
Abstract. The physical and mathematical aspects of image
algebra transformations, their elements and groups are re-
viewed, allowing some processes involved in innate visual per-
ception mechanisms to be justified.

1. Introduction

As observers, we draw the main body of information on the
environment through the system of visual perception. which
is not considered to be a subject of physical studies because
the optical properties of the eye were already determined by
Helmholtz and the further processing of visual information
is a subject of `nonphysical' research. Such a formal
approach does not provide insight into the general problem
of mapping the outer physical world with its laws onto the
`inner world' of the perception system, without which we
(observers) not only fail to understand what we see but
would also be unable to walk or orient ourselves in the
environment. Therefore, the system of visual perception,
understood on the whole, should necessarily be adequate to
the environment, that is, obey the laws of physics of space
and time with its conservation (symmetry) laws. Further-
more, visual perception as a whole should be sufficient for
judging adequately what we see and surviving in the
environment. This means that the system of visual percep-
tion (among the other perception systems) should not be
less sophisticated than the environment in which we are
immersed, suggesting two conditions that are imposed on
the system of visual perception and determining its
necessary and sufficient properties.

First, the image is a subject of research corresponding to
physical objects with their objective laws and space ± time
properties.

Second, the system of visual perception, as an identifica-
tion system, should not yield to the `physical complexity' of
the object under study.

The innateness of visual perception mechanisms (requir-
ing no training), being a product of nature, is responsible for
the generality of the laws of transformation in the visual
perception system [1]. Therefore, the known physical laws of
nature are laws obeyed by the organization (from the
standpoint of information transformations) of the system of
visual perception. Knowing it, one can expect to obtain new
regularities and information technologies of image proces-
sing. Such technologies are needed because the problems to be
solved become increasingly complicated and require analysis
of not so much one-dimensional signals as various scalar and
vector fields. Such fields can readily be represented by images
in a given two-dimensional domain of definition (the field of
vision). However, the majority of image processing problems
are ill-posed. For example, the identification of an object
boundary using spatial filtration is problematic because this
operation amplifies any high-frequency noise and thus
obstructs correct decision making concerning the boundary.

For linear problems, regularization methods exist (e.g.,
regularization according to Tikhonov [2]), while no general
approaches to the solution of nonlinear problems are known
[3]. However, the method of image shape analysis using the
variable resolution technique [4] is well known. A striking
historical example is the Saturn enigma, which was solved by
Huygens with the use of a telescope that had sufficient
magnification and a higher resolution than Galileo's tele-
scope. Galileo took the rings of Saturn for two lateral
appendages `bearing' Saturn, and when the rings were seen
as a thin line, he failed to notice them and never mentioned
them again [5]. This method in physics is a description of
media and processes as a rough system with a consequent
more detailed analysis.

We propose a new image processing technique that
excludes regularization and applies a `deep' integral transfor-
mation (Q-transformation), mapping the image as a whole
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into an absolutely smooth manifold with a subsequent
`multidimensional' spatial differentiation that reveals differ-
ential structures of image description and their connections
on the manifold. The details of the image are specified (if
necessary) on a variable-resolution pyramid [6]. Figure 1 gives
a schematic drawing of the procedure using the example of the
analysis of Saturn rings.

We consider here the physical and mathematical opera-
tions applied within this method.

For themajority of problems solved in the course of image
analysis, one cannot use the classification models applied in
the pattern recognition theory and in machine perception at
all because they do not allow taking the a priori structure of
the image as an object of study into account. It is the structure
(shape) that allows image description. For instance, in an
analysis of a photograph with tracks of particles in a bubble
chamber, not only a classification but also a description of the
picture is needed [7]. Such a description should contain
information on separate parts of the picture and relations
between them. Similar procedures should be applied in the
analysis of symbols, patterns, and forms for their identifica-
tion and possible classification in the sense of ordering within
a class. In perception theory, such descriptions are called a
composition analysis of a scene (picture). The analysis of a
visible scene, which is necessary for automatic robot-type
machines with their technical sight systems, is also of
importance in solving problems, e.g., involving the analysis
of surfaces in various industries and in research work, in
processing aerial photography data of the earth and other
planet surfaces.

This problem is also topical for biomedical examination
of medications and chemicals using a microscope or other
technical means (X-ray, tomograph, and other devices).
However, this problem appear to be practically unsolvable
because the computational and time resources are rather
limited. To describe structures, attempts were made to

borrow concepts from the theory of formal languages with a
construction of linguistic models [8]. The problem of model
description turned out to be much wider than it had seemed
before. It is, in a sense, analogous to the problem existing in
the physics of nonlinear media, where the list of open systems
that are capable of self-organization under certain conditions
is increasingly extensive (Taylor vortices, Benard and Mar-
angoni cells in liquid media, T-layers, E and H-fibers in low-
temperature plasma, etc.) [9, 10]. The model description of
such systems necessarily requires elaboration of relatively
simple methods of form analysis, a set of simple forms that
allow the description of complex structures being of impor-
tance. An example of such an approach is the use of
eigenfunctions of a nonlinear medium, whose total set is
guaranteed by localization of an initially continuous process
(e.g., combustion) in a finite domain of definition. The
problem lies in constructing multidimensional eigenfunc-
tions of a nonlinear medium for controlling processes in
such media (especially in real time) and for creating laws of
unification of these media into complex structures [10].

The proposed method of forming structural descriptions
on the basis of the image algebra involving a complete set of
simple forms (operators), which play the role of innate
etalons, and the rules for their unification allow a reliable (in
the sense of system roughness) and relatively accurate (at a
given level of resolution) solution to the above-mentioned
and similar problems. Such a `roughly accurate' representa-
tion is a reflection of a natural desire to simplify the image,
reducing it to a relatively small, but maximally informative
number of its parts with their consequent unification into a
meaningful formation [7].

The methodical results in this paper also include the
proof of the completeness of image algebra elements from
the standpoint of symmetry (Lie groups and conservation
laws), substantiation of the variational principles of the
analysis of visually observed media with consequent
decision-making in the etalon space, and approaches to the
reconstruction of the image shape from a single two-
dimensional image (such a perception for the human
system of visual perception is called a mono ± stereo
perception). The approaches to this problem (namely, the
representation of continuous functions of three variables by
superposition of continuous functions of two variables)
were theoretically considered by A N Kolmogorov and
V I Arnold as far back as the 1950s [11].

2. Statement of the problem

The active perception theory with the image algebra as the
mathematical basis is devoted to the problems of a priori
uncertainty of the image as an object of study [6, 12 ± 16]. We
single out the points of the technique and algebra under
investigation that are necessary for our further presentation.
To begin, we define the subject of our study.

Let an observer be immersed in the environment and not
distort this environment. Then, the image M is a function of
the observer (appearing on the retina of the eyeball)
satisfying the following natural restrictions. The image is a
set M, each element of which, at a fixed instant of time t, is
a nonnegative real function of real arguments (observability
property),

Mt � m�x; y� if �x; y� 2 G ;

0 if �x; y� 62 G ;

�

a b

c d

Figure 1.Example of the analysis of Saturn's shape: (a) Saturn and its rings

in the field of vision; (b) the domain of definition of the object; (c) the

subdomain of planet segmentation; (d) subdomains of specification of the

ring geometry with high resolution on the planigon.
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defined on a finite set of points of a closed two-dimensional
domain G of the Euclidean space, summable and square-
integrable on this set (measurability property), and having the
properties of ordering, structuredness, and discreteness in
space and time.

Therefore, because the domain of definition is restricted,
the image is a two-dimensional signal which at a fixed instant
of time is represented by the function m�x; y� or by a set of
points (pixels), each point being lexicographically ordered
and `labeled' by the value of this function.

According to the adopted definition, we have two
concepts of image:

A spatial, time-independent (`spacelike', static) image is a
function m�x; y� defined at the instant t 2 TN � T, whereTN is
the observation interval from the set T;

A space ± time (`timelike', dynamic) image is a function

Md � f �t;Mt� ; 04 t4TN :

The properties of measurability and observability of Mt

(henceforth simply M) imply that the set M is finite and has
the cardinality

kmax � PN�M ;

where N�M is the size of the domain G (the spatial
discreteness property is used) and P is the number of
brightness gradations.

Because the object under study is finite and belongs to the
set R� of positive real numbers, its point set converges in the
mean square, that is, both the entire image and any of its
subdomains of definition Gi � G allow the projection
transformation (Fig. 2)

m�Gi� �
� �
�x;y�2Gi

m�x; y� dx dy : �1�

Transformation (1) is specified by the Q-transformation
in view of the following properties:

1. It can be applied to any object of study of any
dimensionality and in any frequency band satisfying rela-
tively weak restrictions imposed by the definition on the
image.

2. It realizes a mapping into a real, absolutely smooth
space (aC1-manifold) and allows twomodel representations
(function (1) is an averaged function):

a) because of harmonicity in G (or Gi � G), we have

j�A� � m�B� VA 2 G ;

b) because of harmonicity in G (or Gi � G), we have

j�A� � m�B� lg r ;

where j�A� is the potential created at an arbitrary point A by
the `charge' (or `mass') m�B� defined by transformation (1)
and r is the distance between the points A and B.

3. It is fundamental (because theCauchy sequence existing
in M is fundamental), sufficient, and realizable. Because (1)
involves integration (

�
), there exists the inverse transforma-

tion, that of exterior differentiation (d). Together, they form a
composition (which we call the U-transformation U � d � � ,
which removes the uncertainty of the object under study, i.e.,
of the imageM in the field of vision G.

Because the set M is finite, its representation in the space
N�N� P (we henceforth assume the domain G to have a
square shape for convenience) defines this space by the
general aggregate of simple events. Therefore, any image
from the (`timelike') set M is equiprobable, the same as any
point in the imageM is equiprobable, and the relation of these
points (or images) is an equivalence relation. Hence, any filter
F, as a covering of M (i.e., a filter realizing the operation d
after the Q-transformation), is a mask constructed by
divisions (dichotomies) of the domain G into smoothly glued
subdomains Gi.

From the standpoint of Riemannian geometry, such a
filter (and a finite set of such filters, because G is finite)
belongs to the tangent spaceAn at a pointA0 (Fig. 3). In the e-
neighborhood of the tangency point, each vector from An

corresponds to a differential operator

Hi � q
qxi

in the set of directions xi. Given this, the vector V is uniquely
defined on the difference

Dm�G� � m�Gj� ÿm�Gi� ; �2�

where G � Gi [ Gj is a dichotomy of the domain G into two
nonintersecting subdomains for which the m�Gi� values are
determined from (1) (see Fig. 2).

Relation (2) makes it possible to reveal the position of the
mathematical point on the straight-line segment of the
direction xk common for the subdomains (because the
tangent space An is Euclidean, it follows that xk � xk and
because it is applicable to objects from E 3, it follows that

m�x; y� m�x; y�

G

G1

G2

m�G�

m�G1�

m�G2�

a b

Figure 2.Realization of a G-transformation over the entire image area (a)

and over two of its subdomains (b).

C

A0

A2

V

Figure 3. Planigon A2 relative to the manifold C.
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n � 2). To reveal all the binary relations between the pair of
points in the domain of definition G � E 2, it is necessary to
use (2) to investigate 16 versions of the dichotomy of G,
including the zeroth version, i.e., the unit element. As a result,
we have

Ð a canonical basis of the vector space representing M:

e1 � �1; 0; . . . ; 0 �T ; e2 � �0; 1; . . . ; 0�T ;
. . . ; e15 � �0; 0; . . . ; 1�T ;

where ��T is the transposition; and
Ð a set of filters fFig realizing q=qxi in the 15 directions xi

upon obtaining a 15-dimensional vector l � miei, defined
constructively on the two-dimensional Walsh function of the
Harmuth system, 1 and ordered on the two-dimensional grid
V�x; y�.

First, being binary, the Walsh functions simplify the
analysis of relations on the set fm�Gi�g ordered on the matrix
�mi j�4�4 because the simplest operations, i.e., addition (1) and
subtraction (2), are used. Therefore, the U-transformation
has the minimum possible computational complexity as
distinct from the standard transformations, which require a
convolution and an arithmetical multiplication at the level of
weight coefficients. (The scheme of information transforma-
tions according to (1) and (2) is presented in Fig. 5 and can be
used for any subdomain of the image. For example, in Fig. 6,
the number of levels of the variable resolution pyramid is
determined by the required precision of the solution, and the
version of choosing a necessary subregion is determined by
the perception strategy; see Fig. 1.)

Second, transformations (1) and (2) are operations with
integers and hence the problem of error accumulation due to
rounding off disappears.

Third, transformation (1) maps an image as a function
into a real (rather than imaginary) space, where all the other
operations of the analysis are realized.

Fourth, beginning our analysis from the upper levels of
the pyramid (see Fig. 6) (the resolution of the lower levels is
low), we take only the low-frequency image components into
account, which are objects (e.g., buildings). In this case, the
details are small and the disturbances seem to vanish.

The filters (their numeration is conditional) are con-
structed on a square cellular space (see Fig. 4), which we
define by a planigon centered at the point A0. If we take a
rectilinear Cartesian coordinate system (x, y) in the domain of
definitionG, we can show that the set of filters corresponds to
the set of transformations that are coefficients in the Taylor
series (the functions of sensitivity of the series in the solution

1 In Figure 4, the dark region corresponds to the weight factor+1 and the

light region corresponds to the factor ÿ1.

y V�x; y�

x

x � y

F10 F12 F14 F15

F5 F7 F8 F13

F2 F3 F6 F11

F0 F1 F4 F9

Figure 4.Filters fFig and the equivalent operators fVig on the gridV�x; y�.

M � �mij�4�4

F0

F1

F15

m0

m1

m15

d

Figure 5. Scheme of information transformations.

M

U

Level 0

fmig1

M

U

Level 1

fmig4

Figure 6. Variable-resolution pyramid.
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of the active identification problem):

�F1;F2;F3;F4;F5;F6;F7;F8;F9;F10;F11;F12;F13;F14;F15�

�
�

q
qx

;
q
qy

;
q2

qx qy
;
q2

qx2
;
q2

qy2
;

q3

qx2 qy
;

q3

qx qy2
;

q4

qx2 qy2
;
q3

qx3
;
q3

qy3
;

q4

qx3 qy
;

q4

qx qy3
;

q5

qx3qy2
;

q5

qx2 qy3
;

q6

qx3 qy3

�
: �3�

If we redefine the filter homogeneity subregions, i.e.,
preserve their construction but assume the weights �1! 1,
ÿ1! 0, we obtain a set of binary operators fVig for which
the set-theoretic operations of unification (summation) and
intersection (multiplication) are allowed. Thus, we arrive at
the image algebra AV � hfVig: �; �i (Fig. 7).

If the set fFig is applicable at the stage of decomposition
of the imageM and its analysis, then fVig in the algebraAV is
applicable at the stage of synthesis and pattern imaging. One
can show that the following algebra groups exist in the
algebra AV:

Ð complete (algebraic) groups Pni formed on triples of
operators (Vi, Vj, Vk) for which the relations Vi � Vj�
Vk � e1 (the unit) hold; ViVjVk is the image (on the multi-
plication operation) on the planigon and the description of
the group Pni (Fig. 8);

Ð closed (algebraic) groups Psi generated by quadruples
of operators (Vi, Vj, Vp, Vm), where

�Vi;Vj;Vk� 2 Pni ; �Vp;Vm;Vk� 2 Pn j ;

with the description Psi � ViVj � VpVm (where the required
number of operator inversions is odd) and the unit Vi � Vj�
Vp � Vm � e1 (Fig. 9).

The sets fPnig and fPsig are finite and have the respective
cardinal numbers 35 and 105 (the 36th element of the set of
complete groups is the operator V0).

We consider an example of the analysis of a symbol, for
instance, the letter A located in the field of vision. Suppose we
have several versions of the letter image, including a
`constellation' of points (Fig. 10a). Let the mi j values be
binary and let them correspond to Fig. 10b for convenience.
Then the values of the decomposition vector components
have the form in Fig. 10c. When mapped onto the operator

grid (Fig. 10d), they give graphs of the complete and closed
groups, where the size of the circles corresponds to the value
of the decomposition vector component, and the half-tint
corresponds to the operator inversion. These groups provide
a description of the symbol transform or, more precisely, its
image O�M� � Pn � Ps. The operator V14, which has the
maximum `share holding' through the value of its component,
is the established standard of the symbol in the above ways of
writing it.

The aim of this paper is to reveal the possibilities of the
elements fFig, fVig and the groups fPnig, fPsig of the image
algebra from the standpoint of the well-elaborated physical

+ =

V1 V2 V1 � V2

� =

V3 V4 V3V4

Figure 7. Examples of operator interactions.

y
V�x; y�

x

1

2

3

y
V�x; y�

x

4

5

6

1

3

5

2 4 6

Figure 8. Examples of complete groups represented by graphs on the

operator grid, and one of their images.

y
V�x; y�

x

1 2

3

y
V�x; y�

x

4

5

6

1

3 5

2 4 6

Figure 9.Examples of closed groups represented by graphs on the operator

grid, and one of their images.
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and mathematical apparatus for solving problems of struc-
ture analysis.

3. Field representations on a planigon

Let m�i; j� � R� be the value of a bounded function m�A� at
the point A of a finite domain of definition G in E 2. Then, the
domain function

F �G� �
X
G

m�A�

exists, with the domain function density at a point given by

j�A� � lim
G!A

F�G�
o�G� ;

where o�G� is the area of G.
Let the domain G be divided into two nonintersecting

subdomains: G � G1 [ G2. Then, in view of the additivity of
fm�A�g, the additivity property

F �G� � F �G1� � F �G2�

holds for the domain function. Therefore, both the entire
domain G and its nonintersecting subdomains Gi can be
assigned domain functions. Because the relations between
the function and the density are independent of the dimension
of the domain, they hold for any spatial representation En.
The existence of density in any Gi � G makes it possible to
define the domain function by an integral characteristic (the
measure) of this domain,

F �G� �
�
G

j�A� do ;

which allows the interpretation of the domain `mass' (for the
image, it is the visual mass [6]). This implies that after
transformation (1) and the representation on the mass matrix
�mi j�4�4, the pre-image becomes the set of domain functions
lexicographically ordered in the domain of definition. Such

domains (spots) are objects in the field of vision, maximally
stable against disturbances (provided that the disturbances
are smaller in size than the object in the domain of definition,
otherwise they themselves become objects) and containing no
elements of minor importance. The regularization problem is
thus solved. The distinguished spots with `labels' given by the
visual mass values are structure elements of the images; the
relation among them is revealed as follows.

Let each division be a revelation of the relation between
domain functions that have the physical meaning of mass.
Then these masses can be represented by their centersA0, and
therefore their relation is determined by the Euclidean line l of
the direction xi � xi that links these centers and passes
through A0 2 G. We can therefore use the Newton ±Leibniz
function to obtain� A02G2

A02G1

qj�A�
qxi

dxi � F �G2� ÿ F �G1� �
�
l

qj
ql

ds ;

where ds is an element of the line l. Because the basis vector ei
coincides with the direction of the unit vector t tangent to the
Euclidean line l, the relation

qj
qxi

ei � gradxij �4�
holds at the planigon centerA0 2 G, wherej is a density and a
smooth function on fxig and ei is the basis vector of the
direction xi.

The set of divisions of the domainG corresponds to the set
fFig, where any filter realizes a spatial differentiation
operation. For this reason, representation (4) holds for any
Fi. If the function j�x1; . . . ; x15� is defined on the C1

manifold in the e-neighborhood of the point A0 (which is the
center of the coordinate system and of the planigon), the set
fFig on transformations (4) is the first total differential
dj � �qj=qxi� dxi at the point A0 or the 15-dimensional
gradient vector at this point,

Hj � gradj � qj
qxi

ei ;

where feig is a basis of the space E 15 and H is a linear
operator.

Therefore, using the set fFig, we reveal gradient compo-
nents on the matrix of visual masses obtained in transforma-
tion (1) and reconstruct the domain function by its density. As
an example, we consider the reconstruction of an arbitrary
digitized signal (Fig. 11). Such a signal can be regarded as the
profile of a surface (a cut, a layer along the coordinate
z � const for imaging, where z is the axis of gray-level
imaging). In accordance with the technology presented, we
divide the one-dimensional domain G of signal observation
into four intervals (Fig. 11 does not keep to scale). For each
interval, we find the visual mass mi from (1) and the relation
between the elements of the set fmig from (2). As a result, we
obtain versions of the `binary' description of the signal
(relations between two elements only are considered). If this
signal is a cut of a massif, we have a description of such a
massif as a whole (i.e., at a given resolution level). In the set
fmig, let the conditions m1 > 0, m4 > 0, and m9 > 0 be
satisfied; then the massif is described by the triple of
operators V1, V4, and V9, which form a complete group with
the description V1V4V9 segmenting the region of extremum.
If we use the averaged function model, the reconstructed
signal itself (at the given level of resolution) is represented by

0 1 1 0

1 0 0 1

1 1 1 1

1 0 0 1

b

a

10

mi

0

ÿ8 14
i

c

dV�x; y�

x

Pn

Ps

y Pn Ps V14 e

Figure 10. Example of formation of symbol description.

1022 V A Utrobin Physics ±Uspekhi 47 (10)



four half-tint steps of heightmi (i � 1, 2, 3, 4); with allowance
for the gradient representation, it is an approximation by
first-order lines. For fast recognition (e.g., of relief features)
such a rough description is often sufficient. We note that the
heightmi can be scaled or assigned the value ofm3 if the height
of the vertex is known a priori. It is of importance that the
relation between the structure elementsmi is preserved (this is
exactly how we see spatial relations between objects).

It should be noted that the functional ability of filters
(more precisely, of transformations realized by them) in
finding variations in the field of vision is very high, which
can be confirmed by a simple example. Let the image in the
field of vision be uniform (e.g., during night-time observa-
tions). Let one pixel of the image `disappear' (e.g., the light of
a cigarette appeared somewhere). Then the filters `work' to
establish the fact that there have been changes in the image
and localize it.

The existence of a 15-dimensional gradient vector
uniquely defines the vector field R � R�A0� by the smooth
field of the potential j�A0� for which (according to the
Ostrogradskii formula), in a closed domain G with the
boundary g�G�, the function of the domain

F �G� �
�
g�G�

Rn ds

can be set in correspondence with its density, i.e.,

divR � divgradj � q2j
qx2i

;

where n is the unit vector of the outer normal to g�G� and ds is
a surface element. The existence of the divergence implies the
presence of a vector field flux from sources (drains) existing in
G. Any operator is a step function varying from 0 to 1, i.e., the
domain of definition for a particular operator narrows to a
subdomain for which the coefficient 1 is specified. This means
that the entire mass (or the entire charge) is localized in this
subdomain with a corresponding density.

Thus, having identical constructive organization, the
filters and operators are different in realizable transforma-
tions. If the filters from fFig work to find the gradient in
accordance with the maximum-sensitivity direction from
fxig, the operators from fVig, which help in estimating the
source (drain) density, are endowed with the property of

invariance and conservation of changes in a signal (within the
limits of the covering). Therefore, fFig is a set of sensitivity
elements for control in finding R � gradj, and the elements
from fVig in the composition of the functional�

G

divR do � F �G�

are invariant under rotation and parallel translation in the
limits of their coverings.

In the estimation of an object of imaging, the invariance of
operators under certain transformations is determined by
their measures (quality functions). Such measures are etalons
(innate etalons in the visual perception system). Therefore,
the decision making is realized in the etalon space by the
following rule: the object belongs to the etalon if a minimum
of (mi et ÿ mi im) with respect to i exists between the etalon and
the object; the rule is analogous for groups and descriptions in
the algebra AV. Moreover, one can show (see [6]) that if fVig
are model representations of simple neurons existent in the
cortex of the lens, then fPnig are complex and fPsig are super-
complex neurons.

We now consider examples. Suppose one points a video
camera at an object, e.g., a post. When the camera turns
automatically in the horizontal plane, the appearance (or
disappearance) of the object in the field of vision is fixed by
actuation of the filter F1 (or F1), and the fact that the object is
at the camera's crosshairs Ð by actuation of the filter F4

(m4 � m0 if no obstructive factors exist in the field of vision). If
two cameras are pointed at an object, the algorithms of their
pointing are identical, and because the basic operations are
particularly simple, the computational complexity of the
algorithm is minimal compared to the known methods.
Because the minimum-resolution level is used in solving the
problem of control (but with the level that is sufficient to
distinguish a necessary object), it follows that possible
disturbances do not affect the result of control. This is how
one solves the problem of pointing two cameras at an object in
solving the problem of stereoscopic perception.

Let a square be observed in the field of vision (Fig. 12). It
is described by the image of the complete group

Pn � V4 � V5 � V8

m1

m2

m3

Pn

z

x

m1

m2

m3

m4

G

Figure 11. Model of signal reconstruction at a prescribed level of

resolution.

V�x; y�

Pn

y

x

V�x; y�

Ps

y

x

Pn1

Pn2

Ps

Figure 12. Example of the perception of shape with its possible deviations.
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with the visual mass m0 � 12 (arbitrary binary units). Let the
square `disappear' at the next instant of time; more precisely,
let one of its sides be erased or screened. In this case, two cells
in the planigon become white. As a result, the total visual
mass of the image becomes equal to 10, and two new groups,
Pn1 and Pn2, and one closed group

Ps � V5V7 � V8V11

appear in the description instead of the group Pn. Because the
observer knew a priori that there was a square in the field of
vision, he/she easily makes a decision about partial object
screening. If the observer knows a priori that the field of vision
involves a certain geometrical object (shape) with two
elements screened, then from the observation of an object
with mass 10, he/she assumes (foretells) three possible
versions corresponding to the images of three complete
groups Pn, Pn1, and Pn2. Furthermore, the image of the
closed group Ps unites all these foretold shapes.

4. Functional spaces in image algebra

Let a planigon be a plane tangent to a smooth manifold (see
Fig. 3), with a Cartesian coordinate system defined on the
plane with respect to the absolute (external) coordinate
system of the observer. Such a representation naturally
defines the planigon by a constrained system. Because the
set fmi jg is a result of mapping (1) of an actually observed
process from E 3 into a manifold and the filters fFig reveal the
mass distribution with respect to the conditions

q
qxi
� f0;> 0;< 0g ;

it follows that:
� the manifold represented on the planigon is a contin-

uous medium;
� each Fi corresponds to the state of such a medium

relative to the initial state corresponding to the `unit' filter F0;
and
� each state of the medium Fi is related to another state Fj

(we mean the images of the filters reflecting the state) through
parallel transport and shear deformation of the masses of one
planigon subdomain into another.

Therefore, each pair (Fi, Fj) of states of the planigon
medium, related as Dt � t2 ÿ t1, corresponds to its own
version of the motion of the continuous medium. With
respect to the external coordinate system, we have: 1) the
movements from the point A0 are possible movements in the
planigon plane; 2) the movements from an arbitrary point A
to B are kinematically possible movements; and 3) the
absolute motion is revealed through the deviation from the
kinematically possible motion represented on the set fVig in
the image algebra on the planigon (such an approach to the
analysis of motion is a variational solution of the mechanical
problem).

Thus, the analysis of a process on the planigon at a fixed
time moment and within time intervals related via Dt is a
construction of possible movements on images of the
operators fVig in the algebra AV.

For instance, if transitions of the type

V3 ! V3 ! V3 ! V3 ! . . .

are observed, we have rotation in the field of vision about the
coordinate axis z orthogonal to the planigon plane and

joining two coordinate systems. If it is known a priori that
the observed object is a body (envelope), then, for example,
the transitions

V1 ! V1 ! V1 ! V1 ! . . .

represent rotation about the y axis of the planigon (this is also
the case with the other operator images).

On the other hand, for the image of the operator V1

regarded as a rigid body, rotation about the x axis (the
sensitivity image of the x-filter) determines it by an object
invariant under rotation; this holds for all operators because
the respective filters are antisymmetric, that is, the condition

qj�x�
qx

� 0 ;

where

j�x� � j�x1; . . . ; x15� ;
implies that the function j�x� is invariant with respect to the
variable xi � xi (E

15).
The general solution of this equation is any arbitrary

function independent of xi. Therefore, according to this
condition, the invariance is a symmetry with respect to all
the coordinate axes from fxig that are orthogonal to xi (for
example, in Fig. 10, equality of the component mi to zero is a
manifestation of the symmetry in the direction xi).

The opposite condition

qj�x�
qx

6� 0

expresses the existence of antisymmetry in the relevant
function j�x� along the xi axis and, therefore, the difference
of potentials along this axis, i.e., the existence of a `current'.
As a result, from the standpoint of the existence of circula-
tion, we have a relation for the vector field R at an arbitrary
point A of the domain G,�

G

rotR do � ÿI�G� ;

which holds for any filter.
Let the image of the operator Vi be an ordered cellular

space consisting of points, `black atoms' on the white
planigon. Such atoms are related among themselves and
make up a `construction' of this operator. Consequently,
each operator has a corresponding geometric description,
which is called a skeleton. This is a graphic description of
images on a planigon, which is also applicable for images of
complete and closed groups (for example, the line in Figs 4
and 12 is the image skeleton).

Let each atom be a point with mass. Then, a pair of
neighboring atoms is connected by a line satisfying the Taylor
series expansion for the equation

dy

dx
� f �x; y�

in the neighborhood of the point A,

y�x� � y�A� � y�1��A� x ;

where

y�A� � y0 :
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Specifying these straight lines as tangent to the directional
field in Fi, we obtain that the atom distribution over each Fi

corresponds to the integral curve of the solution of a
corresponding differential equation (Fig. 13).

Indeed, the transformation realized by a filter is applied to
a smooth manifold that can be defined on the set of integral
curves defined in the e-neighborhood of the tangency pointA0

to the planigon onwhich the coordinate system (x; y) centered
atA0 is given. The result of the filter operation is an expansion
vector for which the conditions

m0 � mi; mj � 0 Vj 6� i

mean that the observed function belongs to the subdomain of
the covering of the filter Fi (the same is true for the mirror
filter to Fi if m0 � mi < 0).

Because fFig is the set of functions (3) in the Taylor series,
the left-hand side of the equation dy=dx � f �x; y� is opposed
to the corresponding function from this series. This means
that the equation establishes a dependence between coordi-
nates of the point (within the covering) and the angular
coefficient of the tangent to the graph of the solution at this
point. Hence, any filter defines a directional field and
therefore makes it possible to find integral curves (or a family
of integral straight lines on the basis of which the envelope is
defined) whose tangents at each point (on each atom) coincide
with the field direction. We note that the obtained solution of
the equation dy=dx � f �x; y� (as in the well-known existence
and uniqueness theorem) is only sufficient because the
specificity of the point A0 (the center of the planigon) is
ignored, while, e.g., for the filterF3 it can be the envelope for a
sheaf of integral lines, or an inflection point for a cubic
parabola, or can cover a pair of equilateral and mirror
hyperbolas for which A0 is the intersection point of
asymptotes (coordinate axes x, y). Therefore, the obtained
solution on the set fFig is a hypothesis that needs to be
confirmed by way of analysis at the next levels of expansion
with a higher resolution.

Because fVig and the algebra on this set are defined on the
planigon that can be represented on a connected system, the
planigon on this set is a functional space and each operatorVi

within the limits of its image is a family of variationally close
functions in a function space (e.g., the versions of images of a
symbol in Fig. 10 covered by the same image allow a

definition in such a family). That is why the sets fVig, fPnig,
and fPsig defined on the planigon viewed as a functional
space `solve' variational problems of the form�b

a

F�x; y; y�1�� dx

in this space within the limits of subdomains of coverings over
the entire covering of the image of these sets.

We call this problem an inner variational problem because
its `solution' (solution is understood here as approximation to
the integral lines on images of operators and operator groups)
consists in finding the functional dependence f �x; y� within
the covering by the image on the planigon (we recall that to
improve the accuracy of the solution it is necessary tomove to
the next level of expansion within a subdomain of the
covering, applying the same technique of analysis). The
exterior variational problem is an analysis of the image
representation as a whole on the planigon.

Let the image of Vi be the characteristic of a given state of
an object in the field of vision. The transition from Vi to Vj

then determines a certain deformation tensor through
comparison of two states of the object, and their product
ViVj determines the complete groupViVj of such a transition.
The same holds for the transitions

Pni ! Pnj ; Psi ! Psj

within the limits of their sets. Such transitions in time are
deformations of the observed object in the planigon field.

Let the object be free from deformations; then the
transitions in time

Vi ! Vi ! Vi ; Psi ! Psi ! Psi

are movements. If fVig, being an equivalent of fFig, is a basis
for E 15, then fPnig is the basis manifold for the description of
motion on the planigon. Indeed, for fVig and fPsig, the image
on the planigon occupies half of it and the motion is the
`rocking' of the image from direct to inverse and back. The
image (on the intersection operation) of any group Pni is then
a compact (four planigon cells connected by the group
image, 2 not necessarily glued topologically) whose motion
on the planigon is equivalent to the motion of a rigid body
represented by its center of mass. To this end, it suffices to
consider any complete group on four out of eight of its
images: for example, for the group (V1, V2, V3), we have
(Fig. 14)

V1V2V3; V1V2V3; V1V2V3; V1V2V3 :

Let the trajectory of the center-of-mass motion be a
continuous curve, for example, a circle represented on the
planigon as on a picture plane. Suppose themoving object has
a size of the order of a quarter of the planigon (i.e.,
conditionally occupies a quadrant; otherwise it is necessary
tomove to a different level of resolution to either side). Let the
object shape at the considered level of resolution be close to a
square (if this is not so, it is necessary to either change the
planigon shape by adapting it to the object or complement it

F14

F7 F12

F15

Figure 13. Integral curves on filter images.

2 We refer to such connectedness as p-connectedness, i.e., connectedness

within the image of the complete group, as distinct from the well-known

connectedness in chain coding.
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to a square). Then, on a continuous path and on the set ftig
within the interval TN, we obtain a sequence of `pictures' of
the type presented in Fig. 14, but additionally involving
complete groups (V1, V5, V7) and (V2, V4, V6) when the
center of mass of the object ends up on the x and y
coordinates, respectively. And this is so if the velocity v of
the center-of-mass motion within the interval Dt between
neighboring observations satisfies the restriction for the
pathlength

Dl � vDt > 1

2
S ;

where S is the spatial size of the planigon cell.
If the interval Dt is defined such that Dl >�2=3�S, the

group (V1, V2, V3) is sufficient for viewing the object.
Thus, fPnig is a necessary and sufficient set describing the

motions on the planigon of the center of mass of the object
relative to A0 (at an a priori given resolution level and at
prescribed instants of time ti on the observation interval TN).

A striking example of problems of observation of a given
object is the bionic `frog and fly' problem (which has not yet
been solved using standard approaches): a frog watches a
fluttering fly and successfully catches it. The frog does not
react to other objects that do not correspond to the fly in size
or are at rest, even if the fly is right under its very nose.
Moreover, using the proposed method, one can predict the
object path within the family of variationally close functions.

Suppose a motion on a planigon is observed whose
trajectory does not go beyond the region of the covering of
Vi, Pni, Psi and, therefore, allows a description within the
limits of families of variationally close functions (an inner
variational problem). Because the trajectory of the motion
and current streamlines coincide (irrespective of the statio-
narity of the process) if and only if the velocities ofmotion at a
given point in space vary in time only in magnitude and not in
direction, it follows that the homogeneity region of operator

and group images is the invariance region under possible
variations and the region of the current streamlines. Hence,
every image in the algebra AV is invariant under a possible
nonstationary process represented in the initial space and
each image corresponds to the current streamlines. Because
every image in the algebra is represented by a homogeneity
subregion only and `nothing exists' outside it, such an image is
equivalent to a rigid body. In the translational motion of the
body (i.e., such that any segment of a straight line taken on
the body moves parallel to itself), irrespective of velocity
variations (with its direction preserved), the current stream-
lines are trajectories. The situation is the same in the rotation
of a body around a fixed axis or in arbitrary helical motions in
space. Therefore, for a rigid body as a whole, its path is
represented by current streamlines. From this, if streamlines
are observed, a rigid body has the same path.

5. Spatial properties of algebra elements

We suppose that streamlines exist on images of algebra
elements in their domain of definition. Because a planigon is
a two-coordinate region, the current streamlines can always
be put into correspondence with a line l that is not a
streamline, but is a generatrix in the space E 3 in which the
planigon is embedded. Then l and the current streamlines
constitute a vector surface.

Let the equation of the generatrix l in E 3 have the form

xÿ a
a
� yÿ b

b
� z

1
;

where a, b, and 1 are direction coordinates and a, b, and 0 are
coordinates of the track of the generatrix on the xy plane (in
the general case). Then, for an arbitrary linear directrix
transported parallel to itself along the generatrix, we obtain
a surface equation of the form

a

�
qz
qx

�
� b

�
qz
qv

�
� 1 :

If the generatrix l is closed, we have a vector (or vortex) tube.
For example, for the image of the operator V4, the current
streamlines are the lines of the family y � y�x;C �, where C is
a constant. The generatrix to them is not necessarily closed in
the xz plane in view of cylindrical symmetry of the image (e.g.,
a circle). As a result, we have a cylindrical surface (not
necessarily circular) up to its position on the depth axis z
(and the sign of the curvature) with respect to the planigon as
a picture plane (Fig. 15). A similar result can be obtained from
the equation

qij�x; y�
qxkqym

� const ;

whose left-hand side corresponds to transformations (3) in
the Cartesian coordinate system of the planigon. The solution
of the equation is the corresponding surface z � j�x; y�.

Therefore, the image of each filter can be regarded as a
result of the orthogonal projection of a certain surface, with
its position over the planigon plane taken into account. For
example, the image of the filter F8, whose integral representa-
tions in the xy-plane are hyperbolas, can be put into
correspondence with a hyperbolic paraboloid (see Fig. 15)
and the image of F6 (or F7) with a conic section. It is of
importance to know a priori the necessary initial and

t1

x

y

A0

t2

x

y

A0

t4

x

y

A0

t3

x

y

A0

Figure 14. Motion of the compact of the complete group (V1;V2;V3),

represented by the center ofmass (point) relative to the planigon centerA0.
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boundary conditions that cannot readily be obtained from the
image only (in order to check the correctness of a visible
shape, one needs to touch it). Nevertheless, up to the sign of
curvature and distance coordinate along the line of sight, the
system of visual perception can rather rapidly reconstruct the
shape of the object envelope. The algorithm is approximately
the same as in the case of signal reconstruction (see Fig. 11).

We imagine an observable post (a tube, a tree trunk) and
assume that the problem of its segmentation is solved. As a
result, we have the image of the operatorV4 at a given level of
resolution (in this case, the necessary condition for the
existence of an extremum, namely, that the first derivatives
are equal to zero, i.e., m1 � m2 � 0, holds for F1 and F2). If we
now impose a gray matrix �mi j�4�4 (but with a higher
resolution), we see a variation of half-tones (brightness)
along the generatrix. Adopting a priori the condition `the
closer, the darker' (or vice versa, depending on the state of the
environmentÐ day, night, etc.), we can reconstruct the shape
of the surface. An analogous result can be obtained, for
instance, by applying a regularly repeating pattern (texture)
to the post surface; then a more complicated (in realization)
algorithm of analysis of the texture cell (texcel) size along the
generatrix can be used (but up to the sign of the surface
curvature).

Such an analysis is the solution of the variational problem
of finding the extremum of a functional: if each operator
image in E 3 corresponds to a vector surface z � z�x; y�, then
the extremum of the functional

v
ÿ
z�x; y�� � � �

G

F

�
x; y; z;

qz
qx

;
qz
qy

�
dx dy

exists, with the chosen boundary conditions of the covering
Vi. In particular, if nonintersecting curves that belong to the
family y � y�x;C�, where C is a constant, pass through the
domain G of the coveringVi, then the family of curves inG is
a proper field. For example, for V4, the current streamlines
parallel to the y axis constitute the proper field.

If the domain G of the covering Vi contains a point
through which the curves of the family y � y�x;C � pass and
have no intersections, such a field is the central field of a sheaf
of curves. For example, for V3, we have the central field for
which the pointA0 is the center of the sheaf of lines that do not
intersect farther along (see Fig. 15).

The proper or central field of a family of extremals of the
variational problem for elements of the image algebra is a
field of extremals for which the angular coefficient of the
tangent to a curve of the family of the proper field at the point
(x; y) is the slope of the field at this point. The situation is
similar for a surface in E 3.

By virtue of what has been said above, the plane problem
consists in finding the shape of a curve from the family of
variationally close functions, to be solved in the first
approximation at the level of tangents. On the other hand,
defining the extremals by equal-level lines (by mass values on
the matrix �mi j� 4�4), one can pass to a solution of the spatial
problem of seeking an extremum for a two-dimensional
surface in E 3 on the set fVig. To do so, it suffices to know a
priori the type of problemÐ plane or spatial Ð to be solved.
Regarding visual perception, the latter type of problem enjoys
priority because a person normally looks into the distance
(into an improper point of the Euclidean space). In this case,
the image, which is a plane because a three-dimensional scene
is imaged onto the two-dimensional surface of the retina, is
reconstructed according to the laws of perspective withmodel
representation in the form of three-dimensional objects and a
subsequent specification of their shapes.

We consider a spatial reconstruction of images of
complete and closed groups. If the set fFig corresponds to a
finite set of basis directions, then the set fVig can be assigned
the set of basis vectors feig via equivalence of their elements.
In the algebraAV, these basis vectors are polyad products: ei ei
are dyads and ei ej ek are triads. Therefore, to any operator
from fVig in E 3, we can assign the tensor surface

T11�dx1�2 � T22�dx2�2 � const ;

where degeneration in one of the components is permitted.
Indeed, because any operator, being a divergence compo-

nent, is a scalar and enters the composition of a planigon
(a tangent space) defined on semigeodesics, it follows that any
Vi in an orthogonal coordinate system x1, x2, x3 corresponds
to the tensor surface

T11�dx1�2 � T22�dx2�2 � T33�dx3�2 � const ;

where Ti j are principal components along the principal axes
of the tensor

T � Ti j e
ie j � Ti jei ej
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Figure 15. Example of spatial interpretation of images on the planigon.
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in the coordinate system fxi : i � 1; 2; 3gwith the origin at the
point A0 of the planigon for which

x3 � z ; z�A0� � 0 :

In this case, any complete group Pni from fPnjg, generated on
the triple (Vi,Vj,Vk), corresponds to a triad ei ej ek. In view of
the completeness of the group fPnig and the existence of the
basis ei, ej, ek, such a group of operators is the linear vector
space E 3

i . As a result, we have 35 three-dimensional spaces on
the set of complete groups.

Because any two operators from a group are sufficient for
the description of the group, each complete group is
representable on a dyad from its basis ei ej, ej ek, or ei ek. In a
curvilinear coordinate system (q=qu, q=qv), where u and v are
curvilinear coordinates of the group Pni, such a basis
determines a piece of surface (on the set of descriptions, we
have a set of pieces)

r � r�u; v�

with an accuracy up to its position in the enclosing space, i.e.,
in the space of this group.

Any group Pni belongs to its Euclidean space E 3
i with the

basis ei, ej, ek. The corresponding surface in E 3
i , a planigon to

which is the tangent plane at the point (0, 0), is defined by
quadratic forms, and because the space E 3

i of the group Pni is
`adapted to its basis', the quadratic form for it has the
canonical form (see Fig. 15).

Next, any closed group Psi is a superposition of two
complete groups

Pni � �Vi;Vj;Vk� ; Pnj � �Vn;Vm;Vk� ;

connected by the common operator Vk (i.e., by the common
coordinate direction), for example,

Psi � ViVj � VnVm :

Because each complete group corresponds to E 3
i , it follows

that a closed group is a topological gluing of two such spaces
along their common coordinate direction (with an accuracy
up to the sign). Hence, any closed group allows a representa-
tion in the form

ei ei � enek

(up to the inversion of directions). If each complete group
(within one of its descriptions) defines a piece of the surface,
then two groups glued together define two coordinate-
connected pieces of surfaces.

We suppose that the filter F3 specifies a (positive)
direction of x1 in the invariance subdomain (i.e., in the
subdomain of conservation of the weight factor +1;
Fig. 16a). Then the filter F8 with the transformations

q4

q2x q2y
� q2

qx qy

�
q2

qx qy

�
� q2

qx2

�
q2

qy2

�
� q2

qy2

�
q2

qx2

�
�5�

defines a new coordinate system (x1, y1) with the center A0

on the planigon and B0 � F8 on the grid V�x; y� super-
posed on the planigon (Fig. 16b). Such a planigon is called
a PV-planigon. The center-of-mass displacement to the point
A0 is expressed by two right-hand transformations in (5) (i.e.,

the filters F4 and F5), and the rotation inherent in F3 by the
composition of its transformations in (5). Therefore, the filter
F8 in its central part (in the closest neighborhood of the point
A0 of its image on the planigon; Fig. 16a) reflects the
concentration of sources (masses) in this part through the
action of F4 and F5, and the concentration of vortices with the
centers spaced along the axes through the action of the
composition of transformations of the filter F3. If the
direction of the axes is represented as shown in Fig. 16, the
coordinate systems (x, y) and (x1, y1) with the common center
A0 cannot be superposed by rotation in the planigon plane.

Two coordinate systems on the PV-planigon (and on the
operator grid), K1 � �x; y� and K2 � �x1; y1�, naturally
distinguish five complete groups:

Pnx � �V1;V4;V9�; Pny � �V2;V5;V10�

are groups whose operators are ordered in the coordinate
system K1;

Pnx1 � �V3;V8;V15�; Pny1 � �V8;V11;V12�

are groups whose operators are ordered in the coordinate
system K2; and

Pn0 � �V4;V8;V5�

is a connection (image) group of the two coordinate systems.
Let the planigon be the tangent plane at the pointA0 to the

surface from the smooth manifold
�
z�A0� � 0

�
and let two

coordinate systems, connected by the z direction,

K1 � �x; y� ; K2 � �x1; y1� ;

be given in this tangent plane. Then, any complete group
Pni � �Vi;Vj;Vk� on its descriptions is a tensor surface
representation in either of the coordinate systems fK1;K2g.

Indeed, any complete group in the algebra AV on a set of
three variables has eight images: four images on the +
operation and four on the � operation. Because each
operator Vi corresponds to the basis vector in the direction
ei at the pointA0 and the set fVi;Vj;Vkg 2 Pni corresponds to
the set of orthogonal frames fei; ej; ekg, they form a family of
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y

x

x1

y1

a

V8

V0

y
V�x; y�

x

x1

y1

B0

y

x

x1

y1

b

Figure 16. PV-planigon.
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accompanying frames and make it possible to analyze the
geometry of a complicated surface in E 3

i . Because any
complete group is defined in a tangent plane, for the
description of the geometry of the surface it suffices to use
the representation

T11�dx1�2 � T22�dx2�2 � const

on a pair of operators from the triple, where the first operator
gives an estimate of one component and the second gives an
estimate of the other. Because the whole set of operators is
ordered on the pair of coordinate systems (K1, K2), it follows
that:
� the unions Vi � Vj, Vi � Vk, and Vj � Vk are represen-

tations on

T11�dx1�2 � T22�dx2�2 � const ;

where dxi is the differential with respect to xi from (K1, K2);
� any of the intersections ViVj, ViVk, and VjVk is the

tensor representation

T � Tnmenem ;

where n and m are chosen from (i, j, k), and a surface of the
type

T11�dx1�2 � T22�dx2�2 � const :

Such intersections define images of a complete group by
`new' tensor surfaces.

Thus, for any complete group, each description is a
canonical representation on a pair of coordinate systems
(K1, K2), where eigenvalues play the role of coefficients.
Given this, each operator reveals its `own' surface in ei; each
complete group is a surface that is more complicated in its
organization on operators and a closed group is a topological
gluing of a pair of surfaces, which thus increases the
dimension of the analyzed manifold.

The existence of the pair (K1, K2) makes it possible to
extend the functionality of the algebra elements in what
concerns the reconstruction of spatial relations between
objects, including perspective relations.

Let a smooth manifold be one-dimensional and repre-
sented by a line. Then a two-dimensional planigon with
images from fFig is a natural `object' represented as a fiber
bundle for a one-dimensional manifold. First, a natural
coordinate system (x, y) is allowed on a plane planigon.
Second, for a line aligned, e.g., with x, the x axis is a
coordinate for each fiber. For instance, for the filter F5, this
is a straight line (skeleton) passing along x through the point
A0. This straight line is the base of the fiber bundle and y is the
coordinate inside the fiber, used in the construction of a
tangent to the generic layer, translated parallel to the base
from fiber to fiber (or vice versa for F4). The vector V at an
arbitrary point A of the base inside the planigon is then
represented in the basis

V � y
q
qx

;

where y is the component of V.
The property of foliation on filter images is valid not only

in the x, y directions of the Cartesian coordinate system
centered atA0 but also in the z direction of the absolute frame

of reference of the observer. In this case, the planigon can be
regarded as a picture plane. Such a foliation along the z
coordinate is readily realized by the system of visual
perception. If we focus our eye on an object, the space in the
depth is separated by the picture plane into the front and rear
parts. Realizing different focusing points, we obtain informa-
tion on the depth in different fibers.

The property of space depth reconstruction is an innate
property of the visual system. Because the set of transforma-
tions realized by the filters belongs to a five-dimensional
space (for details, see below), the preferred complete groups

Pnx; Pny; Pnx1; Pny1; Pn0

allow a definition of the basis groups of the set fVig. In this
case, taking the properties of foliation into account, we can
represent a planigon as a `window' through which we can
see (Fig. 17a): the `window-frame' is the region of peripheral
sight and the `window-pane' is the region of clear vision.
With the existence of basis groups taken into account, we
have the following interpretation of such a window on the
PV-planigon: K1 is the absolute reference frame and K2 is the
reference frame of the observed object.

To represent objects of a multidimensional, for example,
four-dimensional space as regular bodies of a three-dimen-
sional space, the improper space model [17] is used instead of
the parallel projection. The model representation in Fig. 17a
then specifies the point A0 of the planigon by an improper
point (a horizon point; this is so when we look into the
distance: if we are looking at a close object, the `frame' of the
peripheral sight and the region of clear vision exchange
places). The situation is analogous to the version in Fig. 17b.
If this version corresponds to monocular sight (or the sight
through a video camera), then by gluing together two
planigons, we obtain the panorama viewed by two eyes with
left and right coordinate systems. Figure 17c illustrates the
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Figure 17. Spacing of planigon elements on the depth axis.
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version of interaction of four coordinate systems (and the
corresponding four planigons glued together) on a common
planigon for a unit of four video cameras.

We now consider examples. A well-known model of a
four-dimensional cube is a hypercube; in projection onto a
plane from the side of a facet, it is represented by two cubes
embedded in one another and connected by the vertices. On a
planigon, such a projection corresponds to the image of the
operator V8, which is the center B0 of the model in Fig. 16b if
the square of the planigon is considered as the first square, the
second (the internal one) as a square of the image of V4V5V8,
and the `ears' of the operator as covering the vertex
connection lines. If we define the planigon center as a
horizon point, we obtain a model of a five-dimensional
coordinate system, for which one coordinate is the depth
direction (Fig. 18).

Let the image of the closed group

Ps � V4V6 � V8V14

be observed on a planigon (see Fig. 9). Each closed group can
be assigned a complete group with the operators endowed
with trigger properties [6]. For the closed group under
consideration, this is Pnx � �V2;V5;V10�. The trigger prop-
erty consists in singling out pairs of complete groups that
constitute the image of the closed group:

for the operator V2, we have

V2V4V6 ; V2V8V14 ;

for V5,

V5V4V8 ; V5V6V14 ;

and for V10,

V10V6V8 ; V10V4V14 :

If we superpose a gray (half-tone) matrix on the closed-
group image and assume that dark objects (uniform within

the limits of a compact) are closer to the observer in depth, the
trigger operators give rise to a spatial separation of the
compacts singled out on the closed-group image along the z
axis (Fig. 19). The number of versions is equal to the number
of trigger operators.

In the considered example, it is necessary a priori to make
the following conventions. First, the objects are observed in
the space E 3. Second, the observation is carried out with a
limiting resolution, i.e., at a level of low resolving capacity,
where the influence of disturbances is at a minimum. Third, it
is necessary to decide what object on the planigon, light or
dark, is to be considered the closest.
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Figure 18. Hypercube projection onto the planigon and the `perspective'

cone with a horizon point z.
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Figure 19. Example of a closed-group image foliation along the z axis.
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In painting, perspective is given by a `road stretching far
into the distance' and converging towards the horizon (as in
computer graphics). This is more obvious in the side view
than in the view from above, that is, along the diagonal of the
picture plane. Such a diagonal on the PV planigon is the
direction x � y on which the operators V3;V8;V15 of the
complete group Pnx1 are ordered. Therefore, a planigon in the
model representation of Fig. 17 is a natural object on which
perspective representations are allowed.

6. Symmetric properties of algebra elements

Let feig � fq=qxig be a coordinate basis of the gradient
vector field defined on the set fFig. Because a base (line l ) of
a fiber bundle exists for any Fi, it follows that l is a geodesic on
the manifold. Hence, defining the orthogonal set feig, the set
fFig defines an orthogonal set of geodesics with the basis feig
on themanifold in a natural way. This implies that the set fFig
with the coordinate basis feig � fq=qxig defines the Killing
vector fields, a maximally symmetric manifold, and a basis of
the Lie algebra of Killing vector fields in E 15.

Because the power of the set fFig is equal to 15 (not
counting the unit), we have 15 Killing vectors defining the
five-dimensional manifold embedded in E 6. Therefore, the
set fFig with the basis fq=qxig makes it possible to analyze
the symmetry of such a manifold and determines 15
independent equations of motion on a set of 15 normal
coordinates.

Thus, we have 15 conservation laws for the space E 5. The
model of such a space (a hypercube) was presented in Fig. 18
(on the image of the operator V8). It naturally determines a
necessary coordinate system in the solution of problems of
external space geometry reconstruction, the position of the
observer in this space, and his/her orientation via observa-
tions `through' the planigon (see Fig. 17).

We show the completeness of the system of transforma-
tions (3) from the standpoint of conservation laws [8].
Because a planigon is a connected finite system, it is
conservative and the integral variational principles of
mechanics with the corresponding conservation laws and
equivalence between the total energy and the mass are valid
forit.Becausetheprocessrepresentedbythemassofdomain(1)
is analyzed in the planigon field, the 16th conservation law (of
mass) on the filter and operator sets is expressed by the
elements F0 � V0.

Suppose a process represented by the function of the
domain F�G� is observed on a planigon. It can then be
shown that the condition

dm�G�
dt

� 0

is necessary and sufficient for conservation of the observed
process in time. This condition implies the invariance
(uniformity) of the observed image at steps Dt within the
observation interval under all transformations (3). The
involved convective derivative expresses structure conserva-
tion on the image and the local derivative expresses
stationarity of the observed process.

Any filter realizes the transformation q=qxi, and there-
fore, first, gradj � 0 is the condition of homogeneity of the
process in the space E 15. Second, the condition divgradj 6� 0
for any component (i.e., for any value mi that can be assigned
Vi) is a consequence of the `action of balanced forces' in x, y
directions of the coordinate system defined on the planigon

and a manifestation of the momentum conservation law
under parallel transports within the limits of the covering Vi.

We note that the conditions

gradj � 0 ; divgradj 6� 0

make it possible to analyze texturized (regular) images in a
natural way, for instance, crystalline structures, dissipative
media, fingerprints, etc. The algorithm is relatively simple.
If m0 6� 0 at a considered level of resolution and we have
mi � 0 for all i, then a level (of resolution) exists on which
divgradj 6� 0. Because transformation (1) is a mapping into
an absolutely smooth manifold, the planigons of all levels
are smoothly glued (a planigon with a low-resolution level is
an atlas and subsequent smoothly glued planigons are
maps).

The last (for mechanically closed systems) conservation
law associated with spatial isotropy is the angular momentum
conservation law. Because any operator Vi considered as a
rigid body on two coordinate systems (x; y) and (x1; y1)
connected in the z direction (along the normal to the
planigon) has a rotation axis with respect to which this
equivalent body is invariant under rotation, this law is
satisfied.

Thus, the set fVig (including V0) on a planigon as a
connected system reflects all three conservation laws. If V0 is
sufficient from the standpoint of the total energy (mass)
conservation, the operators V1 and V2 are sufficient from
the standpoint of the momentum conservation law for a
deformation-free mechanical system (body) in x, y directions
of the Cartesian coordinate system; the other operators allow
one deformation or another, and thus also invariance under
parallel transport. The angular momentum conservation law
necessarily requires the introduction of a coordinate system
and specifying the center of mass (from the standpoint of
mechanics). Therefore, it is from the standpoint of this law
that the differentiation of operators on different coordinate
systemsÐ (x; y) and (x1; y1)Ð is realized. As a result, we have
� fV1;V4;V9;V2;V5;V10g is a subset defined in coordi-

nates x, y and having cylindrical symmetry;
� fV3;V8;V15g is a subset defined in coordinates x1, y1

and having spherical symmetry;
� fV6;V7;V13;V14g is a subset defined in coordinates x, y

and having conic symmetry; and
� fV11;V12g is a subset defined in coordinates x, y and

having screw symmetry on a cylinder.

7. Conclusion

Possible physical interpretations of image algebra elements
that extend the range of their comprehension and provide
insight into the problem of 3-D (the shape of the envelope)
reconstruction from a single two-dimensional image are
considered. Approaches to the space geometry reconstruc-
tion from the standpoint of forward-looking properties of
mapping onto a plane are presented. Ways of finding,
observing, and describing an object and its motion with a
possible prediction of its position at the next instant of time
are demonstrated using variational principles.

The developed method has a rather low computational
complexity and a high confidence in the sense of the presence
of the object of observation within a given accuracy.

The work in this field of research is supported by the
RFBR (projects 01-01-00452, 01-01-00459).
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