
Abstract. Results of a recent supercomputer analysis of lattice
QCD with dynamical fermions are presented. Gluon fields
inside mesons and baryons with static (infinitely heavy) quarks
are described. The breaking, due to the creation of a quark ±
antiquark pair from a vacuum, of the string that couples quarks
into hadrons is discussed. The finite temperature QCD phase
transition is considered. The results obtained show that the
QCD vacuum behaves as a dual superconductor and that color

confinement is due to the formation of a dual analog of the
Abrikosov string.

1. Introduction

At present, analytical calculations in quantum chromody-
namics (QCD) are self-consistent only in the ultraviolet
region within the framework of perturbation theory, while
the most interesting problems such as, say, the development
of the theory of color confinement, computation of the
hadron mass spectrum, and other nonperturbative problems
have no analytical solutions following directly from the QCD
Lagrangian. It is well known that a physical quantity M
exhibiting the dimensionality of mass must depend on the
bare charge g of the theory in the limit of small g as follows:

M / exp

�
ÿ const

g2

�
: �1�

Since the dependence of M upon g is not analytical, it is
impossible to apply perturbation theory for calculating
quantities such as hadron masses. Only numerical computa-
tions by supercomputers permit us to obtain the dependence
(1) directly from the QCD Lagrangian. In spite of known
achievements in describing nonperturbative phenomena with
the aid of sum rules, the instanton vacuummodel, the method
of field correlators, and so on, it has not been possible to
obtain hadronmasses in the formof dependence (1). Any such
result would point to a significant development in field theory.
For instance, an analytical proof of the existence of a gap in
the spectrum of gluodynamics (of the nonzero mass of the
lightest excitation Ð the glueball) is one of the `problems of
the millennium', and a prize of one million dollars is to be
awarded for its resolution (for details see the Internet site
http://www.claymath.org/Millennium_Prize_Problems/).
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Thus, at present, a number of problems in quantum field
theory can only be resolved numerically. The numerical
method for investigation of lattice QCD has taken shape
very well and represents a rapidly developing field of study.
This approach is expected tomake possible the solution to the
following problems:
� to compute the hadron mass spectrum, the coupling

constant as, and the masses of light quarks;
� to predict the low-energy behavior of various matrix

elements, accounting for strong interactions;
� to predict masses of exotic states, glueballs, hybrids,

etc.;
� to draw the phase diagram of quark ± gluon matter in

the m ±T (chemical potential ± temperature) plane;
� to obtain exhaustive information on the mechanism of

color confinement and (if we are lucky) to develop a theory of
this phenomenon.

These problems are already being partially resolved
within the framework of the lattice approach: the mass
spectrum of the lightest hadrons coincides, within the
errors, with the experimental values (see Section 2.2), and
investigation of lattice theories in the Abelian projection has
permitted us to develop a model for color confinement (see
Section 3.1).

The results presented in this review have been obtained
during the past two years by the collaboration DIK (DESY-
ITEP-Kanazawa University) [1 ± 4]. The outline of the review
is as follows. The main definitions of lattice theory are
presented in Section 2. Section 3 is devoted to a description
of gluon fields inside ameson. The same fields are described in
Section 4 in the case of finite temperatures; discussed, also, are
string breaking due to the production of a quark ± antiquark
pair from a vacuum and the phase transition (crossover)
temperature. In Section 5, a description is presented of gluon
fields in baryons at zero and finite temperatures. Note that in
studying gluon fields in mesons and baryons it is convenient
to exclude the motion of quarks, so we consider mesons and
baryons composed of infinitely heavy quarks. The main
results of the papers discussed in this review are formulated
in Section 6.

2. Lattice theories

2.1 Main definitions
To perform numerical QCD calculations it is necessary to
pass from continuum theory in Minkowski space to lattice
theory in Euclidean space. To this end, Wick rotation is
performed, imaginary time is substituted for time, t! it, and
the generating functional Z of the theory (the Feynman
integral) becomes similar to a statistical sum:

Z �
�
exp

�
iSM�j�

	Dj! �
exp

�ÿ S �j�	Dj ; �2�

where SM and S are the actions in Minkowski and Euclidean
spaces, respectively. The similarity to statistical physics
becomes quite complete upon transition to discrete space-
time. Here, finite four-dimensional Euclidean space, 0 < x, y,
z, t4R, is dealt with, and coordinates are considered to
assume discrete values. Thus, one obtains a four-dimensional
lattice with sites at the points s � �x1; x2; x3; x4�,
14 xk 4L � R=a, with a being the lattice spacing. The
generating functional of the theory is now reduced to a

finite-dimensional integral

Z �
�Y

s

dj�s� exp�ÿ S �j�	 : �3�

Transfer from continuum integration to integration over
j�s� makes it possible to calculate quantum averages
numerically. The continuum limit corresponds to L!1
and a! 0, while in reality calculations are performed for
finite L and a, and systematic errors are estimated in a
standard way: by varying the number of lattice sites L4 and
the lattice spacing a.

For the QCD Lagrangian

L � 1

2g2
TrF 2

mn�x� ÿ
X
f

�cf�x��Dmgm �mf�cf �x� ; �4�

where cf,
�cf are the quark fields with flavor f, Fmn is the gauge

field strength tensor,Dm is the covariant derivative, gm are the
Dirac matrices, andmf is the quark mass, the definition of its
lattice analogue is ambiguous. Two requirements, to be
imposed on the lattice Lagrangian, are evident:
� gauge invariance;
� a correct (naive) continuum limit: the lattice Lagran-

gian must transform into the continuum Lagrangian (4), as
a! 0.

These two requirements are satisfied by an infinite
number of lattice Lagrangians. The most simple and most
natural form of lattice action was proposed by Wilson [5]:

S � SG
W � SF

W ; �5�
where

SF
W � a4

X
s

�c�s�c�s�

� Ka3
X
s; m

�c�s���gm ÿ r�Um�s�c�s� m̂�

ÿ �gm � r� U ym�sÿ m̂�c�sÿ m̂�� �6�

is the fermion part of the action for a single flavor, while

SG
W � b

X
P

�
1ÿ 1

3
ReTrUP

�
�7�

represents the action of the gauge fields, K is a parameter
determining the quark mass, and b � 6=g2 is the lattice
coupling constant. The `plaquette' matrix UP is constructed
in a standard way from link variables Um�s� � exp

�
iaÂm�s�

�
,

where Âm�s� is the SU(3) gauge field. The Wilson fermion
action tends toward a continuum limit more slowly than the
action of gauge fields:

SG
W ÿ!

a!0 1

2 g2

�
TrF 2

mn d
4x�O�a2� ;

SF
W ÿ!

a!0
�

�c�Dmgm �m�c d4x�O�a� : �8�

This disadvantage is removed in the `improved' action for
fermion fields, viz.

SF � SF
W ÿ

i

2
Kg a5cSW

X
s

�c�s� smnFmn�s�c�s� � �cM̂c ;

�9�
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where smn � �gm; gn�=�2i�, and the parameter cSW is determined
in a nonperturbative manner [6]. The action SF tends to a
continuum limit with an accuracy O�a2�, and precisely this
action was applied in the calculations presented in this review.

Numerical integration can only be performed over gauge
fields. Integration over fermions is performed analytically
resulting in�

DcD�c exp
�
�cM̂c

� � det M̂ ; �10�

and computer calculations must be carried out on an integral
of the form

Z �
�
DUm�s� exp

�ÿ S�Um�s��
	
; �11�

where S
�
Um�s�

� � SG
W�Um�s�� ÿ ln det M̂

�
Um�s�

�
, DUm�s� �Q

s;m dUm�s�, and dUm�s� is an integral over the Haar
measure of the SU(3) gauge group.

Below, we only consider lattice QCDwith u- and d-quarks
and their masses are assumed to be equal. Thus, lattice QCD
is characterized by parameters b and K, which determine the
lattice spacing and quark mass. Actually, calculations are
performed on lattices with a finite number V of sites; in the
case of a symmetric lattice V � L4, where L is the number of
sites along one direction.

2.2 Lattice sizes
and cost of simulations
The computation of integrals such as given by formula (11) in
the case of real QCD is quite a difficult task. Supercomputers
are utilized, and there exists a large community of physicists
who invent diverse algorithms, based on the Monte Carlo
method, for calculating integrals (11) as fast as possible. The
discussion of these algorithms (their description is given in
review [7]) goes beyond the scope of the present review. We
shall only note that for numerical calculations the integral in
formula (11) is replaced by a sum over configurations of the
gluon field, which are generated with the weight exp�ÿSeff�.
Now, why are supercomputers, even up to the fastest ones,
needed for lattice simulations? The following simple argu-
ments provide an answer. Let us estimate the lattice size
required for performing the real QCD calculations. If we wish
to describe the structure of a baryonwith an accuracy of 10%,
then the linear dimension of the baryon must be on the order
of ten lattice spacings. But in QCD there exist p-mesons that
are approximately 10 times lighter than baryons, and about
100 lattice spacings will correspond to them. Therefore, the
minimum number of sitesV � L4 � 1004. In the case of QCD
calculations on a lattice of volumeL4, integrals of multiplicity
32L4 over gauge fields have to be computed, while the fermion
determinant being calculated is of a matrix of dimension
12L4 � 12L4. Moreover, the cost of simulations required
increases more rapidly than the number of degrees of
freedom, so the semiphenomenological expression for QCD
calculations with two light quarks has the following form [8]:

volume of calculations � 2:8

�
Nconf

1000

��
mp=mr

0:6

�ÿ6
�
�

R

3 fm

�5�
1=a

2 GeV

�7

teraflop year ; �12�

where Nconf is the number of gluon field configurations, and
mp andmr are the p-meson and r-meson masses, respectively

(the ratiomp=mr determines the quarkmass). For example, to
generate 100 configurations with parameters mp=mr � 0:6
(i.e., with a quark mass � 50 MeV), R � 3 fm, and
1=a � 2 GeV, 100 days of operation are required for the
computer with a performance 1 teraflop. Note the large
exponents in expression (12), thus indicating the rapid
increase of the cost of simulations occurring as the con-
tinuum or chiral limit is approached.

From relation (12) it follows that computer calculations in
lattice QCD with realistic parameters cannot be performed,
yet. Calculations are performed for large values of quark
masses (� 50ÿ100 MeV), when the p-meson is not light. The
obtained values of physical quantities are extrapolated with
the aid of chiral perturbation theory to realistic values of the
light quark mass (� 3 MeV). An example of such an
extrapolation is illustrated in Fig. 1a, from which it can be
seen that the relationm2

p / mq holds true within quite a broad
interval of quark mass variations. The hadron mass spectrum
in lattice QCD, obtained with the aid of a similar extrapola-
tion without invoking the dynamical quarks, is presented in
Fig. 1b. The real mass spectrum can be seen to be described
quite well, and it is to be noted that only information on the
QCD Lagrangian was actually input into the supercomputer.

Now a fewwords about the supercomputers used in lattice
calculations. The performance of the best supercomputers
increases exponentially with the year of production, as one
can see from Fig. 1c. All dedicated computers listed in this
figure, with the exception of the `Earth Simulator', are
intended for QCD lattice calculations. At present, the `Earth
Simulator' of the NEC company is the fastest computer, its
speed amounting to about 40 teraflops. Although this super-
computer is presently used in studies of global natural
phenomena, according to plans, lattice QCD calculations
are also to be performed in 2004. The results presented in this
review have been obtained with the serial supercomputers
ES40 (HP) of Humboldt University (Germany), SR-8000
(Hitachi) of the University of MuÈ nich (Germany), SX5
(NEC) of the University of Osaka (Japan), SR-8000 of the
research center KEK (Japan), as well as the first (and hitherto
sole) Russian supercomputer MVS 1000M. The last machine
was assembled in the year 2000 at the Joint Supercomputer
Center (Moscow) and comprises 768 Alpha21264A proces-
sors combined by the high-speed network Myrinet. Detailed
information on theMVS 1000M can be found on the Internet
(http://www.jscc.ru). At present (February 2003), this
machine occupies 74th place in the list of the fastest
computers in the world (http://www.top500.org/list/).

3. Gluon fields in a meson

In this section, the results are presented concerning studies of
fields inside a meson consisting of an infinitely heavy quark ±
antiquark pair. Thus, the quark and antiquark are considered
static, which allows us to investigate the string that causes
color confinement. For estimation of the influence of
dynamical (virtual) quarks, strings are considered both
within the full QCD1 and within the SU(3) gluodynamics.
The bare charge of the latter is chosen so as to provide for the
lattice spacings in both theories to be approximately equal to
each other. This permits us to consider the difference in the
results to be totally due to effects originating from the

1 For the sake of brevity, we call the Yang ±Mills SU(3) theory involving

quarks of two flavors with mass on the order of 100 MeV the `full' QCD.
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dynamical quarks. An introduction to the main definitions is
followed by a brief description of the structure of vacuum
fields and of the properties of the string that causes color
confinement.

3.1 Simulation parameters
and the maximal Abelian gauge
Calculations were performed for field configurations
obtained by the QCDSF and UKQCD collaborations [12].
A total of 5 different sets of parameters were used for the full
QCD, and 4 sets for QCD without virtual quarks (for
gluodynamics). The characteristics of the configurations are
presented in Table 1. The calculated results are convention-
ally expressed in terms of a `force parameter' r0 equal to
0.50(7) fm [13]. The continuum limit in the theory without
quarks is known to be established for those values of the bare
constant g, at which quantities exhibiting the dimensionality
of mass depend upon g as in formula (1). In the theory with
fermions, dealt with in this review, there are two parameters

Ð the bare charge g and the bare fermion mass m, and the
continuum limit is established at those values of g and m, for
which `lines of constant physics' are established in the gÿm
plane. In this case, all the dimensional quantities can be
expressed via the `force parameter' r0. The lines of constant
physics are established with good accuracy [12] for the action
with the parameters given in Table 1.

The present review deals, as a rule, with gauge fields in the
Abelian projection [14], i.e., data are given only for the
Abelian part of gluon fields. This procedure allows us to
reduce the statistical noise by several times, and it is precisely
for this reason that we have been able to investigate the
structure of mesons and baryons in detail. First, the gluon
fields are generated by the Monte Carlo method in accor-
dance with expression (11), then the maximumAbelian (MA)
gauge is fixed. This gauge was proposed in Ref. [15] for
checking the 't Hooft ±Mandelstam model of confinement
[16]. In this model, monopoles condense in a vacuum, which
results in squeezing of the electric fields of quarks into a tube,
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Figure 1. (a) Dependence of the square of p-meson mass, m2
p, upon the quark mass mq (the data are presented in lattice units), obtained by the UKQCD

collaboration [9]. (b) Hadronmass spectrum obtained by the CP-PACS collaboration [10] within QCDwithout invoking the dynamical quarks. Themass
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figure is taken from Ref. [11].
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similar to the dual Abrikosov string. The presence of the
string, in turn, results in a linear potential at large distances,
which provides for confinement. The 't Hooft ±Mandelstam
model of confinement was previously checked in SU(2)
gluodynamics [17]. In the present review, results are given
that confirm this model for lattice QCD.

Thus, we apply the MA gauge for calculating average
values in the Abelian projection. Fixing this gauge reduces to
maximization of the functional [15]

F�U � � 1

12V

X
s; m

���U 11
m �s�

��2� ��U 22
m �s�

��2� ��U 33
m �s�

��2�; �13�
where Uii

m are the diagonal elements of the matrix Um, with
respect to local gauge transformations of g�s�:
Um�s� ! Ug

m �s� � g�s�yUm�s� g�s� m̂�. We have made use of
the algorithm of `Simulated Annealing' [18] for fixing the
gauge. This method reduces to thermalization of the config-
urations fg�s�g in accordance with the distribution

p�g;U� � exp

�
F �Ug �
Text

�
: �14�

The external `temperature' Text decreases from a certain
initial value down to zero (in practice, down to the lowest
possible value). The algorithm applied is significantly more
efficient than the ordinary maximization by iterations.
Nevertheless, the problem of Gribov copies, which is present
in the gauge considered [19], is not fully resolved. However,
the systematic error that arises owing to this problem is not
large (� 3%) [1].

3.2 Abelian variables and monopole currents
After the MA gauge is fixed, the Abelian fields are extracted
from the lattice link variables Um�s� 2 SU�3� [15, 20]:

um�s� � diag
ÿ
u�1�m �s�; u�2�m �s�; u�3�m �s�

�
; �15�

where

u�l�m �s� � exp
�
iy�l�m �s�

�
; y�l�m �s� 2

�
ÿ 4

3
p;

4

3
p
�
: �16�

The variable um�s� is determined from the condition that��Tr �U ym�s� um�s����2 is maximized. The functional (13) is
invariant with respect to the gauge transformations

g�s� 2 U�1� �U�1�, i.e., gauge freedom is not fully fixed.
The Abelian variables um�s� play the part of gauge fields and
are transformed by the gauge transformations U�1� �U�1�:

um�s� ! g�s� um�s� gy�s� m̂� : �17�

The theory obtained upon fixing the gauge also exhibits Weyl
symmetry.

Monopole currents are determined in a standard way via
the plaquette angles y�l�P [21]:

k�l ���s; m� � 1

2p

X
P2C

y�l �P � f0;�1;�2g ; �18�

here, summation is performed over the oriented facets P of
the cube C, which is orthogonal to the direction m, while the
site �s is dual to the cube C. The plaquette angles y�l �P are
calculated in the conventional manner from the link variables
y�l �m and then subjected to a shift so as to satisfy the condition
[20]

X3
l�1

y�l �P � 0 : �19�

From condition (19) follows the relation

X3
l�1

k�l ���s; m� � 0 ; �20�

therefore, only two monopole currents are independent. It
should be emphasized that condition (19) does not violate the
Weyl symmetry. Law of conservation of monopole currents
holds valid for each color separately:X

m

Hÿm k
�l ���s; m� � 0 ; l � 1; 2; 3 ; �21�

where Hÿm is the lattice derivative.

3.3 Monopoles in the vacuum of quantum chromodynamics
The monopole currents k�l ���s; m� being conserved form
clusters [22] on the dual lattice. In Refs [22, 23], these clusters
were found to be divided into two classes in SU(2)
gluodynamics: `small' (ultraviolet) clusters of finite size in
units of the lattice spacing a, and `large' (infrared) clusters
that percolate through the entire lattice independently of its

Table 1. Configuration parameters.

b K mp=mr r0=a a, fm Lattice Number of
conégurations

Full QCD

5.20
5.25
5.29
5.29
5.29

0.1355
0.13575
0.1355
0.135
0.134

0.6014 (96)
0.595 (10)
0.7095 (70)
0.7565 (44)
0.8306 (26)

5.041 (40)
5.500 (60)
5.595 (83)
5.26 (7)
4.813 (45)

0.097 (1)
0.089 (1)
0.088 (2)
0.093 (2)
0.102 (2)

163 � 32

243 � 48

243 � 48

163 � 32

163 � 32

400
44
52
400
100

SU(3) gluodynamics

5.8
6.0
6.0
6.2

3.665
5.368
5.368
7.383

0.137 (2)
0.091 (1)
0.091 (1)
0.068 (2)

243 � 48

163 � 32

243 � 48

243 � 48

30
175
30
30
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size. The density of monopoles2 belonging to the infrared
clusters is subject to scaling, i.e., has a finite value in the
continuum limit [24]. The distribution of clusters over size3

for the full QCD is shown in Fig. 2a. One can see that the
distribution of infrared clusters on a large lattice (243 � 48) is
separated by a gap from the distribution of ultraviolet
clusters. On a smaller lattice (163 � 32) there is no clear
separation between the infrared and ultraviolet clusters
(Fig. 2b).

Figure 3 presents the monopole density

r � 1

12V

X
l;�s; m

�� k�l ���s; m��� �22�

versus the ratio of the p- and r-meson masses. This ratio
decreases with the quark mass.

The monopole density in the full QCD being larger than
in gluodynamics can be qualitatively explained as follows.
In Refs [25 ± 27], monopoles have been shown to be
correlated with instantons. On the other hand, the fermion
determinant leads to attraction between instantons and anti-
instantons, which increases as the quark mass decreases.
This causes the production of instanton ± anti-instanton

pairs, the total number of instantons and of anti-instantons
increases, and the monopole density must increase accord-
ingly. And most of the additional monopole trajectories
represent small closed paths around the instanton centers,
which turns out to be important for the explanation of the
monopole current asymmetry observed at a finite tempera-
ture (see Section 4.3).

3.4 Potential between heavy quarks
The principle of Abelian dominance [28] consists in the fact
that in the Abelian projection the physical quantities related
to the infrared properties of theory can be calculated with
high precisionwith the aid of operators constructed only from
Abelian variables, i.e., the averages hOinonAb and hOiAb,
namely

hOinonAb � 1

Z
�
exp�ÿ ~Seff�O�Um�DUm�s� ; �23�

hOiAb � 1

Z
�
exp�ÿ ~Seff�O�um�DUm�s� ; �24�

yield values for physical quantities, determining the infrared
behavior of the theory, which coincide with each other with
good accuracy. An example of such a physical quantity is
represented by the string tension. Thus, in calculatingAbelian
operators the linkmatricesUm�s� are replaced by the diagonal
ones, um�s�. The action ~Seff represents the QCD action
including the term fixing the gauge, and the logarithm of the
Faddeev ± Popov determinant. Integration in formulas (23)
and (24) is performed over the `fundamental modular region'
in accordance with the procedure for fixing the gauge
nonperturbatively [29]. Note that hOiAb depends on the
choice of Abelian gauge. At present, Abelian dominance has
been confirmed for gluodynamics in theMA gauge defined in
Section 3.3. In the present section we shall demonstrate the
principle of Abelian (and monopole) dominance using the
example of the static quark ± antiquark interaction potential.
The static potential is determined in the standard manner
from the Wilson loop. For example, the Abelian potential is
expressed in the form

Vab�r� � lim
T !1

hWab�r; T �i
hWab�r; T � 1�i ; �25�
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Figure 2. Distribution of monopole cluster lengths: (a) on the 243 � 48

lattice, b � 5:29, K � 0:1355; (b) on the 163 � 32 lattice, b � 5:29,
K � 0:135.

2 Concerning the monopole density, we apply the conventional terminol-

ogy. QCDvacuum ismagnetically neutral, and at eachmoment of time the

number ofmonopoles equals the number of antimonopoles. In discussions

of the monopole density it is the density of the monopole ± antimonopole

gas that is intended.
3 The total length of the lines of magnetic currents, composing the given

cluster, is called the size of the cluster.
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where

Wab�r; T � � 1

3
TrWC ;

WC �
Y
s2C

diag
ÿ
u�1�m �s�; u�2�m �s�; u�3�m �s�

�
; �26�

and C is a contour of size r� T . In practice, the limit T ! 1
in expression (25) is achieved with difficulty, so a `smearing'
procedure is applied for the space-like link variables um�s�.
This has permitted us to essentially improve the overlap
integral of the wave function of the state created by our
operator and the real wave function of the quark ± antiquark
pair and, already for T =a � 5, to obtain the asymptotic value
for the potential (25). The data for Vab�r� were fitted by the
function

Vab�r� � V 0
ab � sabrÿ aab

r
; �27�

where sab is the Abelian string tension, aab is the Abelian
Coulomb coefficient, andV 0

ab is the Abelian self-energy of the
static sources.

Figures 4a,b show the static potential for SU(3) gluody-
namics and for the full QCD. From Table 2 one can see that
Abelian dominance is fulfilled with good accuracy.

For a more detailed investigation of the role of mono-
poles, the Abelian link variables can be decomposed into
`monopole' and `photon' parts [30, 31]:

y�l �m �s� � y�l �mon
m �s� � y�l � phm �s� ; �28�

y�l �mon
m �s� � 2p

X
s 0

D�sÿ s 0�Hÿa m�l �am �s 0� ; �29�

where D�s� � Dÿ1�s� is the Coulomb propagator on the
lattice, and m

�l �
am �s 0� is the number of Dirac strings crossing

the �s; a; m� plaquette. The meaning of such a decomposition
lies in the fact that themonopole current (18) is expressed only
via y�l �mon

m �s�. From the monopole and photon fields, it is
possible to extract the monopole and photon contributions to
the Abelian potential. These contributions are presented in
Figs 4c, d for gluodynamics and for the full QCD. It turns out
that the monopole contribution provides for more than 80%
of the Abelian string tension, while the photon part of the
potential actually contributes nothing at all to s. All these
facts are in agreement with the monopole mechanism of color
confinement.
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Figure 4. Total and Abelian static potentials: (a) for SU(3) gluodynamics (b � 6:0); (b) for the full QCD (b � 5:29, K � 0:135). Decomposition of the

Abelian potential into the monopole and photon parts: (c) SU(3) gluodynamics, b � 6:0; (d) full QCD, b � 5:29, K � 0:135.

Table 2. Abelian and monopole tensions of a string and the monopole
screening length in full QCD and in SU(3) gluodynamics.

mp=mr sab=s smon=sab x=r0 sab=rx

0.6014 (96)
0.7095 (70)
0.7565 (44)
0.8306 (26)

ì

0.89 (4)
0.95 (3)
0.97 (6)
0.97 (6)
0.83 (3)

0.80 (4)
0.87 (3)
0.83 (8)
0.88 (5)
0.84 (3)

0.484 (19)
0.466 (26)
0.521 (17)
0.482 (17)
0.662 (34)

2.1 (2)
2.6 (3)
2.3 (2)
2.5 (2)
3.2 (3)

January, 2004 Color conénement and hadron structure in lattice chromodynamics 23



3.5 Screening of a magnetic charge
If the model of a vacuum as a dual superconductor is correct,
then the monopole charge should be screened by the
exponential exp�ÿr=x�, where x is the inverse mass of the
dual photon. Indeed, we observe such a screening by
measuring the magnetic flux through a sphere of radius r
surrounding a magnetic monopole. In a finite volume, the
flux should not fall exponentially, but as

F�r� � F0 exp

�
ÿ L

2x

�
sh

Lÿ 2r

2x
; �30�

where L is the lattice size. Fitting the parameters F0 and x on
the basis of numerical data yields the values for x given in
Table 2. An example of fitting numerical data with the aid of
expression (30) is shown in Fig. 5.

The dependence of x upon mp=mr enables us to explain
qualitatively why the string tension remains practically intact
in the full QCD, with a monopole density r exceeding the
value obtained in gluodynamics. In the model of a monopole
gas without interaction [23], one finds s / rx. FromTable 2 it
follows that the density r increases with the ratio mp=mr,
while the inverse dual-photon mass x decreases, which
explains why the string tension does not change.

3.6 Color string, observables
Investigation of the string between a quark and antiquark in
SU(2) gluodynamics in the MA projection reveals that the
monopole current and the electric field satisfy the dual
Ampere law [32 ± 34]. Moreover, they obey classical equa-
tions of motion for a dual superconductor (the dual Abelian
Higgs model) [35]. In this section we present our results [1]
which demonstrate the dual Ampere law to be obeyed for the
averages hEi and hki in the vicinity of a string providing color
confinement in the full QCD, and describe the structure of
this string in terms of Abelian variables.

To calculate the average magnitude of the Abelian
operator

O�s� � diag
�O�1��s�;O�2��s�;O�3��s�� �31�

in the field of a string, one computes the following correlators


O�s��W � 1

3

hTrO�s�TrWC
�

hTrWCi ÿ 1

3



Tr O� : �32�

This expression holds valid for C-even operators such as the
action density and themonopole density. In the case of C-odd
operators, such as the electric field and the monopole current,
averages of the following type are considered:
O�s��W �



Tr �O�s�WC�

�
hTrWCi : �33�

In expressions (32) and (33), the AbelianWilson loopWC [see
Eqn (26)] corresponds to a rectangular contour r� T . When
the string profile is measured, the static quarks are fixed at
points x � 0 and x � r. The operatorO�s� is situated either in
the xy, z � 0 plane, and t � T =2, or in the xz, y � 0 plane,
and t � T =2. The distance from point s to the line connecting
the static quarks will be denoted by r?.

To calculate the action density rA, one applies the
operator

O�s� � b
3

X
m> n

diag
�
cos y �1�mn �s�; cos y �2�mn �s�; cos y �3�mn �s�

�
;

�34�
where y�l�mn�s� are the Abelian plaquette angles constructed
from the link angles y�l�m �s� (16). Note that the action densities
in Euclidean space and in Minkowski space are opposite in
sign [32, 33].

The operator for calculation of the electric field is
obtained from the plaquette angles y�l�mn�s� precisely in the
same way as for the SU(2) gauge group [33]:

Oj�s� � diag
ÿ
iy�1�4j �s�; iy�2�4j �s�; iy�3�4j �s�

�
; �35�

and the monopole current operator is defined by the
expression

O�l �j ��s� � 2pik�l ���s; m� : �36�

The localmonopole density r��s� is determinedwith the aid of
the operator

O��s��1

4

X
m

diag
��� k�1���s; m���; �� k�2���s; m���; �� k�3���s; m����:

�37�

3.7 Structure of an Abelian string
In this sectionwe describe the structure of a string in full QCD
and in SU(3) gluodynamics for a distance of about 1 fm
between the probe quarks.

Figures 6a, b present the average action density corre-
sponding to operator (34). Fitting the profile of the action
density (Fig. 6c) with the function

rA

�
r?; x � r

2

�
� const exp

�
ÿ r2?

d2

�
�38�

yields the value d � 0:29�1� fm both for QCDwith dynamical
quarks and for SU(3) gluodynamics.

Figures 7a, b depict the electric field of a string. One can
readily see that within a narrow region around the axis
connecting the quark and the antiquark, the field is directed
along this axis, as expected for a string giving rise to color
confinement. The profile of the longitudinal electric field
component in an Abelian string is displayed in Fig. 7c.
There exists a small difference in these profiles for SU(3)

0 1 2 3

0.2

1.0

5.0

b � 5:29; K � 0:135

b � 6:0

r=r0

F�r�

Figure 5. Fitting numerical data for the field flux of a magnetic charge.
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gluodynamics and for QCD with dynamical quarks. Fitting
the data for r? > 0:25 fm with the function

Ex � const exp

�
ÿ r?

l

�
�39�

yields the penetration depth l � 0:15�1� fm for full QCD, and
l � 0:17�1� fm for SU(3) gluodynamics.

Figure 8 presents the monopole density corresponding to
operator (37) in a string connecting the probe quark and
antiquark. The monopole density outside the string is about
twice as large in the case of QCDwith dynamical quarks than
in the case of SU(3) gluodynamics, which is in agreement with
Fig. 3. At the center of the string, the monopole density is
small in accordance with the monopole mechanism of color
confinement: the Higgs field condensate is suppressed inside
the Abrikosov ±Nilsen ±Olsen string. In this same model, the
monopole current and the electric field should satisfy the dual
Ampere law

k � H� E : �40�

The monopole currents in the plane perpendicular to the
string connecting the probe quark and antiquark are
depicted in Figs 9a, b. It can be seen that the current twists
around the center of the string, and only the current
component perpendicular to the radius differs from zero.
Figures 9c, d present the numerical data for the left-hand
and right-hand parts of formula (40) inside the string
produced by the probe quark and antiquark. From these
figures we notice that the dual Ampere law works well both
in the full QCD and in SU(3) gluodynamics. In the case of
SU(2) gluodynamics, the dual Ampere law is obeyed with
an even higher precision [33 ± 35]. The fact itself that the
dual Ampere law holds true inside the string responsible for
confinement is essentially nontrivial. It is probably a
consequence of Abelian fields in the gauge considered play
an important part in the color confinement effect, and this
phenomenon may serve as a starting point for developing
the theory of confinement.

3.8 Long strings
If in full QCD the probe quark and antiquark are separated
by a large distance, then the string in between them will
disrupt, owing to the production of a quark ± antiquark pair
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from the vacuum. In the present review we consider virtual
quarks of mass � 100 MeV, and in this case the distance at
which the string is expected to disrupt is estimated at a level
of 1.2 fm. Figure 10 shows the electric field of a string on a
243 � 48 lattice for r=a � 18, which corresponds to a string
length of 1.6 fm. To reduce the statistical noise, the electric
field was extracted from the monopole part of the link
variables. In spite of the large length of the string, no signs
of its breaking are seen. A possible explanation of this fact
is the following [36 ± 40]. The state created by the operator
of the Wilson loop overlaps very little with the state
corresponding to a broken string; the contribution of the
latter state is significant only for such T that satisfy the
inequality exp

ÿÿ 2mSL�r� T �
�
4 exp�ÿsrT �, where mSL is

the energy of the meson produced by a sea quark and the test

static quark, without considering the self-energy of a static
quark. This estimation gives T 4 3 fm for r � 1:5 fm [38]. In
lattice units T � 3 fm corresponds to T =a � 34, but we could
not takemore than T =a � 10, owing to the rapidly decreasing
signal-to-noise ratio. Thus, observation of the breaking of a
string on a lattice turns out to be a very difficult task.
However, in Section 4.2 it will be shown that at a finite
temperature (but below the phase transition temperature, i.e.,
in the confinement phase) string breaking can actually be seen
in the results of numerical simulations.

Fitting the action density profile of a long string with the
aid of formula (38) yields d � 0:30�3� fm; approximately the
same width was obtained, also, for r � 1 fm. This is quite a
surprising result, since string models with the effective
Nambu ±Goto action predict broadening of the string as the

ÿ16ÿ12ÿ8 ÿ4 0 4 8 12 16 ÿ8
ÿ4

0
4

8

1.5

2.0

2.5

y

x

a

ÿ16ÿ12ÿ8 ÿ4 0 4 8 12 16 ÿ8
ÿ4

0
4

8

0.5

1.0

1.5

y

x

b

Figure 8.Monopole density r��s� r 30 in a string in full QCD (a), and in SU(3) gluodynamics (b).
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distance r increases [41]. We note that no string broadening
was also found in SU(2) gluodynamics [42].

4. Finite temperatures

An increase in temperature in SU(3) gluodynamics results in a
first-order phase transition which separates the color charge
confinement phase (low temperatures) and the free-color
phase. In this model, the order parameter of the phase
transition at finite temperatures is the fundamental Polyakov
loopwhich is defined as the product of link variablesU4 along
the straight path closed due to the boundary conditions:

L�x� �
YLt

t�1
U4�x; t� : �41�

The nonzero value of an average Polyakov loop, observed in
the high-temperature phase, points to global Z(3) symmetry
breaking. The Polyakov loop serves as an order parameter
only for the model without dynamical quarks, i.e., in the case
of infinitely large quark masses. In the opposite limit of zero
quark masses (i.e., in the QCD chiral limit), it is the chiral
condensate h�cci that serves as the order parameter. The
order of the phase transition depends on the number of
massless quarks: the chiral phase transition in QCD with
three massless quarks is a first-order transition, while in the
case of two quarks no phase transition occurs and, instead of
a phase transition, one observes a so-called soft crossover
(often termed a `continuum phase transition'). The properties

of a phase transition in real QCD are determined by two light
(u and d) and one heavier (s) quarks, while the remaining
quarks are too heavy to exert a noticeable influence. In the
case of nonzero and finite quarkmasses, neither the Polyakov
loop nor the chiral condensate are, strictly speaking, the order
parameters. Numerical results, however, show that the
susceptibilities of both order parameters can be used for
determining the transition point [43]. In Sections 4.1 ± 4.3,
we shall deal with the numerical results for the critical
temperature, the parameters of the static interquark poten-
tial, and the properties of monopoles at finite temperatures,
obtained by us in Refs [2, 3].

4.1 Critical temperature
One of the simplest operators describing color confinement-
deconfinement transition is the average Polyakov loop (41).
As already discussed at the beginning of Section 4, the
quantum average of this operator is not a rigorous order
operator but, nevertheless, this quantity presents a certain
interest. The quantum averages for various types of Polyakov
loops are shown in Fig. 11a.

The non-Abelian Polyakov loop hLi, as well as the
Abelian, monopole, and photon components presented in
Fig. 11a, are seen to exhibit no jumps. The Polyakov loops
are small in the deconfinement phase (small K) and
gradually increase with the parameter K, which corresponds
to penetration into the depths of deconfinement phase. The
contribution of photons to the Polyakov loop is practically
insensitive to the phase transition, contrary to the Abelian
and monopole contributions. It may also be noted that in
the case of QCD, like in the theory without fields of matter,
the monopole and photon contributions to the Abelian loop
factorize: hLAbi � hLmonihLphi. These properties of the
Polyakov loop averages indicate that precisely monopole
degrees of freedom are essential (i.e., precisely these degrees
of freedom carry nonperturbative information) for a phase
transition, while the photon degree of freedom is totally
perturbative.

The next step consists in determination of the critical
value of the parameter K (further denoted by Kc). The simplest
method for finding Kc consists in determining the maximum
numerical value of the Polyakov loop susceptibility w, where
it is correctly reasoned that w � hL2i ÿ hLi2. In the non-
Abelian case, Kc � 0:1344�1� at b � 5:2, and Kc � 0:1341�1�

Figure 10. Monopole part of the electric field of a string, obtained on

243 � 48 lattice for the Wilson loop on a contour r � 1:6 fm, T � 0:9 fm.
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for b � 5:25, according to Fig. 11b. The critical values of the
parameter K correspond to certain critical temperatures which
can be obtained with the aid of the interpolation formula
presented in Ref. [44]: Tcr0 � 0:54�2� for b � 5:2, and
Tcr0 � 0:56�2� for b � 5:25. For estimation of the tempe-
rature in physical units, one can use the value of 1=r0�
394MeV, for which one obtains Tc � 213�10� MeV and
Tc � 222�10� MeV at b � 5:2 and b � 5:25, respectively. By
determining the ratio between the meson masses at these
critical points [44], mp=mr � 0:78 and 0.82, it is possible to
derive the dependence of the critical temperature upon
mp=mr.

In Figure 12, our results for the transition temperature,
determined by the maximum of susceptibility, are presented
together with the results of Refs [45] and [46]. For calculation
of the ratio Tc=

���
s
p

, the phenomenological value���
s
p � 425 MeV was employed. From the figure one can see
that the results of all groups are in good agreement with each
other.We note that the calculations presented inRefs [45] and
[46] were performed with another (larger) lattice spacing.
Therefore, fromFig. 12 it follows that the critical temperature
is practically independent of the lattice spacing. The Abelian,
monopole, and photon susceptibilities are given in Fig. 11b
(for one value of the lattice coupling constant b � 5:2). It can
be emphasized that the Abelian andmonopole susceptibilities
exhibit a maximum at one and the same value of the
parameter K, which, in turn, coincides with the peak of non-
Abelian susceptibility, also shown in Fig. 11b. We point out
that the monopole susceptibility exceeds the Abelian one by
an order of magnitude, while the Abelian susceptibility is
much larger than the non-Abelian one (the difference, here, is
also approximately one order of magnitude). The photon
susceptibility remains practically intact at the critical tem-
perature, as was to be expected. These results once again
confirm the fact that the monopole degrees of freedom are the
ones most sensitive to phase transition.

4.2 Potential between heavy quarks at a finite temperature
The most evident effect due to accounting for dynamical
quarks consists of the breaking of a chromodynamical string
stretched between a quark and antiquark, if they are at a
sufficiently large distance from each other. One of the most
serious problems in studies of string breaking at zero
temperature is the small overlap of the `broken' state and

the state created by the Wilson loop, as already discussed in
Section 3.8. The situation is totally different at a nonzero
temperature, when the Polyakov loops can be utilized for
measuring the potential. In this case, the overlap of the
`broken' state and the state produced by the correlator of
Polyakov loops is on the order of unity, which permits us to
explicitly see the effect due to the breaking of the string. The
potential V�r;T� between the heavy (static) quarks is
determined with the aid of the correlator of Polyakov loops
as follows:

V�r;T� � ÿ ln

�
1

9
LxL

y
y

�
� C ; �42�

where the constant C includes the self-energy of static quarks
and an entropy contribution. At sufficiently large distances,
the correlator of Polyakov loops factorizes, so that

hLxL
y
yi !

��hLi��2; jxÿ yj ! 1 ; �43�

and jhLij2 6� 0, since the global Z�3� symmetry is broken
owing to the presence of dynamical fermions. It should be
emphasized that the potential in expression (42) is a potential
averaged over color. It is related to the singlet and octet
potentials by the relationship [47]

exp

�
ÿ V�r;T�

T

�
� 1

9
exp

�
ÿ Vsing�r;T�

T

�
� 8

9
exp

�
ÿ Voct�r;T�

T

�
:

String breaking at nonzero temperatureT > 0 in theQCD
low-temperature phase was studied by DeTar et al. [48].
While discussing the interquark potential, it is appropriate
to examine the spectral representation for the correlator of
Polyakov loops [49]:



LxL

y
y

� �X1
n�0

wn exp

�
ÿ En�r�

T

�
: �44�

As T! 0, we can see that only the lowest state contributes to
the potential, V�r; 0� � E0�r� (with an accuracy up to a
certain constant). On the contrary, the potential V�r;T� for
T > 0 includes contributions from all sorts of states.

At zero temperature, the singlet potential can be described
by the string model only up to a certain distance Rbr between
the static quarks. At distances exceedingRbr, the string state is
no longer the ground state, and it is substituted by the so-
called `broken string state' or, in other words, by the state of a
pair of mesons composed of a heavy and a light (anti)quark.
Thus, at low temperatures only two states in the spectrum are
significant, and each of them serves as the ground state at
certain distances. We have suggested [2] that at all tempera-
tures below the critical temperature the correlator of Pol-
yakov loops can be described with good precision with the aid
of these two statesÐ the string state and the two-meson state.
In the calculations performed inRef. [2], the singlet part of the
potential was not singled out, i.e., the contribution of the
octet potential was considered to be negligible.

Thus, we consider a two-exponential form for the
correlator of Polyakov loops, namely

1

9
hLxL

y
yi � exp

�
ÿ V0 � Vstr�r;T�

T

�
� exp

�
ÿ 2E�T�

T

�
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Figure 12.Critical temperature of the phase transition. The data presented

by triangles were obtained in Ref. [2], by squares in Ref. [45], and by the

circle in Ref. [46].
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where the string potential Vstr is represented in the form

Vstr�r;T� � ÿ 1

r

�
aÿ 1

6
arctan�2rT�

�
�
�
s�T� � 2T 2

3
arctan

1

2rT

�
r� T

2
ln�1� 4r2T 2� : �46�

Expression (46) was derived by Gao [50]. The string potential
(46) includes the contributions from fluctuations of the
chromodynamical string (the Casimir energy) stretched on
static quark trajectories at a finite temperature T. In this case,
the coefficient a is fixed: a � p=12. However, this form of
potential does not take into account ordinary Coulomb
interaction which may modify the first term in the right-
hand side of equation (46). Therefore, by analogy with
Ref. [51], we have considered another value of this para-
meter, namely, a � 0:33. As to the effective quark massm�T�,
it is determined by the exponent of the second term in the
right-hand side of equation (45) after subtraction of the self-
interaction energy:

m�T� � E�T� ÿ V0

2
: �47�

Our numerical calculations have shown that the static
potential between a quark and an antiquark may be quite
accurately described by the two-exponential formulas (45),
(46). Examples of fittings are presented in Fig. 13a for
T=Tc � 0:87 and 0.98 (here, data were used for b � 5:2).
Also presented in this figure is the asymptotic value of the
potential Vinf � ÿ2T lnhLi. The potential is seen to tend
toward its asymptotic value at maximum achievable values
of the interquark distance.

The string tension and the effective quark mass obtained
by fitting the non-Abelian potential are presented in
Figs 14a, b. The string tension for gluodynamics [52] is
shown by the shaded region. From these figures we notice
that the values of the ratio s�T�=s�0� in the theory with
dynamical fermions lie somewhat higher than the respective
values in the theory without fermions; however, the final
conclusion on the relation between these quantities cannot be
drawn yet owing to the quite large statistical and systematic
uncertainties in our findings. Our values of the effective quark
mass are higher than those obtained by Digal et al. [53] on the
basis of numerical results taken from Ref. [43]. This

distinction is, probably, explained by QCDwith three flavors
having been studied in Ref. [53], while we consider the theory
with two flavors.

Having determined the parameters of the potential, we
can calculate the distance Rbr at which the chromodynamical
string breaks. The distance Rbr is determined by the equality
between the first and second terms in the right-hand side of
equation (45):

Vstr�Rbr;T� � 2m�T� : �48�
This relation is illustrated in Fig. 13b, in which the energies
are given of the string and of the two-meson states. The
distance at which the energy levels intersect corresponds to
Rbr.

The dependence of the distance Rbr upon temperature is
depicted in Fig. 14c. This distance decreases as the tempera-
ture increases, but at the critical temperature T � Tc the
distance Rbr does not equal zero.

4.3 Monopole dynamics
One of the most important characteristics of monopoles is the
average density r of monopole trajectories, determined by
equation (22). Figure 15a shows the monopole density for
pure gluodynamics and for QCD. The data for pure
gluodynamics were obtained on a lattice of the same size as
that for the theory with fermions. As can be seen from
Fig. 15a, the monopole density in the theory with dynamical
fermions is significantly higher than in the theory without
fermions, which is in agreement with the findings at zero
temperature.

Another interesting characteristic of monopoles consists
in the asymmetry of monopole currents, which is determined
as follows:

Z � rt ÿ rs
rt � rs

; �49�

where rt and rs are the densities of the time and space
magnetic currents, respectively:

rt �
1

3Nt N 3
s

DX3
a�1

X
s

��ka4�s���E ;
rs �

1

9Nt N 3
s

DX3
a�1

X
s

X3
i�1

��kai �s���E : �50�
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Figure 13. (a) Interquark potential with fitting curves forT=Tc � 0:87 and 0.98, and the respective values ofVinf; (b) energies of the string and two-meson

states and Vinf for T=Tc � 0:87.
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The meaning of the quantity Z is rather simple: if all the
currents are static, then Z � 1, while if the monopole
distribution is isotropic, then monopole currents exhibit no
asymmetry and Z � 0. It turns out that in the theory with
fermions the asymmetry Z equals zero in the color confine-
ment phase, and it becomes nonzero above the critical point
(Fig. 15b). A similar behavior of Z is also observed in
gluodynamics, where the monopoles become static in the
limit of high temperatures. It should be emphasized,
however, that the enhancement of Z with temperature
proceeds significantly more slowly in QCD than in
gluodynamics.

The high monopole density in QCD and the asymmetry
properties of monopole currents can be explained by the

production of strong local quantum fluctuations in a vacuum
due to the presence of the fermion determinant. Such
fluctuations result in the formation of monopole loops
(trajectories), while their local nature renders the loops
short. The latter property results in symmetry between the
space and time components of the monopole current in these
monopole loops, since their size is small as compared with the
inverse temperature (i.e., the size of the lattice in the time
direction). Thus, the total monopole density turns out to be
higher in QCD than in gluodynamics. Here, owing to the
isotropy of short monopole loops, the difference rt ÿ rs
varies to a lesser degree than the sum rt � rs, which is in
accordance with the smaller asymmetry Z in QCD as
compared with its values in gluodynamics.

Another reason for the high monopole density in QCD
may lie in the production of instanton ± anti-instanton pairs.
This phenomenon has already been discussed at the end of
Section 3.3.

5. Investigation of baryon structure

In this section, string structure in a system of three static
quarks at zero and nonzero temperatures is discussed.
Investigation into the system of three static quarks on a
lattice is important for obtaining information on the baryon
structure. Until recently there was no answer to the question
of whether true three-particle interaction (corresponding to
the Y-like configuration of gluon fields) exists, or the
interaction at large distances is the sum of two-particle
interactions (D-shaped string) [55 ± 59]. Certain lattice results
were interpreted in favor of the D-configuration [56, 57],
while, at the same time, other results supported the Y-shape
hypothesis [58, 59]. Such a contradiction has existed for a long
time owing to the difference between the predictions of these
two hypotheses for the baryon potential being quite small,
while high-precision lattice calculations are rendered difficult
because of the rapid increase in the potential with the distance
between the quarks. Therefore, it seems expedient to measure
the gluon field distribution inside the baryon directly. It must
be noted that not long ago the results were obtained for the
baryon potential and the field distribution inside the baryon
in the dual AbelianHiggsmodel as amodel of aQCDvacuum
[60, 61] andwith the aid of themethod of field correlators [62].
These findings point to the Y-like configuration of gluon
fields.

5.1 Observables
Wehave studied the configuration of Abelian gluon fields in a
three-quark system after fixing the MA gauge [4]. Utilizing
Abelian variables reduces the statistical errors significantly,
and since the investigation of the meson configuration has
confirmed the existence of Abelian dominance after the MA
gauge is fixed (see Section 3), one can count on the results,
discussed in this section and obtained with Abelian operators,
to correctly describe a non-Abelian baryon string. Our aim
also includes comparison of the results obtained on a lattice
with the predictions of the Landau ±Ginzburg dual model
[60, 61].

The translation of a baryon from point A to point B is
described by the operator (the baryon Wilson loop [57, 59])

W3q � 1

3!
ei j kei

0 j 0 k 0Ui i 0
G1
Uj j 0

G2
Ukk 0

G3
; �51�
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Figure 14. Plots of string tension (a), effective quarkmass (b), and distance

Rbr between static quarks at which the string stretched between them

breaks (c) versus temperature.
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where UG �
Q

l2G Ul is the product of link matrices along
the path G, and the trajectories of (infinitely heavy) quarks,
connecting points A and B (Fig. 16a), are denoted by Gk.

The energy of the ground state of a baryon (the overall
interaction potential of three quarks) is given by

V�x1; x2; x3� � ÿ 1

T lim
T !1

W3q : �52�

The Abelian baryonWilson loop is expressed via the Abelian
link variables um�s�, so that

WAb
3q �

1

3!

��e i j k��u�i �G1
u
� j �
G2

u
�k�
G3
; �53�

by analogy with the non-Abelian loop (51). Local observa-
bles describing the baryon string are defined as the averages
of the respective operators in the presence of the Wilson
loop, which is similar to their definition in the case of the
quark ± antiquark system. For C-even observables, such as
the action density, the averages are defined precisely in the
same way by substitution of the baryon loop for the
ordinary Wilson loop. In the case of C-odd observables,
for example, the electric field, the average is determined as
follows [4]:


O�s��
3q
�

�1=3!�jei j kjO�i ��s�u�i �G1

u
� j �
G2

u
�k�
G3

�
hWAb

3q i
: �54�

At nonzero temperature, the product of three Polyakov loops
is used, instead of the Wilson loop:

PAb
3q �

1

3!

��e i j k��u�i �4 �x1� u� j �4 �x2� u�k�4 �x3� ; �55�

where

u
�i �
4 �xk� �

YT
t�1

u
� i �
4 �t; xk� �56�

is an Abelian Polyakov loop. The averages, undergoing
substitution of PAb

3q for WAb
3q , are determined just like in the

case of zero temperature.

5.2 Static potential and string structure
in a three-quark system at zero temperature
Figure 16b demonstrates the baryon potential as a function of
LY Ð the minimum length of a baryon string exhibiting the
Y-shape [59]. The solid curve corresponds to the potential
fitted with the use of data for a configuration with equal
distances between the quarks. In the case of such configura-
tions, one has jri ÿ rjj � LY=

���
3
p

for all pairs i, j of quarks, and
it is possible to apply a function of the following form for
fitting:

V�LY� � ÿ 3
���
3
p

e

LY
ÿ sLY � V0 : �57�

The fitting yields the value 0.038(1) (in lattice units) for the
Abelian string tension, which amounts to 83(3)% of the non-
Abelian string tension [59]. This result points to the existence
of Abelian dominance in the baryon system. It is expected
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Figure 15. Plots of monopole density (a) and asymmetry of monopole currents (b) versus temperature.
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that the ratio between the Abelian and non-Abelian string
tensions increases in the continuum limit, since such an
enhancement has been revealed in SU(2) gluodynamics [63].
By performing a similar analysis for the full QCDwe obtained
the value 0.039(1) for the Abelian string tension, which
coincides, within the limits of statistical error, with the result
obtained in SU(3) gluodynamics.

Figure 17a shows the Abelian electric field in a three-
quark system. The color index of the electric field operator in
equation (54) coincides with the color index of the quark
situated at the right bottom of Fig. 17a. This quark is clearly
the source of color electric field flux. The flux is divided into
two equal parts at the center of the baryon, each of which is
absorbed by the other two quarks. The behavior of the electric
field flux is presented schematically in Fig. 17b. The mono-
pole and photon components of the Abelian potential are
presented in Fig. 18. From this figure it follows that the
monopole part of theAbelian gluon field is responsible for the
linear potential, as in the case of quark ± antiquark interac-
tion.

The Abelian action density in the full QCDmodel is given
in Fig. 19a. Three peaks corresponding to the positions of the

static quarks and the string indicating color confinement can
be noticed in the Abelian density. An important observation
is the fact that at the center of the configuration there is a clear
peak, which points to the Y-shape of the baryon string. In the
photon component of the Abelian action density only peaks
corresponding to sources are seen, while the monopole
component fully reproduces the structure of the baryon
string, including the peak at the center.

A similar picture is also observed in Fig. 20a, where the
Abelian electric field and the corresponding monopole and
photon components are depicted. The photon part is in
qualitative agreement with the Coulomb field, while the
monopole part shows no traces of sources. From Fig. 20b it
can be noticed that in the plane perpendicular to the flux there
exists a solenoidal magnetic current. Thus, the same scenario
of color confinement is observed in a three-quark system as in
a quark ± antiquark pair [3]. Namely, the Coulomb field of
sources induces in the QCD vacuum a solenoidal magnetic
current. This current, in turn, induces an electric field having
the shape of a string with Y-geometry and reducing the
Coulomb field of sources in the space region outside the
string. The results obtained are in agreement with the
predictions of QCD vacuum properties following from the
Landau ±Ginzburg dual model [60, 61, 64].

a

b

Figure 17. (a) Color electric field, and (b) its schematic image.
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Figure 19. Abelian action density in a three-quark system in full QCD at

T � 0 (a), and at T � 1:25Tc (b)
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The results discussed so far were obtained within the
framework of full QCD. Our results for the Abelian action
density in SU(3) gluodynamics are in qualitative agreement
with the findings for the full QCD. Therefore, it is natural to
assume the production mechanism of a string with a Y-shape
to be the same both in QCD and in SU(3) gluodynamics.

5.3 Baryon structure at nonzero temperature
In this section we analyze the results obtained by us for
magnetic currents and electric fields inside a baryon in the full
QCD at nonzero temperature. Calculations were performed
on a nonsymmetric 163 � 8 lattice. It is known that at a
temperature above the critical temperature the string and

solenoidal magnetic current in a quark ± antiquark system
vanish, and the Abelian electric field becomes a Coulomb
field 4. This effect was observed both in gluodynamics [65] and
in full QCD [3, 66]. We have measured the Abelian baryon
potential and have revealed that, as was to be expected, it
increases linearly 5 as T < Tc, and rapidly smooths out for
T5Tc.
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Figure 20. (a) From left to right: Abelian, monopole, and photon components of the electric field; (b) Abelian electric field and solenoidal magnetic

current; (c) color electric field (upper row) and solenoidal magnetic current (lower row) at (from left to right) T � 0:87Tc, T � Tc, and T � 1:25Tc. The

results were obtained within the full QCD.

4 At present, numerical data do not permit us to distinguish Coulomb and

Yukawa fields in a three-quark system unambiguously.
5 The potential should first start to smooth out and tend toward a constant

owing to the production of quarks from the vacuum at the distances

exceeding the ones shown in the figure.
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Figure 20c displays the monopole component of the
electric field and the magnetic current in the plane orthogo-
nal to the flux. It is seen that for T < Tc the behaviors of both
the electric field and the magnetic current closely resemble the
behaviors of the respective quantities at zero temperature
(Figs 20a, b). It should be noted that the operatorPAb

3q applied
at finite temperature, unlike the operator WAb

3q , has no
Y-shaped connection. This stresses the fact that the Y-shape
of the baryon structure is not related to the shape of the
operator used for creating a three-quark state.

For a temperature T > Tc, the solenoidal magnetic
current and the monopole component of the electric field
have been discovered to vanish. As is seen from Fig. 19b,
the Abelian action density has only three peaks in the
absence of a string connecting the quarks. This picture
complies with color deconfinement in the high-temperature
phase.

6. Conclusions

The following results have been dealt with in this review:
� Abelian dominance has been confirmed for lattice

QCD. In the MA projection, Abelian fields reproduce about
90% of the total string tension, which points to the leading
role of Abelian degrees of freedom in the color confinement
problem;
� the investigation of properties of the string responsible

for confinement in the static quark ± antiquark system has led
to fulfilment of the dual Ampere law being revealed for the
Abelian electric field andAbelianmonopole currents. A value
on the order of 0.3 fm has been obtained for the string width,
and the width has been found not to depend upon the string
length;
� the phase transition temperature has been calculated

on a lattice with a record small spacing. In the chiral limit it
amounts to Tc � 170 MeV in the theory with two light
quarks, and to Tc � 150 MeV in QCD with u-, d-, and s-
quarks;
� the effect of string breaking caused by the production of

a quark ± antiquark pair from the vacuum has been revealed
at finite temperature (T < Tc). The parameters of the
potential between the heavy quark and antiquark in the
string breaking regime have been found. The contributions
of monopoles to the string tension, the effective quark mass,
and the distance at which the string breaks are in good
agreement with the respective quantities obtained with the
aid of non-Abelian correlators;
� studies of fields inside a baryon composed of three static

quarks have revealed that in the color confinement mode
there exists a Y-like field configuration corresponding to a
three-particle potential which cannot be described as the sum
of pair forces.
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