
Abstract. The historical development of the concept of the
topological phase in classical mechanics from the mid-19th
century to the present is discussed. There are three stages to
be recognized in this period. The first, the mid-19th century
stage, is concerned with studying the kinematics of rigid body
rotation and includes such milestone developments as the Euler
theorem on finite rotation of rigids, Gauss formula for the sum
excess of the angles of a spherical polygon, Rodrigues's proof of
the noncommutativity property of two finite rotations, and,
finally, Hamilton's Lectures on Quaternions where the solid
angle theorem is formulated and proved. The experimental
discovery of the nonholonomic error of gyroscopes and its
exhaustive explanation by A Yu Ishlinski|̄ represent the second
stage. The third stage, which started in the 1980s, has witnessed
the rediscovery of the nonholonomic effect in the framework of
Hamiltonian formalism and is dominated by the study of how
the topological phase Ð or an additional angle Ð forms in a
mechanical system being treated in action ± angle variables.

1. Introduction

About 20 years ago M Berry considered a number of
examples from quantum mechanics in his well-known paper
[1] and raised the question of the occurrence of a topological
phase describing the SchroÈ dinger wave function evolution for
a time-dependent Hamiltonian. This topological (geometric)
phase was named the Berry phase by B Simon in the paper [2]
issued just before paper [1] as an announcement of Berry's
publication. The Berry phase represents an additional phase
incursion experienced by any quantum-mechanical system
due to its spatial evolution. The phase incursion is defined by
topological properties of the evolution operator in Hilbert
space rather than the local quantum dynamics.

For two decades, a great number of papers devoted to this
problem were published. The concept of topological phase
was extended considerably and was applied in different areas
of physics as shown in Refs [3 ± 9] where the topological phase
is often called the Berry phase. In Ref. [10], Berry introduced
the concept of topological phase into optics for a light beam
propagating along a nonplanar trajectory. However, soon
after the publication of work [10] it became clear that the
topological phase in optics was formulated long before this
publication. For a beam propagating along the nonplanar
trajectory, this concept was introduced by S M Rytov in
Refs [11, 12] published in 1938 and 1940, respectively, as well
as by V V Vladimirski|̄ in Ref. [13] published in 1941. For a
beam propagating along a straight line with varying polariza-
tion state, the concept was formulated by S Pancharatnam in
1956 [14, 15]. These priorities were noted by Berry, who
recognized the role of Pancharatnam's papers [14, 15] in
Ref. [16], as well as the contribution of Rytov [11] and
Vladimirski|̄ [13] works in Ref. [4]. Thus, the question of
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priority in the discovery of the topological phase in optics is
now completely answered. Recently, the terms Rytov effect,
Rytov ±Vladimirski|̄ phase, and Pancharatnam phase have
become soundly established. A totally different situation is
observed in classical mechanics. Here, there is a widely held
opinion that the topological phase in mechanics was intro-
duced by J Hannay in Ref. [17] published in 1985. However,
this opinion is only partially correct. In this way the present
paper is aimed at the successive and systematic presentation
of papers devoted to the topological phase in classical
mechanics since the 19th century.

2. W R Hamilton's (1805 ± 1865) work

Sir William Rowan Hamilton had formulated and proven a
remarkable theorem in the first edition of his famous treatise
Lectures on Quaternions [18] published in 1853. This theorem,
which is now named the solid angle theorem in classical
mechanics, was given on pages 339 and 340 as Article 355.
Its formulation is:

``355. ... And on physical or rather geometrical side, so far
as regards the general theory of compositions of rotations, we
arrive (in the plan of recent articles) at this remarkable
theorem, that the infinitely many infinitesimal and conical
ROTATIONS (themselves now, and not their halves) of the
PERIMETER of ANY closed figure on a sphere, compound
themselves into a SINGLE resultant and finite rotation,
represented by the TOTAL AREA of figure; it being still
understood that elements of this area may become negative.''

This citation reproducing its typographical typesetting
shows the author's mastery tomake the formulation clear and
easy to understand.

The proof of this theorem followed from the total theory
of quaternionmultiplication that was presented in Lecture VI
occupying 140 pages of the treatise. This ambiguity may be
the reason the theorem is little known. Later, the theoremwas
mentioned in the book onmechanics written byHorace Lamb
[19], where a brief story of the theorem formulation and proof
was given.

The sequence of events leading to the theorem's deduction
and proof was as follows. To understand and prove that a
rigid body rotates about any of its axes describing a closed
nonintersecting curve on the unit sphere, it is necessary to
resort to two fundamental results. First, one should be
familiar with the Leonhard Euler (1707 ± 1783) theorem [20]
that any given initial orientation of a rigid body can be
transferred into any given final orientation by a rotation
about a fixed axis. Second, one should be able to apply the
Karl Friedrich Gauss (1777 ± 1855) formula [21] that defines
the sumof the angles of a spherical polygon. The first problem
solved was the problem of the summation of two finite
rotations. The credit for its solution belongs to Olinde
Rodrigues (1794 ± 1854) who demonstrated in 1840 that two
finite rotations of a rigid body are noncommutative [22]. The
merit of Hamilton is that he applied quaternions to solve the
same problem in 1853.

According to H Lamb [19], M J Donkin (professor of
astronomy at Oxford from 1842 to 1869) solved the problem
of the summation of two finite rotations in 1851 and
presented the following simple solution [23]. Let the point of
intersection of the body's axis with the unit sphere describe an
arc of the great circleAB as the result of the first rotation, and
an arc BC as the result of the second rotation. Donkin proved
that the finite rotation equal to two previous ones takes place

about the axis which is perpendicular to the plane going
through the fixed pointO and the mid-points X and Y of arcs
AB andBC.Moreover, the angle of rotation is equal to the arc
of the great circle connecting the points X and Y.

The second problem leading to the solid angle theorem
reduces to the problem of summation of three finite rotations.
Hamilton considered such a sequence of three rotations of a
rigid body that the point of intersection of the body-fixed axis
and the unit sphere describes a closed spherical triangle. He
proved that, as a result of these rotations, the body is turned
about this axis and the angle of this turn is equal to the
spherical excess of the sum of the angles of a spherical triangle
composed of arcs of the unit-sphere great circles.

According to the Gauss theorem [21], the spherical excess
is equal to the area of the spherical triangle divided by the area
of sphere, or the solid angle under which the triangle is seen
from the center of the sphere. It should be noted that the
Gauss theorem is valid for a spherical polygon with an
arbitrary number of sides. Undoubtedly, Hamilton knew the
Gauss theorem since he arrived at the final formulation of his
theorem taking the limit when the number of spherical
polygon sides infinitely increases.

It is interesting to note that, as mentioned by Lamb [19],
Hankel 1 produced in 1847 the simple proof of the theorem
that is equivalent to the solid angle theorem. He demon-
strated that if the point returns to its starting position after
three successive rotations on the sphere, then the angle of
equivalent resulting rotation is equal to the spherical excess of
the spherical triangle formed by three arcs corresponding to
the rotations under consideration. The information presented
by Lamb [19] does not allow one to conclude undoubtedly if
Hankel gave this theorem either pure geometrical or
combined geometrical and kinematical meaning. Therefore,
until theHankel work is found one cannot definitely state that
Hankel anticipated Hamilton. To make the final decision it is
necessary to elucidate if Hankel had drawn the physical
conclusions from his mathematical results, i.e., considered
the corresponding features of rigid body kinematics.

However, in succeeding years of the 20th century, the solid
angle theorem had been forgotten. Its fate was to be
`rediscovered' several times in at least three different areas of
science (optics, quantum mechanics, and classical
mechanics). These different areas are connected by another
discovery of Hamilton [24], i.e., the analogy between optics
and mechanics, made in 1828 ± 1837.

3. The Felix Klein (1849 ± 1925) problem

The essence of the analogy discovered by Hamilton is that the
transformation group of the conservative mechanical system
motion and the group of light propagation in the wave theory
of Christian Huygens (1629 ± 1695) are both tangent or
canonical transformation groups [25]. Augusten Cauchy
(1789 ± 1857), trying to develop the Hamilton analogy
between optics and mechanics, found this analogy in the
vibrations of an elastic medium rather than the dynamics of
mechanical systems. Thus, Cauchy excluded the further
development of the analogy between analytical dynamics

1 Unfortunately, Lamb gave neither the reference to the corresponding

publication, nor Hankel's initials. Therefore, it is not clear who was

mentioned,WilhelmHankel (1814 ± 1899), German physicist, professor at

Leipzig University, or his son Herman Hankel (1839 ± 1873), well-known

mathematician, professor at Tubingen University.
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and the post-Huygensian theories of light. FelixKlein (1849 ±
1925) called attention to this fact in Ref. [26]. The next
stimulus to developing the optical ±mechanical analogy in
the scope of analytical dynamics was given by N G Chetaev
(1902 ± 1959) in Refs [27, 28], where this problem was named
the Klein problem. As a result of the Klein problem solution
in these works, the fundamental relation between the
mechanics of conservative systems and geometrical optics
was discovered. Thus, it is instructive to consider the works
on the geometrical phase in optics once more.

4. S M Rytov's (1908 ± 1996)
and V V Vladimirski|̄'s (born in 1915) works

Let a polarized light beam propagate along a nonplanar
trajectory. A natural moving trihedron or Frenet trihedron 2

is connected to this trajectory in such a manner that the unit
vectors constituting this trihedron are tangent, normal, and
binormal to the curvilinear beam trajectory. In 1938 ± 1940,
Rytov showed (see, Refs [11, 12]) that the plane of beam
polarization rotates with respect to the Frenet trihedron.
Later on, this result was developed by Vladimirski|̄ in a
graduate thesis written under the tutorship of Rytov. In
1941, Vladimirski|̄ [13] found that after the tangent returns
to its initial state at some point of the trajectory, the plane of
beam polarization will differ, in general, from its starting
position. This phenomenon is not observed if the beam
trajectory is a planar curve and beam polarization is
constant. Moreover, if the Frenet trihedron returns to its
original position after any cyclic spatial evolution then the
plane of polarization will be twisted by a certain angle relative
to its initial position. The value of the angle is equal to the area
of the unit-sphere surface which is bounded by the closed
curve inscribed on the unit sphere by one of the trihedron's
unit vectors (say, the unit vector of tangent) in the course of
evolution. The analogy between the rotation of the plane of
polarization of light and the rotation of a rigid body was
revealed and studied by I S Emel'yanova [29 ± 31].

5. W Pauli's (1900 ± 1958)
and A D Galanin's (1916 ± 2000) works

The relation between the Dirac wave equation for electron
and geometrical optics was investigated byWolfgang Pauli in
his paper [32] published in 1932. As a starting point of
investigation he accepted the analogy between classical
mechanics and geometrical optics, according to which the
light beams in geometrical optics, corresponding to any
quantum-mechanical problem, and the trajectories in the
respective classical mechanical counterpart completely coin-
cide. Relying on this analogy, Pauli expended the solution of
the SchroÈ dinger equation as a power series in the Planck
constant ratio to an imaginary unit and applied this approach
to the relativistic Dirac wave equation for elementary
particles (electron, proton) in a given external electromag-
netic field. Neglecting the spin of the electron, he showed that
the classical trajectories which can be obtained by the passage
to the limit, similar to the passage from wave optics to a
geometrical one, completely coincided with the trajectories of

a pointwise charged electron in relativistic mechanics.
Considering the effect of the spin of the electron, Pauli
assumed that it is manifested in the higher approximations.
He wrote: ``...Concerning the effects related to the spin and
their influence on the distributions of density and current, it
should be noted that these effects, combined with diffraction
effects, will have an affect at first on the amplitudes ... of the
next approximation, but we will not concentrate on their
calculations in detail''.

The properties of the spin of an electron and meson were
studied by A D Galanin [33], a post-graduate tutored by
I E Tamm in 1942. The starting point of his approach to the
problem was that the wave equation can be transformed into
the equation of geometrical approximation by expending the
solution into the power series of a small parameter. This
approach was applied to the Maxwell, SchroÈ dinger, Dirac,
and Proca equations. Here, as the zeroth approximation one
obtains the equations of geometrical optics (in the case of
Maxwell equations) or the Hamilton ± Jacobi equations (in
the case of classical mechanics). In the first approximation,
the equations of energy and charge conservation are
obtained. However, if one invokes the results of Rytov [11],
showing that the Maxwell equations give the variation of
polarization state of the wave field along the beam trajectory
in the first approximation, and applies them to the Dirac
equation, then, as the first approximation, one finds the
variation of spin orientation of an electron moving along the
classical path. Implementing this program, Galanin derived
the equations describing the spin precession of an electron
and meson and obtained the formula for the Thomas
precession [34, 35] as the ultimate result. Summarizing the
study carried out, Galanin wrote: ``... in the case of small
velocities, the electron and meson manifest their gyroscopic
properties as classical spinning particles''.

6. A Yu Ishlinski|̄'s (1913 ± 2003) work
In 1944, A Yu Ishlinski|̄ published an important paper [36]
which remained relatively unknown for a long time. This
paper brought to light the effect of the combined rolling and
pitchingmotion of a ship. InRef. [36], it was shown that in the
general case where rolling and pitching are out of phase, any
axis fixed in the ship performs a conical motion that leads to
the variation of ship attitude and, as a consequence, its
course.

In 1949, the solid angle theorem got an unexpected
experimental verification during the tests of a single-axis
gyrostabilizer drift under stand angular oscillations, carried
out by engineer M L Effa 3. The test program specified the
measurements of gyrostabilizer drift under the effect of
angular oscillations about two mutually orthogonal axes
with ratio of frequencies 2:1. In this case, the end of the
stabilization axis of the tested instrument described a figure
eight on the spherical surface. Thus, by virtue of theHamilton
theorem, such an excitation should not lead to instrument
drift. The drifts observed were relatively small and may be
generated by imperfections in the testing instrument. How-
ever, in one of test runs, the frequencies of two stand angular
oscillations were equal to each other. Since the oscillations
had a certain phase shift, the stabilization axis described an

2 The Frenet trihedron is a natural moving trihedron of the spatial curve

suggested by Jacque Frederique Frenet (1816 ± 1900). The theory of such

trihedrons was developed by Gaston Darboux (1842 ± 1917), therefore the

moving trihedron is sometimes called a Darboux trihedron.

3 Mark Leopol'dovich Effa (1925 ± 1994) was a Doctor of technical

sciences, Lenin prize winner, engineer, and scientist, who created and

developed the gyroscopes for missiles, rockets, and spacecraft.
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elliptic cone and the observed gyrostabilizer drifts increased
by two orders ofmagnitude. The results were registered by the
test engineer and presented to A Yu Ishlinski|̄ who gave them
a short, but exhaustive explanation. 4

The scheme of the single-axis gyrostabilizer tested is
illustrated in Fig. 1. It is based on the gyroscope in a cardan
suspension (see Fig. 2) that had been suggested by Jean
Bernard Leon Foucault (1819 ± 1868) to the Paris Academy
of Sciences on 27 September 1852 as an instrument for the
experimental confirmation of the Earth's rotation [40]. It is
known that the experiment carried out by L Foucault was

unsuccessful due to instrument imperfections. The single-axis
gyrostabilizer is an instrument in which the drawbacks that
prevented the success of Foucault's experiment are elimi-
nated.

If a rotor of the gyroscope shown in Fig. 2 is brought into
rotation with high angular velocity and all the system is free to
move then one can see immediately that the Foucault
experiment was unsuccessful due to the effect of friction in
the rotor and gimbal bearings. To compensate the effect of
rotor bearing friction, the stator of the electric drive motor is
mounted on the inner gimbal. The motor should provide a
constant angular velocity O of rotor rotation with respect to
the stator or inner gimbal of cardan suspension. As a result,
the rotor acquires an angular moment H equal to the
production of the rotor polar moment of inertia J and
angular velocity O. The spin of elementary particles repre-
sents a microscopic analogue of the gyroscope angular
moment.

The equations of gyroscope rotation as a rigid body
having constant spin maintained by the electric drive motor
are written down as

A
dox

dt
� �Cÿ B�oyoz � oyH �Mx ;

B
doy

dt
� �Aÿ C�ozox ÿ oxH �My ; �1�

C
doz

dt
� �Bÿ A�oxoy �Mz ;

whereA,B, andC are themoments of inertia of the gyroscope
about axes of the coordinate system xyz shown in Fig. 2; ox,
oy, and oz are the projections of the gyroscope angular
velocity vector, and Mx, My, and Mz are the projections of
the resultant torque acting on the gyroscope onto the same
axes. In the derivation of equations (1) it was assumed that
axes x, y, and z are principal central axes of gyroscope inertia
(the validity of this assumption is one of the concerns in the
practice of gyro design and development). Equations (1)
differ from the classical Euler equations [20]

A
dox

dt
� �Cÿ B�oyoz �Mx ;

B
doy

dt
� �Aÿ C�ozox �My ; �2�

C
doz

dt
� �Bÿ A�oxoy �Mz

by terms proportional to the gyroscope spinH. Equations (1)
were deduced by Russian scientist B V Bulgakov (1900 ±
1952) in Ref. [41], while the idea of such forms of equations
was put forth byANKrylov (1863 ± 1945) andYuAKrutkov
(1890 ± 1952) in their monograph [42].

The gyroscope supported by bearings of its inner axis y
inside the outer gimbal (see Fig. 1) composes a single-gyro
frame with this gimbal. Such a structure represents the basis
for the design of gyroscopic instruments like a free gyro and
single-axis gyrostabilizer. The instruments serve as a reference
for sensing the rotation of rockets, aircraft, ships, and other
vehicles moving in space. Since the angular rates of vehicles
are usually low, the terms of the Eulerian part in equations (1)
are much less than the terms proportional to the spin of the
gyroscope and are, in general, negligible. As a result, one

4 This analytical result was published in a book [37] issued in 1952. This

book had a limited number of copies and was available only to a small

group of specialists. However, A Yu Ishlinski|̄ included the explanation of

the effect in the course of lectures Theory of Gyroscopes which was

attended by one of authors (S A Kharlamov) at Moscow State University

in 1956. Only in 1963 did the second enlarged edition of the book [38]

become widely known. Later, this effect was included in a textbook [39].

Stabilization motor

Angle pickup

Figure 1. Schematic of a single-axis gyrostabilizer. The rotation of the

outer gimbal leads to the precession of the gyroscope (represented by the

inner gimbal and rotor) about the inner gimbal axis. The angle of

precessional rotation is measured by an angle pickup, the output signal

of which is amplified by the feedback amplifier and transformed into

current applied to a stabilization motor. The motor compensates all the

disturbing torques about the outer gimbal axis. Therefore, the angular rate

of the outer gimbal is reduced to zero.

y

z

x

1

2

3

Figure 2. Gyroscope in cardan suspension, suggested by L Foucault. The

instrument consists of the rotor (3), inner gimbal (2), and outer gimbal (1).

Coordinate system xyz is attached to the inner gimbal of the suspension.
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obtains the following equations

oyH �Mx; ÿoxH �My �3�

governing the precession of the gyroscope. As one can see
from Fig. 1, the torques acting on the gyroscope about axis z
are balanced by the torques of reaction forces in the bearings
of the inner and outer gimbals.

Let the single-gyro frame be installed on a moving vehicle
in such a manner that its outer axis is horizontal, while the
inner axis is vertical.Moreover, all the spurious torques about
these axes, like the bearing friction torques, are made as low
as possible. In this case, from equations (1) follow that

ox � 0 ; oy � 0 ;

i.e., axes x and y are nonrotating. Thus, the instrument can be
used for producing signals about vehicle rotation and
generating commands to the vehicle attitude control. 5

If one tries to turn the outer gimbal of the Foucault
gyroscope with a fast spinning rotor, then, according to
equations (3), the rotor will precess, tending to align its
angular moment vector with the outer gimbal axis. This
effect is used to compensate the friction torque in the
bearings of the outer gimbal axis. To this aim, a stabilization
motor is mounted as shown in Fig. 1. The motor generates a
torque that balances the friction torque and other disturbing
torques. The balancing torque is produced by a command
signal proportional to the rotor precession angle which is
measured by an angle pickup on the inner gimbal axis. 6 For
the single-axis gyrostabilizer, equations (3) governing its
precessional motion take the form

oyH �M �1�
x �M �2�

x ; ÿoxH �My ; �4�

where M
�1�
x is a total disturbing torque, and M

�2�
x is the

stabilizing torque, while the torque My is usually considered
as negligible for modern high-precision instruments. The sum
of the torques in the first equation is equal to zero by virtue of
the single-axis gyrostabilizer operation principle. The second
equation shows that the angular velocity of outer gimbal
rotation is equal to zero. This angular velocity is written down
as follows

ox � da
dt
� dc

dt
sin y ; �5�

where a is the angle of outer gimbal rotation about its axis,
and c and y are the angles of instrument base rotation during
the motion of the end C of a unit vector directed along the
outer gimbal axis on the unit sphere (see Fig. 3, where angle a
is not shown for the sake of simplicity). Rewriting formula (5)
in the differential form and performing the integration, one
can find that the variation of the outer gimbal rotation angle
due to motion of point C along the closed loop (see Fig. 3) is

defined by the relation

aÿ a0 � ÿ
�
L

sin y dc : �6�

Transforming this contour integral into a double surface
integral by using the Stokes formula, one obtains

aÿ a0 �
� �

S

cos y dc dy : �7�

The integrand is the element dS of a unit sphere area.
Therefore, one arrives at

aÿ a0 � S : �8�

By definition, the surface S on the unit sphere is a measure
of the solid angle formed by a closed conical surface. Thus,
the rotation angle of the single-axis gyrostabilizer about its
outer axis is equal to the solid angle described by this axis due
to the cyclic motion of the instrument base. 7 As mentioned
above, the important implication of this result was published
by A Yu Ishlinski|̄ in Ref. [36] in 1944. Based on the analysis
of the geometry of bicardan suspension [44] by using the
direction cosine matrices, he revealed the effect of combined
rolling and pitching motion of a ship about an arbitrarily
directed axis on the variation of course indication. The main
contribution is the demonstration of the important influence
of nonlinear (quadratic) effects of small angular oscillations
on the attitude kinematics of rigid bodies.

As shown by Ishlinski|̄ in his monographs [37, 38], the
effect considered above is intimately connected with a parallel
transfer of a vector in Riemann geometry [45, 46]. Thus, if a
vector is subjected to a parallel transfer along the closed
contour on the sphere surface then the vector will be turned by
an angle after returning to the original point. The angle of
turn is equal to the solid angle formed by the contour. This
phenomenon is sometimes called anholonomy (see, e.g.,
Refs [4, 6, 47]). In the general case of the parallel transfer of
a vector (or an axis fixed in a rigid body), the final vector
orientation is related to its initial orientation and every point

5 Similar gyroscopic instruments were applied for attitude control of the

German A-4 rocket developed in the 1940s. They could not `see' the

Earth's rotation, but could guide a rocket on the prescribed trajectory. In

the mean time, due to many engineering innovations, instruments of this

type were improved and attained such a level of perfection that they could

`see' the Earth's rotation excellently.
6 There are engineering methods to reduce the effect of the friction in the

bearings of the inner gimbal axis, but they are beyond the scope of the

problems under consideration.

A

Xi
Bc

O
C

Zi

y

Yi

Xgyro

Figure 3. Unit sphere attached to the inertial coordinate system XiYiZi.

AxisXgyro of the gyrostabilizer shown in Fig. 1 describes a closed curve on

the sphere. Orientation of this axis is governed by the anglesAOB � c and

BOC � y. Point C is the trace of the gyrostabilizer axis on the sphere.

7 In Ref. [43], A Yu Ishlinski|̄ noted that he derived formula (8) in 1943.

This formula was first published in the book [37] (second edition [38]).
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of its path, along which the vector is transferred, by a
nonholonomic (nonintegrable) relation. It should be noted
that V V Vladimirski|̄ applied the formalism of the parallel
transfer of a vector in the paper [13].

7. G Heinrich's work

In 1950, Austrian researcher G Heinrich published paper [48]
that is close conceptually to A Yu Ishlinski|̄'s work. He
considered the conical motion of a ship, occurring due to a
phase shift between rolling and pitching motions, and found
the effect of this motion on the course indication of single-
rotor gyrocompasses. The gyrocompass studied represents in
essence the gyroscope in cardan suspension shown in Fig. 2,
the outer axis of which is vertical with the angular momentum
vector of the gyroscope held in the horizontal plane by a
control system with a tilt indicator installed on the inner
gimbal. It was shown that gyrocompasses also have errors
generated by the conical oscillations of their bases, but in
contrast to the single-axis gyrostabilizer's unbounded angles
of rotation, these errors are limited. The reason is that the
gyrocompass has a directional torque aligning its rotor spin
axis with the direction to North and preventing unlimited
rotation. The outcomes of the work [48] were presented in the
book of Kurt Magnus [49], where the results of the papers of
H L Price [50, 51] were also reviewed. In Refs [50, 51], the
errors of a directional gyro were studied. These errors were
generated by an aircraft bank in which the aircraft axis
perpendicular to the fuselage axis and the axis of the wings
described a cone in space.

8. L E Goodman and A R Robinson's work

In 1958, L E Goodman and A RRobinson published a paper
[52] where they reopen all the above-described results of
Ishlinski|̄ in the form of a generalized kinematical theorem
of finite rotations. The generalization was really reduced to
the consideration of the conical motion effect on the rotating
rigid body of the gimbal in the gyroscopic instrument. It was
shown that the continuous conical motion of the rigid body
rotation axis results in an increment of the angular velocity of
rotation. This paper became widely known and generated the
boom of studies on gyroscopic instruments. In a short time
period, a large number of theoretical and experimental papers
were devoted to the effect of angular vibrations on the drifts
of gyroscopes and errors of gyroscopic instruments.

9. J Hannay's work

The works of J Hannay [17, 53] deserve a more detailed
consideration in order to estimate his contribution to the
development of modern representations of topological phase
in classical mechanics. In Ref. [17], he aimed to extend the
quantum-mechanical results of Berry [1] to the semiclassical
case where the Planck constant h tends to zero. To this end,
Hannay considered an integrable mechanical system with one
degree of freedom, the Hamiltonian of which depends on the
parameters. The mechanical system is integrable if the
parameters are constant, i.e., in any point of the parameter
space. As canonical variables of this mechanical system, the
`action ± angle' variables are selected and the `action' variable
yields the first integral for the system under consideration.

Starting from the presentations of the adiabatic invar-
iants, taken from the book by V I Arnold [54], Hannay

studied the system behavior in the case where the parameters
of the Hamiltonian are slowly varied along a closed trajectory
in the parameter space. In this case, the action variable
represents the adiabatic invariant. However, long before
J Hannay and V I Arnold, the adiabatic invariants of
mechanical systems depending on the parameters were stu-
died by A A Andronov, L I Mandel'shtam, and M A Leon-
tovich in a paper [55]. Unfortunately, this publication, which
contains clear definitions of the stationary and temporary
adiabatic invariants, was missed by the next generation of
scientists.

Hannay's main contribution is the demonstration that the
slow variation of the Hamiltonian parameters along closed
contour in the parameter space leads to an additional
increment of the angle variable that depends on the closed
contour. It is this increment that was declared byMBerry and
J Hannay [52] as the topological phase in classical mechanics.
Due to the high scientific authority of Berry, this declaration
has become the widespread opinion, and not only among
Western scientists.

Besides theoretical considerations, Hannay gave three
examples intended to support the significance of the author's
conclusions. As the first example, the frictionless motion of a
bead along a closed wire loop was considered. The effect
studied is manifested in this system if the wire loop is rotated
about the axis perpendicular to its plane. It was shown that
the variation of the mean angular velocity of the bead
position vector is equal to the angular velocity of the loop.
This result is trivial and may be easily obtained by an
application of the angular momentum conservation theo-
rem of mechanics.

In the second example, a harmonic oscillator was
discussed. In this case the Hamiltonian was taken in the
most complicated form. For this oscillator, the action
variable, which is equal to the ratio of total oscillator energy
to its natural frequency, is the adiabatic invariant. This fact
was already shown by Soviet physicists in 1928 [55]. That the
angle variable may have an additional increment under the
variations of oscillator parameters one can find from the
formulas given in a paper [55].

As the third example, it was stated that the angle of
rotation of a spinning top varied due to the conical motion
of its spin axis. This paragraph of paper [17] summarized the
theoretical findings of L E Goodman and A R Robinson's
work [52] published in 1958. No arguments are given relating
these findings to Hannay's theories.

10. Development, generalization,
and application of the solid angle theorem

10.1 Further application of the solid angle theorem
in classical mechanics
In the last years of the 20th century, work related to the
topological phase in classical mechanics was continued. In
Refs [56 ± 58], Yu K Zhbanov and V F Zhuravlev refined the
formulation of the solid angle theorem (in particular, they
considered the accumulation of this angle during the conical
motion of a rigid body axis if the cone is not closed),
simplified the proof, and made it more obvious. The relation
of the solid angle theorem to the noncommutativity of rigid
body finite rotation was studied. The most complete
representation of rotation noncommutativity and its role in
navigation was presented by N I Krobka [59].
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InRef. [60], S E Perelyaev studied the existence of an effect
similar to the Ishlinski|̄ effect in multidimensional spaces. He
showed that this effect is peculiar only to three-dimensional
space and is not observed in four-dimensional space. The
author postulated that the effect is produced due to the
coincidence of the space dimension and the number of
parameters representing the SO(3) rotational group. In
Ref. [61], A V Krutov investigated in detail the geometrical
aspects of rigid body rotation in space.

Among the papers devoted to the problem under con-
sideration, paper [62] published by Indian scientists (R Simon,
N Mukunda, E C G Sudarshan) is of special interest. Its
authors generalized the Hamilton theory of rotations [18] by
using the group theory. They showed that the rotations
defined by Hamilton as oriented great circle arcs on the unit
sphere are equivalent to the elements of the SU(2) group. By
analogy, they introduced oriented arcs on the unit hyperbo-
loid of one sheet and demonstrated their equivalence to the
elements of the Sp(2, R) group.

As for further development of Berry's and Hannay's
studies, significant progress was attained by Y Aharonov
and J Anandan [63]. They generalized the concept of the
Berry phase by eliminating the adiabatic approximation.
However, this generalization comes at a fairly high cost,
since quantum states do not always return to the initial state
after the cyclic evolution of the Hamiltonian. Therefore, the
geometrical phase cannot be determined in some cases by the
method of Ref. [63]. The Hannay angle is the classical
analogue of the geometrical phase. It was studied by Dae-
Yup Song [64] for a harmonic oscillator with a time-periodic
Hamiltonian. The author considered the existence of the
Hannay angle in the phase state of the oscillator, the
canonical structure of which is such that the action variable
is the exact (but not adiabatic) invariant of the Hamilton
system.

10.2 Further application of the solid angle theorem
in polarization optics and development of the analogy
between optics and mechanics
The results obtained by S M Rytov and V V Vladimirski|̄
[11 ± 13] in geometrical optics were advanced further in
polarization optics. In 1956, S Pancharatnam [14, 15]
showed that a light beam propagating along a plane
trajectory (in particular, a straight line) acquired a phase
incursion if the beam polarization state is subjected to cyclic
evolution, so that the point on the PoincareÂ sphere [9]
representing this state traces a closed curve. In this case the
phase increment is equal to the solid angle under which the
closed curve is seen from the center of the sphere. In Ref. [65],
G B Malykin and Yu I Ne |̄mark showed that the
Pancharatnam phase of a light beam passed through a
unimode fiber lightguide (UFL) has a nonholonomic
relation with the azimuthal angles of linear birefringence
axes at lightguide input and output. This fact is a direct
implication of the analogy between optics and mechanics.
The applications of the Pancharatnam phase were reviewed
in Refs [3 ± 9].

Recently, Malykin showed in papers [66, 67] that the well-
known phenomenon of polarizational nonreciprocity of a
fiber ring interferometer (FRI) [68 ± 70], leading to a counter-
propagating wave phase difference which is not related with
the interferometer rotation, can also be represented as a
nonreciprocal geometrical (topological) phase. As shown in
Refs [66, 67] the counterpropagating wave phase difference in

the FRI generated by the polarizational nonreciprocity 8 is
equal to a solid angle which is based on a spherical triangle
given by three points of the PoincareÂ sphere. These points
correspond to the light polarization states on the FRL input
and the two outputs.

Notice that in spite of the fact that both the nonreciprocal
geometrical phase of the UFL and the Pancharatnam phase
are defined in terms of the solid angle on the PoincareÂ sphere,
they cannot be joined to each other. The first phase is defined
only for two counterpropagating waves in the ring, while the
second one may exist for a single wave. The first one is
determined only by the polarization state at the ring input and
two outputs, while the second one depends on the evolution of
the polarization state along the entire beam path. Therefore,
in contrast to the Pancharatnam phase, the nonreciprocal
geometrical phase of the UFL has a holonomic association
with the beam polarization state at the UFL input and both
outputs.

Another principal difference between the Rytov ±Vladi-
mirski|̄ phase, on the one hand, and the Pancharatnam phase,
on the other hand, should be noted. In the first case, one deals
with a solid angle in real space, while, in the second case, one
considers a solid angle on the PoincareÂ sphere, i.e., in the
space of Stokes vectors [9, 71].

The effect treated by Ishlinski|̄ in Refs [37, 38] leads to the
generation of errors of mechanical gyroscopes, which serve as
an indication of orientation according to their operation
principle based on the inertial properties of rigid bodies. The
nonreciprocal geometric phase of the UFL results in the
generation of errors in fiber optical gyroscopes which are
the angular velocity sensors [70], and their operation principle
is based on the utilization of the Sagnac effect (effect of the
special theory of relativity) [70, 72 ± 75]. Thus, the solid angle
theorem found application for the evaluation of errors of
both mechanical and optical gyroscopes. This is another
manifestation of the deep analogy between optics and
mechanics.

11. Solid angle theorem
in the special relativity theory

A rather unexpected and, from the physical viewpoint, very
interesting implication of the solid angle theorem was found
in the special theory of relativity. In Refs [77 ± 79], it was
shown that a relation similar to that predicted by the classical
theorem also exists in the special theory of relativity: the angle
of rigid body rotation in its motion along a plane trajectory,
caused by the Thomas precession (relativistic kinematic
effect) [34, 35, 80], is equal to the solid angle observed in the
immovable frame of reference, which is traced by the body-
fixed axis due to the variation of body image rotation in the
immovable frame of reference. The last phenomenon is called
a relativistic aberration [81 ± 84]. It is caused by the Lor-
entzian shrinkage of length and propagation time lag of light
emitted by different regions of the body. Thus, the Thomas
precession can be considered the relativistic analogue of the
Ishlinski|̄ effect or solid angle theorem.

Notice that even in the simplest case of circular motion, it
is a very difficult problem to obtain an analytical relation
between angular velocities of the Thomas precession and
orbital motion. As shown in Ref. [85], different authors

8 This difference was computed separately for the waves traveling along

`slow' and `fast' birefringence axes of the FRL.
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obtained different relations for this case. There are about ten
known relations that significantly differ from one another.
Certain relations can be found in a number of versions which
have different signs and coefficients. The method suggested
by one of the authors of this paper (G B Malykin) for the
preparation of the Thomas precession formula is based on
the application of the solid angle theorem [77 ± 79]. It allows
one to obtain the correct result by using simple trigono-
metric manipulations, being much less complicated than
other known methods. Moreover, it enables one to clearly
illustrate the physical sense of the Thomas precession.

12. Conclusions

There have been three waves of interest in or three stages of
study of the topological phase in mechanics. In the first stage,
Sir William Rowan Hamilton elaborated the theory of rigid
body rotations, based on the findings of his predecessors as an
object of application of his theory of quaternions. In 1853, he
formulated and proved the theorem that is now called the
solid angle theorem. The theorem was included by Horace
Lamb in his classical treatise on mechanics in 1929, but later
was forgotten for two decades.

In the second stage, at the beginning of the 1940s, the
theorem was formulated and proved by A Yu Ishlinski|̄,
posed in a more general way and in connection with
gyroscopic instruments. At the end of the 1940s, the theorem
found experimental confirmation as a result of testing the
single-axis gyrostabilizer on a rotationally oscillating stand.
In 1956, Ishlinski|̄ already included the theorem in the course
Theory of Gyroscopes where he demonstrated the nonholo-
nomic nature of this effect. In 1958, L E Goodman and
ARRobinson formulated and proved the theorem in parallel
and independently in connection with the effect of finite
rotation on the errors of gyroscopic sensing elements. These
publications stimulated a large number of publications
devoted to the effect of angular vibrations on the accuracy
of gyroscopic instruments.

In the third stage, J Hannay extended the concept of the
topological phase that was introduced by M Berry in
quantum mechanics to classical Hamilton mechanical sys-
tems. Here, it was shown that the angle variable of an
integrable mechanical system acquires an additional incre-
ment in the course of adiabatic and cyclic variation of the
Hamiltonian in the parameter space. This increment, called
the Hannay angle, is in essence the angle found by Hamilton
for a rigid body, and Ishlinski|̄ for gyroscopic instruments in
real three-dimensional space, but observed in the phase space
of an integrable Hamilton mechanical system. The necessary
condition of the existence of theHannay angle is the adiabatic
nature of the canonical variable `action' or its exact invar-
iance.

It should be emphasized that, besides its use in classical
mechanics, the concept of topological phase is also employed
in optics and quantum mechanics. Remarkably, the Russian
scientists S M Rytov, V V Vladimirski|̄, A D Galanin, and
A Yu Ishlinski|̄ obtained the first results in solving the
problem of topological phase in optics, the physics of
elementary particles, and mechanics during the short
(1938 ± 1952), but very dramatic period of history in Russia.
It is also necessary to note that the manifestations of
topological phase in optics and mechanics are related by the
fundamental analogy between these disciplines that was
developed in the works of N G Chetaev.

The authors are grateful to all the people who gave
support to this work. They also wish to thank AYu Ishlinski|̄
and V V Vladimirski|̄ for discussions on the history of their
works, V L Ginzburg for discussions on a number of issues,
Yu I Ne|̄mark for valuable comments, P A Khandokhin and
P Glorieux (France) for the presentation of a copy of
O Rodrigues's paper, Yu M Kolesov for the presentation of
copies of Ishlinski|̄'s papers published long ago,LAMal'tseva
for the presentation of copies of GHeinrich's and H L Price's
papers, and V I Pozdnyakova for assistance during the work.

References

1. Berry M V Proc. R. Soc. London Ser. A 392 45 (1984)

2. Simon B Phys. Rev. Lett. 51 2167 (1983)

3. Vinitski|̄ S I et al.Usp. Fiz. Nauk 160 (6) 1 (1990) [Sov. Phys. Usp. 33

403 (1990)]

4. Berry M Phys. Today 43 (12) 34 (1990)

5. Anandan J Nature 360 307 (1992)

6. Klyshko D N Usp. Fiz. Nauk 163 (11) 1 (1993) [Phys. Usp. 36 1005

(1993)]

7. Toronov V Yu, Derbov V L, Priyutova O M Izv. Vyssh. Uchebn.

Zaved. Prikladnaya Neline|̄naya Dinamika 4 (6) 3 (1996)

8. Bodnarchuk V I, Davtyan L S, KorneevDAUsp. Fiz. Nauk 166 185

(1996) [Phys. Usp. 39 169 (1996)]

9. Malykin G B Izv. Vyssh. Uchebn. Zaved. Radiofiz. 40 265 (1997)

[Radiophys. Quantum Electron. 40 175 (1997)]

10. Berry M Nature 326 277 (1987)

11. Rytov S M Dokl. Akad. Nauk SSSR 18 263 (1938)

12. Rytov S M Tr. Fiz. Inst. Akad. Nauk SSSR 2 (1) 41 (1940)

13. Vladimirski|̄ V V Dokl. Akad. Nauk SSSR 31 222 (1941)

14. Pancharatnam S Proc. Ind. Acad. Sci. A 44 247 (1956)

15. Pancharatnam S Proc. Ind. Acad. Sci. A 44 398 (1956)

16. Berry M V J. Mod. Optics 34 1400 (1987)

17. Hannay J H J. Phys. A:Math. Gen. 18 221 (1985)

18. HamiltonWRLectures onQuaternions (Dublin:Hodges and Smith,

1853) p. 338

19. Lamb H Higher Mechanics (Cambridge: The Univ. Press, 1929)

[Translated into Russian (Moscow-Leningrad: ONTI, 1936)]

20. Euler L Theoria motus corporum solidorum seu rigidorum (Rostock:

Greifswald, 1765)

21. Burago Yu D, in Matematicheskaya Entsiklopediya (Mathematical

Encyclopedia) Vol. 1 (Moscow: Sov. Entsiklopediya, 1977) p. 902

22. Rodrigues O J. Math. Pures Appl. 5 380 (1840)

23. Donkin M J Philos. Mag. 4 1 (1851)

24. HamiltonWR Trans. R. Irish Acad. 15 69 (1828); 16 (1) 1 (1830); 16

(2) 93 (1831); 17 (1) 1 (1837) [Translated into Russian: Izbrannye

Trudy (Moscow: Nauka, 1994) pp.10 ± 166]

25. C.H.D.Z. 9 TraiteÂ de la lumieÂre (Leyden, 1690) [Translated into

Russian (Moscow-Leningrad: ONTI, 1935)]

26. Klein F, in Gesammelte Mathematische Abhandlungen Bd. 2 (Hrsg.

R Fricke, H Vermeil) (Berlin: J. Springer, 1922) p. 601

27. Chetaev N G Zh. Priklad. Matem. Mekh. 22 487 (1958) [J. Appl.

Math. Mekh. 22 678 (1959)]; also in Usto|̄chivost' Dvizheniya.

Raboty po Analitichesko|̄ Dinamike (Stability of Motion. Works on

Analytical Mechanics) (Moscow: Izd. AN SSSR, 1962) p. 393

28. Chetaev N G Zh. Priklad. Matem. Mekh. 24 23 (1960) [J. Appl.

Math. Mech. 24 27 (1960)]; also in Usto|̄chivost' Dvizheniya. Raboty

po Analitichesko|̄ Dinamike (Stability of Motion. Works on Analy-

tical Mechanics) (Moscow: Izd. AN SSSR, 1962) p. 404

29. Emel'yanova I S, in Matematicheskoe Modelirovanie i Optimal'noe

Upravlenie (Mathematical Modeling and Optimal Control) (Ed.

S N Strongin) (Nizhni|̄ Novgorod: Izd. NNGU, 1994) p. 90

30. Emel'yanova I S, Dunaeva N L, in Problemy Teorii Kolebani |̄
(Problems of the Theory of Vibrations)(Ed. E F Sabaev) (Nizhni|̄
Novgorod: Izd. NNGU, 1995) p. 3

9 C.H.D.Z. Ð Christian Huygens de Zuylichem. At that time the author's

abbreviation in the title of the book was an ordinary custom.

964 G BMalykin, S A Kharlamov Physics ±Uspekhi 46 (9)

http://www.turpion.org/info/lnkpdf?tur_a=pu&tur_y=1996&tur_v=39&tur_n=2&tur_c=133
Administrator
Bodnarchuk V I, Davtyan L S, KorneevDAUsp. Fiz. Nauk 166 185

Administrator
(1996) [Phys. Usp. 39 169 (1996)

http://dx.doi.org/10.1103/PhysRevLett.51.2167
OMIS
Simon B Phys. Rev. Lett. 51 2167 (1983)

http://dx.doi.org/10.1038/360307a0
OMIS
Anandan J Nature 360 307 (1992)

http://dx.doi.org/10.1038/326277a0
OMIS
BerryM Nature 326 277 (1987)

http://dx.doi.org/10.1016/0021-8928(58)90008-X
http://dx.doi.org/10.1016/0021-8928(58)90008-X
OMIS
Chetaev N G Zh. Priklad. Matem. Mekh. 22 487 (1958) [J. Appl.

OMIS
Math. Mekh. 22 678 (1959)]

http://dx.doi.org/10.1016/0021-8928(60)90137-4
http://dx.doi.org/10.1016/0021-8928(60)90137-4
OMIS
Chetaev N G Zh. Priklad. Matem. Mekh. 24 23 (1960) [J. Appl.

OMIS
Math. Mech. 24 27 (1960)];



31. Emel'yanova I S, in Metody Analiza Neline|̄nykh Sistem (Methods

of Analysis for Nonlinear Systems) (Eds S V Emel'yanov,

S K Korovin) (Moscow: Dialog MGU, 1997) p. 63

32. Pauli W Helv. Phys. Acta 5 179 (1932) [Translated into Russian:

Trudy po Kvantovo|̄ Mekhanike, Stat'i 1928 ± 1938 (Moscow: Nau-

ka, 1977) p. 112]

33. Galanin A D J. Phys. USSR 6 35 (1942)

34. Thomas L H Nature 117 514 (1926)

35. Thomas L H Philos. Mag. Ser. 7 3 (13) 1 (1927)

36. Ishlinski|̄ A Yu Priborostroenie (4) 3 (1944)

37. Ishlinski|̄ A Yu Mekhanika Spetsial'nykh Giroskopicheskikh Sistem

(Mechanics of Special Gyroscopic Systems) (Kiev: Izd. AN

UkrSSR, 1952)

38. Ishlinski|̄AYuMekhanika Giroskopicheskikh Sistem (Mechanics of

Gyroscopic Systems) 2nd ed. (Moscow: Izd. AN SSSR, 1963)

[Translated into English (Jerusalem: Israel Program for Scientific

Translations, 1965)]

39. Ishlinski|̄ A Yu, Borzov V I, Stepanenko N P Lektsii po Teorii

Giroskopov (Lectures on the Theory of Gyroscopes) (Moscow: Izd.

MGU, 1983)

40. Foucault L C.R. Acad. Sci. 35 421 (1852)

41. Bulgakov B V Prikladnaya Teoriya Giroskopov (Applied Theory of

Gyroscopes) (Moscow-Leningrad: GITTL, 1939)

42. Krylov A N, Krutkov Yu F Obshchaya Teoriya Giroskopov

(General Theory of Gyroscopes) (Leningrad: Izd. AN SSSR, 1932)

43. Ishlinski|̄ A Yu Orientatsiya, Giroskopy i Inertsial'naya Navigatsiya

(Orientation, Gyroscopes, and Inertial Navigation) (Moscow:

Nauka, 1976)

44. Ishlinski|̄ A Yu Priborostroenie (1) 12 (1944)

45. Rashevski|̄ P K Rimanova Geometriya i Tenzorny|̄ Analiz (Rieman-

nian Geometry and Tensor Calculus) 3rd ed. (Moscow: Nauka,

1967)

46. Lumiste Yu G, inMatematicheskaya Entsiklopediya (Mathematical

Encyclopedia) Vol. 4 (Moscow: Sov. Entsiklopediya, 1984) p. 206

47. Ne|̄mark Yu I, Fufaev N A Dinamika Negolonomnykh Sistem

(Dynamics of Nonholonomic Systems) (Moscow: Nauka, 1967)

[Translated into English (Providence, RI: American Mathematical

Soc., 1972)]

48. Heinrich G OÈsterr. Ing. Arch. 3 215 (1950)

49. Magnus K Kreisel. Theorie und Anwendungen (Berlin: Springer-

Verlag, 1971) [Translated into Russian (Moscow: Mir, 1974)]

50. Price H L Aircraft Eng. 20 (1) 11 (1948)

51. Price H L Aircraft Eng. 20 (2) 38 (1948)

52. Goodman L E, Robinson A R J. Appl. Mech. 25 210 (1958)

[Translated into Russian, in Mekhanika (Mechanics) No. 5 (57)

(Moscow: IL, 1959) p. 133]

53. Berry M V, Hannay J H J. Phys. A:Math. Gen. 21 L325 (1988)

54. Arnol'd V I Matematicheskie Metody Klassichesko|̄ Mekhaniki

(Mathematical Methods of Classical Mechanics) (Moscow: Nau-

ka, 1974) [Translated into English (New York: Springer-Verlag,

1978)]

55. Andronov A A, Mandel'shtam L I, Leontovich M A Zh. Russ. Fiz.

Khim. Obshch. Ch. Fiz. 60 413 (1928); see also Andronov A A

Sobranie Trudov (CollectedWorks) (Moscow: Izd. AN SSSR, 1956)

p. 34; Mandel'shtam L I Polnoe Sobranie Trudov (Complete Works)

Vol. 1 (Leningrad: Izd. AN SSSR, 1948) p. 297

56. Zhbanov Yu K, Zhuravlev V F Izv. Akad. Nauk SSSR. Ser. Mekh.

Tverd. Tela (1) 9 (1978)

57. Zhuravlev V F Zh. Prikl. Mat. Mekh. 60 323 (1996) [J. Appl. Math.

Mekh. 60 319 (1996)]

58. Zhuravlev V FOsnovy Teoretichesko|̄Mekhaniki (Fundamentals of

Theoretical Mechanics) (Moscow: Nauka ±Fizmatlit, 1997)

59. Krobka N I, in Proc. of the 2nd Saint Petersburg Intern. Conf. on

Gyroscopic Technology and Navigation Pt. II (St. Petersburg, 1995)

p. 99

60. Perelyaev S E, in Mekhanika i Navigatsiya. Materialy Nauchno|̄
Sessii, Posvyashchenno|̄ 85-Letiyu Akademika RAN A Yu Ishlinsko-

go, Moskva, 30 Sent. 1998 (Mechanics and Navigation. Reports of

the Scientific Session Celebrating the 85th Anniversary of Acade-

mician A Yu Ishlinski|̄'s Birth, Moscow, Sept. 30, 1998) (Ed Yu M

Kolesov) (St. Petersburg: GNTs RFÐ TsNII Elektropribor, 1999)

p. 88

61. Krutov A V Izv. Vyssh. Uchebn. Zaved. Mashinostroenie (4) 13

(2001)

62. Simon R, Mukunda N, Sudarshan E C G Phys. Rev. Lett. 62 1331

(1989)

63. Aharonov Y, Anandan J Phys. Rev. Lett. 58 1593 (1987)

64. Song D-Y Phys. Rev. Lett. 85 1141 (2000)

65. Malykin GB, Ne|̄mark Yu I Izv. Vyssh. Uchebn. Zaved. Radiofiz. 41

1125 (1998)

66. Malykin G BOpt. i Spektrosk. 81 474 (1996) [Opt. Spectrosc. 81 431

(1996)]

67. Malykin G BOpt. i Spektrosk. 84 515 (1998) [Opt. Spectrosc. 84 455

(1998)]

68. Andronova IA,GelikonovGV,MalykinGBKvantovaya Elektron.

26 271 (1999) [Quantum Electron. 26 271 (1999)]

69. Andronova I A, Gelikonov G V, Malykin G B Proc. SPIE 3736

423 (1999)

70. Andronova I A, Malykin G B Usp. Fiz. Nauk 172 849 (2002) [Phys.

Usp. 45 793 (2002)]

71. Shurkliff W A Polarized Light (Cambridge, Mass.: Harvard Univ.

Press, 1962) [Translated into Russian (Moscow: Mir, 1965)]

72. Logunov A A, Chugreev Yu V Usp. Fiz. Nauk 156 137 (1988) [Sov.

Phys. Usp. 31 861 (1988)]

73. Malykin G B Usp. Fiz. Nauk 167 337 (1997) [Phys. Usp. 40 317

(1997)]

74. Vugal'ter GA,MalykinGB Izv. Vyssh. Uchebn. Zaved. Radiofiz. 42

373 (1999)

75. Malykin G B Usp. Fiz. Nauk 170 1325 (2000) [Phys. Usp. 43 1229

(2000)]

76. Malykin G B Usp. Fiz. Nauk 172 969 (2002) [Phys. Usp. 45 907

(2002)]

77. Malykin G B Usp. Fiz. Nauk 169 585 (1999) [Phys. Usp. 42 505

(1999)]

78. Malykin G B Zh. Prikl. Mat. Mekh. 63 775 (1999) [J. Appl. Math.

Mech. 63 731 (1999)]

79. Malykin G B Izv. Ross. Akad. Nauk Ser. Mekh. Tverd. Tela (4) 187

(2000)

80. Malykin G B, Permitin G V, in Fizicheskaya Entsiklopediya

(Physical Encyclopedia) Vol. 5 (Ed.-in-Chief A M Prokhorov)

(Moscow: Bol'shaya Rossi|̄skaya Entsiklopediya, 1998) p. 123
81. Penrose R Proc. Cambr. Philos. Soc. 55 (1) 137 (1959)

82. Terrell J Phys. Rev. 116 1041 (1959)

83. Weisskopf VFPhysics in the Twentieth Century (Cambridge,Mass.:

MIT Press, 1972) [Translated into Russian (Moscow: Atomizdat,

1977) p. 179]

84. Bolotovski|̄ B M, in E|̄nshte|̄novski|̄ Sbornik 1986 ± 1990 (Einstein's

Collection 1986 ± 1990) (Ed. I Yu Kobzarev) (Moscow: Nauka,

1990) p. 279

85. BurlankovDE,MalykinGB, Preprint No. 576 (Nizhni|̄Novgorod:

Institute of Applied Physics of the Russian Academy of Sciences,

2001)

September, 2003 Topological phase in classical mechanics 965

http://dx.doi.org/10.1070/qe1999v029n03ABEH001467
Administrator
Andronova I A, GelikonovGV, MalykinGB Kvantovaya Elektron.

Administrator
26 271 (1999) [Quantum Electron. 26 271 (1999)

http://dx.doi.org/10.1070/PU2002v045n08ABEH001073
Administrator
Andronova I A, Malykin G B Usp. Fiz. Nauk 172 849 (2002) [Phys.

Administrator
Usp. 45 793 (2002)]

http://dx.doi.org/10.1070/PU1997v040n03ABEH000218
Administrator
Malykin G B Usp. Fiz. Nauk 167 337 (1997) [Phys. Usp. 40 317

Administrator
(1997)]

http://dx.doi.org/10.1070/pu2000v043n12ABEH000830
Administrator
Malykin G B Usp. Fiz. Nauk 170 1325 (2000) [Phys. Usp. 43 1229

Administrator
(2000)]

http://dx.doi.org/10.1070/PU2002v045n08ABEH001225
Administrator
Malykin G B Usp. Fiz. Nauk 172 969 (2002) [Phys. Usp. 45 907

Administrator
(2002)]

http://dx.doi.org/10.1070/PU1999v042n05ABEH000495
Administrator
Malykin G B Usp. Fiz. Nauk 169 585 (1999) [Phys. Usp. 42 505

Administrator
(1999)]

http://dx.doi.org/10.1016/0021-8928(96)00040-8
OMIS
Zhuravlev V F Zh. Prikl. Mat. Mekh. 60 323 (1996) [J. Appl. Math.Mekh. 60 319 (1996)]

http://dx.doi.org/10.1103/PhysRevLett.62.1331
OMIS
Simon R, Mukunda N, Sudarshan E C G Phys. Rev. Lett. 62 1331

OMIS
(1989)

http://dx.doi.org/10.1103/PhysRevLett.58.1593
OMIS
Aharonov Y, Anandan J Phys. Rev. Lett. 58 1593 (1987)

http://dx.doi.org/10.1103/PhysRevLett.85.1141
OMIS
Song D-Y Phys. Rev. Lett. 85 1141 (2000)

http://dx.doi.org/10.1016/S0021-8928(99)00092-1
OMIS
Malykin G B Zh. Prikl. Mat. Mekh. 63 775 (1999) [J. Appl. Math

OMIS
Mech. 63 731 (1999)]

http://dx.doi.org/10.1103/PhysRev.116.1041
OMIS
Terrell J Phys. Rev. 116 1041 (1959)

http://dx.doi.org/10.1117/12.340149
OMIS
Andronova I A, Gelikonov G V, Malykin G B Proc. SPIE 3736

OMIS
423 (1999)


	1. Introduction
	2. W R Hamilton's (1805--1865) work
	3. The Felix Klein (1849--1925) problem
	4. S M Rytov's (1908--1996) and V V Vladimirskii's (born in 1915) works
	5. W Pauli's (1900--1958) and A D Galanin's (1916--2000) works
	6. A Yu Ishlinskii's (1913--2003) work
	7. G Heinrich's work
	8. L E Goodman and A R Robinson's work
	9. J Hannay's work
	10. Development, generalization, and application of the solid angle theorem
	10.1 Further application of the solid angle theorem in classical mechanics
	10.2 Further application of the solid angle theorem in polarization optics and development of...

	11. Solid angle theorem in the special relativity theory
	12. Conclusions
	 References

