
Abstract. QCD vacuum properties and the structure of color
fields in hadrons are reviewed using the complete set of gauge-
invariant gluon field correlators. QCD confinement is produced
by correlators with a certain Lorentz structure, which violate
the Abelian Bianchi identities and are therefore absent in QED.
These correlators are used to define an effective colorless field
satisfying the Maxwell equations with a nonzero effective mag-
netic current. In the language of correlators and the effective
field, it is shown that non-Abelian interaction of gluon gauge
fields leads to quark confinement due to effective circular
magnetic currents that squeeze gluon fields into a string in
accordance with the `dual Meissner effect'. Distributions of
effective gluon fields in mesons, baryons, and glueballs with
static sources are plotted.

1. Introduction

The QCD is a unique example of field theory lacking internal
contradictions and at the same time explaining all physical
phenomena in strong interactions [1, 2]. The theoretical
understanding of QCD is difficult because all its basic
features are of a nonperturbative nature, and the QCD
vacuum is a dense and highly nontrivial substance. In fact,
in modern quantum field theory, one often represents the
vacuum as a specific material substance with definite
characteristics directly analogous to condensed matter
physics. As illustrative examples, we mention the description
of the Casimir effect and relative phenomena, as well as the
Higgs mechanism in the StandardModel. In the last case, one
deals with the vacuum condensate of the scalar field hfi, while
quantum excitations above this condensate are considered as
Higgs particles.

The nontriviality of the QCD vacuum is revealed by the
fact that this medium has nonzero values of gluonic
condensate [3], hF a

mnF
a
mni � �600 MeV�4, and of the quark

condensate, h�qqi � ÿ�250 MeV�3. As has become clear
during the last decades, it is the vacuum properties which
bring about confinement (see, e.g., the review [4]). For
theoretical calculations in QCD, until recently one usually
exploited the perturbation theory augmented by somemodels
of nonperturbative mechanisms. The situation changed with
the advent of the QCD sum rule method [3], which uses the
gauge-invariant formalism of condensates to describe the
nonperturbative contributions. However, this method is not
sufficient for most effects at large distances, e.g., for
confinement or spontaneous violation of chiral symmetry.

The systematic description of all QCD phenomena is, in
principle, made possible due to the appearance of the vacuum
correlator method (VCM) (see [5 ± 7] and the review [8]) in
which the basic elements are given by the complete set of field
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correlators of the form

D�n�m1n1... mnnn
�x1; . . . ; xn; x0�

� 
Tr Gm1n1�x1; x0� . . .Gmnnn�xn; x0�
�
; �1�

where the notation Gm1n1�x1; x0� is used for the gluon field
strength covariantly shifted along some curve [see Eqn (5)].

The basic tools of VCM are the gauge-invariant Green's
functions of white objects, which can be written as path
integrals through field correlators (1) using cluster expansion
(see, e.g., Refs [9, 10]). A question may arise at this point: why
do we consider only white (i.e., gauge-invariant) objects in
VCMand not, for example, propagators in some fixed gauge?
The answer is tightly connected to the difference between
gauge invariance in Abelian and non-Abelian theories.

In the Abelian theory, e.g., in QED, the requirement of
gauge invariance does not forbid us from considering the
problems with formally gauge-noninvariant asymptotic
states, like electron ± electron scattering. The gauge invar-
iance of the cross section occurs in this case due to the
conservation of the Abelian current. In the non-Abelian
theory with confinement, like QCD, the situation is different
and the problem of scattering of isolated quarks makes no
sense.

Beyond perturbation theory, the strong interaction causes
pair creation at large distances and renders the problem
essentially multi-particle. In QCD, one usually considers
quark ± quark scattering for quarks inside white objects (i.e.,
described by gauge-invariant functions), such as hadrons.
The same is true for the problems connected with the
spectrum of bound states: in QED, the problem of a neutral
atom spectrum is not fundamentally different from the
problem of the spectrum of a charged ion, but in QCD, an
analog of the last problem has no meaning.

Therefore, the set of correlators (1) can be considered a
starting dynamical basis yielding a phenomenological gauge-
invariant description of physical processes. But the actual
situation is much more interesting. First of all, the lattice
calculations give important evidence that the first nontrivial
correlator with n � 2 already dominates, and the total
contribution of all the highest correlators is below a few
percent (see review [11]). As shown in Refs [6, 7], the lowest
(orGaussian, 1 as it is called in what follows) correlator can be
expressed through two scalar form factors D�x1 ÿ x2� and
D1�x1 ÿ x2�.

Second, the form factors D�x1 ÿ x2� and D1�x1 ÿ x2�
have been measured in the lattice calculations and have
nonperturbative parts of exponential shape with a character-
istic small correlation length l. Finally, the functionD�2� [and
therefore also D�x1 ÿ x2� and D1�x1 ÿ x2�] are directly
connected to the Green's functions of the so-called glue-
lumps [12 ± 14]. The latter can be calculated analytically in
terms of the only QCD mass scale, e.g., through the string
tension s and the coupling constant as. Thus, the formulation
of the nonperturbative dynamics in QCD turns out to be self-
consistent and one should additionally calculate l through s,
which was done earlier in Ref. [15], and also connect s and
LQCD and write the explicit form of correlators D�n�. In this
way, one would also be able to understand the dominance of
D�2� analytically (one can find the first results in this direction
in Refs [16, 17]).

On the other hand, the formalism of field correlators is to
a large extent unusual to physicists brought up in the standard
lore of perturbative, or even more so, Abelian gauge theory.
In the context of the confinement problem, such a `linear'
Abelian approach is realized in the so-called `dual Meissner
scenario', which contains a simple qualitative picture of the
confinement mechanism in QCD [18, 19]. In this approach,
the charges (quarks) and themonopolemediumplay an active
role, filling the vacuum.

Many lattice and analytic studies (see, e.g., Refs [20 ± 23])
demonstrate that the string formation between quark and
antiquark is connected in this picture with the appearance of
circular monopole currents k around the string, which obey
the dual Ampere law k � rotE. From the physical stand-
point, this situation is similar to the Meissner effect in the
standard superconductivity phenomenon, modulo inter-
change of the effective electric and magnetic charges.

The main problem of this picture is that the very notion of
the magnetic monopole cannot be exactly defined in QCD.
This arbitrariness can be seen, first of all, in the gauge
dependence of the monopole definition, and second, in the
difficulties with the continuum limit for the lattice mono-
poles, defined by the flux through an elementary cube. There
exist numerous publications with different suggestions on
how to deal with this problem (see, e.g., Ref. [24]).

While confinement properties are studied on the lattice
numerically, (in particular, using the Abelian projection),
they are also an object of investigation in the effective
Lagrangian approach and in different dielectric vacuum
models of QCD [25 ± 34]. The basic field theory problem is
then replaced by a classical variational problem for the
effective Lagrangian, which yields a system of differential
equations, to be solved numerically. In this way, one
introduces an effective dielectric constant of the vacuum,
depending on the effective fields and ensuring quark confine-
ment.

Using the field correlator method as a universal language,
one can define gauge-invariant (with respect to the gauge
symmetry of the original non-Abelian theory) effective field
F mn�x�.This generalizes theMakeenko ±Migdal field [35] (see
also Ref. [36]) for an arbitrary position of a point x with
respect to theWilson loop. The effective electric field near the
charge turns out to be the gradient of the color-Coulomb
potential, and in the case of the Abelian theory, F mn�x� is the
standard field strength.

The effective field satisfies the Maxwell equations,
where the right-hand side involves the electric current jm
and the magnetic current km. The source of km is primarily
the triple correlator of the form hEEBi (as was already
found in Ref. [4]) describing the emission of the color-
magnetic field by the color-electric; the latter can be
visualized as the emission of the color-magnetic field by
an effective magnetic charge (monopole). In the language
of field correlators, one can easily demonstrate that the
system of equations for the effective fields describes the
QCD string and the circular magnetic currents around it.
In this way, the picture of the dual Meissner effect is
reproduced in gauge-invariant terms.

With the help of F mn, one can investigate the structure of
the QCD string in detail. The first computations of the string
profile in Ref. [37] have agreed well with the results calculated
via D�x 2�;D1�x 2� and those obtained independently on the
lattice. The subsequent study of the string structure [38] has
shown an interesting phenomenon of the profile saturation,

1We use the analogy with the so-calledGaussian, or white, noise described

by a quadratic correlator, in this case with vanishing correlation length.
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where the profile (i.e., the field distribution across the string)
does not change for sufficiently long strings. The pattern of
the baryon field has turned out to be even more interesting.
Baryons and, to be more precise, nucleons are the basis of the
bulk of stable matter around us. The physical problem of the
structure of the baryon field is especially interesting from
both theoretical and practical standpoints.

Two types of baryon field configurations were discussed
in the literature: with the string junction in the middle (the
Y-shape) and of a triangular shape (the D-shape). Using the
vacuum correlator method, the baryon configuration was
computed analytically in Refs [39, 40], where the presence of
the string junction in the field distribution was explicitly
demonstrated, thereby excluding the D-type configuration.
On the other hand, the latter is possible for the three-gluon
glueballs, and the corresponding field was calculated in
Ref. [40]. One should mention that these baryon field
distributions are also in agreement with the lattice calcula-
tions using the Abelian projected QCD [41] (see also the
review paper of Bornyakov et al. [42]).

Three valence gluons act as field sources in three-gluon
glueballs. The field structure of these systems has some
specific features and can be of both types, the D-type (unlike
baryons) and the Y-type (like baryons), and its study helps us
to better understand the physics of confinement. In addition,
the three-gluon glueballs are connected with the processes of
the odderon exchange (i.e., the glueball exchange with odd
charge parity), and are therefore also interesting from the
experimental standpoint. In what follows, in addition to the
effective field distributions, we therefore also discuss the
W-loops and the static potentials of baryons and three-gluon
glueballs.

The paper has the following structure. In Section 2, the
discussion of field correlator properties in QCD is given, and
in particular, the important phenomenon of the Casimir
scaling is explained. In Section 3, the effective field F mn and
the currents jm, km are introduced and the dualMeissner effect
is studied. The problem of the total string energy and other
approaches to it are also discussed at the end of this section. In
Section 4, the static potentials and field distributions in
baryons and three-gluon glueballs with static sources are
given. The main results are summarized and some perspec-
tives are outlined in the conclusion. 2

Everywhere in what follows, unless especially stressed
otherwise, the Euclidean metric is used with the notation
k � �k1; k2; k3; k4� for 4-vectors and kp � km p

ndm
n for scalar

products. Three-dimensional vectors are denoted as k �
�k1; k2; k3� and the Wick rotation corresponds to the replace-
ment k4 ! ik0.

2. Properties of QCD vacuum
in gauge-invariant approach

2.1 Definition of the basis of gauge-invariant correlators
The following remarkmust bemade before we proceed. There
is an important difference between pure Yang ±Mills theory
(gluodynamics) and QCD, namely, the latter contains
dynamic fermions, in particular light u and d quarks. This
circumstance plays no crucial role in the description of

confinement because gluodynamics confines color as QCD
does, which is supported by direct lattice calculations (see,
e.g., Ref. [43]) and different qualitative arguments. In most
cases, we therefore consider the pure Yang ±Mills theory in
this review, while quarks play the role of external sources.

One of themain objects in gauge theory is theWilson loop
[45, 46], which we define as

W�C� � P exp

�
ig

�
C

dzm A
a
m�z�t a

�
: �2�

Here, t a are the generators in some given representations of
the gauge group. The Wilson loop defines an external
current J that corresponds to a point particle charged
according to the chosen representation and moving along the
closed contour C.

The phase factor for a nonclosed curve connecting points
x and y is given by

F�x; y� � P exp

�
ig

� y

x

dzm A
a
m�z�t a

�
: �3�

Under gauge transformations, we have

F�x; y� ! FU�x; y� � U y�x�F�x; y�U�y� : �4�

This implies that the trace TrW�C� is gauge-invariant. 3 We
normalize Tr everywhere as Tr 1d � 1 for the given represen-
tation of dimension d.

Using definition (3), we introduce Gmn�x; x0� as
Gmn�x; x0� � F�x0; x�Fmn�x�F�x; x0� ; �5�

where Fmn � qmAn ÿ qnAm ÿ ig�AmAn� is the non-Abelian field
strength and the curve connecting the points x and x0 does not
self-intersect. In Abelian theory, Gmn�x; x0� � Fmn�x�, but in
Yang ±Mills theory, Gmn�x; x0� and Fmn�x� transform differ-
ently under gauge transformations, as is clear from (4). We
can now construct vacuum averages of the products of
Gmn�xn; x0� as

D�2�mnrs�x; y; x0� �


TrGmn�x; x0�Grs�y; x0�

�
; �6�

D
�3�
mnrsab�x; y; z; x0� �



TrGmn�x; x0�Grs�y; x0�Gab�z; x0�

�
�7�

and similarly for higher orders. Correlators (6) and (7) are
gauge-invariant, but nonlocal Ð expressions (6) and (7)
depend on the position of the points x, y, and z as well as on
the position of the point x0 and the contour profile used in (5).

Physical observables such as the Wilson loop vacuum
average and static potential or the effective field extracted
from it, as well as Green's functions of colorless states, are
independent of x0 and contour profiles when all the
correlators D�n�, n5 2 are taken into account. This is not
true, however, if one takes only the lowest n � 2 term. In this
case, it is convenient to minimize the corresponding depen-
dence (and hence the contribution of higher correlators),
choosing x0 and the contours corresponding to the minimal
surface. This is similar to what one usually does in perturba-
tion theory, minimizing the contribution of omitted terms by

2 The ideas on which this review is based were partly reported by one of the

authors (Yu S) in his plenary talk at the conference dedicated to the 90th

anniversary of I Ya Pomeranchuk's birthday.

3 In the literature, the trace is often included in the definition of theWilson

loop.
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the proper choice of the subtraction point m, of which the
exact answer should be independent.

2.2 Computation of the Wilson loop and Green's functions
in terms of correlators
Speaking in general terms, each function D�n� is itself an
important characteristic of the vacuum structure in a given
gauge theory. What is more important, however, is the
possibility to express the Wilson loop average in terms of
correlators (6) and (7). Indeed, Stokes's theorem (or, more
precisely, its non-Abelian generalization [47 ± 52]) leads to


TrW�C�� � �TrP exp

�
ig

�
S

dsmn�z�Gmn�z; x0�
��

� exp
X1
n� 2

�i�n D�n��S� : �8�

We have used cluster expansion to exponentiate the series in
correlators at the final stage (see, e.g., Refs [53, 54]).

Integral moments D�n��S� over the surface S of irreducible
correlators, known as cumulants in statistical physics, can be
expressed as linear combinations of the integrals of the
correlators D�n�. For example, for a two-point correlator, we
have

D�2��S� � 1

2

�
S

dsmn�z1�
�
S

dsrs�z2� g 2D�2�mnrs�z1; z2; x0� : �9�

For higher terms, the ordering is important (see, e.g., Ref. [16],
where exact computations for n � 4 are performed).

Expression (8) is of central importance for the discussed
formalism. We now consider the propagation of a spinless
particle with mass m, carrying a fundamental color charge
(`quark') in the field of an infinitely heavy `antiquark' [9, 10].
The corresponding gauge-invariant Green's function is given
by

G�x; y� � 
fy�x�F�x; y�f�y�� ; �10�

where the quark field is denoted by f�x�.
It can be shown that G�x; y� admits the Feynman ±

Schwinger representation

G�x; y� �
�1
0

ds

� zm�s�� ym

zm�0��xm

Dzm

� exp

�
ÿm 2sÿ 1

4

� s

0

dt
�
dzm�t�
dt

�2�

TrW�C�� ; �11�

where the closed contour C is formed by the quark trajectory
zm�t� and that of the antiquark (the latter is nothing but a
straight line connecting the points x and y).We have taken the
spinless case here as the simplest illustrative example; for real
physical problems with spinor quark fields, there is a
systematic way of analyzing spin effects [9, 10, 55]. The
problem of the two-body meson or three-body baryon state
can be addressed in a completely analogous way.

In all cases, the Green's function, which in principle
contains full information about the mass spectrum and wave
functions of the system, can be rewritten in terms of the path
integrals of the Wilson loops, where the latter are expressed
via correlators as in (8). Therefore, the set of correlators D�n�

provides rich and, more importantly, universal dynamic
information that one can use to compute different nonper-

turbative effects. 4 We stress once again that correlator (6) is
itself related to the Green's function of gluon excitation in the
field of an infinitely heavy adjoint source Ð known as a
gluelump in the literature [14].

Coming to the practical side of the problem, it is natural to
ask what the actual behavior of correlators (6) and (7) is and
how information about it can be gained. This question is
simple to answer in perturbation theory because each D�n� is
given by a perturbative series (see, e.g., Refs [56, 57]). There
are a few ways to proceed beyond perturbation theory. The
first is to find nonperturbative solutions to the so-called
BBGKI equations, relating the correlators of different
orders [61]. This method has brought no essential progress
up to now.

Another analytic strategy suggests computing correlators
in terms of gluelumpGreen's functions [14, 15]. The third and
most successful way is to study the problem on the lattice.
There are quite a few sets of numerical data [62 ± 66], whichwe
discuss below. It is obvious, however, that numerical results
concerning one or a few particular correlators (for example,
the lowest one) are useless if the general properties of the
whole ensemble are unknown. To discuss them, we return to
expression (8).

2.3 Gaussian dominance
It has already been stressed that the price we have paid for
manifest gauge-invariance of (8) is the dependence of (6) and
(7) on the contour profiles entering F�x; y�. These contours
are, generally speaking, arbitrary nonselfintersecting curves
or, better to say, they can be freely chosen in some (large
enough) set. As a result, the quantitiesD�n��S� in (8) depend on
this choice, while W�C� is obviously independent of S. The
contradiction is spurious and one can demonstrate that this
contour dependence is canceled in the total sum, despite its
presence in each individual summandD�n��S�. In this sense, the
choice of the surface S in (8) [corresponding to the choice of
integration contours in the correlators D�n� in Stokes's
theorem] is free, as it should be.

We can take a different attitude and assume that the
problem involves a physically distinguished surface. What is
then the hierarchy of cumulants D�n��S� on this surface? This
question is of general interest, but it also has important
practical meaning Ð in many specific problems, a surface
singled out for some physical reasons can easily be found. For
a single Wilson loop, it is given by the minimal-area surface
bounded by the contour. In the more complicated case of
interacting loops [67], the surface corresponding to the
minimal energy of the system can be taken.

In any case, two different scenarios are distinguished: in
the case where

D�2��S�4D�n��S� for n > 2 ; �12�

the ensemble of correlators (and the vacuum of the theory) is
called stochastic; in the case where (12) does not hold (for
example, all cumulants are of the same order), the ensemble of
correlators is called coherent. The general framework
described in this review takes the effects of all cumulants
into account but, as should be clear, it shows its strong sides in

4 The discussed formalism can be applied in perturbation theory [59] as

well. In this context, it allows us to sum up a perturbative subseries, which

gives the well-known `Sudakov form factor' as a result of the first

approximation (see [60] and [10] and references therein).
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theories with the stochastic vacuum. The lowest two-point
Gaussian cumulant (9) is dominant in the stochastic ensem-
ble, while higher-order terms can be considered small
corrections. This situation is known as Gaussian dominance.

Is the QCD vacuum stochastic or coherent? To answer
this question in a straightforward way, one has to compute
(for example, numerically on the lattice) different cumulants
and verify criterion (12) for them. Unfortunately, this
research program is too intricate for modern lattice technol-
ogies and almost all actual results are obtained for Gaussian
cumulants only. There is important indirect evidence, how-
ever, supporting the idea that the Yang ±Mills vacuum is
indeed stochastic and not coherent in the sense of (12). Of
prime importance in this context is the Casimir scaling
phenomenon [68 ± 71] (see also Refs [72 ± 75]).

Using (8) and taking the well-known relation between
static potential and Wilson loop average into account, one
can obtain, assuming Gaussian dominance, that

V�R� � lim
T!1

1

T
D�2��S � R� T � : �13�

In accordance with definitions (6) and (9), we then have
V�R� � Cd, where the eigenvalue of the Casimir operator in
the representation d is given by dabt at b � Cd � 1d. We recall
that the representation of the Lie group SU�N� of dimension d
is characterized by N 2 ÿ 1 generators t a, which can be
realized as d� d matrices commuting as �t at b� � if abct c.
Proportionality of the static potential to Cd is called the
Casimir scaling and was first discussed in Ref. [76].

It can be easily shown that contributions from higher
cumulants to static potential (13) are, generally speaking, not
proportional to Cd (although they can contain terms linear in
Cd). Therefore, a good accuracy (deviation not exceeding 5%)
of the Casimir scaling demonstrated on the lattice is a serious
argument in favor of Gaussian dominance.

Moreover, attempts to reproduce the Casimir scaling in
many other models of nonperturbative QCD vacuums
encounter serious difficulties [11, 77, 78]. Another argument,
which is not directly related to the previous one, is that the
radius of the confining string between quarks is independent
of their non-Abelian charge (i.e., of representation d ) [79].
These results would look like fine-tuning effects without
Gaussian dominance. It is also worth mentioning that
`vacuum state dominance' successfully used for years in the
QCD sum-rule formalism is nothing butGaussian dominance
in our language.

2.4 Structure of two-point correlators
We have mentioned the relation between the correlators D�n�

and the gluelump Green's functions. For the simplest
Gaussian correlator (6), this can be seen clearly if the
contours are straight lines and the points x, y, and x0 belong
to one and the same line. The correlator then depends on the
only variable z � xÿ y and can be represented as

D�2�mnrs�z� �
�
F a
mn�0�P exp

�
ig

� 1

0

ds zm A
b
m �sz� f abc

�
F c
rs�z�

�
:

�14�

Expression (14) contains the phase factor in the adjoint
representation (to be compared with the previous formulas
where we worked with fundamental phase factors, i.e., with
N�N matrices), which makes its physical content self-

evident. Namely, the gauge-invariant function D�2��z�
describes gluon propagation in the field of an infinitely
heavy adjoint charge, fully analogous to the fundamental
case [compare (10) and (14)]. The choice z � �0;T � corre-
sponds to the static source at the origin.

The confining string worldsheet given by the surface S
in (8) interacts with itself by one-gluelump or many-gluelump
exchanges. This interaction depends on the profile of S such
that the total answer for the Wilson loop average is
S-independent. Qualitatively, Gaussian dominance occurs
when this `gluelump gas' becomes `ideal' for some particular
surface in the sense that the integral contribution of higher
cumulants D�n�, n > 2, is small on this surface. This also
means that two-gluon gluelumps weakly interact with each
other. The deviation from the Casimir scaling (which, as we
have already noticed, is small) can be expressed in terms of
irreducible averages of the gauge-invariant operators

Tr �O1�Tr �O2�

�
describing interaction of gluelumps [16].

In particular, this implies that such deviation is suppressed in
a large N limit.

To avoid misunderstanding, we stress that gluelumps do
not exist as physical particles in the spectrum of the theory. It
would also be wrong to interpret (14) in terms of a `massive
gluon'. In a limited sense, gluelumps are analogous to Kalb ±
Ramond fields that describe dual vector bosons and play an
important role in constructing string representations of
compact QED [36] and the Abelian Higgs model [80] (see
also [81, 82]). The discussed picture with the gluelump
ensemble on the worldsheet makes sense only in the presence
of an external current forming the Wilson loop (and the
corresponding surface). On the other hand, correlator (14)
may be studied as it is, with no reference to any external
source. These studies, as mentioned above, have been
successfully undertaken on the lattice.

Before we discuss actual numerical results, it is useful to
represent (14) in terms of the two invariant form factorsD�z 2�
and D1�z 2� [5 ± 7],
g 2D�2�mnrs�z� � �dmrdns ÿ dmsdnr�D�z 2�

� 1

2

�
q
qzm
�zrdns ÿ zsdnr� ÿ q

qzn
�zrdms ÿ zsdmr�

�
D1�z 2� :
�15�

Confinement (the linear potential between a static quark and
an antiquark in the fundamental representation) occurs in the
Gaussian dominance picture when D�z 2� does not vanish.

Indeed, at large distances, it follows from (9) and (13) that
the static potential V�R� and string tension s are given by

V�R� � sR�O�R 0� ; s � 1

2

�
d2zD�z 2� : �16�

The perturbative contribution dominates at small distances
[56, 57]. The nonperturbative part of the correlator is usually
represented as

D�z 2� � exp

�
ÿ jzj

l

�
: �17�

This exponential fit is in very good agreement with lattice data
at sufficiently long distances. The situation with the non-
perturbative component of the form factorD1�z 2� is less clear
numerically: one can fit this function with or without the
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nonperturbative part equally well. In the rest of this paper, we
use D1 with no nonperturbative part.

It is important that from a practical standpoint (for
hadron spectrum computation, for example) one has no
need to know the detailed profile of the form factors D�z 2�
and D1�z 2�: physical quantities are determined mostly by the
string tension s. The quantity l is known as the correlation
length of the QCD vacuum: as is clear from our discussion,
this quantity is nothing but the inverse mass of the lowest
gluelump, l � 1=M. On the other hand, the typical size of the
vacuum domain where fields are correlated is given by the
same l [83]. The physics of nonlocality switches on at
distances larger that l and has many phenomenological
manifestations. One of the most interesting (the confining
string formation) is discussed in what follows. We use the
numerical value l � 0:2 fm in accordance with the lattice
results.

So far, we have not mentioned the problem of deconfine-
ment. There are basically two groups of physically interesting
questions related to this problem. The first covers dynamic
aspects of the confinement ± deconfinement phase transition.
The second group deals with symmetric properties of the
vacuum in different phases. In the context of our discussion, a
typical question from the first group is as follows: what does
temperature deconfinement phase transition correspond to in
terms of correlators? The second group provides questions
like: where is screening of zero N-ality charges at large
distances hidden in expression (8)? We have no possibility to
discuss these important issues in the present review and refer
the reader to the original literature and the references therein
(see Refs [4, 8, 84, 87]).

3. Mechanism of confinement
and dual Meissner effect

3.1 Definition of effective fields
The formalism considered so far allows expanding Wilson
loop (8) and static potential (13) over the full set of field
correlators (6), (7), (15), and (17) in the whole range of
distances. 5 It is well-known that the static potential at small
quark ± antiquark distances r5LQCD in the Born approx-
imation of perturbation theory has the form

V c�r� � ÿCFas
r

; �18�

where CF � 4=3 is the quadratic Casimir operator in the
fundamental representation. The color factor CF is the only
difference between this potential and the Coulomb one in
electrodynamics. It is therefore natural to introduce the field

EE c � ÿHHV c�r� ; �19�

which has the meaning of the force acting on the quark. It is
obvious that (19) is valid only at small distances in the
perturbation theory domain.

We define the effective gauge-invariant field that coin-
cides with (18) and (19) at small distances,

F J
mn�x� �

ÿ

TrW�C���ÿ1
Tr ÿigGmn�x; x0�W�C�

��
: �20�

The superscript J stresses that the field F J
mn�x� is a functional

of the external current J corresponding to the Wilson loop
W�C� and, in particular, that it vanishes if J � 0.

The effective field can be rewritten using the connected
probe

W�C;CP� �W�CP; x�F�x; x0�F�x0; z�W�C; z�

� F�z; x0�F�x0; x� ; �21�

i.e., the Wilson loop with a contour consisting of a (small)
probe contour CP connected with the contour C along some
trajectory going through the point x0. This quantity depends
on the position of the `reference point' x0 and on the shape of
the trajectory connecting C and CP. We choose the trajectory
going along the shortest path from the point x to the minimal
surface of the Wilson loop (Fig. 1).

For a probe contourCP with an infinitesimal surface dsmn,
the effective field can be written as

F J
mn�x� dsmn�x�
� 
TrW�C��ÿ1ÿ
TrW�C;CP�

�ÿ 
TrW�C��� � ~M�C;CP� :
�22�

In particular, if the probe contour has a size a� a, the electric
field is expressed as

n � EE J�x� �
~M�C;CP�

a 2
; �23�

where n is the unit vector defining the orientation of the probe
contour in coordinate space. In this context, we note the
expression for the moment of forces acting on the frame with
the electric current I in the magnetic field B, known from
general physics. Namely, when the frame is oriented in the
plane �n�1�; n�2�� and n�1� is chosen orthogonal to the magnetic
field, the moment of acting forcesM takes the form

n�2� � BB �M

a 2
; BB � IB : �24�

Comparing this relation with (23), we see that ~M�C;CP�
defined in (22) has the interpretation of the `dual' moment
of acting forces.

3.2 Definition of effective currents
We recall that in electrodynamics, Gmn�x; x0� � Fmn�x� and
equation (20) defines the classical field distribution deter-5 The results in Section 3 are partly presented in Ref. [86].

x1

x

y

�Q

�Q

Q

Q

x3

x4

Figure 1. A connected probe (21) for a static quark and antiquark.
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mined by the external electric current

g 2Jm�x� � g 2

�
C

dzm d
�4��zÿ x�

(where g denotes the electric charge) and satisfying the
corresponding Maxwell equations.

Using the differential relations for phase factors (see, e.g.,
Refs [47 ± 52]), we can formally write the `effective electro-
dynamics' equations

1

2
Emrab

q
qxr
F J

ab�x� � kJ
m �x� ;

q
qxr
F J

rm�x� � j Jm �x� �25�

for the field F J
mn�x� defined by (20). The superscript J

indicates, as before, that the `electric' current j Jm and the
`magnetic' current kJ

m are functionals of the external current J,

j Jn �x� �
ÿ

TrW�C���ÿ1

� 
Tr ÿF�x0; x� igDm Fmn�x�F�x; x0�W�C�
��

� g2
ÿ

TrW�C���ÿ1 � 1

0

ds
qua�s; x�

qs
qub�s; x�

qxm

� 
Tr �Gmn�x; x0�;Gab�u; x0�
�
W�C�� ; �26�

kJ
n �x� � g 2

ÿ

TrW�C���ÿ1 � 1

0

ds
qua�s; x�

qs
qub�s; x�

qxm

� 
Tr � ~Gmn�x; x0�;Gab�u; x0�
�
W�C�� : �27�

The integration contour in (26) and (27) is determined by
the function um�s; x� with the boundary conditions
u m�0; x� � xm0, um�1; x� � xm and the square brackets denote
commutators in color indices. Equations (26) and (27) define
effective currents that satisfy (25) and (20) identically. But the
non-Abelian Bianchi identities Dm ~Fmn�x� � 0 respecting the
gauge nature of QCD have been used in deriving (27). It is
obvious that both electric and magnetic effective currents are
conserved because the tensor F mn is anti-symmetric.

If the gauge coupling is small, we can use the equation of
classical gluodynamics,

igDmF
a
mn � g 2J a

n ; J a
m �x� � Jm�x�T a �28�

for the electric current in (26), with

Jm�x� �
�
C

dzm d
�4��zÿ x� :

The second term in (26) does not contribute to the leading
order in the gauge coupling constant as � g 2=�4p�, and the
expression for the electric current becomes

j Jn �x� � 4pCFas Jn�x� �29�

[the fundamental Casimir operator CF1̂ � T aT a � �4=3�1̂],
i.e., it has the form of a classical current of electrodynamics.
In the particular case of a static quark and antiquark, this
becomes the Gauss law for a color Coulomb field.

We note that because the first term (the unity) in the
expansion of theWilson loopW�C� in powers of the field does
not contribute to (27) (the trace of a commutator vanishes),
the first nontrivial contribution to kJ

m �x� is proportional to the
non-Abelian field strength correlator of the third order.

Therefore, up to higher correlators, the magnetic current is
proportional to the correlator hEa

i B
b
j E

c
ki f abcEi j k, and hence

the effectivemagnetic current emerges due to the non-Abelian
emittance of the color-magnetic field by the color-electric one.
The same structures in the expression for the electric current
are responsible for vacuum polarization (see discussion in
Section 3.5).

3.3 Effective field distribution in two-point approximation
We consider a rectangular Wilson loop of a static quark and
antiquark. According to the hypothesis of bilocal (Gaussian)
dominance supported byCasimir scaling (see Section 2.3), the
dominant contribution to theWilson loop average is given by
two-point correlator (6) and (15). Therefore, in calculating
effective field distributions below, we restrict ourselves to the
contribution of the two-point correlator, assuming that the
contribution of the other correlators is inessential for
confinement description. The expression for the effective
field then takes the form

F mn�x� �
�
S

dsab�y� g 2D
�2�
abmn�xÿ y� ; �30�

where y 2 S (S is the minimal surface of theWilson loop) and
the bilocal correlator D�2� is defined in (15).

We let n � R=R denote the unit vector directed from the
quark to the antiquark and rewrite (30) as

F mn�x� �
�
S

d2y Tr


gFmn�x�F�x; y� ngE�y�F�y; x�

�
; �31�

which clearly indicates that themagnetic fieldB is absent. The
substitution of parameterization (15) in (31) yields the
expression for the effective electric field

E i�r;R� � nk

�R
0

dl

�1
ÿ1

dt

�
dikD�z� � 1

2

qzi D1�z�
qzk

�
; �32�

where z � �rÿ nl; t�.
The perturbative part of the field corresponding to the

contribution of the form factor D1 to field (32) can be
represented in the Born approximation as the difference

EE D1�r� � EE c�r� ÿ EE c�rÿ R� : �33�

According to (18) and (19), the field

EE c�r� � CFasr
r 3

: �34�

The corresponding form factor given by

D
�p�
1 �z� �

4CFas
pz 4

�35�

can also be calculated directly in perturbation theory [89].
It was discussed in Section 2 that confinement follows

from the stochastic nature of gluon field fluctuations, which
reveal themselves at separations of the order of the correla-
tion length l and lead to the exponential fall-off of the field
correlators [see (17)]. It can be shown that if the string acts on
the quark with a force s at large separations, the form factor
D should be normalized as

D�z 2� � s

pl2
exp

�
ÿ jzj

l

�
: �36�
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Substituting (36) in (32), we calculate the corresponding
field

EE D�r;R� � n
2s
p

� R=l

0

dl

����lnÿ r

l

����K1

�����lnÿ r

l

����� ; �37�

where K1 is the McDonald function.
The string tension s can be considered as a scale

parameter in QCD. The numerical value s � 0:18 GeV2 is
determined phenomenologically from the slope of the meson
Regge trajectory (see, e.g., Ref. [88]). It is easy to verify that if
the point x lies on the symmetry axes, the field EE D and the
nonperturbative part of the static potential corresponding to
the form factor D in Eqns (9) and (13) are related as

EE D�r;R� � HHVD�r� ÿ HHVD�jrÿ Rj� : �38�

A relation of this kind can be extracted directly from (20).
Indeed, the point x belongs to the minimal surface of the
Wilson loop in this case and definitions (20) and (30)
coincide because of Gaussian dominance. The distribution
of the field

��EE�x1; 0; x3��� given by (32) is shown in Fig. 2 at
the Q�Q-separation 2 fm. In the figure, we can see the peaks of
the color-Coulomb field (34) over the quark and the
antiquark, and the string (37) between them, with the
universal profile E�r�,

E�r� � 2s
�
1� r

l

�
exp

�
ÿ r
l

�
; �39�

where r is the distance to the Q�Q axis.

3.4 Distribution of magnetic currents
and Londons' equation
To perform a more detailed analysis of the distribution of
magnetic currents (27) in the case of a static quark and
antiquark, we apply the first Maxwell equation (25) to the
electric field in bilocal approximation (32), (34), and (37). It is
then easy to see that the magnetic current k is given by

k � rot EE �40�

while the magnetic charge is absent. Coulomb field (34) does
not contribute to (40) because it is the divergence of a
potential.

Nonperturbative field (37) is directed along the quark ±
antiquark axis, and therefore the magnetic currents are
circular, while their magnitude is given by the derivative of
field (37) over the transversal coordinate r. In the particular
case of the saturated string (39), the magnetic field distribu-

tion takes the form

kj�r� � ÿ 2sr

l2
exp

�
ÿ r
l

�
; �41�

where kj denotes the polar component of the magnetic
current in cylindrical coordinates. The vector distribution of
magnetic currents is shown in Fig. 3 for the Q�Q-separation
R � 2 fm. This distribution resembles that of the electric
superconducting currents around the Abrikosov string in
superconductors (see Refs [90 ± 92] and also textbook [93]).

Moreover, it is easy to see that the `dual' Londons'
equation holds at large distances from the string,

rot k � lÿ2EE �42�

[the word `dual' in this context means that the magnetic
current stays in the left-hand side of (42) instead of the
electric current, while the right-hand side contains the
electric field and not the magnetic one]. Indeed, the only
component of the polar vector kj given by (41) is directed
along the z axis and has the form

�rotk�z�r� �
1

r
qkj
qr
� g�r� lÿ2E�r� : �43�

4
3
2
1

ÿ1.0
ÿ0.5

0
0.5

0
1

2x3, fm
x1, fm

Figure 2. Distribution of the field
��EE�x1; 0; x3��� given by Eqn (32) at the

quark ± antiquark separation 2 fm. The cut peaks of the color-Coulomb

field and the string between the quark and the antiquark are clearly

distinguished.

Figure 3. A vector distribution of magnetic currents (37) and (40) at the

quark ± antiquark separation 2 fm. The positions of the quark and the

antiquark are shown by points.
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The universal profile E�r� is defined by (39), and the
function

g�r� � ÿ2� r=l
1� r=l

�44�

increases monotonically from ÿ2 and tends to unity as
g�r� � 1ÿ 3l=r for r4 l.

We conclude that the confinement mechanism can be
explained by the existence of circular magnetic currents (41)
that squeeze the electric field into a string and lead to the
exponential fall-off outside it [see (39)] and to the dual
Meissner equation (43) and (44).

3.5 Vacuum polarization and screening
of the coupling constant
We now turn to the Gauss law for the static quark and
antiquark,

div EE � r : �45�

The field EE is defined according to (32), (34), and (37),

EE � EE D1 � EE D : �46�

The electric charge density can be written as

r � 4pCFas
ÿ
d�r� ÿ d�rÿ R��ÿ div PP : �47�

We here introduce the vector PP (as one usually does in
continuous media electrodynamics [94]) that takes the non-
Abelian interaction of gluon fields at higher orders in the
coupling constant into account [see (26)].

We introduce the electric displacement vector field

DD � EE � PP ; �48�

and rewrite equation (45) for it as

divDD � 4pCFas
ÿ
d�r� ÿ d�rÿ R�� : �49�

Because the right-hand side of (49) involves the divergence of
Coulomb field (34), assuming perturbative dominance of the
function D1 [see (35)], we obtain the relation

divPP � ÿdiv EE D : �50�

According to (37),

div EE D � ~r�r� ÿ ~r�jrÿ Rj� ; �51�

~r�r� � 2s

pl2
r K1

�
r

l

�
: �52�

This means that the polarization vector can be represented as
a difference of two central vectors,

PP�r;R� � ~P�r� r
r
ÿ ~P�jrÿ Rj� rÿ R

jrÿ Rj ; �53�

satisfying the equation

1

r 2
q
qr

r 2 ~P�r� � ÿ~r�r� : �54�

It follows from (54) that

~P�r� � ÿ
~Q�r�
r 2

; ~Q�r� � 2sl2

p

� r=l

0

dx x 3K1�x� ; �55�

where ~Q is the screening charge. Because of confinement, the
field must fall off faster than any power at large distances
from the quark and antiquark, and therefore the full charge

Q�r� � CFas�r� ÿ ~Q�r� �56�

vanishes. In particular, this implies the relation [40]

CFas � 3sl2 �57�

between the frozen strong coupling [99, 100] and the key
parameters responsible for confinement. Inserting as � 0:42
[99, 100, 95, 96] in (57), we obtain l � 0:2 fm.

The behavior of the charge Q�r� at the standard value
as � 0:42 is shown in Fig. 4. It follows from Fig. 5, where
the running coupling pattern is shown by the dotted curve,
that this approximation is valid at r0 0:4 fm. (The
definition of the running coupling and corresponding
formulas can be found in Refs [95, 96].) The behavior of
the running charge Q run�r� is shown by the solid curve. As
can be seen from the figure, the effective charge has a
maximum at r � 0:3 fm.

0.5

Q

0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0
r, fm

Figure 4. The effective charge Q�r� given by (56) vs. the distance from the

quark for s � 0:18 GeV2, l � 0:2 fm, and the constant value as � 0:42.

0.5

Q

0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0
r, fm

Figure 5.The running background couplingCFas�r� [95, 96] (dotted curve)
and the running effective charge Q run � CFas�r� ÿ ~Q�r� (solid curve) vs.

the distance from the quark.
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We now turn to the figures characterizing dielectric
properties of the vacuum. In Fig. 6, the projections of the
fields EE D�0; 0; x3�, PP�0; 0; x3�, and EE c�0; 0; x3� on the quark ±
antiquark axis are shown (the distance between the quark and
the antiquark is 3 fm).We note that the fieldsPP and EE c exactly
cancel in the middle of the string. This can also be seen from
Fig. 7, where the projections of fields EE D�0; 0; x3�,
EE D�0; 0; x3� � PP�0; 0; x3�, and DD�0; 0; x3� on the quark ±
antiquark axis are plotted. In Fig. 8, the vector distribution
of the displacement fieldDD�x1; 0; x3� is shown, demonstrating
that the field is squeezed into a tube with a width of the order
of l � 0:2 fm. In Fig. 9, the vector distribution of the
solenoidal field EE D�x1; 0; x3� � PP�x1; 0; x3� is plotted.

We define the isotropic dielectric function K�r� as
PP � K EE c �58�

and the dielectric permittivity as e � 1� K. We then obtain

K�r� � ÿ
~Q�r�

CFas�r� ; �59�

e�r� � Q�r�
CFas�r� : �60�

In particular, at large distances �r4 l�, the vacuum dielectric
permittivity is exponentially small,

e�r���
r!1 �

1

3�2p�3=2
�
r

l

�ÿ5=2
exp

�
ÿ r

l

�
: �61�

This smallness of dielectric permittivity (61) means that the
color-Coulomb field is absent at a large enough distance from
sources outside the string as well as on it.

4. Hadrons with three static sources

4.1 Green's functions and Wilson loops
We now consider hadrons with three static color sources:
baryons and three gluon glueballs. Because hadrons are
nonlocal extended objects, we use the nonlocal quark and
gluon operators

q a�x;Y� � q b�x�Fa
b �x;Y� ; �62�

ga�x;Y� � gb�x�Fab�x;Y� ; �63�

2.0

E,
G
eV

fm

1.5

1.0

0.5

ÿ0.5
ÿ1 0 1 2 3 4

x3, fm

Figure 7. Distributions of the projections of the fields EE D�0; 0; x3� (dotted
curve), EE D�0; 0; x3� � PP�0; 0; x3� (dashed curve), and DD�0; 0; x3� (solid

curve) on the quark ± antiquark axis at the Q�Q separation 3 fm.

0.6

0.4

0.2

0

ÿ0.2
ÿ0.4
ÿ0.6

ÿ0.5 0 0.5 1.0 1.5 2.0 2.5
x3, fm

x
1
,f
m

Figure 8. Vector distribution of the field DD�x1; 0; x3�. Positions of the

quark and the antiquark are marked by points.

ÿ1

ÿ2
ÿ0.5 0 0.5 1.0 1.5 2.0 2.5

x3, fm

x
1
,f
m

2

1

0

Figure 9. Vector distribution of the solenoid field EE D�x1; 0; x3��
PP�x1; 0; x3�. Positions of the quark and the antiquark are marked by

points.

2.0
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G
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fm

1.5

1.0

0.5

ÿ0.5
ÿ1 0 1 2 3 4

x3, fm

Figure 6. Distributions of the projections of the fields EE D�0; 0; x3� (solid
curve), PP�0; 0; x3� (dashed curve), and EE c�0; 0; x3� (dotted curve) on the

quark ± antiquark axis at the Q�Q separation 3 fm.

10 D S Kuz'menko, V I Shevchenko, Yu A Simonov Physics ±Uspekhi 47 (1)



and also the local gluon operator

G b
a �x� � ga�x� t �a�ba :

Here, ga denotes the valence gluon operator of the back-
ground perturbation theory [99, 100]. We note that G b

a �x�
transforms as G b

a ! U�bb 0 G
b 0
a 0 U

a 0
a under gauge transforma-

tions.
Gauge invariant combinations of these operators can be

constructed using symmetric tensors db
a , d

ab, and dabc and
antisymmetric ones eabg and f abc,

BY�x; y; z;Y� � eabg q
a�x;Y� q b�y;Y� q g�z;Y� ; �64�

G
� f �
Y �x; y; z;Y� � f abcga�x;Y� gb�y;Y� gc�z;Y� ; �65�

G
�d�
Y �x; y; z;Y� � dabcga�x;Y� gb�y;Y� gc�z;Y� ; �66�

GD�x; y; z� � Gb
a �x�Fg

b�x; y�G d
g �y�Fe

d�y; z�G r
e �z�Fa

r �z; x� :
�67�

The first three constructions have a Y-type structure with the
string junction at the point Y where the color indices are
contracted with the (anti-) symmetric tensor, and the latter
has a D-type structure. We stress that the D-type wave
function is possible only for glueballs but not for baryons [98].

The hadron Green's function has the form

Gi� �X;X� � 
C�i � �X�Ci�X�
�
; �68�

where Ci � GD;GY;BY and X � x; y; z in the case of GD and
x; y; z;Y for Y-states. The vacuum average h. . .i leads to the
product of Green's functions of quarks or valence gluons for
hadrons with the static sources, which are proportional to the
phase factors


�qb��x� q a�x�� / Fa
b ��x; x� ; �69�


ga��x� gb�x�
� / Fab��x; x� :

(The same formulas hold for relativistic sources if the Fock ±
Feynman ± Schwinger representation is used [9, 10, 101 ±
103].) Therefore, as discussed in Section 2, the hadron
Green's function is proportional to the gauge-invariant
combination called the Wilson loop of this hadron.

Baryons and glueballs of the Y-type are characterized by
the Wilson loops

WB � 1

6



EabgE a

0b 0g 0 Fa
a 0 �C1�Fb

b 0 �C2�Fg
g 0 �C3�

�
; �70�

W Y; f
G � 1

24



f abcf a

0b 0c 0F aa 0 �C1�F bb 0 �C2�F cc 0 �C3�
�
; �71�

W Y; d
G � 3

40



dabcd a 0b 0c 0F aa 0 �C1�F bb 0 �C2�F cc 0 �C3�

�
: �72�

Trajectories Ci formed by the sources are shown in Fig. 10.
An expression for theWilson loop of a D-type glueball can be
found in Ref. [87]. In the confinement phase, it can be
approximated as the product of three meson Wilson loops,

W D
G�X; �X� �W��x; �yjx; y�W��y; �zjy; z�W��z; �xjz; x� : �73�

The corresponding contours are shown in Fig. 11.

4.2 Static potentials
Static potentials of hadrons with three static sources are
calculated in the bilocal approximation of the field correlator

method [98, 104] in the same way as the meson ones. For
hadrons of the Y-type, we let n�a� denote the unit vector
directed from the string junction to the ath quark and Ra the
separation between this quark and the string junction. Then
the potential in the baryon is given by

VB�R1;R2;R3� �
�X

a� b

ÿ
X
a< b

�
n
�a�
i n

�b�
j

�
�Ra

0

�Rb

0

dl dl 0
�1
0

dtDi 4; j 4�zab� ; �74�

where zab � �l n�a� ÿ l 0n�b�; t�.
We can represent potential (74) in the form

VB � V c � V d � V nd ; �75�

where

V c � ÿCFas
2

X
i< j

1

ri j
�76�

is the one-gluon exchange potential and ri j is the distance
between the ith and the jth quark. We take the charge
screening into account by replacing CFas in (76) with Q
defined in (56). The terms V d and V nd in (75) denote the
diagonal and nondiagonal parts of the potential correspond-

�z

z

�Y

Y

C3

C1

C2

�x

�y

x

y

Figure 10. A W-loop of the Y-type.

�z

z

�x

�y

x

y

Figure 11. A W-loop of the D-type.
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ing to the correlatorD [V d is determined by the first and V nd

by the second sum in (74)]. Explicit expressions for Vd and
V nd can be found in Ref. [104]. We just note here that Vd is a
sum of the quark ± antiquark potentials VD in (9) and (13),

V d�R1;R2;R3� �
X
a

VD�Ra� : �77�

A typical feature of potential (74) is an increase in its slope
with the distance between sources. The baryon potential with
the color-Coulomb part subtracted is shown in Fig. 12 in
comparison with the lattice data [105] as a function of the
total length L �Pa Ra of the baryon string. A tangent with
the slope s is shown by a dotted line. We can see from the
figure that the potential slope becomes significantly less than
s at L9 1 fm. This effect is induced by the influence of the
correlation length of the confining fields [104]. The depen-
dence of the baryon potential in an equilateral triangle on the
quark separation is given in Fig. 13 in comparison with the
lattice data [106]. We note the agreement between analytic
and lattice calculations with an accuracy within a few dozen
MeV.

For the Y-glueball potential, the relation

VY
G

VB
� C8

C3
�78�

holds, where C3 � �N 2
c ÿ 1�=2Nc and C8 � Nc are the

quadratic Casimir operators in the fundamental and adjoint
representations. It is seen from (78) that hadrons with a Y
string demonstrate Casimir scaling.

The D-glueball potential in the case of an equilateral
triangle with a side r has the form [98]

VD
G�r� �

C8

C3
V c�r� � V d�r� ÿ 2V nd�r� : �79�

We note that V d and V nd depend on the valence gluon
separation but not on the separation between the gluon and
the center of the triangle, and that the term ÿ2Vnd

corresponds to the interaction of three effective quark ±
antiquark Wilson loops. The potentials VY

G and VD
G in the

equilateral triangle are shown in Fig. 14 as functions of the
source separation r. The potentialVY

G goes aboveVD
G because

of the positive contribution of the nondiagonal term V nd to
the Y-type glueball and the negative contribution to the
triangular one, and also because of the greater slope of the
diagonal term V d in the case of the Y-glueball. The main
energy gain comes from the attraction of the effective quark ±
antiquark Wilson loops in (79).

4.3 Field distributions
The effective field distributions in baryons and glueballs are
given in Ref. [40]. The baryon field is defined there as the
square average

�EE �B��2 � 2

3

ÿ�EE B
�1��2 � �EE B

�2��2 � �EE B�3��2
� �80�

of the fields EE B
�i� calculated for the probe plaquette attached to

the trajectory Ci,

EE B
�1��x;R�1�;R�2�;R�3��

� EEM�x;R�1�� ÿ 1

2
EEM�x;R�2�� ÿ 1

2
EEM�x;R�3�� : �81�

The coefficient 2=3 in (80) is chosen such that the field acting
on each quark is equal to s.

According to (80) and (81), the field in the baryon is
expressed through the fields of effective quark ± antiquark
pairs, with the positions of the antiquarks coinciding with the
string junction. The distribution of the field EE �B�, with only the
contribution of the form factor D taken into account, is
shown in Figs 15 and 16 in the plane of quarks forming an
equilateral triangle with sides 1 and 3.5 fm, respectively. In
Fig. 16, one can see three plateaus with a saturated profile and

4.0

V
B
,G

eV

3.5

3.0

2.5

2.0

1.5

1.0
0.5 1.0 2.0 2.5

L, fm
1.5

Figure 12. Potential (74) in the baryon with the color-Coulomb part

contracted (solid curve), in comparison with the lattice data [105] (points)

depending on the total length of the baryon string L. The value of the

string tension is s � 0:22 GeV2. According to (57), the corresponding

value of the correlation length is l � 0:18 fm.
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Figure 13. The dependence of the baryon potential in an equilateral

triangle on the quark separation r (solid curve) in comparison with the

lattice data [106] (points). The value of the string tension is s � 0:17 GeV2

(l � 0:21 fm).
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Figure 14. Potentials of the three-gluon glueballs VY
G (solid curve) and VD

G

(dotted curve) in an equilateral triangle depending on the separation r

between the sources.

12 D S Kuz'menko, V I Shevchenko, Yu A Simonov Physics ±Uspekhi 47 (1)



small growth of the field around the string junction point,
with the relative difference of values amounting to 1=16. A
surface formed by the confining fieldwith the value s is shown
in Fig. 17 for the quark separations 1 fm. One can see small
convexity in the region of the string junction.

The field in the D-type glueball is a sum of meson fields
with gluon pairs acting as the effective sources [40],

EE �G�D �x; r �1�; r �2�; r �3�� �
X3
i� 1

EEM�xÿ r �i�; r �i�1�mod3 ÿ r �i�� ;
�82�

where r �i� denotes the position of the ith valence gluon. The
field distribution jEE �G�D �x�j in the valence gluon plane is shown
in Fig. 18 at the gluon separations 1 fm. In Fig. 19, the surface
jEE �G�D �x�j � s is plotted for the same gluon separations.

We note that according to (38), the static quark ±
antiquark potential can be calculated as the work of the
confining force acting on a quark to move it to a distance R
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1
2

Figure 16. Distribution of the field EE �B� given by (80) and (81) in GeV/fm

with only the correlator D contribution considered in the quark plane for

an equilateral triangle with the side 3.5 fm. Coordinates are given in fm,

positions of the quarks are marked by points.
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Figure 17. The surface jEE �B��x�j � s at the quark separations 1 fm.

Coordinates are given in fm, positions of the quarks are marked by points.
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Figure 18.Distribution of the field jEE �G�D �x�j given by (82) in GeV/fm of the

triangular glueball in the plane of valence gluons with the separations 1 fm.

Coordinates are given in fm, positions of the valence gluons are marked by

points.
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Figure 15. Distribution of the field EE �B� given by (80) and (81) in GeV/fm

with only the correlator D contribution considered in the quark plane for

an equilateral triangle with the side 1 fm. Coordinates are given in fm,

positions of the quarks are marked by points.
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Figure 19. The surface jEE �G�D �x�j � s at the valence gluon separations 1 fm.

Coordinates are given in fm, positions of the valence gluons are marked by

points.
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from the antiquark. The analogous relation is valid for the
field and potential of D-type glueball (79) and (82). The
nondiagonal part of the D-glueball potential Vnd is then
equal to the work of the force acting on the given (effective)
quark from the external string, and is therefore related to the
interference (superposition) of the meson fields EEM in the
neighborhood of valence gluons of the order of l.

5. Conclusions

In this paper, we have systematically treated the vacuum
fields in QCD, the confinement mechanism, the QCD string
formation, and, finally, the field distribution inside hadrons.

Everywhere we have used the field correlators as a
universal gauge-invariant formalism that allows describing
all phenomena encountered in QCD. In the description of
vacuum fields, the most important property is the Gaussian
dominance: the lowest (Gaussian) correlator is dominating
on the minimal area surface of the Wilson loop, and there are
sufficient grounds for the statement that the total distribution
of higher correlators does not exceed a few percent. This
phenomenon, found on the lattice [68], is not yet fully
understood (see also Refs [11, 16] in this respect), although it
gives an explicit dynamic picture, which is possibly incompa-
tible with the old physics of the instanton gas, of Z2-fluxes,
etc.

Therefore, we can assert that the picture of the maximally
stochastic QCD vacuum is a very good approximation of
reality. We recall that the measure of coherence is associated
with the weight of the contribution of higher correlators; for
example, the total contribution of higher (non-Gaussian)
correlators is dominant for the instanton gas. Moreover, the
vacuum correlation length l (i.e., a factor in the exponent for
asymptotics of the Gaussian correlator) is relatively small,
l � 0:2 fm for the quenched vacuum. This value is much
smaller than the typical hadron radius,� 1 fm. Theoretically,
the smallness of l is connected to a large mass gap for
glueballs and gluelumps [12 ± 14].

We now turn to the confinement mechanism. From the
standpoint of field correlators, confinement occurs due to a
specific term in the Gaussian correlator, denoted D�x 2�,
which violates Bianchi identities in the Abelian case and is
therefore absent in the case of QED. If, however, one
considers compact U�1� theory with magnetic monopoles
present in the vacuum, then the function D�x 2� is nonzero; it
is proportional to the monopole currents correlator. The next
step is to find the source of D�x 2� (i.e., the source of
confinement) in the non-Abelian theory. This was done in
Ref. [7], where the derivatives ofD�x 2�were connected to the
triple correlator hEEBi.

Thus, the problem of establishing the confinement
mechanism in the formalism of field correlators reduces to
the problem of calculatingD�x 2� and the triple correlator and
of finding the conditions for its appearance (disappearance)
in QCD, for example, as functions of temperature or baryon
density. Lattice calculations confirm the disappearance of
D�x 2� at the deconfinement temperature Tc, and conse-
quently the confinement picture in the framework of the
present method is confirmed. We expect that at the next step
(by computing correlators [including D�x 2�] with the help of
the gluelump Green's functions in the whole x region), the
method of field correlators will be made self-consistent, and
the problem of confinement will be solved quantitatively and
as a matter of principle.

At the same time, this universal formalism of field
correlators can be used to study the distribution of effective
fields and currents defined via the Wilson loop. This
representation (see Section 3), on the one hand, enables one
to describe the dual Meissner effect [18, 19], and on the other
hand, it keeps contact with the effective Lagrangian approach
of Adler and Piran [25] and dielectric vacuummodels ([27, 28]
and subsequent papers). Indeed, the field correlator method
not only allows this approximate qualitative interpretation,
but also yields explicit expressions for the density of effective
electric charges and effective magnetic currents. Given by the
gradient of the color-Coulomb potential at small distances,
the effective field condenses into a tube on the characteristic
hadron scale and ensures confinement. Correspondingly, the
strong coupling constant is screened due to vacuum polariza-
tion by non-Abelian gluon interactions.

Finally, we summarize the contents of Section 4, devoted
to field distributions inside hadrons with three constituents.
Here the field correlator method is the only quantitative
analytic method, and its comparison with numerical (lattice)
results is very interesting. We note that we here deal with only
two parameters Ð the string tension s and the correlation
length l, with l expressed through s and s playing the role of
the scale parameter related to LQCD. The baryon potential
computed in this way [98] is in good agreement with lattice
calculations and gives an independent confirmation that
baryon strings have the Y-type structure with the string
junction.

Moreover, the field correlator method explains the
smaller slope of the baryon potential at the typical hadron
distances known from the baryon phenomenology: the
decrease of the slope is caused by the string interference
effects related to a nonzero correlation length l. The three-
gluon glueballs, in contrast to baryons, can have the structure
of both Y-type and D-type [98]. However, the latter is
preferred energetically. In the concluding part of Section 4,
the field distributions in baryons and in the D-type glueballs
are given, where one can visualize the shape of the string in
these hadrons.

Summarizing, we can say that the universal language of
the field correlator method turns out to be extremely
convenient in all cases considered. In particular, it enables
one to formulate the gauge-invariant description of the QCD
vacuum as some medium whose properties provide confine-
ment.
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