
Abstract. A new description of the nature of autowave pro-
cesses in a static catalyst bed is reviewed by analyzing two
kinds of autowaves, fast and slow heat waves. The thermody-
namic description of physico-chemical processes is considered
and the entropy balance equation is constructed and analyzed
taking the quasi-homogeneous (basic) model of an immobile
catalyst bed as an approximation. For slow heat waves, the
extremal autowave solution functional (total entropy produc-
tion in the system) is found and a variational formulation of the
problem is given. A space ± time dissipative structure (a fast
heat wave) is shown to exist near the system's thermodynamic
equilibrium.

1. Introduction

Autowave processes (AWPs) have been the focus of attention
of physicists, mathematicians, chemists, and biologists for a
few decades [1 ± 24]. Considerable progress in the under-
standing of autowave properties greatly stimulates interest
in nonlinear reaction ± diffusion systems that exhibit a large
variety of dynamic behaviors and forms of self-organization

(see, e.g., Refs [11 ± 19] published in Uspekhi Fizicheskikh
Nauk). The term AWP usually means a self-sustained non-
linear wave process (including stationary structures) whose
characteristics (propagation velocity, period, wave (impulse)
length, amplitude, and shape) remain unaltered due to an
energy source distributed in the medium. In an established
regime, these characteristics depend on the local properties of
the medium alone and are independent of the initial
conditions. Physical media with an energy source at each
spatial point are referred to as active media. The energy
source can be represented not only by chemical processes
but also by processes of a different nature.

Mathematical models of active media that describe
various processes in physical [8, 14 ± 17, 25, 26], chemical [3,
7, 27 ± 31], biological [4, 5, 10, 13, 18, 19, 32 ± 39], and other
milieu involve the same class of equations. These kinetic
equations, which take component transfer processes and
their interactions into account, are essentially nonlinear
parabolic equations. They are significantly different from
hyperbolic equations that describe classical wave systems,
including nonlinear ones [3, 13]. We note that real systems
always contain some inhomogeneities. Interesting aspects of
the nonlinear wave theory related to the effects of autowave
localization on medium inhomogeneities are reviewed in
Ref. [11].

The theory of nonlinear wave propagation in active
extended kinetic systems has its origin in the works of
ANKolmogorov, IGPetrovski|̄,MSPiskunov [32],RFisher
[33], Ya B Zel'dovich and D A Frank-Kamenetski|̄ [40 ± 43].
Today, the mathematical theory of combustion continues to
make an important contribution to AWP science (see, e.g.,
Refs [44 ± 49]).
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The phenomenon of heat wave propagation in a static
catalyst bed provides a vivid example of AWPs in active
heterogeneous systems [50 ± 71]. It was first discovered by
Frank-Kamenetskii in 1947 and was described as `migration'
of the reaction zone of isopropyl alcohol oxidation over the
static bed of a copper catalyst [72]. The object of the studywas
a porous medium (e.g., an immobile granular layer) through
which the reactionmixture was filtered andwhose surface was
the site of an exothermal catalytic reaction. Characteristic
features of this class of systems include filtration of a gas that
plays the role of a reactant and heat carrier; high heat capacity
of the solid phase compared with that of the gaseous phase;
poor effective diffusion of the reactants relative to the
effective heat conduction of the layer; and some other
properties. Analogs of AWPs in the catalyst static bed have
also been found in the processes such as filtering combustion
of gases [73 ± 87], simultaneous heterogeneous catalysis and
homogeneous combustion (hybrid wave) [88], gasless com-
bustion of condensed media and self-propagating high-
temperature synthesis [12, 21, 48, 89 ± 101], heterogeneous
catalytic reaction on a catalyst filament [102 ± 107], adsorp-
tion [108, 109], and polymerization [110]. Examples of AWPs
in nonlinear systems in the absence of a chemical reaction
include rearrangement of nucleate and film boiling regimes
[111] and propagation of heat waves along an iron wire with
the barretter effect [112]. Mathematical models of these
systems have much in common despite certain important
differences. It is worthwhile to note that the ability of an
active extended system to pass from a homogeneous state to a
regular heterogeneous state is usually associated with fluctua-
tion rearrangement [113, 114]. From a different standpoint,
dissipative structures are formed due to a dynamic rather than
fluctuation rearrangement of their state [8].

The principal goals of the AWP theory are elucidation of
the general ideas, methodology, and rules pertinent to self-
organization processes in various systems and the establish-
ment of the physical magnitude of and criteria for the relative
degree of regularity and organization of various nonequili-
brium states in open systems. The modern qualitative AWP
theory is wholly based on the qualitative theory of dynamic
systems [115 ± 117]. Successful investigations into nonlinear
wave phenomena have greatly promoted the understanding
of many of these phenomena based on a common approach
and developing a number of universal methods for their
survey. In certain particular cases, exact autowave solutions
(`traveling waves') of polynomial models [18] and even exact
nonstationary solutions of the simplest chain flame propaga-
tion model [118] have been obtained.

General laws and causes of self-organization in various
systems are considered in the thermodynamics of non-
equilibrium processes (nonequilibrium thermodynamics)
[113, 114, 119 ± 130]. It has been shown that the capacity for
self-organization is a common property of open systems and
that their regularity is underlain by nonequilibration. The
most distinctive examples of self-organization are the
Rayleigh ±Benard periodic structures in hydrodynamics
[131], the Turing patterns [34], and the Belousov ±Zhabo-
tinsky reaction [27, 28]. Entropy production may serve as a
criterion for the regularity of open systems [132].

We recall that the `principle of minimum dissipation of
energy' introduced by Lord Rayleigh was interpreted by
L Onsager in his well-known work on reciprocal relations in
irreversible processes. The same author suggested that `the
total rate of increase of the entropy plays the role of a

potential'. The general formulation of this principle and
demonstration of its importance for linear nonequilibrium
steady-state systems were offered by I Prigogine [134]. To
date, no general proof of the principle of minimum entropy
production in self-organization processes is available for
nonlinear systems [132]. At the same time, there are examples
of breaches of this principle [135]. The variational problem of
phenomenological thermodynamics of reversible processes
has been treated in a wealth of publications (see, e.g., [136 ±
158]). Analysis of the extremal principles of Onsager,
Prigogine, Ziegler, Biot, and Gyarmati is presented in the
papers by I P Vyrodov [159, 160]. Thermodynamic systems
described by nonlinear kinetic equations were also considered
in Refs [134, 161 ± 164]. One of the most intriguing problems
is the relationship between dynamics and thermodynamics
[121, 165]. There are examples of the successful application of
methods of nonequilibrium thermodynamics in chemistry
and chemical technology [166 ± 168]. Naturally, in a single
publication, it is impossible to cover the entire range of
aspects pertaining to nonequilibrium thermodynamics and
its applications.

The above overview demonstrates that principles of self-
organization constitute one of the central problems in both
nonequilibrium thermodynamics and the AWP theory; there-
fore, it has become necessary to combine the methods of this
theory and nonequilibrium thermodynamics. By way of
example, Ref. [169] discusses whether the principle of
minimum entropy production can be used to find an
autowave solution of the classical problem in the Zel'do-
vich ±Frank-Kamenetski|̄ combustion theory. A positive
answer to this question was given in Refs [170 ± 172] only
after the methodology of nonequilibrium thermodynamics
and the AWP theory had been coordinated and validated
using a simpler quasi-homogeneous model of a static catalyst
bed [173 ± 176]. This simplest model of a nonlinear reaction ±
diffusion system is also a basic model in the context of
nonequilibrium thermodynamics. In addition to a thermo-
dynamically reversible process of gas filtration, it takes two
irreversible processes into consideration: heat conduction
described by the linear Fourier law and chemical reactions
described by the nonlinear Arrhenius law.

Along with this line of research, a direct method for
integration of nonlinear reaction ± diffusion equations has
been developed [177] based on the dynamic minimum
dissipation principle [178, 179]. Reference [177] gives exam-
ples of its application for estimating steady velocities of
autowaves. Specifically, the propagation velocity of laminar
combustion autowaves was estimated in the approximation
of a narrow reaction zone; it turned out to coincide with that
found from the classic Zel'dovich ±Frank-Kamenetski|̄ for-
mula. We note that mechanical analogs of basic postulates of
nonequilibrium thermodynamics were formulated in the
works of I F Bakhareva [142, 143].

The acquisition of ideas of nonequilibrium thermody-
namics by the AWP theory has been promoted by the
discovery of the propagation of fast heat waves (FHWs)
[67 ± 70]. This phenomenon is feasible only when a reversible
chemical reaction proceeds in a static catalyst bed, with the
reaction mixture passing from one state of thermodynamic
equilibrium to another. The existence of FHWs (first-type
automodel solutions) is rigorously derived from the analysis
of a quasi-homogeneous model. FHWs are essentially
different from the well-known slow heat waves (SHWs), i.e.,
second-type automodel solutions, in which the reaction
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mixture passes from a low-temperaturemetastable state at the
input of the catalyst bed to thermodynamic equilibrium at
high temperatures. According to the nonlinear law formu-
lated by Arrhenius for the chemical reaction rate, FHWs are
likely to arise both far from and close to thermodynamic
equilibrium [69, 70]. It is noteworthy that the existence of
FHWs became known when processes resulting in their
formation had already proceeded in large-capacity industrial
reactors (see references in [66, 180]).

The present review is concerned with a quasi-homoge-
neousmodel of the static catalyst bed that allows the nature of
autowave phenomena to be elucidated. Two types of
autowaves, FHWs and SHWs, are considered. Methods and
approaches employed in AWP studies are discussed. Much
attention is given to the nonequilibrium thermodynamics of
AWPs, which facilitates the understanding of the causes and
driving forces of self-organization. The principle of minimum
total entropy production in AWPs is established and a
variational formulation of the SHW propagation problem is
proposed.

The contents of the subsequent sections of the review are
briefly as follows. Section 2 deals with traditional problems of
mathematical simulation of AWPs. A basic model of AWPs
in a static catalyst bed is given for a reversible chemical
reaction proceeding by a simple mechanism and the behavior
of phase trajectories of the system is investigated. Conditions
necessary for FHWs and SHWs to exist are discussed.
Section 3 is focused on the central issue of the review, the
development of a thermodynamic theory of AWPs. This
section describes derivation of the entropy balance equation
in the approximation of a quasi-homogeneous (basic) model
of the static catalyst bed. Also presented is the analysis of the
contribution of physico-chemical processes to the local and
total entropy production in the system. Section 4 illustrates
application of methods and approaches of nonequilibrium
thermodynamics to the problem of SHW propagation during
sulfur dioxide oxidation. The last section concludes the
review.

2. Autowave solutions for the quasi-homogeneous
model of a static catalyst bed

2.1 Mathematical model of nonstationary processes
in a static catalyst bed
The static catalyst bed is a complex system with the inevitable
statistical distribution of properties in individual structural
elements. The complexity of the system is increased by a
nonuniform dispersion of the heterogeneous medium, turbu-
lence of the flows, and other factors. Equations of mathema-
tical physics constitute a theoretical basis, a prototype, for the
development and optimization of catalytic processes, but
their macroscopic parameters, unlike those of classical
equations of mathematical physics for continuous media,
play the role of effective quantities. Mathematical models of
the static catalyst bed in the general form are rather
complicated. A number of specific requirements are imposed
for the construction, selection, and simplification of such
models [181].

We consider a simple (quasi-homogeneous)model. Such a
model takes into account a convective flow of the gaseous
reaction mixture through the static catalyst bed, the effective
heat conduction of the blown-through granular layer, and the
chemical transformation that serves as a source of heat and

matter. The processes of heat and mass transfer in a catalyst
granule are supposed to be so intense that the difference in
temperature and concentration between the gas and the
catalyst may be neglected. Here, we consider a gas flow with
a negligibly small pressure gradient under the assumption
that the reaction mixture satisfies the ideal gas law. Such a
highly formalized representation of the complex system
makes its mathematical model, capturing the principal
characteristics of the phenomenon under study, suitable for
qualitative and numerical analysis.

When a single reaction proceeds in the catalyst bed, the
one-dimensional quantity balance equation for the kth
component in the porous medium approximation (as two
interpenetrating continua) has the form

eg
qrk
qt
� ÿ q�rkuk�

q`
� wkMkv�T; pk� ; k � 1; . . . ; n : �1�

Here, rk and pk are the respective density and partial pressure
of the kth component; uk is the velocity of the kth component
through the total cross section of the catalyst bed; wk is the
stoichiometric coefficient at the kth component involved in
the chemical reaction; Mk is the molecular weight of the kth
component; v is the chemical reaction rate (mol mÿ3 sÿ1); t is
the time; ` is the longitudinal coordinate; eg � e� �1ÿ e�ep is
the volume fraction of the gaseous phase; and e and ep are the
porosity of the catalyst bed and granule.

Summing (1) over all components, we obtain the mass
conservation equation

eg
qrg
qt
� ÿ q�rgu�

q`
; �2�

where we used thatXn
k� 1

wkMk � 0 :

Here,

rg �
Xn
k� 1

rk ;

and

u � 1

rg

Xn
k� 1

rkuk

is the mass-averaged velocity of the flow per total cross
section of the catalyst bed.

It is known that the stoichiometric equation for any
chemical reaction may be used to calculate changes in the
number of moles of all its components from those of the key
component [182, 183]. The fundamental laws of thorough
equilibrium imply that the chemical reaction rate must take
the reversible character of chemical transformations into
account [182 ± 187],

v � v� ÿ vÿ � v�
�
1ÿ vÿ

v�

�
;

where v� and vÿ are the respective velocities of forward and
backward reactions.

We note that from the standpoint of kinetic reversibility,
all reactions can be categorized into reversible, i.e., proceed-

October, 2004 Nonequilibrium thermodynamics of autowave processes in a catalyst bed 993



ing simultaneously in the direct and reverse directions, and
irreversible, i.e., proceeding only in either of the two
directions until at least one reagent is ultimately exhausted.
For this reason, the reversibility term (in square brackets) is
dropped in the calculation of the material balance for
kinetically irreversible reactions. It must be emphasized that
such a simplification is not always justified. In using methods
of nonequilibrium thermodynamics, it seems expedient to
take reversibility of chemical transformations into considera-
tion because in the case where the reaction equilibrium
constant is chosen properly but no additional assumptions
are introduced, the results are practically the same as in the
case where the reversibility is not taken into account. More-
over, the presence of the reversibility term in a kinetic model
may help to obviate difficulties encountered in the investiga-
tion of reactions involving different orders because character-
istics of a singular point of the system of equations at high
temperatures are strongly dependent on the form of the
kinetic mode.

For simplicity, we consider a reversible chemical reaction
A>B whose velocity is described by the expression [184 ±
186]

v � k0 exp

�
ÿ E

RT

�
CA

�
1ÿ pB

pAKp�T �
�

� k0C0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

CKp�T �
�
; �3�

where k0 is the pre-exponential factor of the reaction rate
constant, E is the activation energy of the reaction, R is the
universal gas constant, CA is the concentration of reagent A,
pA and pB denote partial pressure of reagents A and B,
respectively,

Kp�T � � exp

�
ÿDG 0

T

RT

�
� exp

�
ÿDH 0

T

RT
� DS 0

T

R

�
� ke exp

�
q

RT

�
is the equilibrium constant of the reaction, DG 0

T, DH
0
T, and

DS 0
T are the respective Gibbs energy, enthalpy, and entropy of

the reaction at standard pressure, ke is the pre-exponential
factor of the reaction rate constant, C � CA=C0 is the
dimensionless concentration (mass fraction) of reagent A,
C0 � CA � CB is the total concentration of reactants in the
reaction mixture, q � ÿDH 0

T is the thermal effect of the
reaction, and pk � CkRT.

The hypothesis of local thermodynamic equilibrium
permits us to introduce the specific enthalpy of the gas hg
and the catalyst hc, temperature T, pressure p, and other
thermodynamic functions.

Based on the general notions of density, current, and
source of a substance, we introduce functions of the enthalpy
density of the gas rghg and the catalyst rchc, and the
convective rguhg and conductive Jq flow of enthalpy. All
these variables are related by the enthalpy balance equation

q�egrghg � ecrchc�
qt

� ÿ q�rguhg�
q`

ÿ qJq
q`

; �4�

where hg � �rAhA � rBhB�=rg, hA�T � � h 0
A � cp�Tÿ T0�

and hB�T � � h 0
B � cp�Tÿ T0� are partial enthalpies of

reagents A and B per unit mass, rA and rB are the densities
of reagents A and B, ec � 1ÿ eg is the catalyst volume
fraction, and cp is the heat capacity of the gas.

A change in enthalpy in Eqn (4) is due to the changes of
the observed system parameters such as temperature, pres-
sure, densities, and concentrations of its components.

If cross diffusion of the components is neglected in
Eqn (4), the conductive enthalpy flow becomes a heat flow
proper, described with a good degree of accuracy by the linear
Fourier law of heat conduction �Jq � ÿl gradT �. Taking
continuity equation (2) into account, assuming the effective
heat conduction coefficient of the catalyst bed and specific
heat capacities of the gaseous and solid phases (per unit mass)
to be constant, and using the apparatus of partial thermo-
dynamic functions [182], it can be shown that Eqn (4) is
equivalent to

�egrgcp � ecrccc�
qT
qt
� l

q2T
q` 2
ÿ rgucp

qT
q`

� qC0k0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

CKp�T �
�
; �5�

where cc is the catalyst heat capacity and dhc � cc dT. Thus,
we have arrived at the known equation of convective diffusion
with a source.

We reduce material balance equation (1) for reagent A,
taking (2) into account, to the form

eg
qC
qt
� ÿu qC

q`
ÿ k0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

CKp�T �
�
: �6�

The system of equations (5), (6) is considered with the
following boundary and initial conditions:

` � ÿL
2

: l
qT
q`
� rgucp�Tÿ T0� ; C � CA; 0

C0
; �7�

` � �L
2

: l
qT
q`
� 0 ; �8�

t � 0 : T�0; `� � Tn ; C�0; `� � Cn : �9�
Here, L is the length of the catalyst bed, T0 is the temperature
at the input of the catalyst bed, CA; 0 is the concentration of
reagent A at the input of the catalyst bed, Tn is the initial
temperature of the bed, and Cn is the dimensionless initial
concentration of reagent A.

The mathematical model in (5) ± (9) is the simplest one
that allows the interpretation of the most important experi-
mentally observed phenomena and regular processes in a
static catalyst bed, in particular, heat front formation and
propagation [69, 70]. Minimal simplification of the model by
neglecting conductive heat transfer leads to an ideal displace-
ment model unfit for the description of heat front propaga-
tion.

Before turning to the application of the methods and
approaches of the AWP theory, we demonstrate the results of
simulating nonstationary processes in a static catalyst bed.
The computation was performed using the parameter values

C0 � 46:43 mol mÿ3; cc � 249 cal kgÿ1 Kÿ1 ;

cp � 300 cal kgÿ1 Kÿ1 ; E � 20 kcal molÿ1;

q � 15 kcal molÿ1; k0 � 4:52� 107 sÿ1;

ke � 5:737� 10ÿ5 ; u � 1 m sÿ1; e � 0:42 ;

ep � 0:3 ; l � 0:2 cal mÿ1 sÿ1 Kÿ1;

rg � 1:3 kg mÿ3 ; rc � 2700 kg mÿ3 ;

where C0, u, and rg are given at the input conditions.
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Figure 1 shows the temperature and reagent A concentra-
tion profiles over the catalyst bed at consecutive time
moments calculated using model (5) ± (9). It can be seen that
two reaction zones are formed in the catalyst bed initially
heated to the temperature Tn. These zones migrate in the
direction of the gas flow with different but constant linear
velocities.

In the front zone, the temperature rises from 20 to 620 �C,
with the chemical transformation process releasing heat and
the reagent A concentration decreasing from the input value
to the equilibrium one corresponding to 620 �C. This
temperature is higher than the temperature of adiabatic
heating of the reaction mixture (superadiabaticity effect)
(see, e.g., [65, 79, 80]). Its maximum (thermodynamically
equilibrated) value is independent of Tn in a broad range of
initial temperature variations and is determined by processes
proceeding in the first zone. These processes are peculiar in
that the chemical reaction and heat conduction interfere with
the cooling of the catalyst bed by a convective gas flow. This
accounts for the propagation velocity of the first reaction
zone being lower than that of the inert heat label in the
catalyst bed.

In the second zone, the temperature rises from 620 �C to
Tn, but chemical transformation occurs with heat absorption,
unlike that in the first zone. Product B is converted back to the
starting reagent A, whose concentration increases from the
equilibrium value at 620 �C to an equilibrium value atTn. The
catalyst bed is cooled both by the convective gas flow and due

to the endothermal chemical reaction. Therefore, the velocity
of the second reaction zone is much higher than that of the
inert heat label in the catalyst bed.

Because a stationary heat wave travels over the catalyst
bed with a certain constant velocity and retains its spatial
structure, it exists (strictly speaking) only when the catalyst
bed is infinitely long and asymptotically formed as t!1. Of
course, it is then necessary that the chemical conversion rate
be low in a certain vicinity of the input conditions [65, 68].
Unfortunately, experiment, even a numerical one, is restricted
in both space and time. However, specific approaches and
asymptotic notions introduced in the theory of combustion
afford insights into the nature of autowave propagation
without accounting for transient processes.

2.2 Mathematical model of autowave processes
The history of the theory of AWPs in a static catalyst bed is
rather short. The first data on the propagation of reaction
waves during isopropyl alcohol oxidation in the static bed of a
copper catalyst were reported by D A Frank-Kamenetski|̄
[72]. Since then, a considerable number of theoretical and
experimental studies have been devoted to this subject (see,
e.g., Refs [66, 180]).

Autowave processes in a static catalyst bed are in many
aspects similar to heat front propagation processes during
filtration of a combustible gas mixture through an inert
porous medium [73 ± 87]. In such processes, the gas tempera-
ture in the reaction zone is naturally higher than the solid
phase temperature. All these processes have many close
analogies with laminar combustion processes. But mean-
ingful results from the combustion theory have no direct
application because of the very dissimilar nature of the two
phenomena [64]. For example, dynamic properties of an
immobile granular layer are for the most part determined by
markedly different heat capacities of the solid and gaseous
phases and by filtration of the reaction mixture.

Investigations into the steady propagation of autowaves
are actually restricted to the search for stationary solutions of
the system of equations (5), (6) over an infinite interval during
sufficiently long times t!1. As the catalyst bed is extended
to infinity, the characteristics of the relevant process must be
preserved: the coefficients in the equations must be kept
unchanged and the boundary conditions transferred to
infinity. In a sufficiently extended catalyst bed (at large
contact times), condition (8) corresponds to the condition of
thermodynamic equilibrium in the reaction mixture when
both the chemical affinity and the reaction rate vanish [182 ±
186]:

A � RT1 ln
Kp�T1�C1
1ÿ C1

� 0 ; v�T1;C1� � 0 : �10�

The thermodynamically equilibrated values of temperature
�T1� and reactant concentrations �C1� are then related by

C1 � 1

Kp�T1� � 1
: �11�

Hence, instead of (8), it is more convenient to use the
equivalent equation

`! �1 : T! T1 ; C! C1�T1� : �12�
The solution of problem (5) ± (9) in the form of a traveling

wave

T � T�`ÿ Vf t� ; C � C�`ÿ Vf t�
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Figure 1. The temperature (a) and reagent A concentration (b) profiles

along the catalyst bed at consecutive time moments: curves 1, 1 0 Ð
t � 120 s, curves 2, 2 0Ð t � 240 s, curves 3, 3 0Ð t � 360 s. The input and

initial conditions: T0 � 20 �C, CA; 0 � 34:82 mol mÿ3, Tn � 700 �C, and
Cn � 0:8816.
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is to be sought in the class of smooth bounded functions. If
such a steady-state solution does exist, problem (5) ± (9) in a
moving frame of coordinates associated with the propagating
front �x � `ÿ Vf t� const, q=qt � ÿVf d=dx� is reduced to
the following stationary problem [67 ± 71]:

l
d2T

dx 2
ÿ rgucp

�
1ÿ g

Vf

u

�
dT

dx

� qC0k0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

CKp�T �
�
� 0 ; �13�

ÿ u

�
1ÿ eg

Vf

u

�
dC

dx
ÿ k0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

CKp�T �
�
� 0 ;

�14�
x! ÿ1 : l

dT

dx
ÿ rgucp�Tÿ T0� ! 0 ; C! CA; 0

C0
; �15�

x! �1 : T! T1 ; C! C1�T1� : �16�

Here,

g � eg � ecrccc
rgcp

and Vf is the unknown parameter determining the front
propagation velocity.

In a moving system of coordinates, continuity equation
(2) becomes

d
ÿ
rg�uÿ egVf�

�
dx

� 0 :

With condition (15), this implies that

rg�uÿ egVf� � const :

Therefore, it is useful to assume that rg, u, and C0 are defined
at the input conditions.

Passing to the dimensionless variables

r � xrgucp
l

; z � CA; 0 ÿ CA

C0
; �17�

we rewrite problem (13) ± (16) as

d2T

dr 2
ÿ �1ÿ o� dT

dr
� TadK1�T �

�
zA; 0 ÿ zÿ 1ÿ zA; 0� z

Kp�T �
�
� 0 ;

�18�
�1ÿ ao� dz

dr
� K1�T �

�
zA; 0 ÿ zÿ 1ÿ zA; 0 � z

Kp�T �
�
; �19�

r! ÿ1 :
dT

dr
ÿ �Tÿ T0� ! 0 ; z! 0 ; �20�

r! �1 : T! T1 ; z! ze�T1� ; �21�

whereo � gVf=u is the dimensionless propagation velocity of
the autowave,

Tad � qC0

rgcp
; zA; 0 � CA; 0

C0
;

K1�T � � l
rgcpu 2

k0 exp

�
ÿ E

RT

�
; a � eg

g
:

By substituting (19) in (18), we find a first integral of the
system and reduce the order of Eqn (18),

dT

dr
� �1ÿ o�Tÿ Tad�1ÿ ao�z�N ; �22�

where N is the integration constant.
It follows from Eqn (22) and conditions (20) that

dT

dr
� �1ÿ o�Tÿ Tad�1ÿ ao�z�N! Tÿ T0

as r! ÿ1. Hence, ifo � 0, thenN � ÿT0 and ifo 6� 0, then

dT

dr
� �1ÿ o�T�N! Tÿ T0

as r! ÿ1. In other words, the limit of the function and the
limit of its derivative exist and are finite; this is possible if
N � ÿ�1ÿ o�T0.

Thus, the condition at r! ÿ1 for T ato 6� 0 is split into
two: the conditions T! T0 and dT=dr! 0; that is, problem
(18) ± (21) is transformed into

dT

dr
� �1ÿ o��Tÿ T0� ÿ Tad�1ÿ ao�z ; �23�

dz

dr
� K2�T � ze�T � ÿ z

1ÿ ao
; �24�

r! ÿ1 : T! T0 ; z! 0 ; �25�
r! �1 : T! T1 ; z! ze�T1� ; �26�

where

K2�T � �
K1�T �

ÿ
1� Kp�T �

�
Kp�T �

and

ze�T � � zA; 0 ÿ 1

1� Kp�T �

is the equilibrium degree of transformation corresponding to
the temperature T.

To summarize, the mathematical model of autowave
processes in a static catalyst bed is the boundary problem
(23) ± (26) for a system of two ordinary differential equations
with parameters o and T1. The currently available methods
and approaches for the qualitative analysis of second-order
dynamic (autonomous) systems make it possible to study the
properties of the solution `at large' [116, 117]. Eliminating the
autonomous (wave) variable r from dynamic system (23), (24)
(by division) leads either to the differential equation

dz

dT
� K2�T �

�
ze�T � ÿ z

�
�1ÿ ao���1ÿ o��Tÿ T0� ÿ Tad�1ÿ ao�z� ; �27�

or to the differential equation

dT

dz
�
��1ÿ o��Tÿ T0� ÿ Tad�1ÿ ao�z��1ÿ ao�

K2�T �
�
ze�T � ÿ z

� : �28�

We recall that a dynamic system in a certain domain of the
Euclidean plane (with Cartesian coordinates z and T )
determines a family of trajectories (division of the domain
into trajectories) [116]. In system (23), (24), the trajectories
(integral curves) are found with the help of parametric
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equations; in Eqns (27) and (28), the trajectories are
determined by equations in the Cartesian coordinates.

Equilibrium states (singular points) of a dynamic system
on the phase plane �z;T � are defined by the intersection of
null isoclines (principal isoclines). The null isocline ofEqn (23)
is the straight line

z � �1ÿ o��Tÿ T0�
�1ÿ ao�Tad

: �29�

At points of null isocline (29), tangents to the trajectories
are vertical lines (parallel to the z axis). Equation (24) has two
null isoclines. One of them is the thermodynamic equilibrium
reaction curve z � ze�T �; at its points, tangents to the
trajectories are horizontal. It is worth noting that this
S-shaped curve is defined only by parameters entering the
equilibrium constant. The other null isocline of Eqn (24) is the
straight line T � 0 K (the axis of the degrees of transforma-
tion), where the reaction rate strictly vanishes, in agreement
with the Arrhenius law, regardless of reagent concentrations.

Therefore, the singular points of system (23), (24) are
given by zeroes Ts of the function

f �T � � �1ÿ o��Tÿ T0�
�1ÿ ao�Tad

ÿ ze�T � ; �30�

and by the intersection of null isocline (29) with the null
isocline T � 0 K.

We note that the extension of the temperature range to
T0 � 0 K is permissible from the mathematical standpoint
because problem (23) ± (26) is free of constraints in the range
of positive temperatures; the singular point of the dynamic
system is its most important characteristic.

The equality

�1ÿ o��T1 ÿ T0�
1ÿ ao

� Tadze�T1� �31�

expresses the integral energy balance. It establishes a one-to-
one correspondence between the parameters o and T1.
Hence, problem (23) ± (26) contains a single unknown
parameter, either o or T1.

Solutions of the system of equations (23), (24) at all rmake
sense only if they are belong to the physical domain of the
phase space �z;T �, i.e., for nonnegative dimensional values of
reagent concentrations and positive absolute temperatures.
There is no chemical transformation at o � 1=a, and the
problem makes no sense. If o > 1=a, each component of a
trajectory originating in the physical domain of the phase
space decreases indefinitely as r! �1; in other words, it
leaves the physical domain of the phase space. Ato < 1=a, if a
trajectory originating in the physical domain of the phase
space remains inside it as r! �1, it converges to the
singular point

ÿ
ze�T1�;T1

�
. It follows from the above that

the admissible range of o values is defined by the inequality
o < 1=a.

Unlike the position of a thermodynamic equilibrium
isocline on the phase plane, the position of null isocline (29)
is essentially o-dependent. For example, the degree of
transformation of the starting reagent z at points of null
isocline (29) ato < 1 grows with temperature but decreases at
1 < o < 1=a. At o � 1, null isocline (29) is a straight line
z � 0 parallel to the temperature axis. This means that the
velocityo � gVf=u � 1 equals the propagation velocity of the

inert (and simultaneously losing distinctness) heat label. This
asymptotic velocity value makes a `barrier' that separates fast
and slow autowaves [67 ± 70]. Although the FHW and SHW
propagation velocities may be of the same order, the proper-
ties of these waves are substantially different.

Concrete examples of phase portraits with differently
positioned null isoclines and phase trajectories of the system
of equations (23), (24) connecting singular (stationary) points
are considered at greater length in the next sections.

2.3 Necessary conditions for the existence
of fast heat waves
In what follows, in order to concentrate attention on the
phenomenon of FHW propagation, we assume the equili-
brium composition of the reaction mixture at the entry to a
catalyst bed, i.e., zA; 0 � 1=

ÿ
1� Kp�T0�

�
. Hence, ze�T0� � 0,

T0 > 0 K.
We introduce the dimensionless temperature and para-

meter

y � Tÿ T0

bT0
; b � RT0

E
: �32�

Then, problem (23) ± (26) takes the form

dy
dr
� �1ÿ o�yÿ �1ÿ ao�Qz ; �33�

dz

dr
� K 0�y� ze�y� ÿ z

1ÿ ao
; �34�

r! ÿ1 : y! 0 ; z! 0 ; �35�
r! �1 : t! y1 ; z! ze�y1� : �36�

Here,

Q � qC0

rgcpbT0
; K 0�y� � K�y�ÿ1� Kp�y�

�
Kp�y�

and

ze�y� � zA; 0 ÿ 1

1� Kp�y�
is the equilibrium degree of transformation corresponding to
the temperature y; next,

K�y� � kr exp

�
y

1� by

�
; kr � l

rgcpu 2
k0 exp

�
ÿ 1

b

�
;

Kp�y� � Kp; 0 exp

�
ÿ�Zÿ 1�y

1� by

�
;

Kp; 0 � ke exp

�
Zÿ 1

b

�
; Z � E� q

E
:

The domain of definition of the dimensionless temperature is
y > ÿ1=b.

Equations (33) and (34) reflect the FHW energy and
material balance, respectively. It is worth noting that the
system of equations (33), (34) has no periodic solution
because the Bendixson criterion is satisfied [116]. The
singular points �ys; zs� of the system on the phase plane �y; z�
are defined by the intersection of null isoclines. One of them is
the thermodynamic equilibrium curve of the reaction
z � ze�y� and the other (straight line) is the heat balance null
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isocline

z � �1ÿ o�y
�1ÿ ao�Q : �37�

Furthermore, the singular points are defined by zeroes ys
of the function

f �y� � �1ÿ o�y
1ÿ ao

ÿQze�y� : �38�

The integral energy balance (31) becomes

o � y1 ÿQze�y1�
y1 ÿ aQze�y1� : �39�

The value of y1 equals the initial temperature of a catalyst
bed of constant length. Then, Eqn (39) unambiguously
defines o. By setting y1 > ÿ1=b, it is possible to find a
value of o at which the point �ze�y1�; y1� is singular for
system of equations (33), (34). It follows from the position of
the null isocline on the phase plane that 1 < o < 1=a in this
case.

The thermodynamic equilibrium curve z � ze�y� in Fig. 2
has an inflection point denoted as I. Let the point �0; 0�
coincide with the inflection point I. Then, at an arbitrary
y1, it is a saddle point, and null isoclines intersect thrice if
f �ÿ1=b� > 0 and twice if f �ÿ1=b� < 0. In the former case,
one stable node is located to the right and the other to the
left of I. In the latter case, the stable node is on the right
from the origin. Accordingly, there are two (or one)
separatrixes that connect the stable node with the saddle
singular point. These separatrixes are the FHW images on
the phase plane �z; y�. When there are two separatrixes, they
correspond to a single o value. If �0; 0� does not coincide
with I, it may be either a saddle or a node depending on the
value of y1.

Unfortunately, in the framework of this review, we cannot
give the complete exposition of the relation between all
parameters of system (33), (34) and the FHW characteris-
tics. In what follows, only selected examples are considered.
The results obtained can be summarized as lemmas and
corollaries in the Appendix.

The condition f 0�ys� > 0 may be represented, using (38),
as

ze�y1�
y1

> z 0e�ys� : �40�

For ys � 0, thismeans that the origin �0; 0� is a saddle singular
point if the tilt of the tangent to the thermodynamic
equilibrium curve at this point is smaller than that of the
second null isocline connecting �0; 0� with the other singular
point. Otherwise, the origin is a stable node.

We consider the case where the inflection point lies to the
left of �0; 0� (see Fig. 2). Let the tangent to curve 1 at the origin
cross it at y � ycr. Then, for the values y12 �ycr; 0�, the point
�0; 0� is a stable node because condition (40) is violated and
the null isoclines intersect at three points, of which the middle
one is a saddle. Hence, problem (33) ± (36) has no solution at
y1, and the regime of FHWpropagation over the catalyst bed
is impossible. It is worth noting that the inflection point I
occurs inside the chosen interval. Indeed, if I is not the sole
stationary point in the system of differential equations (33),
(34), then it is a saddle point. The farther I is from the origin,
the broader interval �ycr; 0�.

The problem is solvable at y1 < ycr or y1 > 0.Moreover,
at any y1 < ycr, for o calculated from (39), there is a value of
y1 > 0 that defines another stable node, such that the second
separatrix starting from the saddle singular point arrives there
at r! �1. Therefore, one more FHW propagates in the
catalyst bed at the initial temperature y1 with the same velocity
o. At y1 > 0 ando found from (39), the region of admissible
y values contains three stationary points of system (33), (34) if
f �ÿ1=b� > 0. Then, problem (33) ± (36) is solvable at two
values of the parameter y1. Conversely, if f �ÿ1=b� < 0,
problem (33) ± (36) is solvable at a single y1 value.

A similar line of reasoning applies equally well to the
values of the parameters of the model at which the inflection
point lies to the right of �0; 0�. There is an interval �0; ycr� of
y1 values within which the problem has no solution. At
y1 < 0, there are always three intersection points of null
isoclines; at y1 > ycr, there are three such points if
f �ÿ1=b� > 0 and two points if f �ÿ1=b� < 0.

Figure 3 illustrates the FHW propagation velocity versus
the initial temperature of the catalyst bed for two sets of
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Figure 2. Null isoclines of system (33), (34): 1 Ð thermodynamic

equilibrium curve, 2 Ð heat balance null isocline, 3 Ð tangent to curve 1

at the point �0; 0�; IÐ inflection point of curve 1.
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parameters differing only in the input temperature T0. The
values ÿ1=b1 and ÿ1=b2 correspond to absolute zero
temperature for curves 1 and 2. At y1 ! 0 and y1 ! ycr,
the velocity o tends to a maximum value o0. If the initial
point �0; 0� is the inflection point I of the thermodynamic
equilibrium curve, o has the largest possible value omax

provided all other parameters of the system (curve 1 in
Fig. 3) are constant. Otherwise, there is a range of initial
temperatures (213.1 ± 593.7 �C for curve 2) within which
problem (33) ± (36) is unsolvable even if o can be computed.
In this case, there are two more singular points, besides �0; 0�.
The one nearer to �0; 0� is a saddle and the velocity o
calculated from (39) corresponds to a FHW in which the
transition occurs from this thermodynamic equilibrium point
to zero conditions in the system under consideration.
Invariance in the computation of o arises from the invar-
iance of the mass and energy conservation laws.

As the initial temperature of the catalyst bed grows
indefinitely, o! 1. When the initial temperature y1 drops
toÿ1=b, the velocityo also decreases tending to a limit value
oÿ that is larger than unity (see the Appendix). It is
noteworthy that two FHWs may have the same velocity o;
in one of them, transition to the initial conditions with a
higher temperature occurs, while in the other, the transition is
to conditions with a lower temperature. Evidently, the
character and the intensity of dissipative processes in these
two waves are different. Hence, their structure must also be
different.

Figure 4 shows the temperature and concentration
profiles along a catalyst bed calculated from (33) ± (36) for
different initial and input temperatures. If �0; 0� is the
inflection point I, the FHW propagation regime is realized
at any temperature Tn (examples are given in Fig. 4).
Conversely, if the input conditions correspond to a point
lying to the right of point I on the thermodynamic equilibrium
curve, as in Fig. 2, there is a range of initial temperatures at
which no FHW is formed in the catalyst bed. In that case,
there is a certain dynamic regime in the catalyst bed at
Tn � 213:1ÿ593:7 �C that does not lead to the formation of
a heat wave structure with an asymptotic value of tempera-
ture Tn. In FHWs, the temperature monotonically varies
along the catalyst bed from T0 to Tn, as do the reactant
concentrations from equilibrium values at the input to the
equilibrium values corresponding to Tn, because the respec-
tive trajectories do not cross the null isoclines on the phase
plane of system (33), (34).

At Tn > T0, the level of substance B in the FHW front
decreases and the heat is absorbed in the course of the
reaction. At elevated temperatures, the high reaction rate
constant determines the rate at which the concentration
evolves towards equilibrium. Therefore, the value of z in
each section along the catalyst bed is quasi-stationary and
close to the equilibrium value ze�y�. This is a fast variable in
the system of equations. The phase trajectory in the high-
temperature range runs close to the thermodynamic equili-
brium curve. As Tn increases, the front width and propaga-
tion velocity along the bed decrease.

AtTn < T0, reactant B is formed and the process proceeds
with heat release. In the low-temperature range, where the
reaction velocity constant is small, the solution is character-
ized by narrow temperature and concentration gradients
along the catalyst bed. With decreasing Tn, this range
broadens progressively and the part of it where the tempera-
ture and concentration profiles assume asymptotic values

becomes markedly extended. Here, the concentration is a
slow and the temperature a fast variable in the system of
equations (33), (34) because of the smallness of K�y�. This
accounts for the trajectory in the phase plane running near the
heat balance isocline. It is worth noting that the temperature
and concentration gradients along the catalyst bed for two
FHWs traveling with an equal velocity o (curves 1, 1 0 and 3,
3 0 in Fig. 4) differ by several orders of magnitude.

As the initial temperature tends to zero �y1 ! 0�, the
temperature and concentration profiles in FHW increasingly
gently slope and the front broadens due to the process
proceeding in the immediate proximity to both the thermo-
dynamic equilibrium curve and the heat balance null isocline.

Thus, the existence of FHWs directly follows from the
analysis of the model in question and does not require any
additional assumptions. For FHWs, the asymptotic value of
the temperature y1 at r! �1 equals the initial temperature
of the catalyst bed, o is found from Eqn (39) based on the
`external' laws of mass and energy conservation alone, and
the front shape `adjusts itself' to these laws. Therefore, the
FHW propagation velocity o depends only on physico-
chemical properties of the reaction mixture and on the input
and initial temperatures; at the same time, it is independent of
the heat conduction of the catalyst bed and the kinetics of the
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chemical reaction. An FHW may be an autowave resulting
either from heating or cooling and able to propagate only in
the direction of gas filtration �o > 1�.

2.4 Necessary conditions for the existence
of slow heat waves
Numerous experimental data suggest the possibility of SHW
propagation during filtration of a cold reaction mixture
through a preliminarily heated static catalyst bed [50 ± 61,
66, 180]. Under real conditions, the starting reagent is chosen
to be in a nonequilibrium state at low temperature, when no
chemical reaction actually occurs. However, the chemical
transformation rate at nonzero temperatures is higher than
zero, v�T; z� > 0, in agreement with the Arrhenius law. This
leads to the conclusion that neither the strictly stationary
regime of SHW propagation in the catalyst bed nor the
combustion front propagation in a homogeneous medium
[42 ± 45] is feasible. An approximate solution of the SHW
steady propagation problem can be obtained by an artificial
`cut-off ' (nullifying) of the reaction rate at low temperatures,
universally accepted in the combustion theory. It consists of
introducing a certain temperature below which the reaction
rate may be regarded as identically vanishing. This method
has been employed in Refs [62, 63, 65, 66, 68] to study SHWs.
Because the phase portrait of a system (its singular points) is
of special interest, it is appropriate, from the mathematical
standpoint, to extend the temperature range as far as absolute
zero [71]. Such idealization refers only to physical constraints
on the possibility of reaching such low temperature and does
not apply to mathematical simulation. Hence, the question of
whether SHWs exist can be addressed without imposing
additional restrictions on the function v�T; z�. If the input
conditions are chosen asT0 � 0K, the integration constant in
Eqn (22) vanishes �N � 0� and problem (23) ± (26) acquires
the form

dT

dr
� �1ÿ o�Tÿ Tad�1ÿ ao�z ; �41�

dz

dr
� K2�T � ze�T � ÿ z

1ÿ ao
; �42�

r! ÿ1 : T! 0 ; z! 0 ; �43�
r! �1 : T! T1 ; z! ze�T1� : �44�

The problem of steady SHW propagation is reduced to
solving (41) ± (44). As pointed out above, the bounded
solution of the problem, if it exists, converges at r! �1 to
the singular points of the system, i.e., the intersection points
of null isoclines z � ze�T � and the point

z � �1ÿ o�T
�1ÿ ao�Tad

: �45�

The first singular point, defined by the input conditions at
minus infinity, is a complex equilibrium state: the matrix of
the system linearized in its vicinity has zero and positive
eigenvalues. The second singular point, defined by the
conditions at plus infinity, is a saddle at o < 1 (see the
Appendix, Corollary 1.1). This implies that the reaction
mixture is in the thermodynamic equilibrium behind the
wave front at r! �1, while ahead of the front at r! ÿ1,
the temperature must tend to 0 K. Otherwise, the solution
does not satisfy conditions (43), (44). Therefore, the only
solution of the problem in the given case is a saddle separatrix.

Integral energy balance (31) that relates the parameterso and
T1 can be written as

o � T1 ÿ Tadze�T1�
T1 ÿ aTadze�T1� : �46�

For SHWs, the value of o�T1� is initially unknown and
should be sought in the course of solving the problem. The
parameter to be found, o, must be such that the solution of
the set of equations (41), (42) at any r remain in the physical
volume of the phase space. At o! 1, the degree of
transformation z! 0, and Eqn (46) implies the estimate

Tmax � q

R ln
��1ÿ zA; 0�=�zA; 0ke�

� :
Here, the maximum temperature is defined as a thermo-
dynamically equilibrated temperature for the input reagent
concentrations.

By choosing the temperature of the catalyst bed at plus
infinity asT1, it is possible to calculate the equilibrium degree
of transformation ze�T1� and o from relation (46). This, in
turn, makes it possible to numerically construct a separatrix
entering the equilibrium point �T1; ze�T1�� by integrating
system of equations (41), (42) in the direction opposite to that
of the vector field (in `inverse' time). Our calculations were
made at the aforementioned parameters of the model.

A numerical experiment has demonstrated that separa-
trixes of system (41), (42) that arise at sufficiently high
temperatures T1 at plus infinity intersect the axis of
temperatures z � 0 at T > 0 K (Fig. 5, curves 4, 5). That is,
they leave the physical domain of the phase space and fail to
satisfy boundary conditions (43). (Examples of the results of
computations of the respective temperature profiles in the
space ± time variable are given in Fig. 6.) At sufficiently low
values of the temperature T1, the trajectories reach the heat
balance null isocline (45) at nonzero temperatures and
degrees of reagent transformation; they further move in the
vicinity of (45) and reach input values for a finite (albeit rather
large) `time' r0 (curves 1 and 2 in Fig. 5). All these trajectories
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are characterized by a short `time' needed to reach the heat
balance null isocline and a `slow' motion in its neighborhood
towards the point �0; 0�. Hence, there is no heating zone for
the cold front segment in which only the reaction mixture
temperature increases and the degree of reagent transforma-
tion is zero.

We emphasize that at low temperatures, the separatrix
goes very closely together with the heat balance null isocline
but cannot cross it; this inference follows from the analysis of
the vector field of system (41), (42). If a desired degree of
transformation at low temperatures is to be reached, the
contact time must be sufficiently large, the reaction zone
being markedly extended. It may be stated that the part of the
trajectory on which `fast' movement of the image points
occurs should be regarded as an intermediate asymptotic
regime of the solutions [188]. All these trajectories are
mathematically equivalent solutions of the problem but not
all of them are consistent with the physical notion of heat
waves. The one-parameter family of mathematically equiva-
lent solutions of the problem includes a single trajectory at
which the reactant concentrations assume input values at
nonzero temperatures. This trajectory approaches the point
�0; 0� horizontally, along the axis of temperatures (curve 3 in
Fig. 5). As the degree of transformation has attained its input
value, it becomes `frozen' and no longer changes with
decreasing the temperature, which varies in accordance with
the equation dT=dr � �1ÿ o�T (curve 3 in Fig. 6). Char-
acteristic of this trajectory is the fact that the reaction rate can
be nullified at higher temperatures than the input tempera-
ture, with the solution being independent of the so-called
temperature `cut-off' [62, 63, 65, 66, 68]. This trajectory is an
FHW image. We note that this is possible when o < 1, the
value ofo being the maximum one among all mathematically
equivalent solutions.

Interestingly, relation (46), which expresses energy bal-
ance in SHWs, does not contain the rate constant of the
chemical reaction. It proves possible to change the system's
phase trajectory by varying k0 such that it corresponds to the
physically meaningful solution with a temperature
T1 < Tmax chosen in advance and, moreover, such that it
propagates with a predetermined velocity. Hence, for a simple
kinetic model, k0 can be deduced from the experimentally
found values of T1 and o. When T1 equals the temperature

of the adiabatic heating of the reaction mixture Tad, it is
natural to expect that o � 0. Indeed, it follows from (46) that
the solution of problem (41) ± (44) has the form of a standing
heat wave. Furthermore, Eqn (46) gives o < 0 for T1 < Tad,
and the solution of the problem is an SHW propagating
counter to the filtered gas flow. ForT1 > Tad, Eqn (46) yields
0 < o < 1 and the SHW has the same direction as gas
filtration.

Examples of the corresponding phase trajectories and
temperature profiles along a catalyst bed are presented in
Figs 7 and 8. As is clear from Fig. 8, SHWs running against
the gas flow have larger temperature gradients over the front
than those traveling in the direction of gas filtration.

If the temperature of the reaction mixture at the entry to a
catalyst bed is T0 > 0, the rate of the chemical reaction
v�T0; z� > 0. Then, if the reaction rate under the input
conditions remains nonzero, the point at r! ÿ1 is not
stationary and, strictly speaking, the problem is ill-posed.
However, it would be wrong to conclude that SHW propaga-
tion at a low (but nonzero) input temperature is physically
impossible. AtT0 > 0K, it is worth passing to the dimension-
less temperature y, i.e., to problem (33) ± (36), in order to
numerically investigate phase trajectories of system (33), (34)
by `inverse time' integration, without resorting to the artificial
`cut-off ' of the reaction rate at low temperatures. Our
calculations were made at the parameters of the model
described above for a sufficiently broad range of catalyst
bed temperatures at r! �1. It should be recalled that the
SHW propagation velocity o < 1 is related to the maximum
temperature y1 by energy balance equation (39).

In the theory of dynamic systems [116, 117], part of a
complete trajectory containing one of the singular points is
referred to as a semitrajectory. Figure 9 gives examples of
semitrajectories of system (33), (34) on the phase plane �y; z�.
The phase portrait of the system is similar to that atT0 � 0K.
Some of the semitrajectories leave the physical domain of the
phase space, crossing the axis of temperatures at y > 0
�T0 � 300 K�. Others approach the heat balance null isocline
(37) as r decreases, then pass close to it and enter the region
with z < 0 near the point �0; 0�. These semitrajectories have
long segments with small temperature and concentration
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Figure 6. Temperature profiles along the catalyst bed (curve numbers

correspond to the numbers of trajectories shown in Fig. 5).

1.0

z

0.5

0 500 1000 T, K

1

2

3

4

5

Figure 7. SHW trajectories on the phase plane for different values of the

reaction rate constant k0: 0:5862� 1011 sÿ1 (curve 1), 0:42645� 1010 sÿ1

(curve 2), 0:369� 109 sÿ1 (curve 3), 4 Ð thermodynamic equilibrium

curve, 5Ð heat balance null isocline for trajectory (2).
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gradients over r, which are not observed in experiment. From
the continuum of semitrajectories, we can choose a single one
passing near the origin such that the corresponding reactant
concentrations reach the input values at higher temperatures
than at the entry to the catalyst bed (curve 2 in Fig. 9). This
semitrajectory is consistent with the artificial `cut-off ' of the
reaction rate at low temperatures and is an image of SHWs.

We emphasize that motions of the image point along the
heat balance isocline are impossible at zero reaction rate; it
canmove only parallel to the axis of temperatures, concentra-
tions of the reactants remaining unaltered. The dimensionless
SHW rate o � 0:538 shown by curve 2 in Fig. 9 corresponds
to Vf � 0:768� 10ÿ3 m sÿ1. The rate of gas filtration
u � 1 m sÿ1 is approximately three orders of magnitude
greater than that of SHW propagation. Such a large
difference between the rates is attributable to the difference
between volume heat capacities of the solid and gaseous
phases. The flow of gas being filtered brings fresh material
into the reaction zone, and the temperature behind the wave
front is much higher than that of the adiabatic heating of the
reaction mixture. The fresh gas flow `washes out' possible
changes in the reactant concentrations due to chemical
reactions proceeding at low temperatures ahead of the wave
front.

The SHW propagation velocity is one of the principal
parameters of technological interest. It is worth noting that
analytical estimation of the SHW propagation velocity for
reversible reactions poses some difficulty because the reactant
concentrations depend on the maximum temperature. We
therefore undertook a numerical study on the effect of model
parameters on the SHW propagation velocity. Figure 10
shows extremal Vf�u� dependences for different input
temperatures and equilibrium constants of the reaction. It
can be seen that low gas filtration rates are associated with the
on-coming motion of heat waves. There is only one value of
the gas filtration rate at which the standing SHW regime is
realized. Further increase in the gas filtration rate is
accompanied by a roughly proportional rise in the SHW
propagation velocity. Taken together, the elevation of
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temperature at the entry to the catalyst bed and the
enhancement of the reaction equilibrium constant lead to
the broadening of the range of the gas filtration rates at which
the regime of on-coming heat wave motion is realized.
Generally speaking, the velocity Vf falls with a rise in the
above parameters.

We now turn to qualitative differences between FHWs
and SHWs. The existence of FHWs is immediately apparent
from the analysis of the model under consideration and
requires no additional assumptions. In contrast, the exis-
tence of SHWs is proved only if the reaction rate cut-off at low
temperatures is introduced. For FHWs (unlike SHWs), the
asymptotic temperature value at r! �1 is equal to the
initial one in the catalyst bed, the value ofo is found from the
`external' laws of mass and energy conservation using
Eqn (39), and the front shape `adapts itself' to these laws.
An FHW is a wave of either heating or cooling. In SHWs, the
catalyst bed is always cooled by the convective gas flow, and
the heat released during the exothermal reaction interferes
with cooling. When the front temperature in an FHW
increases, cooling of the catalyst bed by the convective gas
flow is always accompanied by heat absorption necessary to
maintain the endothermal reaction. This characteristic
difference accounts for the existence of a barrier that
separates the FHW and SHW propagation velocities, o > 1
for FHWs and o < 1 for SHWs.

We conclude this section with the following summary.
We have investigated the behavior of phase trajectories of

a quasi-homogeneous AWP model in a static catalyst bed
without introducing any additional assumptions. The exis-
tence of space ± time structures (traveling waves) is mathema-
tically substantiated by the presence of special trajectories in
the automodel system that connect stationary (singular)
points. It has been shown that a reversible reaction in the
catalyst bed gives rise to an FHW, besides an SHW, that has
the same direction as the gas flow. Categorization of
autowaves into FHWs and SHWs is needed because their
characteristics are qualitatively different. In the first place,
this is true of the autowave propagation velocity. The role of
the separating `barrier' is played by the velocity of a heat label
in the catalyst bed in the absence of chemical transformation.
This velocity is given by the gas filtration rate times the ratio
of gas to catalyst specific heat capacities. The phenomenon of
FHW propagation affords an example of the appearance of a
space ± time dissipative structure not only far from the
system's thermodynamic equilibrium but also close to it.

The SHW propagation problem is proved to have a one-
parameter family of separatrix trajectories from which the
sole physically meaningful solution must be chosen. Major
principles of SHW propagation have been analyzed.

It should be noted that the quasi-homogeneousmodel of a
static catalyst bed is identical to the mathematical description
of processes of homogeneous filtering combustion in which
the heat exchange between phases is sufficiently intense and
differences between gaseous and solid phase temperatures can
be a priori neglected. In this case, all the above results remain
valid for a reversible homogeneous reaction proceeding in an
inert granular layer.

In technological processes involving periodically
reversed gas flows, the high-temperature reaction zone
moves with the flow towards the cooled portion of the
catalyst bed. In the case of reversible reactions, a transition
occurs from high equilibrium temperatures in the central
part of the catalyst bed to lower temperatures at the outlet

[66, 180]. This part of the catalyst bed is the site of FHW
formation that may be incomplete for the time spent
between switching from one regime to the other and back.
The process repeats after each change in the gas flow
direction. Concentration of the reaction product increases
along the length of the catalyst bed with the downward
temperature profile. An additional amount of the product
thus formed depends on both the temperature profile and
the front propagation velocity. This implies that the know-
ledge of major FHW characteristics may be of great help in
the search for optimal technological conditions of reversible
reactions involving the reverse gas flow regime (flow rate,
input temperature, concentration of the reagents, thermo-
physical properties of the catalyst bed, etc.).

3. Nonequilibrium thermodynamics
of autowave processes

3.1 Basic equations
Current developments in nonequilibrium thermodynamics
are inseparable from the construction of the theory of
nonlinear processes in strongly nonequilibrium systems.
Nonequilibrium thermodynamics arose as a result of the
extension of classical thermodynamics to embrace minor
deviations of a system from equilibrium. Linear thermo-
dynamics of irreversible processes was pioneered by
L Onsager [133].

We briefly recall several postulates of nonequilibrium
thermodynamics. In equilibrium systems, thermodynamic
forces Xi and flows Ji vanish. In the linear regime, the
system's behavior in time is described in the most general
case by linear phenomenological equations [113, 134, 138,
140, 189, 190]

Ji � dai
dt
�
X
k

Li kXk ; �47�

where Lik denotes phenomenological, or kinetic, coefficients
and ai are the internal parameters (state variables) that for
open systems depend not only on internal microscopic
quantities but also on external influences.

State variables may be either even or odd functions of
particle velocities. We are interested only in the case where
state variables are even functions of particle velocities;
therefore, we do not need the general form of the Onsager ±
Casimir relations [189, 191] that includes both cases.

The matrix L is positive definite; its diagonal elements Li i

determine `direct' transfer phenomena and nondiagonal ones,
Lik, satisfying Onsager's reciprocal relations �Lik � Lki�,
define `reciprocal' (or `conjugate') processes. In isotropic
systems, only the relations between fluxes and forces of the
same tensor dimension are retained in agreement with the
Curie principle of conservation of symmetry between action
and reaction.

In the first approximation, the expressions for the entropy
deviation DS from equilibrium is written as a quadratic form
in state variables [134, 138, 189],

DS � ÿ 1

2

X
i

X
k

gi kaiak ; �48�

where gi k are the second derivatives of DS in the variables ai
(this is a positive definite matrix).
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We note that Onsager's reciprocal relations hold if
thermodynamic forces are defined by the expression

Xi � qDS
qai
� ÿ

X
k

gi kak : �49�

The entropy increase DS can be used as the Lyapunov
function having properties of a potential [113, 114, 119 ± 121,
130]. Its total time derivative can be written as

dDS
dt
� ÿ

X
i

X
k

gi kak
dai
dt
�
X
i

JiXi : �50�

Elementary changes in entropy in the general form are
described by the equation

dS � drS� diS ; �51�

formulated by Clausius. The total change of entropy in the
system dS is the sum of the external (or reversible) change
drS � drQ=T associated with the reversible heat exchange
drQ between the system and the environment at the absolute
temperature T and of a positive change in entropy diS5 0
due to irreversible processes inside the system. These relations
reflect the Carnot ±Clausius theorem, i.e., the second law of
thermodynamics, in the general form.

In the thermodynamics of continuum, general relation
(51) must be formulated in a local form. This requires
assuming the hypothesis of local equilibrium in continuum
systems [113, 134, 138, 140, 189]. This hypothesis allows us to
apply parameters of thermostatic equilibrium and their
interrelations to nonequilibrium systems. It is supposed that
the Gibbs relation is applicable to the unit mass of any
elementary region of the continuum [113, 134, 138, 140, 189],

T ds � dhÿ 1

r
dpÿ

Xn
k� 1

mkMk dyk ; �52�

which unifies the first and the second principles of thermo-
dynamics for equilibrium systems in their standard form.
Here, s is the unit mass entropy, r is the total density, p is the
pressure, h is the unit mass enthalpy, mk is the chemical
potential of the kth component per mole, and yk is the mass
concentration of the kth component. Then, the total entropy
of the system is described by the expression

S �
�
V

rs dV : �53�

Under conditions of local equilibrium at an arbitrary
internal point of the continuum, the second law of thermo-
dynamics is described by the local balance equation [113, 134,
138, 140, 189)

qrs
qt
� ÿdiv JS;S � s �54�

or the substantial balance equation

r
ds

dt
� ÿdiv JS � s : �55�

Here, JS;S is the local density of the entropy flow, JS is the
substantial density of the entropy flow, and

s �
X
i

JiXi

is the entropy source intensity, or local entropy production.

The total entropy production in the system, P, is

P � diS

dt
�
�
V

s dV5 0 : �56�

3.2 Entropy balance equation
and entropy production in a catalyst bed
The entropy balance equation plays the central role in
nonequilibrium thermodynamics. The concrete form of this
equation is found by substituting the enthalpy (internal
energy) balance equation into the Gibbs equation and
simultaneously eliminating the derivatives of component
concentrations with the help of the component balance
equation [113, 134, 138, 140, 189].

In the system of coordinates associated with a traveling
front, enthalpy balance (4) for steady-state solutions acquires
the form

d

dx
�rguhg ÿ egVf rghg ÿ ecVf rchc� � ÿ

dJq
dx

: �57�

Substituting (57) in Gibbs equation (52) and eliminating
the derivatives of component concentrations with the help of
Eqn (14), we obtain the entropy balance equation

rgucp
l

d

dr

�
�1ÿ ao� rgusgÿ

o
g
uecrcsc

�
� Av

T
ÿ rgucp

l
1

T

dJq
dr

;

�58�

where sg � �rAsA � rBsB�=rg and sc are the gas and catalyst
entropies per unit mass, respectively, and

A � ÿ
X
k

wkmk � RT ln
Kp�T �C
1ÿ C

is the chemical affinity of the reaction. (The affinity A is
always constant for a given state regardless of the nature of
the transformation that takes place in the system.)

Equation (58) is at variance with the equation for
substantial balance of entropy of type (55). But if the known
relation [113, 134, 138, 140, 189]

1

T
H � Jq � H � Jq

T
ÿ Jq � H 1

T

is used, Eqn (58) can be written as

rgucp
l

d

dr

�
�1ÿ ao� rgusg ÿ

o
g
uecrcsc ÿ

rgucp
T

dT

dr

�
� Av

T
� �rgucp�

2

lT 2

�
dT

dr

�2

: �59�

The right-hand side of Eqn (59) describes local entropy
production in the system,

s � sch � sq � Av

T
� �rgucp�

2

lT 2

�
dT

dr

�2

5 0 ; �60�

which consists of two components: sch is the local entropy
production resulting from chemical reaction and sq is the
local entropy production due to heat transfer.

For chemical reactions, linear relations of nonequilibrium
thermodynamics hold near equilibrium when the condition
A5RT is satisfied. This does not mean, however, that
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nonequilibrium thermodynamics is unfit for describing
chemical reactions [114]. Analysis based on the kinetic theory
of gases indicates that the expression sch � Av=T is valid for
those reactions for which the law of mass action is fulfilled
even if condition A5RT is not satisfied [189, 192]. In this
case, sch is also a positive definite function. This follows from
the definition of the chemical affinity of a reaction in which
Av > 0 when the system evolves towards the global minimum
(equilibrium).

For heat conduction described by the linear Fourier law,
things are quite clear over the entire range of temperature
variations. As is known, sq is a positive definite quadratic
form in thermodynamic forces [113, 134, 138, 140, 189],

sq � JqXq � LqqX
2
q �
�rgucp�2
lT 2

�
dT

dr

�2

� �rgucp�
2

l
T 2

�
d�1=T �

dr

�2

5 0 ;

where

Jq � ÿrgucp
dT

dr
� rgucpT

2 d�1=T �
dr

is the heat flow,

Xq � ÿ
rgucp
lT 2

dT

dr
� rgucp

l
d�1=T �

dr

is the thermodynamic force, and Lqq is a phenomenological
coefficient.

It is also known that thermodynamic flows and forces of
various tensor ranks cannot be interrelated, in agreement
with Curie's principle of symmetry [113, 134, 138, 140, 189].
Therefore, Onsager's reciprocal relations play no important
role in the case under consideration. It should be noted that
Eqns (18), (57), and (59) are essentially equivalent, but the
local entropy production (60) entering Eqn (59) contains
qualitatively new information �s5 0�.

For a one-dimensional problem, the total entropy
production in the system described by expression (56) is the
integral over the space ± time variable,

P �
� �1
ÿ1

s d` � l
rgucp

� �1
ÿ1

s dr : �61�

We now show that the total entropy production for all
autowave solutions is a positive definite bounded function.

As shown above, autowave solutions in the case of FHW
propagation correspond to a separatrix on the phase plane,
connecting a saddle point with a stable node. All singular
points (intersection points of null isoclines) are equilibrium
points of the system. We note that null isocline (46) satisfies
thermal equilibrium conditions of the system when there is no
temperature gradient, i.e., Jq � 0 and Xq � 0 at the points of
the null isocline. In other words, thermodynamic flows and
forces vanish at the singular points (v � 0, A � 0, Jq � 0,
Xq � 0). Then, it follows from Eqn (60) that in FHWs, s! 0
as r! �1.

In the case of SHW propagation, the separatrix enters a
saddle singular point determined by the conditions at
r! �1. In this case, thermodynamic flows and forces also
vanish and s! 0. The second singular point determined by
the conditions at r! ÿ1 is a point of a complex equilibrium
state (intersection point of null isocline (46) and null isocline

T � 0 K). But the boundary condition T! 0 K, Eqn (43),
does not mean that the separatrix is connected with a singular
point inside the physical domain of the phase space. We recall
that condition (43) has been obtained from condition (20)
that split into two: T! 0 K and the conductive heat flow
tending to zero �Jq ! 0�. Hence, in accordance with (20), the
separatrix at r! ÿ1 must be connected with a singular
point at which Jq � 0 and Xq � 0. The local entropy
production due to chemical reaction also tends to zero
�sch ! 0� at T! 0 K as is easy to show by substituting (3)
in (60) and finding the corresponding limit:

lim
T! 0

Av

T
� lim

T! 0
R ln

�
ke exp

�
q

RT

�
C

1ÿ C

�

� k0C0 exp

�
ÿ E

RT

�
C

�
1ÿ 1ÿ C

Cke exp
ÿ
q=�RT��

�
� 0 :

Thus, the local entropy production for autowave solu-
tions of the problem is a positive definite bounded function of
T and z that tends to zero as r! �1. Because the autowave
solutions for the problem are smooth bounded functions, the
total entropy production in the system P is also a positive
definite bounded function.

Equation (59) in dimensionless variables (17) and (32)
takes the form

rgucp
l

d

dr

�
�1ÿ ao� rgusg ÿ

o
g
uec rcsc ÿ

rgucpb
1� by

dy
dr

�
� s :

�62�

With (33), the expression for the local entropy production
(60) can be represented as

s � �rgucp�
2

l

"
K�y�ÿze�y� ÿ z

�RC0

rgcp
ln

Kp�y��zA; 0 ÿ z�
1ÿ zA; 0 � z

�
�
b
�1ÿ o�yÿ �1ÿ ao�Qz

1� by

�2
#
: �63�

Substitution of (63) in Eqn (61) yields

P � rgucp

� �1
ÿ1

"
K�y�ÿze�y� ÿ z

�RC0

rgcp
ln

Kp�y��zA; 0 ÿ z�
1ÿ zA; 0 � z

�
�
b
�1ÿ o�yÿ �1ÿ ao�Qz

1� by

�2
#
dr : �64�

Substituting (62) in (61), we obtain

P �
��1
ÿ1

s
l

rgucp
dr � �1ÿ ao� rgusg

����1
ÿ1

ÿ o
g
uec rcsc

����1
ÿ1
ÿ rgucpb

1� by
dy
dr

�����1
ÿ1

: �65�

It follows from the boundary conditions at r! �1 that
the flow of entropy due to heat conduction [the last term on
the right-hand side of Eqn (65)] vanishes. Because the specific
entropy s is a function of the parameters of state T; p; zA; 0,
and z alone, it follows from (65) that

P � �1ÿ ao� rguDsg ÿ
o
g
uec rc Dsc ; �66�
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where Dsc � cc ln �1� by1� is the increase in specific entropy
of the catalyst,

Dsg � DS 0
TDzC0

rg
ÿ RC0

rg

��1ÿ zA; 0� ln �1ÿ zA; 0�

� zA; 0 ln zA; 0 ÿ z1 ln z1

ÿ �1ÿ z1� ln �1ÿ z1�
�� cp ln �1� by1�

is the increase in specific entropy of the reaction mixture,
z1 � ze�y1�, and Dz � z1 ÿ zA; 0.

Hence, the important conclusion is that the total entropy
production P can be calculated using analytical formula (66)
or integrating along the numerically computed separatrix
trajectory according to Eqn (64).

3.3 Total entropy production in fast heat waves
The phenomenon of FHW propagation in a static catalyst
bed is described by system of equations (33), (34) with
boundary conditions (35), (36). Examples of computation of
FHW characteristics are given in Figs 3 and 4. The
temperature dependence of the total entropy production in
FHW on plus infinity P�y1� for two values of the input
temperature T0 shown in Fig. 3 was calculated using Eqn (66)
with (39) taken into account (Fig. 11).

If the point �0; 0� is the inflection point I, the autowave
solution of problem (33) ± (36) exists at any y1, witho having
the highest possible value omax.

Conversely, if the point �0; 0� is not the inflection point I,
there is a range of `forbidden' temperatures 04y14ycr
(213:14y14 593:7 �Ê for curve 2 in Fig. 11) in which
problem (33) ± (36) has no solution but o�y1� can still be
found from (39) and P�y1� from (66). In this case, two other
particular points besides point �0; 0� exist. The point closest to
�0; 0� is then a saddle and o calculated from (39) then
corresponds to FHWs in which the transition might be
possible from this point of thermodynamic equilibrium to
the conditions corresponding to the origin of coordinates.
Invariance in the computation of o follows from the

invariance of the mass and energy conservation laws.
Computation of P�y1� using Eqn (66) for the `forbidden'
temperature range y1 yields negative entropy production
[which has no physical meaning and cannot be found from
(64)]. It thus substantiates the existence of this interval by the
methods of nonequilibrium thermodynamics. As y1
approaches 0 or ycr, the total entropy production in the
system decreases due to physico-chemical processes in the
immediate proximity to both the thermodynamic equilibrium
curve and the heat balance null isocline.

3.4 The principle of minimum total entropy production
in SHWs. Variational formulation of the problem
In the propagation of SHWs, in contrast to FHWs, the
temperature y1 is unknown a priori. The autowave solution
of problem (33) ± (36) is defined by a value o < 1 for which
the separatrix entering the singular point �y1; ze�y1�� passes
through the origin (strictly speaking, near the origin). For
semitrajectories (in the range r0 4 r < �1; 04y < y1), the
values of s and P are found from Eqns (63), (64), and (66).
The calculated profiles of the dimensionless temperature and
distribution functions s in the space ± time variable are
presented in Fig. 12. At low temperatures y1, the semitrajec-
tories pass near the origin, and the boundary condition at
r! ÿ1 is only approximately satisfied. A further rise in the
temperature results in the semitrajectories passing far from
the origin.

The distribution functions of s, sq, and sch in r have a
well-pronounced peak for all trajectories (Fig. 13). As y1
decreases, the trajectories shift to a lower temperature range,
while the s, sq, and sch values (including maximum ones)
also become smaller at each r. At the same time, numerical
simulation has demonstrated that the total entropy produc-
tion in the system calculated from Eqn (64) for the ranges
�r0; r! �1� or �r! ÿ1; r! �1� under the condition
K�y� � 0 at y4ey is a functional of the autowave solution.
Figure 14 illustrates the extremal character of the depen-
dence P�y1�. The minimum of P corresponds to a single
trajectory for which reactant concentrations practically
reach the input values �z � 0� at higher temperatures
�y > 0� than the temperature at the entry to the catalyst
bed (curve 2 in Fig. 14 corresponds to curves 2 in Fig. 9 and

40

P
,W

m
ÿ2

K
ÿ1

30

20

10

0

ÿ10

ÿ6 ÿ4 ÿ2 0 2 4 6ycr y1

2

1

1

2

Figure 11. The total entropy production in FHW versus the dimensionless

temperature at plus infinity (curves 1 and 2 correspond to the conditions in

Fig. 3).

60

y

30

0

ÿ30
0 10 20 30 r

1

1 0

2

2 0

3

3 0

800

s,
k
W

m
ÿ3

K
ÿ1

600

400

200

0

Figure 12. Profiles of the dimensionless temperature and distribution

functions of local entropy production in a space ± time variable for

different trajectories of system (33), (34) (numbers of curves correspond

to the numbers of trajectories shown in Fig. 9).

1006 A P Gerasev Physics ±Uspekhi 47 (10)



Fig. 12). We note that in the numerical search for minimal P,
the temperature near the extremum was varied to within
0.001 K.

The cause of nonmonotonic dependence of the functional
P�y1� can be elucidated by differential analysis of distribu-
tion functions in r of the local entropy production due to the
chemical reaction and heat conduction. With increasing the
temperature y1 at plus infinity, the trajectories of system
(33), (34) pass into a higher temperature region (see Fig. 9),
and the local entropy production in the domain of intense
processes grows by virtue of both chemical reaction and heat
conduction (see Fig. 12). Therefore, the functional P also
increases. Figure 12 shows that the temperature gradient
decreases upon lowering the temperature along the space ±
time coordinate r; this results in a significantly smaller sq

(curve 2). At the same time, sch depends only on the local
reactant concentrations and temperatures but not on their
gradients. When trajectories of the solutions reach the heat
balance null isocline at z > 0 (curves 1 in Figs 9 and 12), the
`time' r0 needed to achieve the input concentrations and
temperatures substantially increases (the reaction domain
broadens). For this reason, the total entropy production P in
the system also increases as an integral quantity. The
intersection point of the dependences P�y1� of different
characters defines the functional minimum and corresponds
to the physically meaningful solution of the problem, i.e.,
SHWs.

Interestingly, those trajectories of solutions of system
(33), (34) that leave the physical domain of the phase space
and do not satisfy the boundary conditions or those that
approach the heat balance null isocline at z > 0 (curves 1 and
3 in Figs 9 and 12) are not devoid of physical interpretation.
Each of them may represent a physically meaningful solution
of the problem with different boundary values correspond-
ing to a point on the heat balance null isocline approximated
by a phase trajectory of system (33), (34) moving horizon-
tally.

The total entropy production P�y1� can be calculated in
accordance with (66) in a wide range of the temperatures y1.
However, such a calculation makes sense only for semitrajec-
tories passing close to the origin, i.e., in a certain temperature
range that is, generally speaking, unknown in advance.
Formula (66) describes the left branch of dependence 2
alone (curve 1 in Fig. 15). It follows from Fig. 15 that this
dependence is nonlinear and the function P�y1� decreases
smoothly with increasing temperature. Figure 15 also illus-
trates the calculation of o�y1� using formula (39) and shows
that a physically meaningful solution of the problem has the
largest front propagation velocity among all mathematically
equivalent autowave solutions.

Curiously enough, solutions with minimal wave velocity
are stable in the Kolmogorov ± Petrovski|̄ ± Piskunov theory
of the spread of epidemics and `genes' [1, 2, 32] and in the
theory of laminar flame propagation [174 ± 176].
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The results obtained allow the variational problem for
SHW calculation to be formulated as follows:

dy
dr
� �1ÿ o�yÿ �1ÿ ao�Qz ;

dz

dr
� K�y�ÿze�y� ÿ z

�
1ÿ ao

;

P � rgucp

� �1
ÿ1

"
K�y�ÿze�y� ÿ z

�RC0

rgcp
ln

Kp�y��zA; 0 ÿ z�
1ÿ zA; 0 � z

�
�
b
�1ÿ o�yÿ �1ÿ ao�Qz

1� by

�2
#
dr! min ;

r! ÿ1 : y! 0 ; z! 0 ;

r! �1 : y! y1 ; z! ze�y1� :

It has a solution under additional, easily programmed
conditions, that is, when the reaction rate constant vanishes
in the small vicinity of the input temperature, K�y� � 0 at
y4ey, and trajectories that leave the physical domain of the
phase space �z < 0� at y > ey are disregarded.

As the temperature at the input of the catalyst bed rises
from T0 � 300 K to T0 � 400 K, the maximum temperature
in SHWs decreases along with a decrease in the total entropy
production in the system �P� and front propagation velocity
(see Fig. 14). The on-coming motion of an SHW can be
observed at low linear velocities of the gas (see Fig. 10) [58,
71]. By way of example, if the linear gas velocity is
u � 0:3 m sÿ1, the SHW propagates counter to the gas flow
with the velocity o1 � ÿ0:266 (Vf; 1 � ÿ0:114 mm sÿ1); if the
gas flows with the velocity u � 1m sÿ1, the SHW travels in the
direction of gas filtration with the velocity o2 � 0:4338
(Vf; 2 � 0:619 mm sÿ1) (Fig. 16). Autowaves propagating
with and against the gas flow are characteristically different
in several respects. The on-coming motion of autowaves is
associated with steeper temperature and concentration
gradients in the wave front, maximum temperatures below
the temperature of adiabatic heating of the reaction mixture,
and larger degrees of the initial reagent transformation (heat
released in the course of the chemical reaction is utilized to
warm up a cold portion of the catalyst bed). Also, local and

total entropy production in the system decreases (see Figs 14
and 16). We note that an enhancement of the degree of
reagent transformation is accompanied by a decrease in the
overall productivity of the process caused by the lowered gas
filtration rate (smaller amount of material available for the
reaction).

The main conclusions at the end of this section can be
formulated as follows.

We have constructed the entropy balance equation in the
approximation of the quasi-homogeneous model for a static
catalyst bed involved in a reversible chemical reaction
proceeding by the simplest mechanism. Distribution func-
tions of local entropy production in the space ± time variable
have been analyzed and mechanisms of the total entropy
production in FHWs and SHWs investigated. It is shown that
for mathematically equivalent solutions of the SHW propa-
gation problem, the total entropy production in the system is
a functional with extremal properties. The functional mini-
mum corresponds to the sole physically plausible solution of
the problem, i.e., an SHW propagating with the maximum
possible velocity. The Arrhenius (nonlinear) law of the
chemical reaction rate imposes no constraints on the
principle of minimum total entropy production in a broad
temperature range.

4. Nonequilibrium thermodynamics
of sulfur dioxide oxidation autowaves

4.1 Mathematical formulation of the problem
A quasi-homogeneous model of nonstationary processes in a
reactor with a static catalyst bed for sulfur dioxide oxidation
SO2 � 0:5O2 � SO3 in the presence of an inert gas is given
by [175]

�eg rgcp � ec rccc�
qT
qt
� l

q2T
q` 2
ÿ rgucp

qT
q`
� q

MS
v�T; pi� ;

�67�
eg rg

qyi
qt
� ÿrgu

qyi
q`
ÿ wi

Mi

MS
v�T; pi� ; i � 1; . . . ; 4 ; �68�

p � rgRT
X4
i� 1

yi
Mi

�69�

with the boundary conditions

` � ÿL
2

: l
qT
q`
� rgucp�Tÿ T0� ; yi � yi; 0 ; i � 1; . . . ; 4 ;

�70�
` � �L

2
: l

qT
q`
� 0 ; �71�

and the initial conditions

t � 0 : T�0; `� � Tn ; yi�0; `� � yi; n ; i � 1; . . . ; 4 :

Here, u �Pi ri ui=rg is the mass-averaged velocity of the flux
of reactants per total cross section of the catalyst bed; yS and
yi � ri=rg are mass fractions of sulfur dioxide and the ith
component; q is the heating effect of the reaction per mole
SO2; MS and Mi are the molecular weights of sulfur dioxide
and the ith component, respectively; p and pi are the total and
partial pressure of the ith component of the reaction mixture;
v is the sulfur dioxide oxidation rate expressed in mass units;

2
1

2 0

1 0

400

s,
s c

h
,s

q
,k

W
m
ÿ3

K
ÿ1

300

200

100

0

30

20

10

0

y

5 10 15 20
r

Figure 16. Profiles of the dimensionless temperature and distribution

functions s (solid lines), sq (dashed lines), and sch (dotted lines) in the

space ± time variable of SHWs at T0 � 400 K: curve 1 Ð u � 0:3 m sÿ1,
y1 � 26:73 �o1 � ÿ0:266�; curve 2 Ð u � 1 m sÿ1, y2 � 31:21
�o2 � 0:4338�.

1008 A P Gerasev Physics ±Uspekhi 47 (10)



andXn
i� 1

wiMi � 0 :

The model assumes that the reaction mixture satisfies the
ideal gas law. A gas flow with a negligibly small pressure
gradient is then considered. Writing the mass and energy
balance equations in terms of component mass densities
rather than molar concentrations makes it easy to take into
account possible changes in the gas flow rate upon variations
of the number of moles in the course of the reaction.

The rate of sulfur dioxide oxidation (under the assump-
tion that it is a missing component) is described by the
Boreskov ± Ivanov equation [193]

v�T; x� � k0 exp

�
ÿ E

RT

�
1ÿ x

1ÿ 0:2x

�
�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

�1ÿ x�Kp�T �
�2
#
; �72�

where

x � paÿ pS
paÿ 0:5apS

is the degree of sulfur dioxide transformation, a and b are the
respective mole fractions of sulfur dioxide and oxygen in the
reaction mixture, and pS is the partial pressure of sulfur
dioxide.

We note that empirical equation (72) is an approximate
one and at variance with current views of the reaction
mechanism that accounts for the process of slow crystal-
lization of vanadium from a melt of the active component
[194]. The possibility of using this equation to calculate
steady-state regimes of reactors under atmospheric pressure
has been confirmed by experience with its practical applica-
tion for many years now. Experimentally found parameters
of reactor performance with a periodically reversed gas flow
were compared with calculations based on Eqn (72) and a
kinetic equation taking crystallization of the active compo-
nent into account [194]. The results showed that Eqn (72)
can be used to evaluate characteristics of the reverse
process.

Summation of Eqns (68) over i from 1 to 4 leads to
continuity equation (2). If the solution of the `traveling
wave' type exists, it must satisfy a stationary problem in the
system of coordinates moving with the front. Bearing in mind
that the degree of dioxide transformation is easily found via
mass fractions, x � �yS; 0 ÿ yS�=yS; 0, problem (67) ± (71), with
(72), takes the form

dy
dr
� �1ÿ o�yÿ �1ÿ ao�QSx ; �73�

dx

dr
� K�y��1ÿ x�
�1ÿ ao��1ÿ 0:2x�

�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

Kp�y��1ÿ x�
�2
#
;

�74�
r! ÿ1 : y! 0 ; x! 0 ; �75�

r! �1 : y! y1 ; x! xe�y1� : �76�

Here,

K�y� � k0l

cp yS; 0�rgu�2
exp

�
ÿ 1

b

�
exp

�
y

1� by

�
;

QS � qyS; 0
MScpbT0

;

and xe�y� is the equilibrium degree of transformation
corresponding to the dimensionless temperature y.

As pointed out above, the continuity equation in amoving
frame of coordinates yields rg�uÿ egVf� � const. Hence,
there is reason to consider rg and u as given under the input
conditions.

We recall that if the reagent concentrations at the input of
the catalyst bed do not satisfy the conditions of a thermo-
dynamically equilibrated reaction, only SHWs can propagate
in the catalyst bed. In other words, problem (73) ± (76) has
solutions only at o < 1. In this problem, neither the SHW
propagation velocity nor the temperature at plus infinity is
known. For the trajectory to come to the stationary point at
r! �1 in accordance with condition (76), the parameters o
and y1 must be related by the integral energy balance
equation

o � y1 ÿQSxe�y1�
y1 ÿ aQSxe�y1� : �77�

Therefore, problem (73) ± (76) contains only one para-
meter, either o or y1; that is, it can have a one-parameter
family of solutions satisfying the boundary conditions.

Autowave solutions of the system of two ordinary
differential equations (73), (74) correspond on the phase
plane �y; x� to a trajectory connecting two singular (sta-
tionary) points. One of them, defined by the conditions at
r! ÿ1, is located at the intersection of the null isocline of
Eqn (74), T � 0 K, with the null isocline of Eqn (73),
x � �1ÿ o�y=��1ÿ ao�QS� (heat balance null isocline). This
singular point is a complex equilibrium state; thematrix of the
system linearized in its vicinity has zero and positive
eigenvalues. The second singular point defined by the
conditions at r! �1 is a saddle; it is actually the intersec-
tion point of the null isocline of Eqn (73) and the null isocline
x � xe�y�, i.e., the thermodynamic equilibrium curve. This
implies that the only solution of the problem in this case is the
saddle separatrix.

4.2 Local entropy production in an autowave
Heat balance equation (67), frequently obtained by indepen-
dent considerations, is the equivalent to enthalpy balance
equation (4). For autowave solutions of the problem in a
system of coordinates associated with the propagating front,
the enthalpy balance is described by ordinary differential
equation (57). By substituting (57) in Gibbs equation (52)
and eliminating the derivatives of component concentrations
with the help of Eqn (74), we obtain the entropy balance
equation

rgcpu
l

d

dr

�
�1ÿ ao� rgusg ÿ

o
g
uec rcsc � rgucpT

d�1=T �
dr

�

� Av�T; x�
TMS

� �rgucp�
2

l
T 2

�
d�1=T �

dr

�2

; �78�
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where

A � RT ln

�
Kp�T ��1ÿ x�ÿp�bÿ 0:5ax��1=2

x�1ÿ 0:5ax�1=2
�

is the chemical affinity of the sulfur dioxide oxidation
reaction.

The right-hand side of Eqn (78) is the local entropy
production in the system, constituted by two terms:

s � Av�T; x�
TMS

� �rgucp�
2

l
T 2

�
d�1=T �

dr

�2

� sch � sq 5 0 :

�79�
The first one �sch� accounts for the local entropy production
resulting from chemical reaction and the second �sq� for the
local entropy production due to heat conduction. In agree-
ment with the second law of thermodynamics, sch and sq must
be positive definite quantities. With (73), expression (79)
acquires the form

s � �rgucp�
2

l

(
R

MScp
ln

�
Kp�y��1ÿ x�ÿp�bÿ 0:5ax��1=2

x�1ÿ 0:5ax�1=2
�

� K�y� 1ÿ x

1ÿ 0:2x

�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

Kp�y��1ÿ x�
�2�

�
�
b
�1ÿ o�yÿ �1ÿ ao�QSx

1� by

�2
)

�80�

in dimensionless variables.
We recall that thermodynamic forces and flows vanish

(v � 0, A � 0, Jq � 0, Xq � 0) at equilibrium points of
dynamic system (73), (74), i.e., at the intersection points of
null isoclines. That sch ! 0 at T! 0 K is easy to verify by
finding the corresponding limit

lim
T! 0

Av�T; x�
TMS

� lim
T! 0

R

MS
ln

�
ke exp

�
q

RT

� �1ÿ x�ÿp�bÿ 0:5ax��1=2
x�1ÿ 0:5ax�1=2

�
� k0 exp

�
ÿ E

RT

�
1ÿ x

1ÿ 0:2x

�
�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

�1ÿ x�ke exp
ÿ
q=�RT ��

�2�
� 0 :

Hence, the local entropy production at r! �1 tends to zero:
s! 0.

4.3 The principle of minimum total entropy production
in autowave processes of sulfur dioxide oxidation
The total entropy production P in SHWs for the one-
dimensional problem in (73) ± (76) is an integral of expres-
sion (80) over the space ± time coordinate:

P � rgucp

� �1
ÿ1

(
R

MScp
ln

�
Kp�y��1ÿ x�ÿp�bÿ 0:5ax��1=2

x�1ÿ 0:5ax�1=2
�

� K�y� 1ÿ x

1ÿ 0:2x

�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

Kp�y��1ÿ x�
�2�

�
�
b
�1ÿ o�yÿ �1ÿ ao�QSx

1� by

�2
)
dr : �81�

Because autowave (bounded) solutions of the problem are
sought in the class of smooth bounded functions and s is a
positive definite bounded function, the total entropy produc-
tion P in the system is also a positive definite bounded
function. The problem of SHW propagation is known to
have no analytic solutions; the temperature y1 at r! �1 is
not known in advance. Therefore, we numerically study the
patterns of local and total entropy production in the course of
sulfur dioxide oxidation.

For an arbitrarily chosen value of y1 [with xe�y1� and o
found from Eqn (77)], it is possible to numerically construct a
separatrix trajectory entering the equilibrium point
�y1; xe�y1�� by integration of the system of equations (73),
(74) in the direction opposite to that of the vector field (over
the `inverse time'). Our calculations were made at the
following characteristic values of parameters [175, 194]:

T0 � 333:15 K; p � 0:1 MPa; a � 0:2; b � 0:3;

cc � 1255:2 J kgÿ1 Kÿ1; cp � 911 J kgÿ1 Kÿ1;

u � 0:1 m sÿ1; q � 97:3 kJ molÿ1;

k0 � 9:2� 106 kg mÿ3 sÿ1 MPaÿ1;

ke � 1:476� 10ÿ4 MPaÿ1=2;

e � 0:41; ep � 0:3; l � 14:64 W mÿ1 Kÿ1;

rg � 1:62 kg mÿ3; rc � 1570 kg mÿ3 :

The activation energy in Eqn (72) is temperature-
dependent [193, 194]. For simplicity, we assume that
E � 92:05 kJ molÿ1.

Figure 17 shows trajectories of system (73), (74) on the
phase plane �y; x�. Numerical simulation has demonstrated
that trajectories arising at sufficiently high temperatures y1
leave the physical domain of the phase space far from the
corresponding heat balance null isoclines and then come
closer to their own null isoclines in the region of negative
degrees of transformation (curve 3 in Fig. 17). Such
trajectories must be disregarded because the reactant con-
centrations do not take negative values. Other trajectories
originating at sufficiently low temperatures y1 reach their
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null isoclines at y > 0 and x > 0, then move in their vicinity,
and finally reach the neighborhood of the point �0; 0� for a
finite (even if rather large) `time' r0. For curve 1 with the heat
balance null isocline 4 (see Fig. 17), the `time' r0 � 1:3� 106.
If T0 6� 0 K, the point at r! ÿ1 is not stationary
�v�T0; x� 6� 0� and trajectories coming very close to the null
isoclines pass near the point �0; 0�, appear in the region of
x < 0, and eventually reach the singular point at y � ÿ1=b
(T � 0 K). Strictly speaking, the problem posed has no
solution.

It is worth noting that separatrix trajectories cannot cross
null isoclines; this follows from the analysis of the system's
vector field. At low temperatures, the chemical reaction rate
may fall; therefore, all separatrix trajectories at low tempera-
tures are characterized by the following behavior of the image
point. If this point is located far from the heat balance null
isocline, it `rapidly' approaches the null isocline and there-
after moves `slowly' near the null isocline towards low
temperatures. At x � 0, the deviation of the dimensionless
temperature from zero for these semitrajectories is small
�ey � 10ÿ6�. If the reaction rate is artificially set equal to
zero near the point �0; 0� (at y < ey), the output conditions at
r! ÿ1 correspond to the equilibrium state (singular point)
of system (73), (74) and the problem has solutions. But this
does not suffice for choosing the sole physically meaningful
solution of the problem from the family of mathematically
equivalent solutions.

There is only one semitrajectory that horizontally
approaches the heat balance null isocline at x � 0 (curve 2 in
Fig. 17). To find this sole semitrajectory, it is necessary to
nullify (`cut off`) the reaction rate at temperatures higher than
the input temperature and to demonstrate that the sought
solution of the problem is independent of the cut-off
temperature in a wide range of its values.

For all semitrajectories, Eqns (80) and (81) were used to
calculate the distribution functions of local entropy produc-
tion in r and the total entropy production P in the system.
Figure 18 gives an example of the calculated profiles of the
temperature and distribution functions of s, sq, and sch in r
for the sole physically meaningful solution of the problem.
The distribution functions of s, sq, and sch in r have distinct
maxima for all mathematically equivalent semitrajectories.

As y1 decreases, these functions and their maximum values
also decrease at each point r.

We note that the analysis of the distribution function of
sch in r leads to the conclusion that the bulk of sulfur dioxide
undergoes transformation at high temperatures in a narrow
reaction zone near thermodynamic equilibrium of the
reaction. This accounts for even less strict requirements as
regards the accuracy of the description of sulfur dioxide
oxidation kinetics in the simulation of autowave processes
than in modeling stationary processes.

Numerical simulation has demonstrated that the total
entropy production P calculated for the ranges �r0; r! �1�
and �r! ÿ1; r! �1� under the condition of the reaction
rate vanishing near �0; 0� �v�y; x� � 0 at y < ey, x � 0� is a
functional of the autowave solution. The functional mini-
mum corresponds to a single semitrajectory that satisfies the
cut-off procedure for the reaction rate at low temperatures.
We note that in the numerical search for minimal P�y1�, the
temperature near the extremum was varied to within 10ÿ4

degree.
Extremal properties of the functional P�y1� are attribu-

table to the difference between integral contributions from sq
and sch. A fall in the temperature results in a sharp decrease in
the heat released by virtue of the proceeding chemical
reaction. The temperature gradient in r also decreases such
that the maximum and current values of sq may differ by a
factor of 107. We note that the value of sch in the vicinity of
the heat balance null isocline is approximately 104 times that
of sq. Therefore, the integral contribution of sch for
trajectories approaching null isoclines at y > 0 and x > 0
increases: the longer the path parallel to the null isocline, the
greater the increase. As a result, the functional P grows.

Thus, the results obtained permit us to formulate the
following variational problem for the computation of SHWs
generated as a result of sulfur dioxide oxidation:

dy
dr
� �1ÿ o�yÿ �1ÿ ao�QSx ;

dx

dr
� K�y��1ÿ x�
�1ÿ ao��1ÿ 0:2x�

�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

Kp�y��1ÿ x�
�2�

;

P � rgucp

� �1
ÿ1

(
R

MScp
ln

�
Kp�y��1ÿ x�ÿp�bÿ 0:5ax��1=2

x�1ÿ 0:5ax�1=2
�

� K�y� 1ÿ x

1ÿ 0:2x

�
p
bÿ 0:5ax

1ÿ 0:5ax
ÿ
�

x

Kp�y��1ÿ x�
�2�

�
�
b
�1ÿ o�yÿ �1ÿ ao�QSx

1� by

�2
)
dr! min ;

r! ÿ1 : y! 0 ; x! 0 ;

r! �1 : y! y1 ; x! xe�y1� :
This problem is solvable under additional, easily pro-

grammed conditions, that is, when the reaction rate constant
vanishes in the small vicinity of input temperature values,
K�y� � 0 at y < ey, and solutions leaving the physical domain
of the phase space �x < 0� at y > ey are disregarded.

The propagation velocity of an SHW is one of its main
characteristics. Interestingly, a rise in the gas filtration rate
may result in a change in SHW direction. Figure 18 shows
an SHW that slowly travels counter to the gas flow
(o � ÿ0:0964, Vf � ÿ1:75� 10ÿ5 m sÿ1, u � 0:1 m sÿ1).
The degree of sulfur dioxide transformation is x � 0:914.
With increasing the linear gas filtration rate, the SHW
propagates in the direction of gas filtration. For example,
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curve 2 in Fig. 17); 3 Ð contribution of chemical reaction; 4 Ð

contribution of heat conduction.
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the front velocity Vf � 0:45� 10ÿ5 m sÿ1 �o � 0:0177� at the
linear filtration rate u � 0:14 m sÿ1. At the same time, the
maximum temperature and total entropy production in the
system increase and the degree of sulfur dioxide transforma-
tion decreases: x � 0:868. We note that there is only one
solution with o � 0, i.e., a `standing' SHW, in the approx-
imation of the quasi-homogeneous model of a static catalyst
bed.

To conclude this section, we note that simulation of a real
industrial-scale AWP of sulfur dioxide oxidation has been
used to illustrate the constructive, positive role of the
thermodynamics of irreversible processes. It was shown that
the nonlinear mechanism of chemical transformation of
sulfur dioxide imposes no constraints on the principle of
minimum total entropy production in a wide temperature
range.

5. Conclusion

The results in the present review prove convincingly that the
combination of methods of nonequilibrium thermodynamics
and AWP theory affords a deeper insight into the physical
nature of autowave phenomena. Investigations into SHW
propagation by the qualitative analysis of a quasi-homo-
geneous model of a static catalyst bed without introducing
any additional assumptions have demonstrated the existence
of a one-parameter family of phase trajectories connecting
singular (stationary) points of the dynamical system. The
derivation of the concrete form of the entropy balance
equation for a system with propagating SHWs, as well as its
qualitative and numerical analysis, has made it possible to
establish the principle of maximum total entropy production
in the system and offer a variational formulation of the
problem. The extension of variational principles of non-
equilibrium thermodynamics to SHWs may be considered a
thermodynamic substantiation of the artificial cut-off proce-
dure for the reaction rate (setting it equal to zero) at low
temperatures.

It is appropriate to note that the total entropy production
(increase in entropy) may be taken as the Lyapunov function,
which has the properties of a potential. With the transient
wave processes disregarded, one can only speak about
autowave resistance to perturbations of the parameters of
the systems. Because fluctuations of the parameters have no
apparent effect on the qualitative behavior of the system, the
autowaves are structurally stable. The Arrhenius (nonlinear)
law of chemical reaction and nonlinearity of the reaction
mechanism impose no constraints on the principle of
minimum total entropy production in a wide temperature
range. It is important to emphasize that extremal principles of
nonequilibrium thermodynamics are essentially equivalent
[142 ± 145, 160]. At the same time, the form of representation
of the variational principle proves to be of paramount
importance for the solution of specific problems.

Various profound analogies between autowaves gener-
ated in a static catalyst bed and laminar combustion
autowaves promoted successful application of nonequili-
brium thermodynamics methods to the theory of combus-
tion [170 ± 172]. The discussion of these works is beyond the
scope of the present review. Nevertheless, the very fact that
the methodology of nonlinear thermodynamics is used for the
purposes of combustion theory indicates the fruitfulness of
this approach. We note that Ref. [172] reports a study of a
dynamical system with the three-dimensional phase space,

i.e., the problem of propagation of laminar combustion
autowaves at an arbitrary Louis number. So far, we have
considered only dynamical systems with the two-dimensional
phase space.

The existence of a space ± time dissipative structure
(FHW) `near' the system's thermodynamic equilibrium is of
philosophical interest. It was shown earlier in this review that
an FHW theoretically appears at any nonzero dimensionless
temperature y1, but the front extends to infinity at y1 ! 0,
i.e., the FHW degenerates. That FHW propagation is
possible only in a reversible chemical reaction has only been
inferred from theoretical studies [67 ± 70].

It is worth noting that all arguments developed and the
results presented in this review do not go beyond the
framework of the second principle of thermodynamics. The
entropy balance equation was constructed in terms of the
basic assumptions of a mathematical model: first idealization
of the phenomenon, then joint application of the methods of
nonequilibrium thermodynamics and AWP theory in the
framework of the adopted idealization. Variational princi-
ples of nonequilibrium thermodynamics in the AWP science
appear to be of fundamental importance in expanding our
knowledge of the nature of autowave phenomena.

I conclude this review by a well-known formulation of the
principle of extremum: ``Light traveling between two points
seeks a path such that requires a minimum time'' (P Fermat,
1660).

The author gratefully acknowledges the assistance of
N A Chumakova in obtaining a number of results included
in the review and many fruitful and helpful discussions.

The work was supported by the Russian Foundation for
Basic Research (grants 94-03-08205 and 00-03-32465).

6. Appendix

The following lemma is true.
Lemma 1. At Q > 0 and Z > 1, system of equations (33),

(34) has singular points of a saddle or node type, with a singular
point �ys; zs� being a saddle if and only if f 0�ys� > 0.

The system of differential equations linearized in the
vicinity of a singular point �ys; zs� has the form

dK
dr
� B�ys; zs� K ;

where

K �
�
y
z

�
; B �

�
jy jz

cy cz

�
;

j�y; z� is the right-hand side of Eqn (33), c�y; z� is the right-
hand side of Eqn (34), and jy, jz, cy, and cz are the
corresponding partial derivatives.

Eigenvalues of the matrix B are real only if the discrimi-
nant dis �B� of the characteristic equation is nonnegative,
which is true only if Q > 0 and Z > 1 at each singular point
because

dis �B����ys; zs� �
�
1ÿ o� K 0�ys�

1ÿ ao

�2
� 4Q�Zÿ 1�K�ys��

1� Kp�ys�
��1� bys�2

:

Hence, there are no fluctuations of temperature and
concentrations in the neighborhood of a singular point;

1012 A P Gerasev Physics ±Uspekhi 47 (10)



these functions are monotonic. The singular point is of a
saddle or node type.

By definition, a point �ys; zs� is a saddle if eigenvalues of
the problem linearized in its vicinity are real and have
different signs. Furthermore, the determinant of the matrix
B, which is equal to the product of its eigenvalues, has the
form

D�ys; zs� � ÿK 0�ys� f 0�ys� ;

where f �y� is found from (38). Therefore, the condition
f 0�ys� > 0 implies that the signs of the eigenvalues are
different. Lemma 1 is proved.

Corollary 1.1. A singular point �ys; zs� of system (33), (34)
located on the thermodynamic equilibrium curve at Q > 0,
Z > 1 is a saddle if and only if the following inequality is
satisfied:

1ÿ o
1ÿ ao

� QKp; 0�Zÿ 1�ÿ
1� Kp�ys�

�2�1� bys�2
> 0 :

This assertion follows from Lemma 1 and the formula for
z 0e�ys�. Then, it is evident that at o < 1, any point on the
thermodynamic equilibrium curve is a saddle point.

Corollary 1.2. The point �ys; zs� � �0; 0� on the thermo-
dynamic equilibrium curve at Q > 0, Z > 1 is a saddle if and
only if one of the following inequalities is satisfied:

a� 1ÿ o
1ÿ ao

�QKp; 0�Zÿ 1�
�1� Kp; 0�2

> 0 ;

b� ze�y1�
y1

� Kp; 0�Zÿ 1�
�1� Kp; 0�2

> 0 ;

c� exp �ÿ#� ÿ 1

y1
ÿ
1� Kp; 0 exp �ÿ#�

�� Zÿ 1

1� Kp; 0
> 0 ;

where

# � �Zÿ 1�y1
1� by1

:

This assertion follows from Lemma 1 and Corollary 1.1.
Corollary 1.3.At Q > 0, Z > 1, the parameters ke, Z, b, and

y1 determine whether the singular point �0; 0� of system (33),
(34) is a saddle if it is located on the thermodynamic equilibrium
curve.

This assertion follows directly from Corollary 1.2c).
The following lemma is true.
Lemma 2. As y1 ! 0 (as the initial temperature of the

catalyst bed approaches the input temperature), one of the
eigenvalues of system (33), (34) linearized at the point
�ys; zs� � �0; 0� tends to zero.

This assertion follows from the expression for the
determinant of the characteristic equation

D�0; 0� � Qkr

�
1ÿ exp �ÿ#�

y1
ÿ
1� Kp; 0 exp �ÿ#�

�ÿ Zÿ 1

1� Kp; 0

�

and the relation lim y1! 0 D � 0.
Corollary 2.1. As y1 ! 0, the temperature and concentra-

tion profiles in an FHW become increasingly gently sloping and
the front width tends to infinity.

Corollary 2.2. The front width of an FHW increases with
decreasing kr.

This assertion follows from the relation lim kr! 0 D � 0.
Corollary 2.3. The front width of an FHW decreases with

increasing kr (at Q > 0, Z > 1�:
This assertion follows from the relation

qD
qKp; 0

����
�0;0�
� Qkr

�
ÿ Zÿ 1

�1� Kp; 0�2
�
ÿ
exp �ÿ#� ÿ 1

�
exp �ÿ#�

y1
ÿ
1� Kp; 0 exp �ÿ#�

�2 �:
The following lemma is true.
Lemma 3. Asymptotic values of the FHW propagation

velocity o are given by the expressions

o� � lim
y1!�1

o�y1� � 1 ;

o0 � lim
y1! 0

o�y1� � �1� Kp; 0�2 � �Zÿ 1�Kp; 0Q

�1� Kp; 0�2 � a�Zÿ 1�Kp; 0Q
;

oÿ � lim
y1!ÿ1=b

o�y1� � 1� bQzA; 0
1� abQzA; 0

> 1 :

This assertion follows from the formulas

lim
y!�1

Kp�y� � ke ; lim
y!ÿ1=b� 0

Kp�y� � �1 ;

lim
y!ÿ1=b� 0

ze�y� � zA; 0 ; lim
y! 0

qze�y�
qy

� ÿ Zÿ 1

�1� Kp; 0�2
Kp; 0 :
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