exp �ÿjaj2=2�c��a�, where jci �P1n�0 cnjni. There

also exists a relation between the astigmatic spiral-beam
transformation and the coherent states in the coordinate
representation and the Fock ± Bargman representation,
which are considered below.

Using property A for the summation of the Gaussian
beam of form (35) shifted to different points, it is now possible
to form structurally stable light fields with new properties.
The simplest example of this kind is provided by the beam

s
ÿ
z; �zj�ÿT;T �� � � T

ÿT
st�z; �z� dt �

� exp

�
ÿ z�z

r2

�� T

ÿT
exp

�
ÿ t 2

r2
� 2zt

r2

�
dt ; �37�

which corresponds to an everywhere dense filling of real line
segment �ÿT;T � on complex plane with beams of form (35)
(Fig. 10). The beam exhibits a Gaussian decrease in any
direction outside the line segment �ÿT;T �, and almost all of
the beam energy for r5T is concentrated in a small
neighborhood of this line segment.

From expression (37), in view of properties B and C, it is
easy to obtain a spiral beam with the intensity distribution in
the form of an arbitrary segment �z1; z2� on a complex plane.
Let

z0 � 1

2
�z1 � z2� ; T � 1

2
jz2 ÿ z1j ; a � arg �z2 ÿ z1� :

Then, the mapping z! z0 � z exp �ia� transfers the segment
�ÿT;T � to the segment �z1; z2�. The beam corresponding to the
�z1; z2� segment is therefore of the form

s
ÿ
z; �zj�z1; z2�

� � exp

�
ÿ z�zÿ 2z�z0 � z0�z0

r2

�

�
� T

ÿT
exp

�
ÿ t 2

r2
� 2t�zÿ z0� exp �ÿia�

r2

�
dt : �38�

The �z1; z2� segment is referred to as the generating
segment for spiral beam (38). On the straight line containing
the �z1; z2� segment, the complex amplitude of the beam at a
point zc � cz1 � �1ÿ c�z2 is

s
ÿ
zc; �zcj�z1; z2�

� � exp

�
i
�2cÿ 1� Im z1�z2

r2

�
�
� �1ÿc�jz2ÿz1 j
ÿcjz2ÿz1j

exp

�
ÿ t 2

r2

�
dt :

ly

x

Figure 9. Paths of the peak points of Gaussian beams (35) Ð straight

lines Ð for jz0j � const and their position on the surface of a single-sheet

hyperboloid.

y

x

a b c

Figure 10. Intensity (a), intensity level lines (b), and phase (c) of a spiral beam in the form of a segment �ÿT;T �. The phase distribution exhibits the

presence of six singularities; the central point is not a zero: the presence of only black and white colors in its neighborhood indicates that splicing of the

j � 0 and j � 2p phases occurs.
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Therefore, at points of the straight line zc � cz1 � �1ÿ c�z2
that are symmetric about the point �z1 � z2�=2, the spiral
beam s

ÿ
z; �zj�z1; z2�

�
assumes complex conjugate values. In

particular, at the ends of the �z1; z2� segment,

s
ÿ
z1; �z1j�z1; z2�

� �s
ÿ
z2; �z2j�z1; z2�

�
� exp

�
i
Im z1�z2

r2

�� jz2ÿz1j
0

exp

�
ÿ t 2

r2

�
dt : �39�

Owing to a strong localization of beams (38) for r5T in
the vicinity of the segments realized, the interference of such
beams manifests in summation only slightly if the segments
are sufficiently widely separated. Therefore, the intensity
distribution of the field, which is an assembly of such beams,
is close to the sum of their intensity distributions.

We now consider contiguous segments �a; b� and �b; c�
located on the real axis. Here, the corresponding spiral beams
`seamlessly' merge into one:

s
ÿ
z; �zj�a; c�� � s

ÿ
z; �zj�a; b���s

ÿ
z; �zj�b; c�� :

Generally, when two segments �z1; z2� and �z2; z3� lie along
a common straight line, it follows from representation (38)
that the similar merging of the beams s

ÿ
z; �zj�z1; z2�

�
and

s
ÿ
z; �zj�z2; z3�

�
is given by

s
ÿ
z; �zj�z1; z3�

� � exp

�
ÿi Im �z2z3

r2

�
s
ÿ
z; �zj�z1; z2�

�
� exp

�
ÿi Im �z2z1

r2

�
s
ÿ
z; �zj�z2; z3�

�
; �40�

i.e., phase matching of the constituent beams is required for a
smooth beam merging. From expressions (39) and (40), it
follows that the phases of the components at the merging
point z2 are

arg

�
exp

�
ÿi Im �z2z3

r2

�
s
ÿ
z2; �z2j�z1; z2�

��

� arg

�
exp

�
ÿi Im �z2z1

r2

�
s
ÿ
z2; �z2j�z2; z3�

��
:

Therefore, considering the beam s
ÿ
z; �zj�z1; z2�

��
exp �if�sÿz; �zj�z2; z3�� for f 2 �0; 2p�, the uniformity of the
total intensity along the segment �z1; z3� is highest when

f � args
ÿ
z2; �z2j�z1; z2�

�ÿ args
ÿ
z2; �z2j�z2; z3�

�
� Im �z2�z3 ÿ z1�

r2
: �41�

Equality (41) may be accepted as the condition of merging
two `segment' beams optimized from the intensity unifor-
mity standpoint, when the points z1, z2, and z3 lie along a
straight line. It is noteworthy that equality (41) may be
satisfied up to 2pN (N is an integer), because it expresses
the relation between the arguments of complex exponen-
tials.

We now assume that the points z1, z2, and z3 do not lie
along a straight line.We apply the phase-matching considera-
tions to the construction of a spiral beam that has the form of
a broken line �z1; z2� [ �z2; z3�. Numerical experiments showed

that the intensity distribution of the beam

s
ÿ
z; �zj�z1; z2� [ �z2; z3�

� � s
ÿ
z; �zj�z1; z2�

�
� exp

�
i
Im �z2�z3 ÿ z1�

r2

�
s
ÿ
z; �zj�z2; z3�

� �42�

along the broken line being formed is rather uniform for
different angles between the links �z1; z2� and �z2; z3�. There-
fore, phase matching is a useful approach to constructing
spiral beams that realize different broken lines. Formula (42)
is easily generalized to multilink broken lines.

Using the beams described above as the basis ones, it is
possible to construct a wide variety of fields structurally
stable against focusing and propagation. An example of a
field involving all kinds of such basis beams is given in Fig. 11.
According to property B, a spiral beam acquires an additional
linear phase under displacement, and therefore the basis
beams in this figure, which have equal intensities, have
different phase distributions.

The above results bring up the following natural question.
Let there be some flat curve defined in the complex-
parametric form z � z�t�, where the parameter t runs over
some interval �0;T �. Does there exist a spiral beam
s
ÿ
z; �zjz�t�; t 2 �0;T �� that is in the form of this curve?

Naturally, the expression `a beam in the form of the curve
z�t�' implies the existence of some selection criterion. But for
the time being, we do not enlarge on the rigorous mathema-
tical formulation, assuming that a purely visual resemblance
would be the desired result. Namely, the intensity of the
desired beam should be as high as possible at points z lying in
the curve z�t� and as low as possible at the remaining points of
the plane.

We construct the spiral beams
ÿ
z; �zjz�t�; t 2 �0;T �� as the

limiting case of the beams that realize the broken lines
approximating the curve z�t�. Let the parameter t of the z�t�
curve vary from 0 to T, fkT=n; k � 0; 1; . . . ; ng be the
partition of the segment �0;T �, and fzk� z�kT=n�,
k � 0; 1; . . . ; ng be its corresponding partition of the curve
z�t� (Fig. 12).We consider the approximation of the curve z�t�
by the broken line

[nÿ1
k� 0

�zk; zk�1� � �z0; z1� [ �z1; z2� [ . . . [ �znÿ1; zn�

and the collection of `segment' beams s
ÿ
z; �zj�zk; zk�1�

�
realizing the individual links of this broken line.

Using representation (42) for a two-link broken line, we
write the spiral beam for a multilink approximating broken
line:

s

�
z; �z

���� [nÿ1
k� 0

�zk; zk�1�
�
�
Xnÿ1
k� 0

exp �ifk�s
ÿ
z; �zj�zk; zk�1�

�
: �43�

a b

Figure 11. Intensity (a) and phase (b) of a beam constructed of basis spiral

beams.
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Here, f0 � 0 and the remaining constants fk serve to match
the phases at the points zk. The phase matching condition for
each pair of beams that realize segments having a common
point is as follows:

fkÿ1 � args
ÿ
zk;�zkj�zkÿ1; zk�

� � fk � args
ÿ
zk;�zkj�zk; zk�1�

�
;

k � 1; . . . ; nÿ 1 :

We solve this system and use equality (39) to obtain

fk �
Xk
j� 1

�
args

ÿ
zj;�zjj�zjÿ1; zj�

�ÿ args
ÿ
zj;�zjj�zj; zj�1�

��
� 1

2ir2
Xk
j� 1

�
�zj�zj�1 ÿ zjÿ1� ÿ zj��zj�1 ÿ �zjÿ1�

�
;

k � 1; . . . ; nÿ 1 :

Substituting these expressions in expression (43) and letting
the length of each link of the broken line tend to zero yields

s
ÿ
z; �zjz�t�; t 2 �0;T �� � lim

n!1 s

�
z; �z

���� [nÿ1
k� 0

�zk; zk�1�
�

� lim
n!1

Xnÿ1
k� 0

exp

�
T

r2n

Xk
j� 1

�
�zj

zj�1 ÿ zjÿ1
2T=n

ÿ zj
�zj�1 ÿ �zjÿ1

2T=n

��

� exp

�
ÿ z�z

r2
� z��zk � �zk�1�

r2
ÿ jzk � zk�1j2

4r2

�

�
�jzk�1ÿzkj=2
ÿjzk�1ÿzkj=2

exp

�
ÿ t 2

r2
� t�2zÿ zk ÿ zk�1�

r2

� exp
�ÿi arg �zk�1 ÿ zk�

��
dt

� exp

�
ÿ z�z

r2

�
lim
n!1

T

n

Xnÿ1
k� 0

exp

�
ÿ zk�zk

r2
� 2z�zk

r2

�

� exp

�
T

r2n

Xk
j� 1

�
�zj

zj�1ÿ zjÿ1
2T=n

ÿ zj
�zj�1ÿ �zjÿ1

2T=n

�� jzk�1 ÿ zkj
T=n

:

We consider this expression as the limit of an integral sum.
As a result, we arrive at the final formula

s
ÿ
z; �zjz�t�; t 2 �0;T ��
� exp

�
ÿ z�z

r2

�� T

0

exp

�
ÿ z�t��z�t�

r2
� 2z�z�t�

r2

� 1

r2

� t

0

�
�z�t�z 0�t� ÿ z�t��z 0�t�� dt���z 0�t��� dt : �44�

Thus, we have constructed the spiral beam for the curve
z�t�. How close is its intensity distribution form to the curve
z�t�?

As is evident from expression (44), the beam is represented
in terms of the curve invariants: the differential of arc length��z 0�t��� dt and the oriented area of the sector swept in tracing
the curve

1

4i

�t
0

��zz 0 ÿ z�z 0� dt :

That is why the beam is defined by the curve as a geometric
object on the plane and, in particular, is independent of its
parameterization.

However, in the construction of beam (44), the phase-
matching approach was employed for two and only two
contiguous links of the broken line and the effect of the
remaining ones was neglected. As the length of the links of the
broken line is shortened, it is evident that the lengths of the
corresponding spiral beams do not tend to zero and their
interference becomes stronger. Furthermore, of considerable
importance is the curve shape. To exemplify, Fig. 13 shows
the beam intensity and phase for the spiral of Archimedes
z�t� � t exp �ict�. The pitch of the spiral was selected so as to
show the interference between its coils. The interference of
coils becomes stronger with decreasing the pitch because it
becomes comparable to the Gaussian beam parameter r.

For closed curves z�t�, t 2 �0;T �, the interference man-
ifests itself in that the construction of spiral beams corre-
sponding to closed broken lines requires matching the phases
of the first and last links at the point z0 � zn.

Therefore, the relation between the curve z�t� and spiral
beam (44) is not evident in general. Some aspects of this issue
are considered in the next section.

3.2 Properties of beams in the form of closed curves
3.2.1 Quantization condition. Beams for closed curves occupy
a separate place and deserve special consideration. Let a
function z�t�, t 2 �0;T � describe a closed curve without self-

y

zn

znÿ1

z�t�

z2

z1

z0

x0

Figure 12. A curve z�t� and its approximating broken line.

a b

Figure 13. Intensity (a) and phase (b) of a spiral beam in the form of a spiral

of Archimedes. Isolated intensity zeroes are seen between the turns.
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intersections. Without loss of generality it may be assumed
that the curve is traced in the counterclockwise direction with
increasing t. We define z�t� for all real t and continue it
periodically outside the segment �0;T �. Then, the functions
z�t� a�, t 2 �0;T � describe the same curve for different a. Do
the spiral beams for z�t� a� coincide for different a?We show
that the beams constructed for closed curves manifest typical
quantization properties. First, the intensity distribution of
such beams undergoes radical changes under the similarity
transformation z�t� ! nz�t� and bears visual resemblance to
the curve nz�t� only for specific discrete values of n. Second,
only for these n values are the intensities of beams constructed
for the curves nz�t� a� the same for different a.

We now find the condition under which the intensities of
spiral beams constructed for the curves z�t� and z�t� a�
coincide:��sÿz; �zjz�t�; t 2 �a; a� T ����2 � ��sÿz; �zjz�t�; t 2 �0;T ����2 :
We rewrite this identity as

exp
�
iC�a��sÿz; �zjz�t�; t 2 �a; a� T ��
� s

ÿ
z; �zjz�t�; t 2 �0;T �� ; �45�

whereC�a� is some real function independent of z [otherwise,
canceling the Gaussian function in both sides of identity (45),
we obtain C as an analytic function of z, and therefore it
cannot be a real function for all z]. We differentiate identity
(45) with respect to a and use the periodicity of z�t� to obtain

exp �iC�a��sÿz; �zjz�t�; t 2 �a; a� T ��
�
�
iC 0�a� ÿ

�z�a�z 0�a� ÿ z�a��z 0�a�
r2

�

� exp

�
iC�a� ÿ z�zÿ 2z�z�a� � z�a��z�a�

r2

�

�
�
exp

�
1

r2

� T

0

��zz 0 ÿ z�z 0� dt
�
ÿ 1

���z 0�a��� � 0 :

Replacing the spiral beam in the first term in accordance with
identity (45) and canceling the Gaussian function, we rewrite
this equation in the symbolic form

f �z�F1�a� � exp

�
2z�z�a�
r2

�
F2�a� � 0 ;

where f �z� is an entire analytic function and F1�a� and F2�a�
are some functions of a. This equality is valid for all complex z
and real a only if F1�a� � F2�a� � 0 [if f �z� has a zero, this
follows immediately. The case where f �z� has no zeroes is also

simple]. Therefore,

C�a� � 1

ir2

� a

0

��zz 0ÿ z�z 0� dt ; exp

�
1

r2

� T

0

��zz 0 ÿ z�z 0� dt
�
� 1

and consequently [59],

1

r2

� T

0

�
�z�t�z 0�t� ÿ z�t��z 0�t�� dt � 4iS

r2
� 2piN ;

where S is the area enclosed by the closed contour z�t�.
Therefore, the beam intensity is independent of the initial

point of integration a only for curves whose surface satisfies
the quantization condition

S � 1

2
pr2N �N � 1; 2; . . .� : �46�

The closed curves that satisfy equality (46) are referred to
asN-quantized curves and the spiral beams for such curves as
N-quantized beams. If we invoke the quantum-mechanical
analogy noted in the previous section, the wave functions of a
particle in a constant magnetic field in the ground state
correspond to spiral beams with y0 � �1, g0 � 1. Condition
(46) then corresponds to the quantized magnetic flux through
the z�t� contour: F � ÿ2p�hc=jej�N (see also Ref. [54]).

Quantization condition (46) is obtained in a natural way
as the limiting case of the additional condition for the
matching of phases of the first and last links fnÿ1 �
f0 � 2pN in the consideration of closed approximating
broken lines [see the note after formula (41)].

Figure 14 shows the intensities and phases of spiral beams
in the form of the boundaries of a regular triangle and a
square. In calculating the field (44) for the triangle, the
hypocycloid

z�t� � inr
�
2 exp �it� � 1

2
exp �ÿ2it�

�
; t 2 �0; 2p�

was taken as the generating curve z�t�. The value n � ���������
N=7

p
corresponds to the N-quantized curve. The generating curve
for the square is the epicycloid

z�t� � inr
�
3 exp �it� ÿ 7

20
exp �ÿ3it�

�
; t 2 �0; 2p� ;

and the N-quantized curve is obtained for n � �����������������������
200N=3453

p
.

The spiral beams shown in Fig. 14 were constructed for the
7-quantized hypocycloid and the 8-quantized epicycloid. The
respective areas of the regions enclosed by these curves are
�7=2�pr2 and 4pr2. The phase distributions exhibit the
presence of singularities (isolated intensity zeroes), which
number 7 and 8 inside the corresponding regions.

a b c d e f

Figure 14.Distribution of the intensity (a, d) and phase (b, e), as well as the phase outside the beamwaist (c, f), for spiral beams in the form of boundaries

of a regular triangle and a square.
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3.2.2 Spiral beam intensity and phase on the generating curve.
The beams constructed for quantized curves have a char-
acteristic property. Let z�t�, t 2 �0;T �, be a closed curve
satisfying condition (46). Then,

s
ÿ
z�t0�;�z�t0�jz�t�; t 2 �0;T �

� 6� 0

for all t0 2 �0;T �. In other words, the entire function

f �z� �
� T

0

exp

�
ÿ z�t��z�t�

r2
� 2z�z�t�

r2

� 1

r2

� t

0

��zz 0 ÿ z�z 0� dt
���z 0�t��� dt

has no zeroes on the quantized curve z 2 z�t�, t 2 �0;T �.
To analyze this statement, we use the saddle-point

technique [43] to consider the asymptotic behavior of the
beamss�z; �zjnz1� for large values of the parameter n, where z1
is an arbitrary 1-quantized curve without self-intersections.
Hereinafter, we use a simplified notation s�z; �zjz� for the
spiral beam whenever the curve z requires no detailing.

We make the change z! nz. Then,

s�nz; n�zjnz1� � n
� T

0

exp

�
ÿ n 2

r2
P�t�

���z 01�t��� dt ; �47�

where the complex function P�t� is
P�t� � z�zÿ 2z�z1�t� � z1�t��z1�t�

ÿ
� t

0

�
�z1�t�z 01�t� ÿ z1�t��z 01�t�

�
dt :

The saddle-point equation

P 0�t� � 2�z 01�t�
�
z1�t� ÿ z

� � 0 ;

owing to the absence of singular points [�z 01�t� 6� 0 for all t] and
self-intersections [ z1�t1� 6� z1�t2� for t1 6� t2 and
t1; t2 2 �0;T �], has solutions only for z 2 z1�t�, t 2 �0;T �. Let
z � z1�t0� for some t0 2 �0;T � and let n � ���

n
p

4 r. Then,���
n
p

z1�t� is an n-quantized curve. Because t � t0 is the only
saddle point (and a nondegenerate one),

s
ÿ ���

n
p

z1�t0�;
���
n
p

�z1�t0�j
���
n
p

z1
�

� ���
p
p

r exp
�
n

r2

� t0

0

��z1z 01 ÿ z1�z
0
1

�
dt
�
�O

�
1

n

�
: �48�

As is seen from expression (48), in the limit n!1, the
intensity tends to pr2, and therefore

s
ÿ ���

n
p

z1�t0�;
���
n
p �z1�t0�j

���
n
p

z1
� 6� 0

beginning with some n (which depends, of course, on the form
of the curve z1). We note that the intensity distribution on the
curve

���
n
p

z1�t� becomes progressively more uniform with
increasing n, and the absence of saddle points for
z =2�z1�t�; t 2 �0;T �	 is responsible for a drop in the spiral-
beam intensity outside the curve

���
n
p

z1�t�. Therefore, the
asymptotic behavior of the spiral-beam intensity provides a
rigorous physical substantiation for the expression `a beam in
the form of the curve z�t�'.

For n 6� ���
n
p

[i.e., for the nonquantized curve nz1�t�], the
asymptotic estimate is similar to formula (48) when the point
t0 is not located in the immediate vicinity of boundary points.
However, if t0 � T (or t0 � 0), the intergrand in (47) is not

T-periodic and the integration range �0;T � cannot be replaced
with �t0 ÿ T=2; t0 � T=2�. That is why the points t � 0 and
t � T should be regarded as two different solutions of the
saddle-point equation, and the asymptotic estimate becomes

s
ÿ
nz1�T �; n�z1�T �jnz1

� � ���
p
p

r
1� exp �2pin 2�

2
�O

�
1

n 2

�
:

�49�

This expression implies that for n 6� ���
n
p

, the intensity on
the curve nz1�t� does not tend to the constant pr2 as n!1
and, in addition, the location of intensity nonuniformity on
the curve nz1�t� is determined by the initial point of
integration. Figure 15 shows the possibilities for the intensity
distribution of a nonquantized triangular-shaped spiral beam
in relation to the choice of the initial point of the integration
range.

We emphasize once again the asymptotic nature of the
resultant expressions. A more detailed analysis of formula
(48) allows reinforcing the statement about the order of
magnitude of the remainder term. However, the issue of a
rigorous proof of the condition

s
ÿ ���

n
p

z1�t0�;
���
n
p �z1�t0�j

���
n
p

z1
� 6� 0 for all n5 1 �50�

still remains open. Even when the quantization condition is
fulfilled, the expression on the left-hand side of the last
inequality is inseparable from zero (i.e., the zero constant
cannot be replaced with a slightly larger one). The main
problem consists in the efficient use of the condition for the
absence of self-intersection points on the generating curve. 5

a b

Figure 15. Intensities of spiral beams (44) constructed for the nonquan-

tized triangular-shaped hypocycloid

z�t� � 1:0425ir
�
2 exp �it� � 1

2
exp �ÿ2it�

�
and different integration intervals: (a) t 2 �ÿp; p�, (b) t 2 �0; 2p�. The

parameter 1.0425 lies between 1 and
��������
8=7

p
, which corresponds to the

intermediate position between the 7- and 8-quantized curves.

5 The simplicity of the formulation of this condition cannot be under-

estimated. Reference [61] was concerned with the following problem:

What shape should a rectangular band of paper have to allow making a

Moebius strip? It is clear that the band should be narrow and long (there is

noway ofmaking aMoebius strip, for instance, out of a square sheet). The

search for the minimal possible length-to-width ratio for the band led to

the following result:

p
2
4 inf

length

width
4

���
3
p

:

However, the exact equality was not found, because no answer was

provided to the same old question as to how use should be made of the

condition for the absence of self-crossings.
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To illustrate this difficulty, Fig. 16 gives an example of a
spiral beam. Where portions of the curve nearly touch each
other, the existing zeroes approach the generating curve
quite closely, and it is only the condition for the absence of
self-crossings that prevents the zeroes from settling them-
selves in the curve itself and thereby transforming (50) into
an equality.

3.2.3 The number of spiral-beam zeroes inside the domain
enclosed by the generating curve. We consider the circulation
of the phase gradient of the quantized beams�z; �zj ����Np z1� ��������������
I�x; y�p

exp �ij�x; y�� along its generating contour. As
suggested by Refs [4, 46] and noted in the Introduction,� ���

N
p

z1

HHj dr � 2p
X
n

sgn rot0 j�zn� ; �51�

where the scalar function

rot0 j � 1

k

�
qI
qx

qj
qy
ÿ qI
qy

qj
qx

�

is the longitudinal component of the curl of the light energy
flux vector j and the summation is performed over all zeroes zn
of the spiral beam residing within the contour

����
N
p

z1�t�,
counted with multiplicities. 6

For spiral beams (44), as for general beams (33),
rot0 j�zn� � ÿsgn y0 � 1, and therefore� ���

N
p

z1

HHj dr � 2pN0 ;

where N0 is the number of zeroes of the beam s�z; �zj ����Np z1�
inside the contour

����
N
p

z1�t�, counted with multiplicities.
We show that

N0 � N : �52�

Because N � 2S=pr2, equality (52) relates the number of
quantized-beam zeroes in the domain enclosed by the
generating curve to the area of the domain itself.

Forestalling the proof, we consider the construction of
spiral beams in the form of a circle. Using representation (44)

and neglecting the insignificant constant factor that emerges
as a result of integration, we obtain the expression

s
ÿ
z; �zjR exp �it�; t 2 �0; 2p��
� exp

�
ÿ z�z

r2

�X1
n� 0

sin �2R 2=r2 ÿ n�p
2R 2=r2 ÿ n

�ÿ2zR=r2�n
n!

:

From the quantization condition for the circle
S � pR 2 � pr2N=2, it follows that 2R 2=r2 � N, and the
series reduces to the single Nth term:

s

�
z; �z

����r
�����
N

2

r
exp �it�; t 2 �0; 2p�

�
� exp

�
ÿ z�z

r2

��
z

r

�N

:

�53�
Therefore, quantized spiral beams for a circle are the well-

known Laguerre ±Gauss beams. The validity of equality (52)
is evident in this case.

We now assume that there exists some N-quantized curve
ẑ�t� for which equality (52) is not fulfilled. Then, we construct
a family of closed curves z�t; c� that depends on the parameter
c 2 �0; 1�, begins with the N-quantized curve

z�t; 0� � r

�����
N

2

r
exp �it� ;

ends with the curve z�t; 1� � ẑ�t�, and has a fixed area of the
enclosed domain S � pr2N=2 for every curve z�t; c�. This
ensures fulfillment of quantization condition (46) for all
c 2 �0; 1� for a continuous deformation of the circle.
However, the spiral beam for the circle satisfies condition
(52) and the spiral beam for the ẑ�t� curve does not. The
number of zeroes of the N-quantized spiral beam
s
ÿ
z; �zjz�t; c�� in the domain enclosed by the contour z�t; c�

should therefore change for some c. The following reason-
ing applies for the mechanism of the spiral-beam zero
number variation under changes in the generating curve.
The zeroes of the spiral beam are zeroes of the correspond-
ing analytic function. From the principle of maximum
modulus [40], it follows that the modulus of the analytic
function does not have a minimum inside the domain,
provided this minimum is not a zero of the function.
Consequently, no zero can arise from the minimum of the
function modulus or be transformed to a minimum inside
the domain under changes in the parameter c, because there
exists no such minimum for an analytic function. The
variation of the number of zeroes therefore results from
the penetration of a zero into the domain enclosed by the
contour z�t; c� from outside or vice versa. In this case,
however, there exists a parameter value c � c0 such that
the spiral beam s

ÿ
z; �zjz�t; c0�

�
has a zero on the contour

z�t; c0�, which is impossible, as noted above.
Therefore, to a quantized beam, there corresponds a

well-defined number of phase singularities inside the
domain enclosed by the generating curve, which depends
on the area of the domain and not on its shape [59]. Hence,
it follows that changing the domain area, for instance, from
S � pr2N=2 to S � pr2�N� 1�=2 leads to an increase in
the number of zeroes inside the domain via arrival of one
zero from outside. Figure 17 shows the evolution of the spiral
beam for the circle z�t� � R exp �it�, t 2 �0; 2p� for
2R 2=r2 2 �4; 0; 5; 0� and makes the process of zero penetra-
tion inside the contour evident. The limited dimensions of the

a b

Figure 16. Intensity (a) and phase (b) of a spiral beam constructed for a

97-quantized curve in the form of a snowflake.

6 If zn is a degenerate zero, then rot0 j�zn� � 0 and formula (51) requires a

more precise definition. The function rot0 j�z� for spiral beams (32) may be

shown to be of constant signs in the small neighborhood of the point zn. By

sgn rot0 j�zn� in this case, we mean limz! zn sgn rot0 j�z�.
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graphic images give us no way of seeing what occurs at the
periphery simultaneously with the changes at the ring center.
With an increase in the radiusR of the generating circle, when
the spiral beam ceases to be quantized and the degenerate zero
at the center breaks up into four simple ones, a wedge of
zeroes forms at infinity, which approach these four progres-
sively closer asR increases. The zero located at the wedge end
penetrates the interior of the circle enclosed by the generating
circle, while the rest of the zeroes remain outside. After that,
the internal quintuple of zeroes begins to draw together and,
simultaneously, the wedge of zeroes, which has lost one of its
representatives, begins to recede from them. When the spiral
beam becomes quantized again, the zeroes at the center merge
into a fifth-order zero and the wedge at infinity disappears.
The region of zero penetration, as mentioned above, is
determined by the initial point of integration.

3.2.4 Spiral beams for symmetric curves. The symmetry of
closed curves shows up in the properties of the corresponding
spiral beams. Let a curve z�t�, t 2 �0; 2p� be mapped into itself
under rotation by the angle 2p=M, i.e., z�t� 2p=M� �
z�t� exp �2pi=M�. Then, the quantized spiral beamss�z; �zjzn�
constructed for the corresponding quantized curves zn�t� have
the following properties:

(a) s
ÿ
z exp �2pi=M�; �z exp �ÿ2pi=M�jzn

� � s�z; �zjzn��
exp �2pin=M�;

(b) s�z; �zjzn� has a zero of multiplicity nÿ �n=M�M at
z � 0. If n5M, the remaining zeroes located inside the
contour zn�t� are situated at the vertices of regular M-gons
(one or several). For instance,M � 3 for the hypocycloid47:

z�t� � ir
�
2 exp �it� � 1

2
exp �ÿ2it�

�
; t 2 �0; 2p� :

The beams�z; �zj47� therefore contains a simple zero at z � 0
and six other zeroes at the vertices of two regular triangles (see
Figs 14a ± c);

(c) if nÿm is not divisible byM, the beamss�z; �zjzn� and
s�z; �zjzm� are orthogonal in the space L2�R2�. In the case of a
circle, for instance, for M, one can take an arbitrarily large
natural number. Therefore, s�z; �zjn� and s�z; �zjm� are
orthogonal for all n 6� m. This result is well known, because it
is a special case of the orthogonality of Laguerre ±Gauss
modes.

3.2.5 Spiral beams as generalizations of Laguerre ±Gauss
modes. According to expression (53), the Laguerre ±Gauss
modes l0; n�x; y� � exp �ÿx 2 ÿ y 2��x� iy�n are a special
case of quantized spiral beams when a circle is selected as
the generating curve. The entire family of Laguerre ±Gauss
modes can be obtained in terms of generating curves. For this,
we rewrite expression (20) for l � 0 as

sm�z; �z� � exp �Z �Z� qm

qZm

ÿ
exp �ÿ2Z �Z� f �Z��

�
�
r

q
qz
ÿ �z

r

�m

s�z; �z� ; �54�

where z � x� iy, Z � z=r, s�z; �z� � exp �ÿz�z=r2� f �z=r�,
and in lieu of N use is made of the symbol m. We note that
the operator acting ons�z; �z� is the creation operator for the
Hamiltonian that describes particle motion in a uniform
magnetic field [62].

Substitution of the spiral beam corresponding to the
n-quantized circle

s
ÿ
z; �zjn

� � exp

�
ÿ z�z

r2

��
z

r

�n

;

fors�z; �z� gives, up to a constant factor, the Laguerre ±Gauss
modes of the general form

sm

ÿ
z; �zjn

� �lmin �m; n�; nÿm

�
x

r
;
y

r

�
:

Figure 17.Evolution of the spiral beam under changes in the radius of the generating circle: intensity (upper row), phase (middle row), and sign of the curl

rot0 j of light energy flux vector (lower row). Black color corresponds to negative values of the curl and white color to positive ones.

December, 2004 Spiral light beams 1195



Therefore, spiral beams in the form of closed curves can
be regarded as a generalization of Laguerre ±Gauss beams
l0; n�x; y�. We can continue this analogy and construct, for
every generating curve, a family of spiral beams correspond-
ing to the complete family of Laguerre ±Gauss beams. To
do this, we choose the field s�z; �z� in representation (54) to
be an n-quantized spiral beam in the form of an arbitrary
generating curve z�t�. Then, the resultant field assumes the
form

sm�z; �zj
���
n
p

z1� �
�
r

q
qz
ÿ �z

r

�m

s�z; �zj ���np z1� : �55�

Here, as before, z1�t� is a 1-quantized curve. As the initial
beam s�z; �zj ���np z1�, the beams (55) rotate during propaga-
tion, because they have the same rotation parameter y0 � ÿ1.
Furthermore, they inherit the features of the generating
curve. Laguerre ±Gauss beams and the corresponding spiral
beams for a 7-quantized hypocycloid of triangular form are
exemplified in Fig. 18. Interestingly, in contrast to Laguerre ±
Gauss beams, low-intensity lines are no longer zero lines and
this intensity structure is ensured only by isolated zeroes,
which are rather complicated in form and which imitate zero-
intensity lines.

3.3 Methods of synthesis of structurally stable beams
with a predetermined intensity distribution
3.3.1 Amplitude ± phase mask technique. Spiral beams (44)
were experimentally realized in the following way [59].
Computer-calculated amplitude half-tone masks for the
amplitude and phase were made with a photoplotter (a
resolution of 1024� 1024 elements, dimensions of

10� 10 mm). The amplitude mask for the phase was
employed to fabricate a phase element on dichromated
gelatin. The combination of the amplitude A and phase P
masks yield the requisite amplitude ± phase distribution. To
realize a triangle-shaped spiral beam (Figs 14a, c), use was
made of the phase distribution plotted in Fig. 14c, because its
spatial frequency is higher than that of the distribution shown
in Fig. 14b. Furthermore, a quadratic phase addition with the
wavefront curvature 0.002 mmÿ1 was superimposed on the
phase distribution at the beam waist to increase the diffrac-
tion efficiency of the phase element.

The experiment is schematized in Fig. 19a. The beam of a
laser L is expanded and illuminates an amplitude ± phase
element AP (the element was rotated by 90� in comparison
to the distribution plotted in Fig. 14). A lens 3 ( f � 250 mm)
focuses the �1st, 0th, and ÿ1st diffraction orders onto the
�1st, 0th, and ÿ1st planes, respectively. The diffraction
efficiency in these orders was as follows: Z1 :Z2 :Z3 � 10 :7 :3,
Z1 � 40%. The intensity distribution patterns in the planes 0
and�1 is schematically shown in the lower part of the figure.
The spiral beams rotating in the opposite directions, s�1 �
exp �ÿz�z� f �z�, sÿ1 � exp �ÿz�z� f �z�, are realized in the
orders �1 and ÿ1. Observed in the zero order is the ordinary
pattern of diffraction from the amplitude transparency A.
This field is not a spiral beam and does not retain its structure
under focusing on the plane 0. Figure 19b shows the
experimental intensity distribution in the diffraction order
�1 in the plane �1.

3.3.2 Astigmatic transformation technique. We now consider
another way of realizing spiral beams in the form of curves,
which involves astigmatic transformation (26) of Hermite ±

Figure 18. Intensities and phases of the Laguerre ±Gauss beamslm; 7ÿm�x; y� and the spiral beamssm�z; �zj47� for m � 1; 2; 3.

+1

+1
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1
2 3

0

ÿ1

ÿ1

+1
0
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+1
0
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b

Figure 19. Schematic layout of the experiment for synthesizing a spiral beam in the formof the boundary of a regular triangle (a) and the recorded intensity

distribution in the �1 diffraction order (b).
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Gauss beams to Laguerre ±Gauss beams. Its special case��
R2

exp

�
ÿi�xx� yZ� � 2ixZ

r2

�
hn; 0

�
x
r
;
Z
r

�
dx dZ

� pr2���
2
p �ÿ2i�n exp

�
ÿ ir2xy

4

�
l0; n

�
rx

2
���
2
p ;

ry

2
���
2
p
�

allows synthesizing the spiral beams exp �ÿz�z�zn and can be
generalized as follows:��

R2
exp

�
ÿi�xx� yZ� � 2ixZ

r2
ÿ Z2

r2

�
g

�
x
r

�
dx dZ

� ���
p
p

r2 exp
�
ÿ ir2xy

4

�
s
ÿ
r�x� iy�; r�xÿ iy�� : �56�

Here, g�x� 2 L2�R� and the spiral beams�z; �z� is given by

s�z; �z� � exp

�
ÿ 1

8
z�z� 1

8
z2
��

R

exp �ÿx2 ÿ izx� g�x� dx :

The following sequence of operations may be suggested
for the experimental synthesis of spiral beams with the use of
transformation (56):

(a) to form the light field exp �ÿZ2=r2�g�x=r� for some
function g�x�;

(b) to perform the astigmatic transformation of this field;
(c) to compensate for the astigmatism after the transfor-

mation.
For instance, for g�x� � rect �x=a�, a spiral beam `line

segment' similar to that depicted in Fig. 10 is realized. Then,
the resultant spiral beam for

g�x� � rect

�
x
a

� XN
n�ÿN

exp �inox�

has the shape of 2N� 1 parallel vertical-beam `line segments':

sN�z; �z� �
XN

n�ÿN
exp

�
ÿ 1

8
z�z� 1

8
z2
�

�
� a

ÿa
exp
�ÿx2 ÿ ix�zÿ no�� dx : �57�

For o � o0 � 2
���
p
p

, separate beams `stick together' and
beam (57) takes the form of an array of zeroes that are
symmetric with respect to x, y (Figs 20a, b). The frequencyo0

is obtained from the following considerations. For a4 1 and
N!1, beam (57) can be represented as

s1�z; �z� �
���
p
p

exp

�
ÿ 1

8
z�zÿ 1

8
z2
�

�
X1

n�ÿ1
exp

�
ÿ 1

4
o2n 2 � 1

2
ozn

�
:

Here, the series is the theta function #3. Setting o � o0 and
using the Poisson resummation formula for this theta
function [63],X1

n�ÿ1
exp �ÿpn 2 � 2inz�

� exp

�
ÿ z2

p

� X1
n�ÿ1

exp �ÿpn 2 � 2nz� ;

we obtain the symmetric property and periodicity of the
intensity:��s1�z; �z���2 � ��s1�iz;ÿi�z���2 � ��s1�z� o0; �z� o0�

��2
� ��s1�z� io0; �zÿ io0�

��2 :
The beam described by (57) was realized with the aid of

a Damman array with a spatial frequency o0 as a multi-
plication element. The experiment is schematically repre-
sented in Fig. 20e. The beam emanating from a laser L is
expanded and collimated by spherical lenses 1, 2. Cylind-
rical lenses 3, 4 compress the beam in one direction and, in
combination with an astigmatic transformer comprising
spherical 5 and cylindrical 6 lenses, produce the field
exp �ÿZ2=r2� rect �x=a� exp �2ixZ=r2�. Placed immediately
behind cylindrical lens 6 was diffraction lattice 7, which
produced 17 orders of equal intensity. Astigmatic transfor-
mation (56) was realized in the Fraunhofer zone behind the
lattice and the intensity distribution of the output beam
looked like an array of zeroes. A combination of long-focus

a b c d

LL 11
22 33

44
55 66 77

88 99

1100

e
Figure 20. Theoretical calculations and experimental realization of spiral beams in the form of an array of zeroes and the as optical scheme (e) for the

synthesis of such beams. Intensity (a) and phase (b) of the spiral beams�z; �zj&� 8�8� (theory); intensity (c) and the result of interference between the spiral

and reference beams (d) (experiment).
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collecting 8 and diverging 9 lenses compensated for the
astigmatism at the transformer output. The second arm of
the scheme was used for the interferometric visualization of
the phase of the spiral beam on screen 10. The reference front
curvature selectedwas then equal to the curvature of the beam
at the transformer output. The experimental results are given
in Figs 20c, d. As can be seen from Fig. 20d, at every isolated
zero, there occurs interference fringe branching, which
corresponds to a phase singularity at this point. At all
intensity zeroes, the values of the curl of the light energy flux
vector are of the same sign (have the same topological
charge). The structural distortion of the vortex array in the
experiment in comparison with the theoretical distribution
arises from some residual aberrations.

Astigmatic transformation can underlie yet another
method, kindred to the previous one, of spiral beam
formation. Let sm�z; �z� be a beam of form (54). Then, the
equality��

R2
exp

�
ÿi�xx� yZ� � 2ixZ

r2

�
sm�x� iZ; xÿ iZ� dx dZ

� pr2���
2
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�
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r
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�
ÿ ir2xy

4
ÿ r2x 2

8

�
Hm

�
rx
2

�
h�y� �58�

holds, where Hm�t� is the Hermite polynomial and

h�y� � 1���
p
p exp

�
ÿ r2y2

8

��
R

exp �ÿt 2� f
�
ry
2
� it

�
dt : �59�

It is easily seen that all information on the spiral beam
structure is contained in h�y�, which is a function of one
variable. Therefore, this function effects a peculiar one-
dimensional coding of the two-dimensional spiral beam.

We set m � 0 in formula (58) and take the spiral beam
s�z; �zjz� in the form of the curve z�t�, with the result that the
function h assumes the form

h�yjz� � exp

�
ÿ r2y 2

8

�� T

0

exp

�
ÿ

�z 2�t�
r2
ÿ z�t��z�t�

r2
� y�z�t�

� 1

r2

� t

0

��zz 0 ÿ z�z 0� dt
���z 0�t��� dt :

In particular, for a quantized circle, we obtain the one-
dimensional Hermite ±Gauss mode7

h�yjn� � exp

�
ÿ r2y 2

8

�
Hn

�
ry
2

�
:

The following method can be proposed for the synthesis
of spiral beams with the use of coder functions:

(a) to synthesize a one-dimensional amplitude ± phase
element h�y�;

(b) to `reconstruct' the spiral beam intensity with the
astigmatic one-dimensional Hermite ±Gauss beam

exp

�
ÿ ir2xy

4
ÿ r2x 2

8

�
Hm

�
rx
2

�
in the Fraunhofer diffraction zone or in the Fourier plane.

Figure 21 shows the amplitude ± phase elements corre-
sponding to spiral beams of triangular shape versus the angle
of rotation of the generating curve. The generating curve was
chosen as a 7-quantized hypocycloid, for which the spiral
beam is shown in Fig. 14. Figures 21a and 21b show the
amplitude (a) and phase (b) of the distribution

exp

�
ÿ r2x 2

8

�
h�yj"7� ;

as well as the plots of the amplitude and phase of the one-
dimensional function h�yj"7�. Figures 21c and 21d give a
similar amplitude ± phase element for a 7-quantized hypocy-
cloid rotated by 90�. Unlike the previous distribution, which
was purely real, the element h�yj47� is complex-valued.

The amplitude ± phase element for a spiral beam in the
form of an array of zeroes is shown in Fig. 22. We see from
Fig. 22 that the coder function for the array of zeroes is real
(this can also be proven theoretically). Because the coder
function for a quantized circle is also real, any beam in the
form of an array of zeroes can be obtained by astigmatic
transformation of a product of one-dimensional real func-
tions. The one-dimensional structure of amplitude ± phase
coder elements enables harnessing the potentialities of
microlithography in full measure, and therefore this
approach may turn out to be preferable to the amplitude ±
phase mask method.

To conclude this section, we consider the relation between
the resultant beams and several well-known transformations.

1. We turn to astigmatic transformation (56) and rewrite
the resultant spiral beams�z; �z� as

s�2iz;ÿ2i�z� � exp

�
ÿ z�z

2

�
�
�
R

exp

�
ÿ z 2

2
� 2zxÿ x 2

�
g�x� dx � exp

�
ÿ z�z

2

�
f �z� :

As a result, we have the Gabor transformation [64] of the
function g�x�, where the analytic function f �z� is related to

1
jhj

0 y

x

y

2p
arg h

0 y

1
jhj

0 y

x

y

2p
arg h

0 y

a b c d

Figure 21. Amplitude ± phase elements for a spiral beam of triangular shape vs. the rotation angle of the generating curve.

7 It is interesting to note the occurrence of this function in formula (58).
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g�x� by the integral transformation with the kernel
exp �ÿz 2=2� 2zxÿ x 2�. Furthermore, in quantum
mechanics [60], the relation between the coordinate represen-
tation of a state jqi and the Fock ±Bargman representation
hzj is effected by the integral representation with the kernel

hzjqi � 1������
p�h4
p exp

�
ÿ z 2

2
� 2zq�����

2�h
p ÿ q2

2�h

�
:

Therefore, astigmatic transformation (56) realizes the rela-
tion between two quantum-mechanical representations by
optical means.

2. From transformation (56), there also follows the
feasibility of optical realization of the analytic continuation
of the Fourier transform of the field g�x� through an
astigmatic transformation. For instance, for a finite field
g�x� with the support �ÿa; a�, the sequence of operations is
as follows. First, the field g�x� is transmitted through the
amplitude mask exp �ÿa2 � x 2 ÿ Z2� and the astigmatic
phase element exp �2ixZ�. Effected next is the optical Fourier
transform. The zeroes of the output field are the zeroes of the
analytic continuation of the Fourier transform of g�x�. The
resultant analytic continuation may be employed as the basis
of a new method of phase reconstruction [65].

3. During propagation, the evolution of the field from
expression (59),

F �x; y; 0� � exp

�
ÿ r2y 2

8

�
h�rxjz� ;

is of the form

F �x; y; l � � k

2pil

��
R2

exp

�
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��xÿ x�2 � �yÿ Z�2��
� F �x; Z; 0� dx dZ

� 1

s
exp

�
ilr 4�x 2 � y 2�

32kjsj2
�
exp

�
ÿ r2y 2

8jsj2
�

� h

�
rx
jsj
����z exp �i arg s�� ; �60�

where s � 1� ilr2=4k. We compare expressions (59) and (60)
to find that for every l, the above field F�x; y; l � coincides, up
to scale and a phase factor, with the astigmatic transform of
the spiral beam s

ÿ
z exp �ÿi arg s�; �z exp �i arg s�jz�, which is

obtained from the initial spiral beam by rotation by the angle
arg s.

Transformation (60) and the corresponding astigmatic
transformation can be given a geometric interpretation. We
consider the three-dimensional distribution (see also

Refs [56, 59])

W�x; u; y� � exp

�
ÿ 2ixu

r2
ÿ 2y 2

r2

�
s�x� iu; xÿ iujz� :

The projection of this distribution on the plane u � 0 is

WPR�x; y� �
�
R

W�x; u; y� du � ���
p
p

exp

�
ÿ 2y 2

r2

�
h

�
4x

r

����z� :
This projection coincides, up to a scale, with F�x; y; 0�.
Accordingly, under rotation of the W�x; u; y� distribution by
the angle args about the y axis, its projection on the plane
u � 0 coincides with F�x; y; l � up to a scale and a phase factor.
Therefore, the evolution of the field F�x; y; l � during
propagation looks like a change in the projection W�x; u; y�
in its rotation about the y axis.

3.4 Synthesis of phase elements for focusing into curves
Owing to their structural stability, spiral beams are always
amplitude ± phase and not purely phase light fields. There-
fore, the methods of light-field synthesis outside a cavity
involving a transformation of some initial field by means of
amplitude ± phase optical elements are inevitably associated
with the loss of a significant fraction of the transformed field
energy, making these methods nonoptimal for applied
problems. At the same time, the structural field stability
during propagation and focusing is not always a necessity: it
would be quite sufficient to achieve an efficient transforma-
tion of the initial light field into the field with a prescribed
intensity distribution in some plane. Hence, the problem is
naturally formulated in the following way: to `trade' the
structural stability of the spiral beam for the possibility of
forming the prescribed intensity distribution in some plane
using a purely phase element.

The problem of synthesizing a phase element (the so-
called `focusator') for the formation of light fields with a
prescribed intensity distribution is well known and has its
own history and bibliography (see, e.g., Ref. [66]). Mathema-
tically, the problem of laser radiation focusing amounts to
determination of a piecewise smooth function exp

�
ij�x; Z��

such that its Fresnel transform for l � l0 yields the desired
intensity distribution I�x; y�:

I�x; y� � ��F �x; y���2
�
���� k

2pil0

��
O
exp

�
ik

2l0

��xÿ x�2 � �yÿ Z�2��
� exp

�
ij�x; Z�� dx dZ����2 : �61�

Here, O is the aperture of the optical element.

Figure 22.Upper row: amplitude and phase of the coder element for the spiral beams�z; �zj&� 8�8� (Figs 20a and 20b). Lower row: intensities of the spiral

beamssm�z; �zj&� 8�8� constructed by formula (54) for 14m4 6.
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We also emphasize that the expression `the desired
intensity distribution I�x; y�' should be interpreted not in the
sense of the analytic representation of the function I but
somewhat more broadly. For instance, it is evident that the
problem of focusing distribution (61) for I�x; y� �
rect �x=a� rect �y=b� has no solutions for any positive a or b,
because the intensity I�x; y� is an entire analytic function in
both variables. Nevertheless, the task of focusing into a
rectangle with the side ratio a=b is among the most frequently
encountered [66, 67].

Therefore, in focusing laser radiation into a curve L
(another commonly considered case is a two-dimensional
domain), it is assumed that the intensity distribution I�x; y�
is maximum at the points of the curve L or size of its e-
neighborhood (the size e is much shorter than the length of
L), while the total fraction of energy within this neighbor-
hood is as close to 100% as possible. Moreover, a more or
less uniform intensity distribution over the curve L is yet
another significant requirement, which should be taken into
account in solving the problem. To summarize the aforesaid,
the problem of laser radiation focusing on some curve Lmay
be considered solved when the intensity I�x; y� in the plane
l � l0 which results from focusing by an element
exp

�
ij�x; Z�� bears visual resemblance to the curve L itself.

Quantitative characteristics Ð the energy fraction� �
Le
I dx dy=

� �
R2 I dx dy (Le is the e-neighborhood of the

curve L) and the degree of uniformity minL I=maxL I Ð
characterize the precision of this visual resemblance.

One of the main techniques for the solution of focusing
problems for different curves L is the stationary phase
approximation [assuming that k�diamO�2 4 2l0]. Its applica-
tion allows treating the j�x; Z�-search problem as the process
of mapping the domain O in the initial plane onto the curve L
in the plane l � l0, with each point �x; y� 2 L having an
infinite number of preimages in the domain O. When such
an approximation is employed in optics, the curve L is
referred to as a caustic and the investigation itself as the
geometric approach to the focusing problem. A rigorous
mathematical formulation of the problem of focusing on a
curve and its detailed investigation in the framework of
geometrical optics were presented in Refs [68, 69]. The
approach involving the stationary phase approximation
does not yield initial conditions owing to the specific
character of the problem, and therefore the solution to the
problem is fundamentally ambiguous. The choice of the
mapping has a significant effect on the form of the solution
j�x; Z� and, as a consequence, on the intensity I�x; y�. Within
this approximation, the wave properties of the fields being
formed escape consideration.

In connection with the aforesaid, the solutions obtained
by the stationary phase method are commonly modified to

include the wave properties of the light field by one iterative
procedure or another, for instance, by the Gerchberg ±
Saxton technique [70]. It is pertinent to note that the success
of this approach depends strongly on the initial approxima-
tion obtained, as noted above, by the stationary phase
technique. According to Ref. [71], however, the solutions to
the focusing problem with phase singularities cannot be
derived by the stationary phase technique. In the above-
mentioned paper, it was shown by the specific example of
the problem of focusing into a ring that there exists an infinite
set of solutions that are wave solutions and do not furnish a
degenerate mapping of the aperture of an optical element
onto a circle. Therefore, they are not `focusators' from the
standpoint of the stationary phase technique. Moreover, the
region of wave focusing lies in the geometric shadow domain.

These facts became the starting point for the elaboration
of a method of synthesis of phase elements for focusing on
curves (which relies on the phase structure of the correspond-
ing spiral beams naturally containing phase singularities) as
the initial approximation. Numerical experiments exhibited a
very rapid convergence of the method. Figure 23 provides
examples of the phase elements found with the use of the
corresponding spiral beams and the Gerchberg ± Saxton
technique and shows the result of their focusing action.

4. Integral characteristics of spiral beams

It is well known [72 ± 74] that the energy and angular
momentum of any beam remain invariable during propaga-
tion in the Fresnel zone, i.e.,

E �
��

R2

��F�x; y; l ���2 dx dy � const ;

L � 1

E

��
R2

M�x; y; l � dx dy � const

are integral invariants. Here,

M�x; y; l � � Im

�
�F�x; y; l �

�
y
qF
qx
�x; y; l � ÿ x

qF
qy
�x; y; l �

��

is the angular momentum density. As noted in the Introduc-
tion, investigations of the two-dimensional phase problem
revealed that a significant part was played by the vortical
component of the light energy flux. Specifically, the complex
field amplitude

F�x; y; l � �
�����������������
I�x; y; l �

p
exp

�
ij�x; y; l ��

can be reconstructed if the field intensity I�x; y�, its directional
derivative qI�x; y�=ql, and the projection of the curl of the

a b c d e

Figure 23.Distribution of the phase of optical elements (a, c) over a circular aperture and distribution of field intensities in the focal region (b, dÐ theory,

e Ð experiment).
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light energy flux on the direction of propagation

rot0 j�x; y� � 1

k

�
qI
qx

qj
qy
ÿ qI
qy

qj
qx

�

are given in some plane l � l0 in the Fresnel zone.
Generally, attempts to reconstruct the flux curl from

intensity measurements do not meet with success. However,
some of the properties of the curl are known [4]:

1. If �x0; y0� is a point of the intensity extremum and
I�x0; y0� 6� 0, then rot0 j�x0; y0� � 0. But if I�x0; y0� � 0, then

��rot0 j�x0; y0��� � 1

k

�������������������������������������������
q2I
qx 2

q2I
qy 2
ÿ
�

q2I
qx qy

�2
s

:

2. If �x0; y0� is a simple zero of F�x; y� and C is a contour
enclosing only this zero of F, then�

C

Hj dr � 2p sgn rot0 j�x0; y0� :

3. The principle of vortical component conservation for
the field F�x; y; l � holds: the equality��

R2
rot0 j�x; y; l � dx dy � 0

is valid for any plane in the Fresnel zone. This equality is the
special case of a more general property, namely��

R2
f �x� iy�

�
qI
ql
�x; y; l � � i rot0 j�x; y; l �

�
dx dy � 0 �62�

for any plane in the Fresnel zone and an arbitrary integer
analytic function f �z� that does not destroy the convergence
of the integral. For beams with aGaussian decrease at infinity
(for instance, for spiral beams), f �z� can be an arbitrary-
degree polynomial in z. In particular, the case f �z� � 1 gives
the already-known conservation laws for the energy and the
vortical component of the light energy flux vector.

If Pn�x; y� is a polynomial in the variables x and y of
degree n5 1, it can be shown that the integrals��

R2
Pn�x; y� qIql �x; y; l � dx dy ;��

R2
Pn�x; y� rot0 j�x; y; l � dx dy

�63�

are polynomials in l of the degree nÿ 1 or lower. As a
consequence, for n � 1, both integrals are independent of l
and thus are integral invariants for an arbitrary field F.
Applying this result to f �z� � z in Eqn (62), it is easy to
obtain the invariants��

R2
�x� iy� rot0 j�x; y; l � dx dy � c ;��

R2
�x� iy� qI

ql
�x; y; l � dx dy � ÿic ;

�64�

which depend on one constant c. The significance of this
constant is not evident for an arbitrary field, but it can be
elucidated for spiral beams. To do this, we address the
properties of displaced spiral beams again and consider how
the angular momentum of a spiral beam changes in its

displacement. It can be shown that the beams s�z; �z� obey
the optical analog of the Steiner theorem [75]: the angular
momentum Lz0 of the spiral beam displaced by a value z0
relative to the initial one satisfies the relation

Lz0 � Lzinit ÿ 2jzinit ÿ z0j2 ; �65�

where zinit are the center-of-gravity coordinates of the initial
beam intensity:

zinit � ÿ 1

E

��
R2
�x� iy���s�z; �z���2 dx dy :

For instance, for an elementary spiral beam whose
intensity is in the form of a displaced Gaussian distribution,

L
�
exp �ÿz�z� 2z�z0 ÿ z0�z0�

� � ÿ2jz0j2 :
We now return to the constant c in the right-hand sides of

equalities (64). By expanding the flux curl in terms of the
Hermite ±Gauss modes for spiral beams, it can be shown that��

R2
�x� iy� rot0 j�x; y; l � dx dy � 2E

k
zinit :

Consequently, c � 2Ezinit=k in this case. Because the
angular momentum of spiral beams (20) and (21) satisfies
the relation L

�
sN�z; �z�

� � N� L
�
s�z; �z��, the Steiner theo-

rem and the last-mentioned relation are also valid for
arbitrary beams.

The integrals (63) for n5 2 and the fields of the general
form F�x; y; l �were found to be difficult to investigate and the
resultant polynomials in l difficult to represent. Nevertheless,
the following two results are valid. The first one relates the
angular momentum to the curl of the light energy flux:

L � k

2E

��
R2
�x 2 � y 2� rot0 j�x; y; l � dx dy : �66�

To prove this, it suffices to apply the Green formula to the
circulation of the vector field �x 2 � y 2�IHj. The second
result consists in the fact that there are no integral invariants
for cubic polynomials P3�x; y�.

5. Conclusion

In recent years, the term singular optics has been used in
reference to the area of investigation of light fields with
wavefront dislocations, or optical vortices. Fields of this
kind are produced and observed in both linear and nonlinear
optical media and are the subject of rather intensive research,
and therefore satisfying the demand for adequate theoretical
and experimental approaches to the investigation of fields
with optical vortices is a topical problem. Of course, from the
formal standpoint, any coherent light field can be represented
as a superposition of the well-known Hermite ±Gauss and
Laguerre ±Gaussmodes; however, this approach proves to be
nonoptimal for the analysis and synthesis of fields with phase
singularities.

The vortical fields retaining (up to scale and rotation)
their structure during propagation, or the light fields that are
the concern of our review, are peculiar `vortical modes' in the
class of fields with phase singularities and merit closer
consideration as a subject of coherent optics. In our view,
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this is due to the following main reasons. First, being highly
diversified in the form of intensity distribution, these beams
are nevertheless described by analytic expressions. This
makes them an efficient instrument of research of the laws
of formation and transformation of light fields with phase
singularities of the general form. Second, in quantum
mechanics, there is a direct analog for spiral beams ± wave
functions of a charged particle in a uniform magnetic field
and the laws of spiral-beam transformation have a represen-
tation in the theory of coherent states. It is not unlikely that
these analogies will be mutually beneficial to both quantum
mechanics and optics. The third and the last, the possibility of
versatile variation of spiral-beam intensity distribution with
retention of its structural stability during propagation and
focusing is of interest for laser technologies and the develop-
ment of specific atomic traps, while a nonzero angular
momentum of these beams offers fresh opportunities for
manipulating microobjects.

Several significant aspects of the optics of spiral beams
have not been discussed in our review. In particular, here we
considered only beams in the form of curves without self-
intersections. The case of curves with self-intersections turned
out to be more complicated: for such beams subject to
quantization condition (46), for instance, the amplitude
zeroes can occur on the generating curve. The beams for
curves with self-intersections are the subject of an ongoing
study.

It can be shown [76] that the scalar product of the complex
amplitudes of spiral beams coincides with the scalar product
of the corresponding one-dimensional coder functions.
Furthermore, there exist vast classes of mutually orthogonal
spiral beams. Hence, it follows that such coder functions may
be employed as the kernels of specific wavelet transforms for
signal processing [77, 78]. The properties of these wavelet
transforms are also currently under investigation.
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