
Abstract. Lattice measurements provide a unique possibility to
directly study the anatomy of vacuum fluctuations, that is, their
action and entropy. In this review, we discuss properties of
vacuum fluctuations that are naturally called magnetic mono-
poles, or scalar particles. Magnetic monopoles are defined on
the lattice as closed trajectories. One of the basic observations is
that the length of these trajectories is measured in physical units
(fermi) and does not depend on the lattice spacing a. Their
thickness, on the other hand, determined in terms of the distri-
bution of the non-Abelian action, is of order of the resolution a.
Moreover, these infinitely thin Ð within presently available
resolution Ð trajectories are unified into infinitely thin sur-
faces.

1. Introduction

This year, we remember Academician I Ya Pomeranchuk
(1913 ± 1966) on what would have been his ninetieth birthday.
I first saw Isaak Yakovlevich more than 40 years ago, at his
lecture at the Moscow Institute of Physics and Engineering.
Although I was later a party to many physics discussions in
his presence, I cannot claim to have understood much during
these discussions. However, Isaak Yakovlevich had an
enormous emotional impact on the physicists around and I
remember the emotional atmosphere of those years very well.
The pain and feeling of tragedy caused by his untimely death
do not lessen with the passing of time.

The content of this review is not so easy to outline. If we
were to say that the review is devoted to magnetic monopoles,
this would sound attractive but would not actually be very
meaningful: the theme is too broad. If, on the other hand, we
say that we interpret the results of recent latticemeasurements
performed mostly by physicists and students from the
Institute of Theoretical and Experimental Physics (ITEP),
we could scare the reader off with too narrow a topic.

The actual scope of the review is a kind of compromise
between these two extremes: the measurements discussed are
indeed very recent, but the physical problems touched are
quite simple and fundamental.

The style of presentation assumes that the review is self-
contained and can be read without addressing other sources.
This impression should be true for the reader familiar with the
basics of monopole physics and of lattice formulation of field
theories. We hope that in any case, the general picture and the
logic of presentation are readily understandable. In the list of
references, we give a few reviews that could be consulted to
refresh or gain knowledge of the background, such as
generalities of lattice gauge theories. To a great extent, the
review is based on the original papers [1 ± 6].

2. Topological defects in lattice gauge theories

2.1 Two scales: a and Kÿ1QCD

To understand the material presented below, it is crucial to
realize that observables on a lattice can depend on two
distinct parameters, a and Lÿ1QCD. The lattice spacing a is
assumed to be small, a! 0. It serves as an ultraviolet cut off.
The characteristic hadronic scale 1 Lÿ1QCD naturally arises in
description of the low-energy or infrared physics. The value of
a can be varied on the lattice; a small dimensionless parameter
is then given by the product aLQCD.
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1 By LQCD, one usually understands the scale at which the running

coupling is of the order of unity. Instead of LQCD, we could have chosen

any other physical unit, for example, fmÿ1.



Various vacuum fluctuations are sensitive to a and Lÿ1QCD

in different ways. The best known example of vacuum
fluctuations seems to be instantons (see, e.g., Ref. [7] for a
review). Their classical action is equal to

Scl � 8p2

g 2
; �1�

where g is the SU(2) coupling constant. The probability of
finding an instanton of the size rinst is proportional to

W / exp

�
ÿ 8p2

g 2�rinst�
�
; �2�

where we have accounted for the running of the coupling. It is
obvious that probability (2) is growing with rinst and the
characteristic size of instantons is stabilized at

rinst � Lÿ1QCD : �3�

In other words, instantons represent the vacuum fluctuations
in the infrared limit.

Another well-known example of vacuum fluctuation is
given by zero-point fluctuations. The corresponding density
of the vacuum energy is approximately equal to

E � 1

2

X
o

�ho � const

a 4
�4�

and is strongly divergent in the ultraviolet range.
Later, we discuss vacuum fluctuations where the two

scales, a and Lÿ1QCD, coexist. This coexistence, or fine tuning,
of the two scales distinguishes these fluctuations from the
well-known examples mentioned above.

2.2 Topological defects
A well-known example of topological solitons is instantons.
The topological charge is defined as

Qtop � g 2

32p2

�
Ga

mnG
a
rsE

mnrs d4r ; �5�

whereGa
mn is the non-Abelian field strength tensor. Instantons

are natural topological defects in the case of the SU(2) gauge
theory because there exists a nontrivial lower limit on the
action associated with a nonzero topological charge (5),

Scl 5 jQtopj 8p
2

g 2
: �6�

If we consider the U(1) subgroup of SU(2), then magnetic
monopoles become natural topological excitations (see, e.g.,
Refs [8, 9] for reviews). In four-dimensional space, d � 4,
monopoles are represented by closed trajectories and are
characterized by their length L. The corresponding lower
limit for the action is given by

Smon 5 const � L
a
jQMj2 : �7�

Because of the Dirac quantization condition, the magnetic
charge QM is inversely proportional to the electric charge,
jQMj / 1=e, and the overall constant depends on details of
regularization.

Relation (7) can be readily understood. Indeed, the
topological invariant is given by the magnetic flux

QM � 1

4p

�
H ds ; �8�

whereH is the radial magnetic field of the monopole and
�
ds

is an integral over the surface of a sphere. Because of the
Bianchi identities for the electromagnetic field strength
tensor, qmEmnrsFrs � 0, the flux is independent of the radius
of the sphere.

The mass of the monopole is given by

Mmon � 1

8p

�1
a

H 2 d3r � 1

e 2

�1
a

1

r 4
d3r � const � 1

e 2a
; �9�

where we have to introduce an ultraviolet cut off, a, because
of the divergence of the integral at small distances. For a given
flux, the minimum of mass (9) is reached on the spherically
symmetric magnetic field.

For Z2 gauge theories, the natural topological excitations
are closed surfaces (see [10] for a review and references).
Within the scope of the present review, we cannot discuss the
Z2 gauge theories in detail and just mention the results. The
action related to topological defects is given by

Svortex � const � A
a2
; �10�

where A is the surface area.
In concluding this section, we emphasize that only the

bound in (6) is valid in the SU(2) theory. As far as the bounds
in (7) and (10) are concerned, the full SU(2) theory does not
involve any lower bounds for the action related to monopole
trajectories and Z2-surfaces. Relations (7) and (10) are only
valid if the invariance is restricted to the corresponding
subgroups of the SU(2) theory, namely U(1) and Z2.

2.3 Energy ± entropy balance
We now discuss monopoles in the Abelian case inmore detail.
The first glance at the lower bound in the corresponding
action (7) seems to convince us that the monopoles cannot
play any dynamical role in the continuum limit, a! 0.
Indeed, the monopole mass tends to infinity in this limit and
the factor exp �ÿSmon� seems to entirely suppress the mono-
poles.

But we have not yet taken the entropy into account. For
point-like monopoles, the entropy factor is readily calculable.
Indeed, the entropy is now the number of trajectories of the
same length L. Without the lattice regularization, the task of
evaluating the number of trajectories NL would puzzle any
theorist. On the lattice, on the other hand, the calculation is
quite straightforward. Indeed, the monopoles occupy the
centers of cubes. In d � 4, any cube has 8 neighboring cubes.
At each step, the trajectory can therefore be continued in eight
various directions. The number of steps is L=a. Therefore,

~NL � 8L=a : �11�
Two remarks concerning Eqn (11) are now in order. First,

we used the approximation of point-like monopoles. In fact,
the monopole field depends on the distance to the center:
jHj � 1=er 2. The approximation of point-like monopoles is
justified by the ultraviolet divergence in themass [see Eqn (9)].
Second, Eqn (11) actually refers to neutral point-like
particles. Conservation of the magnetic charge implies that
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the trajectories cannot have open ends and are closed.
Moreover, if the same piece of a trajectory is covered in both
possible directions, this piece is not included in the trajectory
at all. In the language of field theory, this statement
corresponds to cancellation of charges between a monopole
and an anti-monopole.

Instead of Eqn (11), the relation

NL � 7L=a �12�
must be used for the number of monopole trajectories. Upon
calculating entropy (12), we can find the probability of
observing a monopole trajectory of length L,

W�L� � c1

L 3
exp

��
ÿ c2
e 2
� ln 7

� L
a

�
; �13�

where c1; 2 are constants. The factor 1=L 3 actually arises
because the trajectories are closed. The arguments presented
above [see Eqns (9) and (12)] suffice only to derive the
exponential factor in Eqn (13). Derivation of the factor
1=L 3 can be found, for example, in Ref. [11].

It is crucial for us that the constant c2 in Eqn (13) is known
explicitly for the lattice regularization (although not analyti-
cally but only numerically). We can then find the value of the
electric charge

e 2cr �
ln 7

c2
�14�

such that the exponential suppression vanishes for any length
L of the trajectory. This is the point of phase transition to the
monopole condensation.

The main result in this section is that for a! 0, only an
infinitely narrow band of values e 2 is physical,

e 2cr ÿ const � a4 e 2phys 9 e 2cr � const � a : �15�

Indeed, if we overstep the upper limit in (15), then the
monopoles are too copious: they occupy a finite part of the
four-dimensional lattice volume V4. If e

2 is below the lower
limit in (15), the monopoles are practically absent. Choosing
e 2 within the limits (15) can be called fine tuning of the
parameters.

2.4 Why monopoles at all?
The reader following our presentation should start wondering
at some point why we consider the monopoles at all. Indeed,
everything that we have had to say so far about the
monopoles in non-Abelian theories [SU(2), for definiteness],
seems to testify against the possible dynamical role of the
monopoles.

We summarize these arguments again:
�monopoles are not natural topological excitations in the

case of SU(2). In other words, there is no lower limit on the
non-Abelian action in SU(2), which means, in fact, that any
topological definition of the monopoles in SU(2) can be
satisfied on gauge copies of the trivial field Am � 0;
� even in the U(1) case, where monopoles can be defined

consistently as topological excitations, one has to choose
(figuratively speaking, `by hand') the value of the constant e 2

to be very close to a certain fixed value e 2cr [see Eqn (15)].
It is worthmentioning, therefore, that the original interest

in lattice monopoles stems from a clear physical idea. This is
the so-called dual-superconductor model for confinement
(see, e.g., Ref. [9] for a review). To clarify this model, we

recall that the magnetic field does not penetrate the bulk of
the standard superconductor. But if an external field is
applied, the superconductor is destroyed and the condensate
of the Cooper pairs disappears in the region of the strong
field.

Quantitatively, the picture is realized as the Abrikosov
vortex, which is a solution of coupled classical equations for a
charged scalar and electromagnetic fields in the presence of
two magnetic poles placed into a superconductor. (The
magnetic poles can be visualized as the end points of a long
solenoid.) The magnetic field streams into a tube connecting
the poles, and the energy grows linearly with the distance
between the poles.

We now imagine that there is a condensation of a
magnetically charged particles in the vacuum state of non-
Abelian theories, h0jjMj0i 6� 0. Then, if external heavy
quarks are introduced into the vacuum, their (color) electric
field also streams into a tube and there arises a linear potential
between the quark ± antiquark pair, which corresponds to the
quark confinement.

Our interest in monopoles is focused on determining the
properties that they have as objects of an (`effective') field
theory. What is specific for the topic is that because of the
difficulties outlined above, we cannot start with amicroscopic
theory of monopoles, but must turn to their phenomenology,
which is surprisingly rich and calls for theoretical under-
standing.

In other words, the theoretical pessimism (see the
beginning of the section) yields to the physical idea of the
QCD vacuum as a dual superconductor. This is the outcome
of the phenomenological studies. Creation of an adequate
theory is still ahead of us.

3. Lattice data on magnetic monopoles
and vortices

3.1 Maximal Abelian projection
The starting point of the phenomenology of monopoles is
their definition. The idea of this definition is simple: because
monopoles are natural topological defects in theAbelian case,
one should substitute, or project, the original configuration of
SU(2) fields on the closest Abelian field configuration and
then define themonopoles `inside' this Abelian configuration.
We still have to explain what is understood by the `closest'
Abelian configuration.

We begin with a simple analogy. Imagine that two jets of
particles are produced in a central collision (Fig. 1a). We
define the `closest' collinear configuration of the particle
momenta in two steps. First, using the rotational invariance,
we choose an axis, or unit vector e, such that the sum of the
moduli of projections of the momenta on the axis is

p2

p5

e
p3

p1
p6

p4

a b

~p6
~p4

~p2

~p5

~p1
~p3

Figure 1. Particle momenta pi and the choice of the axis e by maximizing

the sum of momenta projections on the axis (a); the corresponding

collinear momenta closest to the original ones (b).
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maximal,

max
X
i

jpi ej :

Second, we replace the momenta with their projections on the
axis,

pi ! ~pi � ejpi ej sign �pi e� :

The momenta thus projected can be called the collinear
configuration of the momenta closest to the original one
(Fig. 1b).

In the case of a gauge theory, our basic object is the vector
potential Aa

m, where a is the color index, a � 1; 2; 3 for the
SU(2) group.We considerA3

m as the electromagnetic field and
A1; 2

m as the field of charged gluons. As the first step Ð
analogous to the example given above Ð we use gauge
invariance to find the maximal projection of A3

m,

max
X
i; m

jA3
m�xi�j2 ;

where xi are positions of the lattice sites. At the next step, we
set A1; 2

m � 0 in the chosen gauge.
As a result, we replace the original field configuration of

A1; 2; 3
m by the `closest' Abelian field configuration �A 3

m . Our
magnetic monopoles are then nothing else but Dirac mono-
poles in terms of the projected fields �A 3

m . The Dirac mono-
poles correspond to singular fields, and the corresponding
monopole current can be determined in terms of violations of
the Bianchi identities,

qmEmnrs qr �As � jn : �16�

More precisely, we use a lattice analog of Eqn (16), and
therefore all singularities are resolved in terms of the lattice
spacing.

The result of the above procedure is given by a set of
monopole trajectories. First, a representative set of non-
Abelian field configurations is generated (see, e.g., Ref. [12]
for a review of the lattice formulation of gauge theories). At
this step, only the original non-Abelian Lagrangian of the
SU(2) theory is used. Then each configuration is replaced by
its maximal Abelian projection, within which the monopole
trajectories are determined. These trajectories are the starting
point of our analysis. The procedure can be iterated for
various values of the lattice spacing a.

3.2 Monopole clusters
The entire network of monopole trajectories, defined for each
field configuration, decays into clusters. It is important to
distinguish between an infinite, or percolating, cluster and
finite clusters. In realistic measurements, the percolating
cluster is understood as the one stretching from one
boundary to another boundary of the lattice volume V4

(where the subscript `4' indicates the space ± time dimen-
sion). Clearly, the length of the percolating cluster is
proportional to V4,

Lperc � rpercV4 ; �17�

where rperc is the density of monopoles. The percolating
cluster exists for each field configuration and is in a single
copy (see [13] and references therein).

For finite clusters, their most important characteristic is
the distribution in length, N�L�. Experimentally,

N�L� � 1

L3
: �18�

Thus, finite clusters are dominated by short ones with the
length of the size of several lattice spacings. We can introduce
the corresponding density of finite-length monopoles,

Luv � ruvV4 ;

whereLuv is the total length of finite clusters and the subscript
uv indicates that `ultraviolet' (short) clusters dominate.

So far, we have mainly discussed definitions. A remark-
able observation is that the monopole densities rperc and ruv
satisfy simple scaling relations. 2 The monopole density rperc
is independent of the lattice spacing a,

rperc � 0:62s 3=2
SU�2� � cpercL3

QCD : �19�

Here, sSU�2� is the string tension for the SU(2) gluodynamics
and cperc is a constant. As for ruv, the density of finite-size
clusters diverges linearly as a! 0,

ruv �
cuv
a

L2
QCD ; �20�

where cuv (like cperc above) is a constant.
What is most striking about relations (19) and (20) is that

they are formulated entirely in terms of a andLQCD, which are
perfectly gauge invariant. On the other hand, the definition of
the monopoles uses projection on a particular U(1) subgroup
of the original SU(2). Therefore, relations (19) and (20)
indicate that the projection is only a means to detect objects
that have an SU(2)-invariant meaning.

3.3 Fine tuning of the parameters
Relation (19) implies that the probability of finding a
monopole belonging to the percolating cluster in a particular
lattice cube is given by

Wmon � exp

�
ÿ 9�4p�2

44

1

g 2�a�
�
/ �aLQCD�3 ; �21�

where g 2�a� is the running coupling normalized at the lattice
spacing a and the coefficient in front of 1=g 2�a� is determined
in terms of the b-function.

Comparing (21) and (2), we note that Ð as distinguished
from the instanton case Ð the probability Wmon of finding a
monopole explicitly depends on the lattice spacing a. One
could think that this distinction is rooted in mere definitions.
By construction, the monopole trajectory is infinitely thin. If
we identify an instanton with its center, then the probability
of finding an instanton would look similar to (21).

The basic difference between instantons andmonopoles is
revealed through measurements of the action associated with
the monopoles. The corresponding data are reproduced in
Fig. 2 [1]. The data are crucial for the whole framework
presented here, and we describe them in some detail.

The procedure for measuring the action is as follows.
First, using the maximal Abelian projection for each original
non-Abelian configuration, one determines the monopole

2 We here quote the latest data [14]; further references can be found

therein.
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positions. The monopoles occupy the centers of lattice cubes.
Then the non-Abelian action is measured on the plaquettes
belonging to the monopole cubes (see, e.g., Ref. [12]). Next,
one averages the monopole action over all (or only percolat-
ing) monopoles and subtracts the plaquette average over the
entire the lattice from this average. This difference is plotted
in Fig. 2 as a function of the lattice spacing.

An important point is that the difference is plotted in the
so-called lattice units of the action Slat. In the continuum
limit, this unit itself is ultraviolet divergent,

Splaq � 1

a 4
� const � Slat : �22�

In other words, the scale of the lattice unit of the action
corresponds to the contribution of zero-point fluctuations
[see (4)].

Finally, the field-theory mass of the monopole can be
estimated as

M�a� � a 3
ÿhSmon

plaq i ÿ hS lat
plaqi

�
: �23�

If we compare (23) with the corresponding continuum-limit
expression (9), then the factor a 3 in (23) represents the volume
(or

�
d3r), while the action on the plaquettes corresponds to

H2. However, the field value is not set in advance now, but
directly measured on the lattice.

In Fig. 2, the data for the percolating monopoles are
separated from the whole of the monopoles. We see that the
action for the percolating monopoles is indeed lower than
average. This agrees with the idea that monopoles with lower
action are condensed.

But the most important point for us is that the monopole
action is close to a constant in `lattice units'. In other words, at
the lattices now available, we have the estimate

Mmon�a� � 1

a
;

the same as for point-like and Dirac monopoles! As we
discussed in detail above, such monopoles can survive on
the lattice only because of fine tuning, ensuring that the
suppression due to the mass divergence is almost exactly
canceled by the enhancement due to large entropy.

Comparison with (21) allows us to estimate the precision
with which cancellation occurs,

Mmon�a� ÿ ` ln 7 '

a
� const

g 2�a� ; �24�

where the `ln 7' term represents the entropy in (12). We put
ln 7 in quotationmarks because Eqn (12) neglects the effect of
neighbors and is therefore an approximation. Also, in
Eqn (23) we took only plaquettes closest to the centers of the
monopole cubes into account, which introduces an error as
well. The quantity `ln 7' is also given in Fig. 2 for the sake of
orientation. We see that `ln 7'=a is indeed close to the
experimental value of the monopole mass (as a function of a).

To summarize, there is evidence that the monopole
action and entropy indeed satisfy a relation similar to
Eqn (15) that we derived for a U(1)-symmetric Lagran-
gian. But in the U(1) case, relation (15) can be satisfied only
at the expense of artificially adjusting the value of the
coupling e 2. In the non-Abelian case, the coupling g 2

cannot be fixed at all because the coupling depends on the
scale. Nevertheless, Eqn (24) is satisfied `automatically',
without any artificial adjustment.

3.4 Thin and heavy surfaces
We have already mentioned that in the case of the Z2 gauge
group, natural topological excitations are given by closed
surfaces. In the case of the SU(2) gauge theory, one can also
define closed surfaces using projection of the original non-
Abelian fields on the closest Z2-configuration of the fields. It
turns out that surfaces defined in this way also possess
remarkable properties in terms of the original SU(2) theory.
In this section, we briefly summarize the findings. Due to a
lack of space, our presentation might sometimes be sketchy
(many details are clarified in review [10]).

At the first step, the gauge invariance is used to ensure that
the SU(2) fields generated on the lattice by the standard non-
Abelian action are as close as possible to the matrices�I. The
projection on the Z2 theory actually took two steps. The
maximal Abelian projection was constructed first (see above).
At the second step, the remaining U(1) freedom was used to
make the Abelian fields as close as possible to the Z2 fields.
Finally, theAbelian fields are replaced by the closestZ2 fields.
The closed surfaces are the unification of all the negative
plaquettes constructed on the projected Z2 fields.

The two-dimensional surfaces defined in this way are
infinitely thin by construction. This does not automatically
mean, however, that there are some physical infinitely thin
objects behind them.

To clarify the nature of the surfaces, the non-Abelian
action associated with the surfaces and their total area were
measured as functions of the lattice spacing a [3]. We recall
that similar measurements in the case of monopoles revealed
a remarkably simple picture: the non-Abelian action asso-
ciated with the monopoles is approximately constant in the
lattice units [see Fig. 2 and Eqn (24)], while the total length of
the percolating trajectories is approximately a constant in the
physical units (measured in fm).

The story repeated itself in the case of surfaces as well!
More specifically, the action density per unit area is quad-
ratically divergent in the ultraviolet limit,

Svortex � 0:5
A

a 2
; �25�
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iÿ
hS
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Figure 2. The non-Abelian action associated with the lattice monopoles

belonging to the percolating cluster (squares) and averaged over all the

monopoles (circles). The dashed line corresponds to the monopole action

`ln 7'��L=a�. The data are from Ref. [1].
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whereA is the area of the surface. The corresponding data are
reproduced in Fig. 3a.

As regards the total area, it grows proportionally to the
lattice volume and is approximately constant in the physical
units,

Avortex � 4�fm�ÿ2V4 : �26�

The corresponding data are reproduced in Fig. 3b.
The ultraviolet divergence of the density of the action in

the limit a! 0 [see (25)] implies strong suppression of the
probability of finding such a vortex by the action factor,

exp �ÿS� / exp

�
ÿconst � A

a 2

�
:

On the other hand, the observation of the scaling of the total
area of the vortices [see Eqn (26)] implies that the suppression
due to the action is canceled by the enhancement due to the
entropy.

Theoretically, it is known that the entropy of a surface can
indeed grow as exp �const � A=a 2�. The mechanism of the
entropy growth is similar to the monopole (trajectories) case.
Namely, the surface on the lattice consists of pieces of size a 2

and neighboring plaquettes can be mutually oriented in
various ways. Unfortunately, so far the constant in the
exponential has not been evaluated. Thus, we cannot
establish by straightforward calculation that action (25)
corresponds to the fine tuning of the entropy and action.
But we can claim that in the experiment, the surfaces are
indeed very `crumpled,' which means that the plaquettes
belonging to the surface change their directions randomly at
each step, and therefore their entropy is certainly exponen-
tially growing with their total area A.

To summarize, two-dimensional surfaces are present in
the vacuum state of the lattice SU(2) theory. The thickness of
the surfaces is determined in terms of an excess of non-
Abelian action and is less than the resolution a at presently
available lattices. The area of the surfaces, on the other hand,
scales in physical units. In the opinion of the author of this
review, discovery of such vortices is one of the most
remarkable observations made in lattice simulations.

4. Interpretation and implications

4.1 The nature of thin vortices
The discovery of infinitely thin and heavy vortices is very
recent and there exist no detailed papers on their interpreta-
tion. In this section, we nevertheless outline a simple picture
that can serve the purpose of orientation.

It seems reasonable to discuss the lattice monopoles in
terms of the Dirac monopoles. This appears to be a reason-
able approximation because monopoles are indeed associated
with singular fields [see (24)].Moreover, it is convenient to use
the gauge where all the monopole fields are along the third
direction in the color space. The potential corresponding to a
Dirac monopole is then of the form

A3
r � A3

y � 0 ; A3
j �

QM

4p
1� cos y
r sin y

; �27�

where r, y, and j are the spherical coordinates and QM is the
magnetic charge, in our case QM � 4p=g.

We note that potential (27) is singular at y � 0. The
singularity corresponds, of course, to the Dirac string. In
making lattice estimates, it is natural to replace

r sin y! a �28�

to regularize integration at the singularity.
We now consider the non-Abelian action

S � 1

4
�Ga

mn�2 ; �29�

where Ga
mn � qmAa

n ÿ qnAa
m � g�a� E abcAb

mA
c
n. Characteristic

perturbative fields on the lattice are then of the order

Aa
m �

1

a
; �30�

where 1=a corresponds to the ultraviolet divergence discussed
in Section 2.1.

If the coupling g�a� is small, the Abelian part of the field
strength tensor, SAb � �qmAa

n ÿ qnAa
m�2, dominates the action

(29). We must now take the effect of the Dirac string into
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Figure 3. (a) The non-Abelian action associated with the vortices: averaged over the entire area of the vortices (circles); separately for the plaquettes that

belong both to the vortices andmonopoles (squares); separately for the plaquettes that belong to the vortices but not to themonopoles (diamonds); for the

plaquettes neighboring the vortex (triangles). Geometrically, there are two different types of neighboring plaquettes and the action was measured

separately for each of them. (b) Average area of the vortices in the unit lattice volume. The plots are borrowed from [3].
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account. A property of lattice regularization is that the action
associated with the Dirac string itself vanishes. But there
remains the interference term

Sint � g 2�a�A�mAÿn A3
mA

3
n �

1

a4
: �31�

The constant g 2 is here canceled because the string potential
contains 1=g [see Eqn (27)], and we estimated the charged
fields A�m as zero-point fluctuations, A� � 1=a.

Thus, the ultraviolet divergence in the action associated
with the surfaces is ascribed in the model under consideration
to the interaction of charged gluons with Dirac strings that
span the surfaces populated with monopoles. It is worth
emphasizing that the interpretation in terms of the `Dirac
string' is actually gauge-dependent. But we can also formulate
some gauge-independent predictions of the model.

4.2 Association of the monopoles with the vortices
One of apparent consequences of the model is the prediction
that the surface is populated with monopoles. Indeed, the
surfaces are now swept by the Dirac strings and the strings
end up at the monopoles. This prediction agrees very well
with the data [10, 3]. Namely, 90 ± 97% of all the monopole
trajectories belong simultaneously to the vortices and, vice
versa, about 1=3 of all the plaquettes belonging to the vortices
belong to the cubes containing monopoles.

Another prediction of the model considered is that the
distribution of the non-Abelian action of the monopoles is
not spherically symmetrical. Indeed, the Dirac strings lying
on the surfaces are attached to the monopoles and make a
contribution to the non-Abelian action. This lack of spherical
symmetry is also known from the measurements. Also, it is
naturally explained that the surfaces are thin. Indeed, they
have the thickness of the Dirac strings.

On the other hand, it would of course be very premature
to claim that our model is the correct one. Indeed, all the
consequences discussed above are only qualitative; we have
not made quantitative predictions.

4.3 Standard problem of the Standard Model
We return to relations (13) and (14), which in the U(1) case
allow us to find the critical value of the electric charge that
corresponds to the onset of monopole condensation. We now
consider these relations from a somewhat different stand-
point. The properties ofmonopoles are determined by a single
parameter,M�a�, and therefore the monopole action is given
by Smon �M�a�L, where L is the length of the trajectory. But
this is exactly the classical action of a particle of mass M�a�!
The onset of monopole condensation corresponds to a
vanishing mass of the scalar field, m 2 � 0.

At first glance, we are contradicting ourselves. On one
hand, according to Eqn (14) in the continuum limit, a! 0,
the condensation begins when M�a� ! 1. On the other
hand, we know that condensation begins when the mass
squared vanishes. The resolution of the paradox is that
M�a� is to be identified with the bare mass, while the
physical, or renormalized, mass differs from it [11].

We formulate this important statement inmore detail. We
define a particle propagator a la Feynman as a path integral,

~D�x; x 0� �
X
path

exp
ÿÿScl�x; x 0�

�
; �32�

where Scl�x; x 0� is the classical action corresponding to a
particular path,

Scl �M�a� L�x; x 0� ; �33�
where L�x; x 0� is the length of the path connecting the points
x; x 0 (in Euclidean space ± time). It then turns out that the
propagator ~D in (32) is proportional to the standard
propagator of a particle with the mass mprop given by

m 2
prop �

8

a

�
M�a� ÿ ` ln 7 '

a

�
: �34�

We emphasize that Eqn (34) is a general field-theory
relation in no way specific to the monopoles. Moreover,
knowing relation (14), we can recover Eqn (34), up to an
overall constant. Indeed, the vanishing of the right-hand side
of Eqn (33) signifies a phase transition to monopole
condensation. In the language of field theory, this is the
transition to the tachyon mass of the scalar field, or
m 2

prop � 0. Moreover, because of the Lorentz invariance, we
should have a relation for mass squared, m 2

prop , not mass
itself, and this consideration fixes the power of a in Eqn (34).

What is most remarkable about Eqn (34) is that it looks
very similar to the standard relation for the Higgs mass in the
Standard Model,

m 2
Higgs �M 2

rad ÿM 2
0 : �35�

Here, M 2
rad is the radiative correction to the mass, which

diverges quadratically at large virtual momenta andM 2
0 is the

so-called counterterm. Comparison of (35) and (34) shows
that the standard expression for the radiative correction,
M 2

rad, is indeed the same as for Mmon�a�=a. This is not
surprising because both describe the same effect. On the
other hand, the counter term M 2

0 is replaced in Eqn (34) by
8`ln 7'=a 2. In other words, introduction of the lattice regular-
ization allows us to fix the counterterm in our case.

Thus, the fine tuning of the coupling discussed in
Section 3.3 in fact provides an example of solving the
`standard problem' of the Standard Model: how to keep
the Higgs mass much less than the absolute value of any of
the two terms in the right-hand side of Eqn (35).

Because this conclusion is important for us, we rephrase it
in somewhat different terms. We have started with the SU(2)
gauge theory. We next defined an algorithm to identify
trajectories of magnetic monopoles. The non-Abelian action
associated with the monopoles then turned out to be
divergent in the ultraviolet (at the lattices now available),
with the same divergence as for point-like particles. Mono-
poles have spin zero, and we can therefore say that we have
constructed a projection of the SU(2) theory on point-like
scalar particles.

In doing so, we also inherited the main problem of the
theory of scalar charged particles, the quadratic divergence in
the mass. However, the lattice data indicate strongly that this
problem is somehow fixed within the resultant effective
theory of scalar particles. Indeed, the scaling properties like
(19) unequivocally indicate that the infrared scale LQCD

coexists with the lattice spacing scale a, which characterizes
the size of the scalar particles.

It would be instructive to elucidate the mechanism of the
fine tuning that is at work in the effective theory of scalar
particles. At this moment, we can only suggest some
preliminary considerations concerning this question.
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4.4 Solution to the problem of quadratic divergence
To understand how the problem of quadratic divergence is
solved, we must translate the data on the monopole densities
[see (19), (20)] into the more familiar language of field theory.
We now explain how this is to be done.

We start with the classical action (34). It is quite obvious
that the average length of the trajectory is given by the
derivative of the partition function Z,

hLi � q
qM

lnZ : �36�

Using (34), we can replace the differentiation with respect to
the bare mass M with the differentiation with respect to the
propagating (field-theory) mass mprop,

hLi � 8

a

q
qm 2

prop

lnZ : �37�

The derivative of the partition function with respect to
m 2

prop is related to the vacuum expectation value hjjj2i,

hjjj2i � q
qm 2

prop

lnZ ; �38�

where j is the complex scalar field describing the monopoles.
Indeed, the standard Lagrangian of the scalar field depends
on m 2

prop through the term m 2
propjjj2.

Finally, the average length of the monopole trajectories
reduces, in a purely phenomenological way, to the monopole
density,

hjjj2i � a

8
�rperc � ruv� / cpercaL3

QCD � cuvL2
QCD ; �39�

where cperc;uv are constants entering the expressions for
monopole densities (19) and (20). The data on the monopole
densities imply that the vacuum expectation value hjjj2i does
not have any quadratic divergence.

Of course, the following question immediately arises: how
can one explain the behavior ruv / 1=a of the density? The
answer is that such a dependence of the density of short
clusters on a is directly related to the fact that the monopoles
actually `live' on surfaces of dimension d � 2, not in the whole
space d � 4. Indeed, this is obvious already on dimensional
grounds.

Thus, the solution to the standard problem of the
Standard Model is that the monopoles are associated with
surfaces. As far as we can judge, this is a novel solution of the
fine tuning problem. At this moment, it is difficult to say
whether such a solution is universal.

5. Conclusion

We have briefly reviewed the lattice data that indicate a novel
picture of the vacuum in the Yang ±Mills theories in
Euclidean space ± time. Namely, there is evidence that there
exist thin lines (monopole trajectories) and thin surfaces (the
so-called vortices). The thickness is defined in terms of the
distribution of the non-Abelian action and is less than the
experimental resolution, that is, the lattice spacing a. In its
turn, the minimum accessible value of a is approximately
a � �3 GeV�ÿ1. As regards the average length of the trajec-
tories and the area of the vortices, they are independent of the
lattice spacing a (with high accuracy) and are measured in fm

and fm2 respectively. This coexistence of the two different
scales, Lÿ1QCD and a, in vacuum fluctuations can be called fine
tuning.

Moreover, we have argued that the fine tuning under-
stood in this way is actually identical with the phenomenon
first discussed in relation with the Standard Model, or more
precisely, with Higgs particles. In the case of the Standard
Model, the problem is how the mass of the scalar particle can
be much smaller than its inverse radius. In the case of the
monopoles, the solution to this standard problem of the
theory of scalar particles is that the monopoles are actually
associated with surfaces (vortices), rather than with the entire
four-dimensional space.

From the theoretical standpoint, the main conclusion is
that there is evidence of the existence of objects whose
description takes us beyond field theory, namely infinitely
thin surfaces. The theory of such objects is an open field.
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