
Abstract. Theoretical and experimental research into the dy-
namic and correlation properties of smectic liquid-crystal films
is reviewed. Both freely suspended films and films fastened to a
solid substrate are considered. For smectic-A films, the inten-
sity of X-ray scattering and the temporal correlation function of
scattering intensities are analyzed. For smectics with the direc-
tor tilted with respect to the layers, the intensity of scattering
light is discussed. To illustrate theoretical results, available
experimental data are used.

1. Introduction

Liquid crystals have been a subject of interest for many years.
Interest greatly increased in recent decades due to various
practical applications of liquid crystals, first and foremost in
systems of information transfer and representation. Liquid
crystals possess a number of unusual physical properties by
virtue of their intermediate position between isotropic viscous
liquids and crystalline solids. On the one hand, they exhibit
such properties as optical anisotropy intrinsic in solid crystals,
while on the other hand they are fluid like ordinary liquids.

Liquid crystals differ in terms of structure. Some of them
are characterized by regular orientation of molecules while
the positions of their centers ofmass are as randomas they are
in fluids. This class of liquid crystals includes, first and
foremost, nematic liquid crystals with uniformly ordered
molecular orientations normally given by a unit vector n
(called the director vector), and cholesteric liquid crystals in
which the prevalent molecular orientation rotates about a
certain axis.

Another important class is constituted by liquid crystals
characterized not only by a regular orientational structure but
also by an ordered position of the centers of molecular masses
thatmake up a construction of flat layers. Such substances are
called smectic liquid crystals or smectics. Depending on the
direction of the preferred molecular orientation, they are
divided into smectics A, in which the director n is normal to
the layer plane, and smectics C, where the director is tilted
with respect to the layers at a certain angle y. A turn of the
director in smectic C films while passing from one layer to
another so that angle y is conserved gives rise to smectic C �.
The centers of molecular mass in each layer of smectics A, C,
and C � are disordered as in a two-dimensional liquid.

There are also smectic liquid crystals in which the
positions of the centers of molecular mass are ordered within
a given layer. These include smectics B, F, I, etc. As a rule, the
positions of the centers of mass in such smectics make up a
hexagonal structure, but the orientation of the director with
respect to the layers may be different. A large variety of liquid
crystals makes it possible to observe many phase transitions
between such structures in one and the same substance.

Smectic liquid crystals are capable of forming stable
macroscopic films containing from two to thousands of
layers. Such films may be either freely suspended in a rigid
frame or fastened to a substrate. Investigations into the
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physical properties of thin smectic films (especially freely
suspended ones) are of special interest because they provide a
unique opportunity to study a two-dimensional structure
unavailable in any other physical system. Properties of
smectic liquid crystals in a film differ substantially from
those in the bulk phase. This first and foremost refers to
phase transitions that can occur in successive layers at
different temperatures. Such transitions lead to the forma-
tion of smectic phases unobservable in thick slabs of the same
material. The smectic structure, e.g., the tilt of the director
with respect to the normal to a layer in smectics C, can vary
across the film thickness. Both equilibrium and dynamic
properties of thin films show strong dependence on the
bounding surfaces. All these effects are functions of film
thickness.

Thin smectic films have been extensively studied using
various methods. To begin with, X-ray scattering techniques
are employed, taking advantage of the fact that the character-
istic scale of the layered structure is on the same order as the
X-ray wavelength. Static properties of smectic films are
examined by specular and diffuse scattering techniques,
while correlation X-ray spectroscopy has been recently
employed to study their dynamic properties. Much attention
is given to studying the thermophysical properties of smectic
films, in particular in the vicinity of phase transitions. Many
film studies are performed using optical methods, first and
foremost ellipsometry, which allow studying the character-
istics of the surface structure. Light scattering techniques also
find application for this purpose. They are extensively
employed to study smectic C and C � films showing marked
fluctuations of the director.

To date, a large amount of experimental material has been
accumulated concerning various processes in smectic films,
and a consistent theoretical description of their static and
dynamic properties has been provided. The most detailed
information is available for smectics A, C, and C �. For these
systems, the theoretical description is in excellent agreement
with experimental results andmay be used as a reliable source
of film parameters. This fact has acquired great importance in
recent years when liquid crystals have begun to be extensively
used in manufacturing a variety of displays.

The present review is centered on the analysis of smectic
films, both freely suspended in a frame and fastened to a
substrate. Dynamic properties and thermal fluctuation
spectra of these films are considered. A detailed discussion
of X-rays and visible-light scattering in smectic films is
presented. Much attention is given to the theoretical descrip-
tion of the dynamics of smectic layers in the framework of a
discrete model, bearing in mind that systematic treatment of
this issue is virtually lacking from the literature.

2. Equations of motion of smectics

Compared with nematics, smectic liquid crystals are char-
acterized by additional ordering. Specifically, the density of
center-of-mass positions in smectic films is a periodic function
along a certain distinguished direction, e.g., the axis z. This
means that smectics have a layered structure formed, when in
equilibrium, by a set of equidistant flat layers. The structure
of each layer depends on the type of a given smectic liquid
crystal. In the most important and simple case of smectic A,
each layer represents a two-dimensional liquid composed of
molecules whose long axes are aligned perpendicularly to the
layer. The structure of a deformed smectic A can be described

by a variable u�r� that represents the displacements of layers
from equilibriumpositions along the z axis. The free energy of
distortion in smectic A must be invariant with respect to its
rotation as a whole about the x and y axes and relative to the
reflection in the xy plane. In the Gaussian approximation, the
distortion free energy can be written in the form [1 ± 3]

Fb � 1

2

� �
B

�
qu�r�
qz

�2

� K �D?u�r��2
�
dr ; �2:1�

whereD? � q2=qx2 � q2=qy2 is the Laplace operator in the xy
plane, B is the elastic constant related to the compression and
rarification of the layers, and K is the elastic constant related
to their bending. In the free energy of smectic films, the
surface contribution is as important as the bulk one [4]

Fs � g
2

� ���H?us1�r?���2 � ��H?us2�r?���2� dr? ; �2:2�

where g is the surface tension and us1�r?� and us2�r?� are the
displacements of the two free film surfaces from the equili-
brium position.

For the purpose of describing motions in smectic films,
they may be regarded as incompressible, since these motions
occur with velocities that are much lower than the speed of
sound c, and the inequality o5 cq is assumed to be valid for
both the circular frequency o and the wave number q. In this
case the motion in smectic A is described by the following
system of equations [1 ± 3]:

qi vi � 0 ;

r
qvi
qt
� ÿqi p� qjs 0ij � hdiz ; i � x; y; z ; �2:3�

qu
qt
� vz � lph :

Here, vi are the velocity components, p is the pressure, lp is
the permeation constant, and h is the molecular field, the
expression for which has the form

h � B
q2u
qz2
ÿ K�D?�2u : �2:4�

In Eqns (2.3), summation over repeated indices is implied and
the following notation is used:

qx � q
qx

; qy � q
qy

; qz � q
qz
:

This set of equations of motion should be supplemented
by boundary conditions. The tangential components of the
stress tensor must vanish at the free surface:

sxz � 0 ; syz � 0 ; �2:5�
while the jump of the normal component of this tensor at the
surface must be compensated by the capillary pressure

szz ÿ s ext
zz ÿ gD?z � 0 : �2:6�

Here, the function z describes the free surface displacement,
s 0i j is the stress tensor

si j � ÿpdi j � s 0i j � s r
ij ;
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s ext
zz is the contribution from external forces, and s 0i j is the

viscous stress tensor.
In an incompressible smectic A, the viscous stress tensor

has the form [3,5]

s 0i j � 2Z2vi j � 2�Z3 ÿ Z2��viz djz � vjz diz� � Z0vzz diz djz ;

�2:7�
where

vi j � 1

2
�qi vj � qj vi� ;

and the designation

Z0 � Z1 � Z2 ÿ 4Z3 ÿ 2Z5 � Z4

is used, with Zi, i � 1; 2; . . . ; 5 being the coefficients of
viscosity. Part of the stress tensor s r

i j related to inhomoge-
neous displacements of smectic layers has the following
components entering into the boundary conditions [3, 5]:

s r
zz � B

qu
qz

; s r
xz � ÿKD?

qu
qx

; s r
yz � ÿKD?

qu
qy

:

The stress tensor above the free surface is determined only by
the external pressure

s ext
i j � ÿpext di j :

The last boundary condition is the impermeability of the
surface,

qz
qt
� vz : �2:8�

Equation of motion (2.3) and boundary conditions (2.5),
(2.6), and (2.8) govern smectic Amovements.

3. Dynamics of smectic-A films

3.1 Freely suspended films
The system of equations (2.3) that describes the motion of
smectics A has been constructed in the framework of
continuum mechanics. At the same time, an important role
in the description of thin smectic films is attached to such
structural parameters as the interlayer distance d absent in
equations of continuummechanics. This poses a problem of a
consistent description of thin films, since these systems exhibit
properties of a macroscopic object while small film thickness
facilitates manifestation of their discrete structure.

Two models, continuous [6 ± 12] and discrete [13 ± 20], are
currently employed to describe motions in smectic films. In
the former model, which is natural to use for the description
of thick films, the system of equations of smectic A motion
with boundary conditions at the film surface is solved. In the
discrete model, the film is regarded as a set of elastically
coupled smectic layers. Therefore, it is natural to apply it to
the description of thin films.

Let us begin by considering the discrete model. In the
context of this model, the free energy of the film has the form

F � 1

2

� �
B

d

XNÿ1
n�1
�un�1 ÿ un�2 � dK

XN
n�1
�D?un�2

� g
��H?u1�2 � �H?uN�2��dr? ; �3:1�

where N is the number of layers.

In order to describe film dynamics, an equation of motion
is written for each layer. In these equations, the force applied
to the nth layer and referred to the unit surface is composed of
elastic ÿ�1=d��dF=dun� and viscous Z3D?�qun=qt� forces [6,
12, 14]. In this case, the set of equations of motion has the
form

r
q2u1�r?; t�

qt 2
� B

u2�r?; t� ÿ u1�r?; t�
d 2

ÿ KD2
?u1�r?; t�

� g
d
D?u1�r?; t� � Z3D?

qu1�r?; t�
qt

;

r
q2un�r?; t�

qt 2
� B

un�1�r?; t� ÿ 2un�r?; t� � unÿ1�r?; t�
d 2

ÿ KD2
?un�r?; t� � Z3D?

qun�r?; t�
qt

;

n � 2; 3; . . . ;Nÿ 1 ; �3:2�

r
q2uN�r?; t�

qt 2
� B

uNÿ1�r?; t�ÿ uN�r?; t�
d 2

ÿKD2
?uN�r?; t�

� g
d
D?uN�r?; t� � Z3D?

quN�r?; t�
qt

:

For the solution in the form of a plane wave

un�q?;o� exp�iq?r? ÿ iot� ;

the set of equations (3.2) is turned into a system of linear
homogeneous equations for the components
u1�q?;o�; . . . ; uN�q?;o�. Omitting the arguments in the
Fourier components, we have�

ro2 � ioZ3q
2
? ÿ

B

d 2
ÿ Kq4? ÿ

g
d
q2?

�
u1 � B

d 2
u2 � 0 ;�

ro2� ioZ3q
2
?ÿ2

B

d 2
ÿKq4?

�
un � B

d 2
unÿ1 � B

d 2
un�1� 0 ;

n � 2; 3; :::;Nÿ 1 ; �3:3��
ro2 � ioZ3q

2
? ÿ

B

d 2
ÿ Kq4? ÿ

g
d
q2?

�
uN � B

d 2
uNÿ1 � 0 :

The set of equations (3.2) or (3.3) actually describes the
motion of a bounded one-dimensional chain. It is convenient
to write this system of equations in the matrix form

bAu � 0 ; �3:4�

where

u �
u1
u2

..

.

uN

0BBB@
1CCCA;

bA �
2x� 1ÿ a 1 0 . . . 0 0 0

1 2x 1 . . . 0 0 0
0 1 2x . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 2x 1 0
0 0 0 . . . 1 2x 1
0 0 0 . . . 0 1 2x� 1ÿ a

0BBBBBBBB@

1CCCCCCCCA
:

�3:5�
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Here, the following designations are introduced:

x � ÿ1� d 2

2B

ÿ
ro2 � ioZ3q

2
? ÿ Kq4?

�
; �3:6�

a � dgq2?
B

:

For such systems, the problem of determining eigenmode
frequencies reduces to finding the roots of the characteristic
equation

det bA � 0 : �3:7�

Characteristic equation (3.7) for films with a sufficiently
large number of layers is an algebraic equation of a high
power in o2. It is convenient to solve this equation by the
method based on the relationship between Chebyshev
polynomials of the second kind, Un�x�, and tridiagonal
symmetric determinants of the nth order [21, 22]:

Un�x� �

2x 1 0 . . . 0 0 0
1 2x 1 . . . 0 0 0
0 1 2x . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 2x 1 0
0 0 0 . . . 1 2x 1
0 0 0 . . . 0 1 2x

��������������

��������������
: �3:8�

Characteristic equation (3.7) is an equationwith respect to
x (3.6)

�x� 1ÿ a�UNÿ1�x� ÿ a
�
1ÿ a

2

�
UNÿ2�x� � 0 : �3:9�

Each root of this equation, x�l �, yields two eigenfrequencies

o�l �� � ÿi
Z3q

2
?

2r
�

����������������������������������������������������������
2B

rd 2

ÿ
1� x�l �

�� Kq4?
r
ÿ Z23q

4
?

4r2

s
;

l � 1; 2; . . . ;N : �3:10�
An advantage of using Chebyshev polynomials is that a

relatively simple trigonometric equation may be solved
instead of an algebraic characteristic equation (3.7) of power
N with respect to x. Such a possibility ensues from the
trigonometric representation of the Chebyshev polynomials
[21, 22]:

at jxj4 1,

x � cos y ; Un�cos y� �
sin
��n� 1� y�
sin y

; �3:11�

at x5 1,

x � cosh y ; Un�cosh y� �
sinh

��n� 1� y�
sinh y

; �3:12�

at x4 ÿ 1,

x � ÿcosh y ; Un�ÿcosh y� � �ÿ1�n
sinh

��n� 1�y�
sinh y

:

�3:13�

The use of representation (3.11) leads to a characteristic
equation of the form

�1ÿ a� cos y� sin�Ny�
sin y

� a
�
1ÿ a

2

�
sin��Nÿ 1� y�

sin y
;

�3:14�

where 04y4 p. It follows fromEqn (3.7) that in the range of
04a4 2 all N roots of Eqn (3.3) are real and lie within the
limits jxlj4 1. At typical parameter values of smectic A [1, 2]

d � 30A
�
; g � 30 erg cmÿ2 ; B � 2:5� 107 erg cmÿ3 ;

the condition that a4 2 is fulfilled for wave vectors
q?4 2� 106 cmÿ1; in other words, it covers the entire range
of transverse components of the wave vector examined in
wave scattering experiments. Note that the range of q? values
is substantially extended in systems with a large elasticity
constant B � 108ÿ109 erg cmÿ3. The solution of character-
istic equation (3.9) at small a values in the lowest order in a
has the form

x�1� � ÿ1� a
N
; x�l � � ÿ cos

�lÿ 1�p
N

� 2
a
N

cos2
�lÿ1�p
2N

;

l � 2; 3; . . . ;N : �3:15�
At q? ! 0, all eigenmotions of the film are vibrational,

with vibration frequencies having the form, according to
(3.10),

o�1�� � �c�1�q? ÿ io 00 ; �3:16�

o�l �� � �
c�l �

d
ÿ io 00 ; l � 2; 3; . . . ;N ;

where

c�1� �
���������
2g
rdN

s
; �3:17�

c�l � � 2

����
B

r

s
sin

lp
2N

; l � 2; 3; . . . ;N ;

o 00 � Z3q
2
?

2r
:

The firstmodeo�1�� is a transverse acoustic wave spreading
under the effect of surface tension forces. In the remaining
modes, the frequency of vibrations at q? ! 0 is independent
of q?; in other words, these are optical modes. As q? values
grow, the vibrational modes undergo successive transforma-
tions to relaxation modes starting from the first one, l � 1,
which becomes relaxational at

q2? >
8gr
Z23dN

: �3:18�

In this case, the relaxation time for the first mode t�1�� very
rapidly attains a constant value

t�1�� �
Z3Nd

2g
; �3:19�

which is significantly larger than the relaxation times of all
other modes at small a.
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The amplitude of film displacements in each mode can be
found from the solution of the homogeneous set of equations
(3.4). The solution to Eqn (3.4) yields

u�l �n �q?� � �ÿ1�nÿ1
�
Unÿ1�x�l �� � �1ÿ a�Unÿ2�x�l ��

�
;

n; l � 1; 2; :::;N ; �3:20�

where the first-layer displacement amplitude is assumed to be
equal to unity and formally Uÿ1�x� � 0 and U0�x� � 1.
Figure 1 shows the types of layer motion in a six-layer film
for each mode.

An arbitrary motion in a smectic film can be represented
in the form of an expansion in terms of normal layer
fluctuations

un�r?; t� � Re

�
exp�iq?r?�

XN
l�1

�
a
�l �
� �q?� exp�ÿio�l �� t�

� a�l �ÿ �q?� exp�ÿio�l �ÿ t��u�l �n �q?� dq?
�2p�2 ; n �1; 2; :::;N :

�3:21�

Here, a
�l �
� �q?� are complex eigenmode amplitudes.

The main type of low-frequency motions of a freely
suspended film is acoustic fluctuations that have no effect
on interlayer distances. Studies of these fluctuations yield
information about the coefficient of surface tension g at the
smectic's free boundary. Traditional methods used to study
ordinary fluids are hardly applicable to smectics, in which
strain-related bulk stresses are comparable to surface ones. A
method for measuring g by excitation of acoustic fluctuations
was proposed and implemented in Ref. [23].

Transverse motion of film as a whole was described by the
equation

rL
q2u
qt 2
� 2gD?u ; �3:22�

where L is the film thickness. In [23], the film was a round
membrane of radius R. The solution of Eqn (3.22) in this case
had the form

u�r?;j; t� � Jn�kr?� exp�inf� exp�ÿiot� ; �3:23�
where Jn�x� is the Bessel function, n is an integer,j is the polar
angle, and

k � o

������
rL
2g

s
: �3:24�

The eigenmode spectrum for a supported film is found from
the boundary condition u�R;j; t� � 0, i.e., Jn�Rk� � 0.

The damping of film fluctuations is due to internal friction
or viscosity and is also related to the interaction with air, the
contribution of which is described by the parameter

d � p

rLuo
;

where u is the average velocity of the gas molecules. In order
to diminish fluctuation damping, the measurements were
made in a helium-filled cell. Helium was chosen because, for
a given pressure, the thermal velocity of its atoms was much
higher, hence d was smaller.

The study was conducted with a BBOA liquid-crystal film
of thickness L � 4850 A

�
and radius R � 0:4 cm at a

temperature T � 45�C and a pressure p � 40 mTorr. Mem-
brane fluctuations were generated by an electrical pulse, and
the eigenfrequency spectrum was detected by specularly
reflecting a laser beam. The oscillation amplitude was found
to be around 10 A

�
. The fluctuation spectrum is presented in

Fig. 2.

(l � 1) (l � 4)

(l � 2) (l � 5)

(l � 3) (l � 6)

Figure 1. Types of eigenmodes for a free-standing six-layer smectic-A film.

Acoustic mode: l � 1; optical modes: l � 2, 3, . . ., 6 [19].
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Figure 2. Vibrational modes in a freely suspended BBOA smectic film of

thickness 4850 A
�
and radius R � 0:4 cm at a temperature of 45 �C and a

pressure of 40 mTorr. The numerals in the parentheses (n;m) designate the

mth root of the Bessel function of order n. Arrows indicate the frequencies

calculated with a single adjustable parameter assuming g � 27 dyn cmÿ1

[23].
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Surface tension was g � 27 dyn cmÿ1. This value was
deduced from the analysis of the first five low-frequency
eigenmodes (0,1), (1,1), (2,1), (0,2), and (3,1), where the first
figure labels the order of the Bessel function and the second
one is the index of the wave-number eigenvalue. For higher-
frequency modes, an appreciable contribution to the right-
hand side of equation of motion (3.22) is made by the bulk
forces described in an elastic medium by the term

ÿEL3�
12�1ÿ s2�� D2

?u ;

where E is Young's modulus and s is the Poisson ratio. In
smectics, this corresponds to the termÿKD2

?u in the system of
equations (3.2).

It has been demonstrated that surface tension has no
peculiarities at smectic-A ± smectic-B transition temperature
TAB � 49:5 �C in the bulk phase and is significantly decreased
at temperatures 5ÿ10 K above TAB.

Another method for measuring surface tension in freely
suspended thin films was proposed and applied in Refs [24,
25]. In this method, one of the lateral sides of the frame was a
very thin filament with a load. The surface tension of the film
is related to the curvature radius of the filament R as follows:

R � mwg

2g
� ffr
2g
;

where mw is the mass of the load, ffr is the frictional force in
the gap, and g is the acceleration of gravity. In Refs [24, 25],
R � 5 cm,mw � 0:2 g, and the friction-determined contribu-
tion was negligibly small.

The measurements were made using 650BC and
H(10)F(5)MOOP smectics A. It was shown that in either
case, a change of the film thickness from 100 to 2 layers failed
to affect surface tension up to the error of this technique. The
H(10)F(5)MOOP film was additionally examined for the
temperature dependence of surface tension, which was
found to undergo no variation in a range from 74 to 84 �C.

3.2 Solid-supported films
Apart from free-standing films, solid-supported films (fas-
tened to a substrate) are also of interest. The description of
their properties in the framework of the discrete model
proceeds from the above expression for the free energy of
the film (3.1) on the assumption of a zero displacement of the
last (fastened) layer uN � 0. The same refers to the set of
equations ofmotion (3.2). In the Fourier representation in the
matrix form, the system of equations of motion for a
supported film looks like [26]bAsu � 0 ; �3:25�

where

u �
u1
u2

..

.

uNÿ1

0BBB@
1CCCA;

bAs �

2x� 1ÿ a 1 0 . . . 0 0
1 2x 1 . . . 0 0
0 1 2x . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 2x 1
0 0 0 . . . 1 2x

0BBBBBB@

1CCCCCCA : �3:26�

In this case, the condition for the existence of a nonzero
solution to Eqn (3.25) det bAs � 0 has the form

UNÿ1�x� � �1ÿ a�UNÿ2�x� � 0 : �3:27�

In the case of small wave numbers, q?5
��������������
B=�gd�p

, in the
lowest order in a, for the roots of characteristic equation
(3.27), we have

x�l � � ÿ cos
�2lÿ 1�p
2Nÿ 1

� 2a
2Nÿ 1

cos2
�2lÿ 1�p
2�2Nÿ 1� ;

l � 1; 2; . . . ;Nÿ 1 : �3:28�
The set of eigenfrequencies of a supported film is obtained
from the same equation (3.6) as for a freely suspended one. As
a result, we obtain

o�l �� � ÿi
Z3q

2
?

2r
�
�
4B

rd 2
sin2

�2lÿ 1�p
2�2Nÿ 1�

� 4gq2?
�2Nÿ 1�rd cos2

�2lÿ 1�p
2�2Nÿ 1� ÿ

Z23q
4
?

4r2

�1=2
: �3:29�

At q2? < p
����
B
p

=�Z3Nd�, all eigenmotions of the film are
vibrational. When q? increases, as in freely suspended films,
all themodes become relaxationmodes, starting from the first
one. A distinct peculiarity of the dynamics of supported films
is the absence of an acoustic mode and a relatively weak
influence of surface tension on film dynamics, which largely
depends on bulk forces.

Analysis of eigenmodes for supported films has shown
that they are not separated into optical and acoustic ones. The
centers of mass undergo a shift regardless of the type of
fluctuations, and their frequency for all modes remains finite
at q! 0.

The layer-displacement amplitudes during normal vibra-
tions of smectic films fastened to a flat surface are given by
Eqn (3.20) as before, with the only difference that the Nth
layer remains motionless.

4. Continuous model

4.1 Comparison of continuous and discrete models
In the framework of the continuous model, a film of
incompressible liquid crystal is regarded as a continuum
with a free energy (2.1) ± (2.2). Layer-displacement dynamics
is described by the equation [12]

r
q2u
qt 2
� Z3D?

qu
qt
� B

q2u
qz2
ÿ KD2

?u �4:1�

with the boundary conditions at the film surface

ÿgD?
�
u

�
r?; z � �L

2
; t

��
� B

qu�r?; z � �L=2; t�
qz

� 0 :

�4:2�

Equation (4.1) does not take into account the permeation
effect, which has practically no influence on layer displace-
ments as shown in [6, 11, 27]. The boundary condition (4.2) is
written on the assumption that dissipative processes at the
surfaces can be neglected; it has the sense of an elastic-force
balance.
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After passing to Fourier representation in terms of time t
and transverse variable r?, we found from (4.1) and (4.2) that
the eigenfrequencies of film fluctuations are

o� � ÿ iZ3q
2
?

2r
�

�����������������������������������
lB
r
� Kq4

r
ÿ Z23q

4
?

4r2

s
; �4:3�

where l are the eigenvalues of the Sturm ±Liouville problem
for the equation

q2u
qz2
� lu � 0

with boundary conditions

B
qu �z � �L=2�

qz
� gq2?u

�
z � �L

2

�
� 0 :

The equation that defines the eigenvalues l has the form
[11, 12]

tan �wb� � 2b

b2 ÿ 1
; �4:4�

where

b2 � l
B2

g2q4?
; w � gLq2?

B
: �4:5�

Equation (4.5) has an infinite number of real positive roots
that can be found numerically, while formula (4.4) describes
the eigenfrequency spectrum of the film.

For cases q2?5B=�gL� and q2?4B=�gL�, approximate
solutions of Eqn (4.4) can be found. In particular, for themost
interesting case of small wave numbers, the continuous model
leads to the following infinite set of eigenfrequencies:

o�1 � ÿi
Z3q

2
?

2r
� Z3q

2
?

2r

�������������������������������������������������������������
4r
Z23

�
K� g2

B

�
2B

gLq2?
ÿ 1

3

��
ÿ 1

s
;

o�l � ÿi
Z3q

2
?

2r

� Z3q
2
?

2r

��������������������������������������������������������������������������������������
4r
Z23

�
K� g2

B

�
pB�lÿ 1�
gLq2?

� 2

p�lÿ 1�
�2 �

ÿ 1

s
;

l � 2; 3; 4; . . .

It should be emphasized that the continuous and discrete
approaches to the description of film dynamics are essentially
different. Indeed, the former disregards the discrete nature of
smectic films, assuming that there is no interlayer distance d
among film parameters. Formally, it makes this approach
incorrect for the description of thin films. In the discrete
approach, the layered film structure is explicitly taken into
consideration, which makes it especially convenient for the
description of properties of thin films. The continuous and
discrete approaches use different equations, boundary condi-
tions, andmethods of their solution for the description of film
dynamics. In many cases, however, the two approaches give
similar results. It has been noted in [12] that this may be due to
the large degree of concordance between their equations
despite their apparent difference.

The two approaches may be compared by showing how
the equations of the discrete model are derived from the

equations of the continuous one. In the latter, film dynamics
is described by Eqn (4.1) with the boundary conditions (4.2)
at the film surface. Let us break down a film into N� 1
intervals of thickness d along axis z and substitute derivatives
with respect to z by their discrete analogs. Then, Eqn (4.1)
gives the system of equations

r
q2uN
qt2
� Z3D?

qun
qt
� B

un�1 ÿ 2un � unÿ1
d 2

ÿ KD2
?un ;

n � 1; 2; . . . ;N ;
uN�1 ÿ uN

d
ÿ g
B
D?uN � 0 ;

u1 ÿ u0
d
� g
B

D?u1 � 0 :

Using the last two equalities to exclude uN�1 and u0, the
following system of equations is obtained for displacements
u1, u2, . . ., uN:

r
q2u1
qt2
� Z3D?

qu1
qt
� B

u2ÿ2u1
d 2

ÿ KD2
?u1 �

B

d 2
u1 � g

d
D?u1;

r
q2un
qt2
� Z3D?

qun
qt
� B

un�1 ÿ 2un � unÿ1
d 2

ÿ KD2
?un ;

n � 2; 3; :::;Nÿ 1 ;

r
q2uN
qt2
� Z3D?

quN
qt
� B

uNÿ1 ÿ 2uN
d 2

ÿ KD2
?uN

� B

d 2
uN � g

d
D?uN :

IfN is the number of layers in the film and d is the equilibrium
distance between smectic layers, this system of equations
coincides with system (3.2) used as the starting point in the
discrete approach.

Comparison of eigenfrequencies obtained from discrete
(3.10) and continuous (4.3)models indicates that the two yield
virtually identical results for the acoustic mode. A small
difference between eigenfrequencies appears as the mode
index grows.

4.2 Surface fluctuations
Structural peculiarities of smectic liquid crystals are mani-
fested them selves in their surface properties. It is known that
in solids, where the main role is played by bulk forces, surface
fluctuations are elastic waves [3]. In liquids, where surface
tension is of greater importance, surface fluctuations are
represented either by capillary waves or by motions damped
under the effect of viscous stress [28]. Because smectics are
intermediate between liquids and crystalline solids, their
motions reflect properties of both these states.

In the description of surface motions, smectics may be
regarded as incompressible. Moreover, as mentioned in the
foregoing, the permeation effect may be disregarded, i.e.,
vz � qu=qt. In this case, surface fluctuations are defined by
the following system of equations of motion [3, 28]

qvx
qx
� qvz

qz
� 0 ;

r
qvi
qt
� ÿqip� qjs 0i j �

�
B
q2u
qz2
ÿ K

�
q2

qx2

�2

u

�
diz ; i � x; z ;

vz � qu
qt

�4:6�
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with boundary conditions

lim
z!ÿ1 vi � 0 ; i � x; z ;

ÿ K
q3u
qx3
� Z3

�
qvx
qz
� qvz

qx

�
� 0 ; �4:7�

pext ÿ p� B
qu
qz
� �Z1 ÿ Z2 � Z4 ÿ 2Z5�

qvz
qz
ÿ g

q2z
qx2
� 0 ;

which are the conditions of surface-wave damping with
depth, of the zero tangential component of the stress tensor,
sxz � 0, and of compensation of the jump of the stress-tensor
normal component by surface capillary forces, respectively.

It is assumed that a smectic liquid crystal in equilibrium
occupies the half-space z4 0 and that the surface-wave
motion is uniform along the y axis and occurs in the xz
plane. Function z describes free surface displacement and p is
pressure.

It is convenient to find the solution to Eqns (4.6) and (4.7)
in the form of plane waves

exp�qzz� iq?xÿ iot� :

In this case, the condition for the existence of a nonzero
solution of system (4.6) has the form [6, 29]

iotMS 4 �
�
1ÿ iotM

�
2� Z 0

Z3

�
ÿ o2

c22q
2

�
S 2

ÿ
�
l2q2 ÿ iotM ÿ o2

c22q
2

�
� 0 ; �4:8�

where the following designations are used:

S � qz
q?

; l �
����
K

B

r
;

Z 0 � Z1 � Z2 ÿ 4Z3 ÿ 2Z5 � Z4 ;

tM � Z3
B

is the Maxwell relaxation time, and c2 �
���������
B=r

p
is the

characteristic velocity of the second sound in smectic A.
Equation (4.8) at given q? and o can be used to derive S

and, hence, the law of surface-wave damping with depth.
Because only two of the four roots of Eqn (4.8) correspond to
decreasing solutions, ReS1;2 > 0, the displacement u in the
surface wave can be represented as

u � exp�iq?xÿ iot��u1 exp�S1q?z� � u2 exp�S2q?z�
�
:

�4:9�

Then, the boundary conditions (4.7) have the form

X2
k�1

�
Z3o�S 2

k � 1� � iKq 2
�
quk � 0 ; �4:10�

X2
k�1

�
BSkq� gq 2

ÿ �or� iZ3�3ÿ S 2
k �q2 � iZ 0q2

� oSk

q

�
uk � 0 : �4:11�

They make up a system of equations that define the relation-
ship between the amplitudes of modes corresponding to roots

S1 and S2. The condition for the existence of nonzero
solutions of system (4.10) ± (4.11) leads to a dispersion
equation relating q? to o. It was analyzed in [6, 11] for a
smectic layer and in [29] for a semi-infinite medium.

In the frequency range joj5 1=tM, there exist surface
eigenmodes with the dispersion law

o � �c2q? ÿ i

���������
Z3c2
8r

r
q
3=2
? : �4:12�

Component qz that governs damping of surface waves with
the depth in the medium is derived from the relation

q4z � i
or
Z3

q2? : �4:13�

Equation (4.12) corresponds to waves analogous to the
Rayleigh waves at the surface of an isotropic solid. These
waves are substantially different from the second-sound wave
known to exist in the bulk phase [30]. To begin with, they can
propagate parallel to the smectic layers, unlike the second-
sound wave in the bulk. Moreover, the velocity of surface
waves c2 �

���������
B=r

p
is twice the maximum velocity of the

second sound.
At frequencies joj � 1=tM, the oscillatory regime is

replaced by the relaxation one. At joj4 1=tM, the surface
motion becomes purely relaxational, with the dispersion law

o � ÿi 4Z3q
2
?

3r
: �4:14�

These modes decay with depth as in usual isotropic fluids:

qz;1 � q? ; qz;2 � q?
���������������������
1ÿ i

or
Z3q2

r
: �4:15�

Two main types of surface motions were identified in the
bounded specimens studied in Ref [6]. One of them was a
transverse acoustic wave with a dispersion law as in thin films
(3.16) and (3.17). The second mode was analogous to the first
of the optical vibrations in which the specimen surfaces
moved in opposite directions. Its dispersion law had the
form [6]

o � 2p2
�������
KB
p

Z3L
������������������������������������������������������
�K=B�L2q4? � 4p2�Kr=Z23�

q : �4:16�

At q! 0, this formula turns to (3.16) and (3.17) for a mode
with l � 2. Note that these types of motion are lacking in a
semi-infinite specimen where surface fluctuations are analo-
gous to the motions of surface layers in a film on a substrate.

Recently, there has been ever increasing interest in
surface fluctuations in liquids [31 ± 35]. Surface fluctuation
spectra in polymer solutions were most extensively studied,
taking advantage of the possibility of modulating fre-
quency-dependent shear viscosity i.e., viscoelastic proper-
ties of the system, by many orders of magnitude by varying
the concentration of the solution practically without
altering surface tension g. Surface fluctuations were studied
by optical methods, that is, from spectral characteristics of
scattered light [31 ± 35], and by applying an external force to
excite surface waves [34].

It was shown experimentally that a rise in polymer
concentration and, hence, in complex shear viscosity, leads
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to the crossover from capillary wave toRayleigh elastic mode.
This transition is illustrated by Fig. 3 showing the frequency
dependence of scattered light intensity at different concentra-
tions of the solution. At low concentrations, a distinct peak is
apparent at frequency oc � �gq3=r�1=2, whose position
depends on surface tension and is therefore constant. This
peak corresponds to capillary waves. As the polymer
concentration increases, this peak begins to shift to higher
frequencies even though g remains unaltered. Such a behavior
suggests transition from capillary waves to Rayleigh waves
with the dispersion law o � cEq, where cE is the velocity of
Rayleigh waves, which depends on the viscoelastic properties
of the system.

Reference [34] reports on the crossover from elastic waves
to capillary ones in a gel with a rise in exciting voltage.
Interestingly, both types of motions could be observed. This
transition is shown in Fig. 4. Optical studies revealed a
relaxation mode of unknown nature, besides capillary waves
and Rayleigh waves.

No similar studies for the surfaces of smectic liquid
crystals have been carried thus far, although they are
doubtlessly of great interest as a source of extensive

information about elastic and viscous properties of smectic
films.

5. Thermal fluctuations of smectic films

5.1 Freely suspended films
Spectral densities of smectic layer-displacement fluctuations
can be found with the help of the fluctuation ± dissipation
theorem (FDT) [36]. For this purpose, the following term is
included in expression (3.1) for the free energy:

Fext � ÿ
�XN

n�1
un�r?; t� fn�r?; t� dr? : �5:1�

This term is connected with the external forces fn�r?; t�,
n � 1; 2; . . . ;N that act on each layer and have the dimension
of pressure. As a result, a term

ÿ 1

d

dFext

dun
� fn ;

is added to the external force acting on the nth layer in
equations of smectic motion.

The system of equations of motion for a freely suspended
film then assumes the form

bAu � ÿ d

B
f : �5:2�
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Figure 3. Power spectra of light scattered by surface fluctuations for

solutions of polyisobutylene in hexane at (a) 0, 2, and 5wt%and scattering

vector q � 742:5 cmÿ1 or (b) 5, 10, 15, and 20 wt% and scattering vector

q � 247:5 cmÿ1. The solid lines in (a) are fits to the full capillary wave

power spectra [31].
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The solution of this system yields

u � bw f ; �5:3�

where the susceptibility matrix bw is given by the expression [4,
19]

wnm � wmn � �ÿ1�n�m�1
d

B

� �Umÿ1�x� � �1ÿ a�Umÿ2�x��
UN�x� � 2�1ÿ a�UNÿ1�x� � �1ÿ a�2UNÿ2�x�

� �UNÿn�x� � �1ÿ a�UNÿnÿ1�x�
�
; �5:4�

where

m; n � 1; 2; . . . ;N ; n5m :

According to the FDT, the spectral densities of displacement
fluctuations have the formÿ

un�q?� um�ÿq?�
�
o � i

kBT

o

�
w�mn�q?;o� ÿ wnm�q?;o�

�
:

�5:5�

In order to calculate spatial correlation functions
hun�r?� um�0�i of a freely suspended film, it is convenient to
use the free energy representation in the matrix form

F � 1

2

� XN
n;m�1

un�q?�Mnm um�ÿq?�
dq?
�2p�2 ; �5:6�

where matrix bM is proportional to matrix bA at a zero
frequency:

bM � ÿB

d
bA�o � 0� : �5:7�

Then, the spatial correlation function has the form

un�r?� um�0�

� � kBT

�2p�2
� ÿ bMÿ1�

nm
exp�iq? r?� dq? : �5:8�

Integration over q? is performed in the range
2p=Ls < q? < 2p=a, where Ls is the linear size of the film
surface and a is the molecular diameter.

The inverse matrix bMÿ1
coincides with the susceptibility

matrix at a zero frequency:

bMÿ1 � bw�o � 0� : �5:9�

In the range of small wave numbers (q? ! 0), all elements of
the matrix bMÿ1 become identical:ÿ bMÿ1�

nm
� 1

2gq2?
: �5:10�

At large q?, all matrix elements rapidly decay:ÿ bMÿ1�
nm
� 1

q
4�j nÿm j�1�
?

: �5:11�

Figure 5 shows calculated squared layer displacements
hu2ni in films of different thickness depending on the layer
index [4]. It can be seen that thermal layer displacements in
smectic films amount to approximately 10 ± 15% of the

interlayer distance. At typical parameters of a liquid crystal,
the surface-layer fluctuations are suppressed by surface-
tension forces. It was computed that the correlation function
hun�0� um�0�i for inner layers decreases with growing j nÿm j
much faster than for external ones. The decay of the
correlation function hun�0� um�r?�i at large distances was
found to be unrelated to layer indices n and m; the typical
correlation length was on the order of 10a, where a is the
molecular diameter.

5.2 Films on a substrate
For films fastened to a substrate, the susceptibility matrix bw is
found in the same way as for freely suspended films:

wnm � wmn � �ÿ1�n�m�1
d

B

�
�
Umÿ1�x� � �1ÿ a�Umÿ2�x�

�
UNÿnÿ1�x�

UNÿ1�x� � �1ÿ a�UNÿ2�x� ; �5:12�

n5m ; n;m � 1; 2; . . . ;Nÿ 1 :

In the static case, spatial correlation functions can be found
with the aid of formulas (5.8) ± (5.12). Essentially, integration
in (5.8) can be performed in a range from 0 to1, because in
supported films, unlike (5.10), all elements of matrix bMÿ1

remain finite:ÿ bMÿ1�
nm
�0� � d

B
�Nÿm� ; �5:13�

n5m ; n;m � 1; 2; . . . ;Nÿ 1 ;ÿ bMÿ1�
nm
� � bMÿ1�

mn
:

At q? ! 1, matrix elements rapidly decrease (5.11), as in the
case of freely suspended films.

Calculated dependences of mean squared fluctuations
hjun�0�j2i on the layer index in films of different thickness
indicate that the effect of the fastened layer spreads deep into
the film. The spatial correlation function hun�r?� um�0�i in
supported films rapidly decays unlike that in freely suspended
ones.

20.0

hu 2
n i

17.5

15.0

12.5

10.0

ÿ20 0 20 n

Figure 5. Calculated squared-fluctuation profiles of smectic-layer displa-

cements vs the layer index n for films of different thickness containing 61,

35, 11, and 5 layers (from top to bottom); n � 0 corresponds to the center

of the film. For the purpose of computation, it was assumed that

B � 2:5� 107 dyn cmÿ2, K � 10ÿ6 dyn, and g � 30 dyn cmÿ1 [4].
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Any real surface exhibits roughness that varies at a
characteristic length z. Smectics are peculiar in that even a
slightmodulationof their surface affects deep-lying layers too.
The penetration depth, l, can be expressed as l � z2

����������
B=K

p
[1,

2]. Reference [38], describing correlation properties of smectic
films fastened to a substrate, takes into consideration both
thermal fluctuations and substrate roughness, whose con-
tributions are assumed to be independent. The contribution of
substrate roughness to the correlation function can be
assessed from the displacement distribution in the smectic
film at a given distribution of displacements on the substrate.
For this purpose, it is convenient to first solve the Euler ±
Lagrange equation for displacements inside the film,

B
q2u
qz2
ÿ Kq4?u � 0 �5:14�

at given surface displacements u��q?� and uÿ�q?�, where the
plus and minus signs refer to free surface (z � L=2) and
substrate (z � ÿL=2, L is the film thickness), respectively.
The solution for Eqn (5.14) has the form

u�q?; z� � p��q?; z� u��q?� � pÿ�q?; z� uÿ�q?� ; �5:15�

where

p��q?; z� � �
sinh

�
lq2?�z� L=2��
sinh�lq2?L�

; l �
����
K

B

r
: �5:16�

The contribution to the free energy of deformation due to
surface displacements is [7, 38]

Fq? �
1

2
q2?

�
g0�u

2
��q?� � g0ÿu

2
ÿ�q?� �

�������
BK
p

sinh �lq2?L�

�
n�
u2��q?� � u2ÿ�q?�

�
cosh �lq2?L� ÿ 2u��q?� uÿ�q?�

o�
;

�5:17�
where the coefficients g 0� � g� � K�q2? stand for the surface
tensions. Since the displacement distribution is governed by
substrate roughness only at the lower film surface, the
distribution of free-surface displacements can be found by
minimizing the function Fq? with respect to argument u��q?�.
This permits the expression of free-surface displacements
through the displacements on the substrate:

u��q?� � s�q?� uÿ�q?� ; �5:18�

where

s�q?� �
1

n� sinh �lq2?L� � cosh �lq2?L�
; n� � g 0��������

BK
p :

Formulas (5.15), (5.16), and (5.17) make it possible to
obtain an expression for displacements across the entire
smectic film if those of the lower boundary layer are given
by substrate roughness:

u�q?; z� � y�q?; z� uÿ�q?� ; �5:19�

where

y�q?; z� � p��q?; z� s�q?� � pÿ�q?; z� : �5:20�

Formula (5.19) allows the spatial correlation function in
the smectic film volume to be expressed through the
correlation function of substrate roughness Gÿ�q?�:

G�q?; z; z1� �


u�q?; z� u��q?; z1�

�
� y�q?; z� y�q?; z1�Gÿ�q?� : �5:21�

For Gÿ, the fractal correlation function was used [39],
which has the following form in the coordinate representa-
tion:

Gÿ�r?� �


uÿ�r?� uÿ�0�

� � s2ÿ exp
�
ÿ
�
r?
z

�2H �
; �5:22�

where sÿ is the characteristic roughness amplitude, z is the
correlation length in the substrate plane, and H is the
parameter characterizing the shape of roughness.

Calculations have demonstrated that the contribution of
thermally driven fluctuations increases with increasing dis-
tance from the substrate. Their absolute value depends on the
elasticity constant B. In usual thermotropic smectics,
B�107 erg cmÿ3 [1]. In this case, the contribution of thermal
fluctuations may be comparable to that of roughness. In
smectic films with higher values of B � 2:5� 109 erg cmÿ3

[38], the contribution of thermal fluctuations becomes
negligibly small.

6. X-ray scattering in smectic films

6.1 Scattered radiation intensity
X-ray scattering is an efficient method for the study of static
and dynamic properties of smectic films [4, 6 ± 20, 39 ± 50]. In
the first Born approximation, the intensity of X-ray scattering
by a film is proportional to the electron-density correlation
function:

I�q� � 
r�q� r�ÿq�� ; �6:1�

where q is the scattering vector. Electron density in a smectic
film has the form

r�r?; z� � rs
XN
n�1

rM
ÿ
zÿ ndÿ un�r?; t�

�
� rs

XN
n�1

�
rM�z1� d

ÿ
z1 ÿ z� nd� un�r?; t�

�
dz1; �6:2�

where rs is the surface density of molecules in the smectic
layer and rM is the linear electron density in the molecule.
Passing to the Fourier spectrum in (6.2) leads, for the
correlation function (6.1), to



r�q� r�ÿq�� � r2s

XN
n;m�1

�
dr? exp �ÿiq?r?�

�
dz1rM�z1�

�
�
dz2 rM�z2�

�
dz 0 exp�ÿiqzz 0�

�
�
dz 00 exp�ÿiqzz 00�

D
d
ÿ
z 0 ÿ z1 ÿ ndÿ un�r?�

�
� d
ÿ
z 00 ÿ z2 ÿ ndÿ um�0�

�E
; �6:3�
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where q � �q?; qz�. Integration of d functions yields

r�q� r�ÿq�� � r2s

XN
n;m�1

�
dr? exp �ÿiq?r?�

�
�
dz1rM�z1�

�
dz2 rM�z2�

�
D
exp

ÿÿ iqz�z1 ÿ z2 � �nÿm� d� un�r?� ÿ um�0��
�E
:

�6:4�

In the Gaussian approximation over fluctuations of layer
displacements, it is easy to calculate the mean value of the
exponential function [36]. The result is



r�q� r�ÿq��� r2s

��rM�qz���2 XN
n;m�1

exp
ÿÿ iqz�nÿm

�
d �

�
�
exp�ÿiq?r?�

� exp

�
ÿ q2z

2

Dÿ
un�r?� ÿ um�0�

�2E�
dr?: �6:5�

With allowance for the spatial homogeneity of layer-displace-
ment fluctuations, integration over the angles between q? and
r? yields for the correlation function of electron density



r�q�r�ÿq�� � 2pr2s

��rM�qz���2 XN
n;m�1

exp�ÿiqz�nÿm�d �

� exp

�
ÿ q2z

2

�

u2n�0; 0�

�� 
u2m�0; 0����
� Gnm�q?; qz� ; �6:6�

where

Gnm�qz; q?; t� �
�L
0

r?J0�q?r?�

� exp
�
q2z


un�r?; t� um�0; 0�

��
dr? : �6:7�

Here, J0�x� is the zeroth-order Bessel function.
Formula (6.6) describes the angular dependence of the

intensity of X-ray radiation scattered by smectic films. An
object of experimental studies is normally either specular
scattering with q? � 0 or diffuse scattering depending on q?
in the vicinity of the Bragg peak, most often that of the first
order (qz � 2p=d). Ordered film structure is studied in the
former case and inhomogeneity spectra produced by thermal
noise and structural defects in the latter. For the purpose of
diffuse scattering calculations, it is convenient to subtract
unity from the exponent in expression (6.7), because at
L!1 it does not change the result at q? 6� 0 but guarantees
that the integrand decreases at r? ! 1 [37, 38].

Figure 6 illustrates the effects of various physical factors
on the angular dependence of specular X-ray scattering by a
freely suspended five-layer film. Figure 6a demonstrates
scattering intensity in a finite system of flat layers without
regard for the effect of fluctuation displacements and the
molecular form factor jrM�qz�j2 depending on qz. The figure
shows Nÿ 2 secondary peaks between two neighboring
Bragg peaks that are twice as wide as the remaining ones. If
squared fluctuations of layer displacements are additionally
taken into account, the qz dependence of X-ray scattering

intensity has the form shown in Fig. 6b. Inclusion of spatial
correlations between layer displacements and the molecular
form factor leads to the distribution of X-ray radiation
intensity presented in Figs 6c and 6d [4].

Figure 7 presents the results of measuring the angular
dependence of the intensity of specular X-ray reflection from
a freely suspended 20-layer film.

6.2 Effect of thermal fluctuations
on the shape of Bragg peaks
Let us now analyze effects of thermal layer displacements on
the shape of Bragg peaks. This issue was considered at length
in theoretical [11, 14, 15, 51] and experimental [52 ± 55] studies
of thick smectic slabs. It is convenient to make this analysis in
the framework of the continuous model. Then, the last
multiplier in formula (6.5) becomes an infinite function of z
and can be written as

Gbulk�z; r?� � exp

�
ÿ 1

2
q2z

D�
u�z; r?� ÿ u�0; 0��2E� : �6:8�

The correlation function in the exponent in (6.8) can be
computed by expanding it into a three-dimensional Fourier
spectrum and using expressions for the Fourier components
of displacement fluctuations in the bulk [53]:

g�z; r?� �

�
u�z; r?� ÿ u�0; 0��2�

� kBT

4p3B

�1
0

dqz

�
dq?

1ÿ cos�qzz� q?r?�
q2z � l2q4?

: �6:9�

Integration over qz leads to

g�z; r?� � kBT

8p2
�������
KB
p

� qmax

0

dq?
q?

�
�2p
0

dj
�
1ÿ exp�ÿlq2?z� cos�q?r? cosj�

�
: �6:10�

Integration over the angle j gives

g�z; r?�� kBT

4p
�������
KB
p

� qmax

0

�
1ÿ exp�ÿlq2?z� J0�q? r?�

� dq?
q?

:

�6:11�

Integration over q? gives the following expression for
Gbulk�z; r?� [51]:

Gbulk�z; r?� � exp�ÿ2ZC�
�
4d 2

r2?

�Z

exp

�
ÿ ZEi

�
r2?
4lz

��
;

�6:12�
where

Ei�x� � ÿ
�1
ÿx

exp�ÿt�
t

dt

is the integral exponent,

Z � q2zkBT

8p
�������
KB
p ; �6:13�

and C � 0:5772 . . . is Euler's constant.
It follows from formula (6.12) that the correlation

function of layer-displacement fluctuations slowly decays in
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the bulk phase. The decrease is power-like both at r? � 0 and
z � 0:

Gbulk�z; r? � 0� �
�
d 2

lz

�Z

exp�ÿZC� ; �6:14�

Gbulk�z � 0; r?� �
�
4d 2

r2?

�Z

exp�ÿ2ZC� : �6:15�

Refs [52 ± 55] report measurements of the profile of the
first Bragg peak in the bulk of a smectic-A specimen. Figure 8
shows the results of the measurement of the first Bragg peak
in the vicinity of the phase transition to the nematic phase and
the results of calculations using formulas (6.5) and (6.12).
Evidently, the closer to the nematic phase, the more diffuse is
the layered structure of the film, while the elasticity modulus
B! 0, and the Bragg peak is less sharp. The values of the
parameter Z found from the comparison of experimental and
theoretical data coincide with those determined from formula
(6.6) using known experimental results for elasticity moduli.

Diffuse scattering from a smecticA film is shown in Fig. 9.
The solid lines are fits of experimental findings by formula
(6.6) taking into consideration instrumental broadening [10].
It should be noted that the correlation functions
hun�r?� um�0�i used for the treatment of experimental data
were computed in the framework of the continuous model.
Specular scattering experiments provide data on the number
of film layers, amplitude of layer-displacement fluctuations,
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and molecular form factor. Diffuse scattering is interesting in
that it bears information about spatial correlations of layer
displacements. However, the extraction of information on
correlation functions from the results of X-ray scattering
experiments is a rather complicated problem.

6.3 Scattering in films on a substrate
In X-ray scattering experiments with the use of films
fastened to solid substrates, one of the variables of interest
is surface roughness. Hence, smectic films with a small
amplitude of thermal layer-displacement fluctuations
should be chosen for this purpose. It follows from formula
(5.12) that films with an intrinsically large elasticity constant
B are especially suitable for experimentation. Figure 10
shows the angular dependence of diffusely scattered light
in the vicinity of three Bragg peaks in a smectic-A specimen
with B � 2:5�109 erg cmÿ3. Assuming that the effect of
substrate roughness penetrates deep into the film without
decay, the diffuse X-ray scattering data obtained experimen-
tally have been used to restore the fractal roughness
correlation function (5.22). This correlation function for
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Z [55]. The dashed line shows the result of calculations for an ideal infinite

smectic.
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films of different thickness is presented in Fig. 11. For
comparison, the same figure also shows the calculated
correlation function of thermal displacement fluctuations.
Evidently, the B value for a given liquid crystal is sufficiently
high to ignore the contribution of thermal fluctuations.

X-ray scattering experiments reported in [47, 56] were
carried out on smectic films fastened to a solid substrate.
Specifically, Ref. [47] was focused on specular and diffuse
scattering from smectic films composed of 22 layers. The
experimental data were compared with the results of numer-
ical calculations based on theoretical consideration of solid
surface roughness and electron-density distribution across
the film. It was demonstrated that experiments yield
information about interlayer distances and fluctuations of
individual layer displacements.

Interesting measurements of X-ray scattering were made
in Ref. [56] using an ultrathin three-layer film fastened to a
solid substrate. Two lower layers had a similar composition,
whereas the uppermonolayerwasmade of a differentmaterial
and possessed different optical properties. An X-ray was
incident to the surface at nearly grazing angles of 3.5 and
1.5 mrad. The angles were chosen such that total internal
reflection from the film/substrate interface occurred at
y � 3:5 mrad. Due to this, the scattered radiation con-
tained information about all three layers. At an angle
y � 1:5 mrad, the radiation was reflected by the lower
surface of the outer monolayer, which was therefore the
sole layer contributing to scattering. Measurements of
scattered radiation intensity depending on qz and q? revealed
that the scattering patterns were significantly different under
these conditions, suggesting the possibility of examining
individual monolayers by X-ray probing.

It is worthwhile to note that roughness effects were also
studied at the surface of ordinary liquid films [57 ± 60].
Fluctuations of free-surface displacements in such films, like
in smectic films, resulted from the collective action of thermal
fluctuations (i.e., capillary waves) and surface roughness. The

growth of film thickness was accompanied by the crossover
from roughness-induced surface fluctuations to thermal
fluctuations. Such transition occurred in 50 ± 100 A

�
thick

films which were much thinner than smectic films under-
going a similar transition.

6.4 Dynamic X-ray scattering
Smectic film dynamics is presently studied by correlation
spectroscopy for X-ray radiation. This approach has been
made possible by the use of synchrotron sources in scattering
experiments. The temporal correlation function of scattered
X-ray intensities for freely suspended films hI�t� I�0�i was
measured in the immediate vicinity of the first Bragg peak [14,
16, 50]. This correlation function is expressed through the
autocorrelation function of Fourier transforms of electron
density


I�t� I�0�� � ��
r�q; t� r�ÿq; 0����2 : �6:16�

The temporal electron density correlation function is defined
by formula (6.6) in which a time-dependent function

Gnm�q?; qz; t� �
�L
0

r?J0�q?r?�

� exp
ÿ
q2zhun�r?; t� um�0; 0�i

�
dr? ; �6:17�

substitutes for Gnm�q?; qz�.
The problem of finding the temporal correlation function

hI�t� I�0�i therefore reduces to the computation of the
temporal layer-displacement correlation function in the
coordinate representation hun�r?; t� um�0; 0�i. This function
can be expressed through a correlation function in the Fourier
representation:



un�r?; t� um�0; 0�

� � 1

�2p�2
�1
ÿ1

do
�2p=a
2p=L

q?J0�q?r?�

� ÿun�q?� um�ÿq?��o exp�ÿiot� dq? ; �6:18�

where the spectral density of displacement fluctuations
�un�q?� um�ÿq?��o is given by formula (5.5). Integration
over frequencies taking into account expression (5.4) leads to



un�r?; t� um�0; 0�

� � 1

2p

�2p=a
2p=L

q?J0�q?r?�

� o�l �ÿ exp�ÿio�l �� t� ÿ o�l �� exp�ÿio�l �ÿ t�
o�l �ÿ ÿ o�l ��

� kBT

l�l ��q?�
u
�l�
n �q?� u�l �m �q?�PN
p�1�u�l �p �q?��2

dq? ; �6:19�

where l�l ��q?� are the eigenvalues of the matrix bM (5.7),

l�l ��q?� � 2B

d

ÿ
1� x�l �

�� Kdq4? ; �6:20�

and u
�l �
n �q?� are the Fourier components of layer displace-

ments for different modes (3.20). Eigenfrequencies o�l �� are
defined by formula (3.10). Expression (6.19) at t � 0 describes
the spatial layer-displacement correlation function.

The contribution of different modes to the correlation
function depends in the first place on the amplitude factor
kT=l�l ��q?�. Note that eigenvalues l�l ��q?� increase with an
increasing index of the mode l. Specifically, the first two
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modes are easy to estimate as

l�1��q?�
l�2��q?�

� gdNq2?
2p2B

� 2� 10ÿ14Nq2? : �6:21�

Thus, the first mode (l � 1) makes the major contribution
even if N and q? are not very large. Note also that the first
mode has the largest relaxation time or the lowest character-
istic frequency, which distinguishes the acoustic mode from
all the others.

The inset in Fig. 12 shows the experimentally measured
temporal correlation function for X-ray scattering intensity
for a 95-layer smectic-A film. The solid line shows the same
function calculated taking into consideration only the
acoustic mode l � 1 in expression (6.19).

References [14, 16, 50] report experimental measurements
of the relaxation times of the correlation function for X-ray
scattering intensities in a variety of smectic-A films differing
in the number of layers. It turned out that the measured
relaxation times also corresponded to the contribution of the
first mode alone to the correlation function:

t�1�� �
Z3Nd

2g
: �6:22�

Figure 13 clearly demonstrates the linear dependence of
the relaxation times on the film thickness, which is in good
agreement with formula (6.22). It should be emphasized that
the relaxation regime in the thick films under study is realized
practically over the entire measurable range of q? values.

Static specular and diffuse X-ray scattering by freely
suspended crystal-B films was experimentally investigated in
Ref. [49]. Measurements of the temporal correlation function
of X-ray scattering intensities demonstrated that this correla-
tion function closely resembles correlation functions for
freely suspended smectic-A films [14, 16, 50]. The X-ray
scattering intensities were computed based on theoretical
estimates of fluctuations of film-layer displacements. Com-
parison of numerical calculations and experimental results
showed that layer-displacement fluctuations in freely sus-
pended crystal-B films remain unaltered as the film thickness

grows, unlike similar fluctuations in smectic-A films, where
they increase.

7. Light scattering

7.1 Fluctuations of c-director and light scattering
in ferroelectric films
Themost efficient way to study smectic films is observation of
static and dynamic X-ray scattering, because it provides
information about film structure and dynamics on inter-
layer-spacing scales. Another source of data on the film
structure is light scattering patterns strongly dependent on
director fluctuations. In smectic-A films, director fluctuations
dn are almost entirely determined by fluctuations of layer
displacements, because dn � ÿH?u with a high degree of
accuracy. This explains why experiments on light scattering
in smectics A yield information of the same type as X-ray
scattering experiments although on much larger scales, that
is, of the order of light wavelength, which is substantially
longer than the interlayer distance.

Light scattering techniques are especially efficient in
systems where director fluctuations are essentially unrelated
to layer displacements. Such systems are exemplified by
smectic films in which the director is tilted with respect to
the layers. In such films, the projection of the director onto
the layer plane is subject to large fluctuations. The amplitude
of these fluctuations is determined by Frank moduli and their
attenuation by the coefficient of viscosity. For this reason, a
study of static and dynamic light scattering in these systems is
likely to provide additional information about the structure
and dynamics of smectic films. A typical example of these
systems is given by freely suspended smectic-C films. The
predominant direction of orientation of long molecular axes
in smectics C makes an angle yT with the normal to a given
layer. Projection of the preferred orientation of the
molecules onto the layer plane gives rise to a unit vector
c�r?� called c-director [1, 2]. This vector on the plane of a
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smectic layer is specified by an angle jwith respect to the axis
x of the Cartesian coordinate frame in which the axis z
coincides with the direction of the normal to the equilibrium
smectic film.

Of special interest is an optical study of ferroelectric
smectics C � having a constant dipole moment defined by the
relation

P0�r?� � P0

�
c�r?� � ez

�
: �7:1�

Here, P0�r?� is the dipole moment of the unit film surface and
P0 is its absolute value. Spontaneous polarization has two
effects. One is that a weak external electric field E � 5 ±
10 V cmÿ1 applied to the film plane allows the c-director to be
oriented in the layer plane. The other is the cessation of short-
range interactions in the smectic film, because fluctuations in
the orientation generate a surface charge of density
s � ÿdivP0, hence long-range electric forces.

The energy of c-director reorientation in the presence of
an external electric field has the form [61, 62]

F �
�
dr?

�
1

2
Ks�H?c�2 � 1

2
Kb�H? � c�2 ÿ �P0E�

�
�
dr 0?

ÿ
H?P0�r?�

�ÿ
H 0?P0�r 0?�

�
2j r? ÿ r 0?j

�
: �7:2�

Here, the moduli Ks and Kb are related to the Frank bulk
moduli as follows:

Ks � LK11 sin
2 yT ; �7:3�

Kb � L�K22 sin
2 yT cos2 yT � K33 sin

4 yT� :
Vector P0 is related to the polarization vector P by the
expression P0 � LP.

Formula (7.2) is used to compute c-director fluctuations.
If an external field E is assumed to lie along the y axis and the
equilibrium direction of the c-director c0 to coincide with the
x axis, then the disequilibrated c-director vector may be
represented in the form

c�r?� �
��

1ÿ 1

2
�dcy�2

�
; dcy

�
:

For the free energy in theGaussian approximation, we obtain

F � 1

2

�
dr?

�
Ks

�
qdcy
qy

�2

� Kb

�
qdcy
qx

�2

ÿ 2P0E

� P0E�dcy�2 � P2
0

�
dr 0?

qdcy
qx

qdcy 0
qx 0

1

jr? ÿ r 0?j
�
: �7:4�

Expansion of c-director fluctuations into a two-dimensional
Fourier spectrum and substitution into free-energy expres-
sion (7.4) gives

F � S

2

X
q?

�
Ksq

2
y � Kbq

2
x � P0E� 2pP2

0

q2x
q?

� ��cq? ��2: �7:5�
This formula may be used to find director fluctuations [36] in
the plane of a ferroelectric smectic C � [2, 61]:
jdcq? j2� � kBT

S
ÿ
Ksq2y � Kbq2x � P0E� 2pP2

0 q
2
x=q?

� : �7:6�

Interestingly, there is a possibility to independently
observe director fluctuations caused by longitudinal and
transverse bends. Indeed, at qx � 0 we obtain the expression
for director fluctuations induced by transverse bending
jdcq? j2� � 
jdcqy j2� � kBT

S�Ksq2y � P0E� ; �7:7�

and at qy � 0 we obtain director fluctuations in the case of
longitudinal bending
jdcq? j2� � 
jdcqx j2� � kBT

S
ÿ
Kbq2x � P0E� 2pP2

0 jqxj
� :
�7:8�
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Figure 14. (a) Plots of the decay rate (crosses) and the scattered light

intensity (squares) vs. wave number q for the longitudinal bend mode in

freely suspended ferroelectric smectic-C films �8O:5�� with different

numbers of layers N. The values of Kb=Zb (in 10ÿ5 cm2 sÿ1 units) as

obtained from the slopes of each line to an accuracy of �2% are 2.05

(N � 3) and 1.7 (N � 4). The values of Kb=P
2
0 (in CGS units) obtained

from the intercept of the decay curves and the axis of ordinates are

�0:5� 0:02� � 10ÿ2 (N � 3) and �4:0� 0:2� � 10ÿ2 (N � 4). The value of

Kb=P
2
0 for (N � 3) found from the scattered light intensity equals

�0:8� 0:2� � 10ÿ2. (b) Plots of the decay rate (filled circles) and the

scattered light intensity (open circles) vs. wave number q for the

transverse bend mode in freely suspended ferroelectric smectic-C films

�8O:5�� with different numbers of layers N. The values of Ks=Zs (in

10ÿ5 cm2 sÿ1 units) as obtained from the slopes to an accuracy of �2%
are 11.7 (N � 2) 8.3 (N � 3), 7.1 (N � 4), and 5.5 (N � 6) [61].
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The temporal correlation function of these fluctuations has
the form


dc�t� dc�0�� � 
jdcj2� exp�ÿGt� ; �7:9�

where

G � Gs � tÿ1s �
Ksq

2
y � P0E

Zs
�7:10�

at qx � 0 and

G � Gb � tÿ1b �
Kbq

2
x � P0E� 2pP2

0 jqxj
Zb

at qy � 0. Here, Zs and Zb are the viscosity coefficients that
describe the relaxation of transverse and longitudinal bends,
respectively.

Light scattering intensities and temporal correlation
functions for smectic films with various numbers of layers
were measured in [61, 62]. Figure 14 presents the decay rates
Gs andGb and the scattered light intensities obtained in one of
these works. It appears from formula (7.10) that, for weak
external orientation fields (E � 10 V cmÿ1), the values of
Ks=Zs and Kb=Zb can be obtained from the slopes of temporal
correlation functions. Also, it was shown that the decay rateG
decreases with increasing number of smectic layers. It follows
from formulas (7.3) and (7.10) that this effect can be due to
the dependence of Frankmoduli on film thickness, viscosities,
and tilt angles of longmolecules in a given layer. This problem
was analyzed in [62]. To this effect, scattered light intensities
were measured in the presence of two fields: a constant weak
electric field Ea � 4 V cmÿ1 and a rectangular pulsed electric
field of amplitude E0 � 300 V cmÿ1 and pulse duration
1.8 ms. Such a design of the experiment permitted the
researchers to find the moduli Ks and Kb and the polarization
P0 at different qx and qy. Moreover, measurements of
scattered light intensities after elimination of the pulse
provided information about the decay rates Gs and Gb.

Measurements of scattered light intensities revealed that
the Frank moduli exhibit weak dependence on the film
thickness, whereas the tilt angle of the director is strongly
dependent on the same variable. This dependence is illu-
strated by Fig. 15, from which it can be seen that the angle yT
markedly decreases with increasing film thickness and
approximates that in the bulk phase. The thickness depen-
dences of both the scattered light intensity and the temporal

correlation function indicate that the viscosities Zs and Zb
increase with film thickness.

7.2 Light scattering in smectics I and F
Smectic films in the I and F phases are interesting objects of
research [63 ± 66]. In these phases, as in smecticC, the director
is tiltedwith respect to the normal to the layers. There is yet an
additional feature. Specifically, the centers of molecular
masses within each layer are located at the vertices and in
the centers of hexagons. It should be emphasized that phases I
and F are characterized by the absence of true long-range
order in smectic layers but show correlation between
positions of hexagonal elements. The smectic phases F and I
are different in that the former has a c-director oriented along
the normal to any two opposite sides of the hexagons, whereas
in the latter the c-director is oriented parallel to such sides. A
decrease in temperature in these systems leads to the
formation of a two-dimensional hexagonal lattice and the
transition to phases J and G.

In a description of light scattering from smectic I and
smectic-F films, the density of free energy of distortion of the
director field is characterized not only by c-director orienta-
tion but also by the direction of hexagonal elements. It may be
assumed that the equilibrium configuration in smectics I and
F is specified by an external magnetic field applied along the
smectic layers, Ha � 1:5� 103 G. The free energy of distor-
tion is given by two angles: the angle j, i.e., the deviation of
the c-director from the x axis depending on the external field,
and the angle y, which defines rotation of hexagons. The two-
dimensional density of the free energy of distortion dF2D has
the form [67, 68]

dF2D � 1

2
KB

1

���� qjqx
����2 � 1

2
KS

1

���� qjqy
����2 � 1

2
KI

6

���� qyqx
����2

� 1

2
KII

6

���� qyqy
����2 ÿH6 cos

�
6�yÿ j��

ÿH12 cos
�
12�yÿ j�� ; �7:11�

where KB
1 and KS

1 are the elastic moduli related to the
distortion of the director field, KI

6 and KII
6 are the elastic

moduli determined by the distortion of the hexagonal
structure in the layers, and H6 and H12 are the moduli
associated with the divergence of the c-director and hexagon
orientations. The light is scattered from fluctuations of the c-
director, which have the following form in the Gaussian
approximation:
jj�q?�j2� � kBT

K��w� q2?
� K 2

ÿ�w�
K 2

1 �w�
kBT

H� Kÿ�w� q2?
; �7:12�

where

K� � K1 � K6 ; Kÿ � K1K6

K1 � K6
;

q? � q?�cos w; sin w; 0� ;

K1�w� � KB
1 cos2 w� KS

1 sin2 w ;

K6�w� � KI
6 cos

2 w� KII
6 sin2 w ; Sm-I ,

KII
6 cos2 w� KI

6 sin
2 w ; Sm-F,

(

H � 36�H6 � 4H12� ; Sm-I ,

36�ÿH6 � 4H12� ; Sm-F .

�
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Figure 15. Tilt angle yT for a ferroelectric smectic C (DOBAMBC) vs. the

number of layers N at T � 91:5�C. The dashed line shows the bulk values

of yT [62].

932 V P Romanov, S V Ul'yanov Physics ±Uspekhi 46 (9)



As regards the free energy of distortion in thick films, the
variation of the angles y and j from layer to layer should be
taken into account. In a film of N layers, the wave vector
component along the z axis may be assumed to run through a
discrete row of values qz � np=L, n � 1; 2; . . . ;N. Then, in the
lowest approximation, the three-dimensional density of free
energy dF3D can be represented in the form

dF3D � dF2D � KT
1

2

�
np
L

�2��j�q���2 � Kz
6

2

�
np
L

�2��y�q���2 ;
�7:13�

where q � �q?; np=L�, and KT
1 and Kz

6 are the elastic moduli.
The fluctuating component of the free energy is given by

the expression

X
q

dF3D � S
XN
n�1

�
dF3D dq? ;

where S is the film area. Expression (7.13) can contain other
terms permissible by symmetry considerations, but theymake
no appreciable contribution in light scattering experiments on
smectic films [66]. Ref. [66] provides experimental data on
light scattering from a freely suspended 8OSI crystal film in
smectic I and C phases. The authors worked with both thick
film specimens (L � 3 mm) and thin films containing a few
layers. For the case of normal incidence, the scattered light
intensity in thick films was described by the expression

Isc � I0 sin
2 yT sin

2�yT � ys�
�

1

Aq2x
� 1

C� Bq2x

�
; �7:14�

where yT is the equilibrium tilt of the director relative the
normal to the layers, ys is the angle between the scattered ray
direction and the normal to the layers, q? � �qx; 0�,
qx � k sin ys, and k is the wave number of the incident wave.

Figure 16 presents scattered light intensity in thick films of
smectics C and I as a function of temperature and wave
number component qx. The experimental data are fairly well
described by expression (7.14) and can be used to find the
temperature dependence of the effective orientational elasti-
city modulus. The noticeable curvature of the dependence of
the scattering intensity on qx is largely attributable to the
factor sin2�yT � ys� in expression (7.14). It has been shown
that the effective orientational elasticity modulus in the
smectic I phase is one or two orders of magnitude that in
phaseC. Similar measurements in thin films composed of two
and four smectic layers agree equally well with theoretical
predictions.

Measurements of scattered light intensity in two geome-
tries, i.e., when the scattering vector component was parallel
to the external magnetic field and when it was normal to the
field, were used to find longitudinal and transverse bend
moduli. Temperature dependences of these moduli for a
three-layer (8OSI) film are presented in Fig. 17. Note that
the description of these dependences needs to take into
account only the acoustic mode in which both the c-director
and the hexagonal structure undergo in-phase deviations
from the equilibrium direction. But in the case under
consideration, measurements of the half-width of the central
component of the scattering spectrum were employed to
determine the effective viscosity. Note that the I ±C phase-
transition temperature in the thin film was much higher than
in the bulk.

References [69] reports a study of light scattering from
freely suspended thin films in smectic-C � and hexatic-I �

phases. Formulas used to describe light scattering in the
hexatic-I � phase were analogous to those cited above for
smectic C �. The authors measured the elastic moduli and the
relaxation times of longitudinal and transverse bend distor-
tions. It was found that the moduli of elasticity increased by
one or two orders of magnitude upon the C � ± I � phase
transition. Also, a transition to the I � phase resulted in a
larger longitudinal bend modulus Kb as compared to the
transverse bend modulus Ks.

Measurements of temporal correlation functions of
scattered-light intensities in the hexatic I � phase revealed
that their decay was a consequence of two relaxation
processes. Measurements at different scattering angles
showed that one of these processes was linked to the acoustic
mode, while the other was associated with the optical mode in
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Figure 16. Angular dependence of scattered light intensity on the acoustic

mode in a 3 mm 8OSI smectic film in longitudinal bending geometry. The

lines are variants of the adjusting of experimental data by formula (7.14):

(a) phase C and (b) phase I [66].
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which fluctuations of the c-director and the whole structure
occurred in the antiphase. The results of these measurements
are presented in Fig. 18.

An interesting result was obtained in Refs [70, 71]. It
was shown by means of an optical technique that the
polarization vector in a ferroelectric smectic-C � liquid-
crystal film could be oriented either normal or parallel to
the c-director. This effect was absent in very thin films and
emerged as their thickness increased. In particular, the
polarization vector in a 20-layer film of DOBAMBC
smectic liquid crystal was perpendicular to the c-director
below 12 �C and parallel to it at higher temperatures. The
authors attributed this finding to smectic-C � ± smectic-A
phase transition that occurred in this temperature range
starting from inner layers. This means that the director in
these layers was oriented normally to them. Conversely, the
director orientations in outer layers were independent of
one another. In this situation, the C-like configuration in an
external field was energetically more advantageous than the
S-like configuration. Such a transformation is shown in
Fig. 19. The changing orientation of the director across the
film thickness was responsible for flexoelectric polarization
[1] that had the same direction in the vicinity of the

transition point to smectic phase A as the c-director. With
the approach to the transition point, the ferroelectric
polarization became weaker than the flexoelectric one,
which caused the polarization vector to rotate.
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Figure 18. (a) Dynamic correlation function for a five-layer film in the

hexatic I � phase 1.2 K below the point of transition to the smectic-C �

phase. (b) Wave-vector dependence of the relaxation rates of the optical

and acoustic modes [69].
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point.P0 andPf are the ferroelectric and flexoelectric polarization vectors,

respectively [70, 71].
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8. Conclusion

Wehave considered various characteristics of smectic films. A
remarkable property of these films is their liquid-like and
crystal-like behavior. As a result, they exhibit both acoustic
and optical vibrations of individual layers and show Bragg
peaks in X-ray scattering spectra, Rayleigh waves at the
surface, and spontaneous polarization in ferroelectric films.
At the same time, the dynamic properties and the structure of
these films are strongly influenced by surface tension, shear
viscosity, external fields, etc.

Unlike other types of liquid-crystal films, smectic films
have a rather simple layered structure, allowing a consistent
theoretical description of their static and dynamic properties.
In this context, smectic films provide a most convenient
model for the investigation of physical characteristics of
two-dimensional systems. Experimental techniques and
theoretical approaches being developed for this purpose are
expected to promote a deeper insight into the nature of both
liquid and solid films.

At the same time, many problems associated with the use
of smectic films as convenient research systems remain
unresolved. These are investigations into dynamic properties
of multilayer films, extraction of information about film
characteristics (first and foremost, correlation properties)
from the data on specular and diffuse X-ray scattering, and
the use of dynamic X-ray scattering for the study of dynamic
properties of a broader class of smectic films. Further
development of the theory of phase transitions in thin films
is needed, as is a more consistent analysis of numerous
experimental findings pertinent to phase transitions. Such
studies would bring in new knowledge of film structure and
dynamic properties.

This work was supported by the Russian Foundation for
Basic Research (grant Nos. 03-02-16173 and 02-02-16577).

References

1. De Gennes P-G The Physics of Liquid Crystals (Oxford: Clarendon

Press, 1974) [Translated into Russian (Moscow: Mir, 1977)]

2. de Gennes P G, Prost J The Physics of Liquid Crystals 2nd ed.

(Oxford: Clarendon Press, 1993)

3. Landau L D, Lifshitz E M Teoriya Uprugosti (Theory of Elasticity)

(Moscow: Nauka, 1987) [Translated into English (Oxford: Perga-

mon Press, 1986)]

4. Holyst R Phys. Rev. A 44 3692 (1991)

5. Martin P C, Parodi O, Pershan P S Phys. Rev. A 6 2401 (1972)

6. Chen H-Y, Jasnow D Phys. Rev. E 57 5639 (1998)

7. Poniewierski A, Holyst R Phys. Rev. B 47 9840 (1993)

8. Shalaginov A N, Romanov V P Phys. Rev. E 48 1073 (1993)

9. Shindler J D et al. Phys. Rev. Lett. 74 722 (1995)

10. Mol E A L et al. Phys. Rev. E 54 536 (1996)

11. Chen H-Y, Jasnow D Phys. Rev. E 61 493 (2000)

12. Shalaginov A N, Sullivan D E Phys. Rev. E 62 699 (2000)

13. Holyst R Phys. Rev. A 42 7511 (1990)

14. Poniewierski A et al. Phys. Rev. E 58 2027 (1998)

15. Poniewierski A et al. Phys. Rev. E 59 3048 (1999)

16. Price A C et al. Phys. Rev. Lett. 82 755 (1999)

17. Mirantsev L V Fiz. Tverd. Tela 41 1882 (1999) [Phys. Solid State 41

1729 (1999)]

18. Mirantsev L V Phys. Rev. E 62 647 (2000)

19. Romanov V P, Ul'yanov S V Phys. Rev. E 63 031706 (2001)

20. Romanov V P, Ul'yanov S V Phys. Rev. E 65 021706 (2002)

21. Brillouin L, Parodi M Wave Propagation in Periodic Structures

(New York: Dover Publ., 1953) [Translated into Russian (Moscow:

IL, 1959)]

22. Abramowitz M, Stegun I A (Eds) Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables (New

York: Dover Publ., 1965) [Translated into Russian (Moscow:

Nauka, 1979)]

23. Miyano K Phys. Rev. A 26 1820 (1982)

24. Stoebe T, Mach P, Huang C C Phys. Rev. E 49 R3587 (1994)

25. Stoebe T et al. Phys. Rev. E 53 1662 (1996)

26. Romanov V P, Ul'yanov S V Phys. Rev. E 66 061701 (2002)

27. Orsay Group on Liquid Crystals. J. Phys. Colloq. (Paris) 36

(Suppl. C1) C1-305 (1975)

28. Landau L D, Lifshitz E M Gidrodinamika (Fluid Mechanics)

(Moscow: Nauka, 1986) [Translated into English (Oxford: Perga-

mon Press, 1987)]

29. Fedorov D O, Romanov V P, Ul'yanov S V Phys. Rev. E 62 681

(2000)

30. E|̄del'man E D Poverkhnost': Fiz. Khim. Mekh. (3) 26 (1995)

31. Dorshow R B, Turkevich L A Phys. Rev. Lett. 70 2439 (1993)

32. Cao B H, KimMW, Cummins H Z J. Chem. Phys. 102 9375 (1995)

33. Huang Q R, Wang C H J. Chem. Phys. 105 6546 (1996)

34. Monroy F, Langevin D Phys. Rev. Lett. 81 3167 (1998)

35. Huang Q R, Wang C H, Deng N J J. Chem. Phys. 108 3827 (1998)

36. Landau L D, Lifshitz E M Statisticheskaya Fizika Ch. 1 (Statistical

Physics. Pt. 1) (Moscow: Nauka, 1976) [Translated into English

(Oxford: Pergamon Press, 1980)]

37. de Boer D K G Phys. Rev. E 59 1880 (1999)

38. Sinha S K et al. Phys. Rev. B 38 2297 (1988)

39. de JeuWH, Ostrovskii B I, Shalaginov ANRev. Mod. Phys. 75 181

(2003)

40. Tweet D J et al. Phys. Rev. Lett. 65 2157 (1990)

41. Holyst R, Tweet D J, Sorensen L B Phys. Rev. Lett. 65 2153 (1990)

42. Pieranski P et al. Physica A 194 364 (1993)

43. Mol E A L et al. Phys. Rev. Lett. 79 3439 (1997)

44. Geer R E et al. Phys. Rev. Lett. 71 1391 (1993)

45. Geer R E, Shashidhar R Phys. Rev. E 51 R8 (1995)

46. Geer R E et al. Phys. Rev. E 52 671 (1995)

47. de Boer D K G et al. Physica B 248 274 (1998)

48. Salditt T et al. Phys. Rev. E 60 7285 (1999)

49. Fera A et al. Phys. Rev. E 63 020601(R) (2001)

50. Fera A et al. Phys. Rev. Lett. 85 2316 (2000)

51. Caille A CR Acad. Sci. B 274 891 (1972)

52. Als-Nielsen J et al. Phys. Rev. Lett. 39 1668 (1977)

53. Als-Nielsen J et al. Phys. Rev. B 22 312 (1980)

54. Safinya C R et al. Phys. Rev. Lett. 57 2718 (1986)

55. Als-Nielsen J et al., in Ordering in Strongly Fluctuating Condensed

Matter Systems (NATOAdv. Study Institute Series, Ser. B, Vol. 50,

Ed. T Riste) (New York: Plenum Press, 1980) p. 57

56. Dupres V et al. Phys. Rev. E 66 012701 (2002)

57. Andelman D, Joanny J-F, Robbins M O Europhys. Lett. 7 731

(1988)

58. RobbinsMO,AndelmanD, Joanny J-FPhys. Rev. A 43 4344 (1991)

59. Tidswell I M et al. Phys. Rev. Lett. 66 2108 (1991)

60. Pershan P S J. Phys.: Condens. Matter 6 A37 (1994)

61. Young C Y et al. Phys. Rev. Lett. 40 773 (1978)

62. Rosenblatt C et al. Phys. Rev. Lett. 42 1220 (1979)

63. Brock J D et al. Phys. Rev. Lett. 57 98 (1986)

64. Brock J D, Noh D Y, McClain B R Z. Phys. B: Cond. Mat. 74 197

(1989)

65. Cheng M et al. Phys. Rev. Lett. 59 1112 (1987)

66. Sprunt S, Spector M S, Litster J D Phys. Rev. A 45 7355 (1992)

67. Nelson D R, Halperin B I Phys. Rev. B 21 5312 (1980)

68. Bruinsma R, Nelson D R Phys. Rev. B 23 402 (1981)

69. Dierker S B, Pindak R Phys. Rev. Lett. 59 1002 (1987)

70. Andreeva P O et al. Phys. Rev. E 59 4143 (1999)

71. Andreeva P O et al. Zh. Eksp. Teor. Fiz. 116 1329 (1999) [JETP 89

713 (1999)]

September, 2003 Dynamic properties of smectic élms 935

http://dx.doi.org/10.1103/PhysRevA.44.3692
OMIS
Holyst R Phys. Rev. A 44 3692 (1991)

http://dx.doi.org/10.1103/PhysRevA.6.2401
OMIS
Martin P C, Parodi O, Pershan P S Phys. Rev. A 6 2401 (1972)

http://dx.doi.org/10.1103/PhysRevE.57.5639
OMIS
Chen H-Y, Jasnow D Phys. Rev. E 57 5639 (1998)

http://dx.doi.org/10.1103/PhysRevB.47.9840
OMIS
Poniewierski A, Holyst R Phys. Rev. B 47 9840 (1993)

http://dx.doi.org/10.1103/PhysRevE.48.1073
OMIS
Shalaginov A N, Romanov V P Phys. Rev. E 48 1073 (1993

http://dx.doi.org/10.1103/PhysRevLett.74.722
OMIS
Shindler J D et al. Phys. Rev. Lett. 74 722 (1995)

http://dx.doi.org/10.1103/PhysRevE.54.536
OMIS
Mol E A L et al. Phys. Rev. E 54 536 (1996)

http://dx.doi.org/10.1103/PhysRevE.61.493
OMIS
Chen H-Y, Jasnow D Phys. Rev. E 61 493 (2000)

http://dx.doi.org/10.1103/PhysRevE.62.699
OMIS
Shalaginov A N, Sullivan D E Phys. Rev. E 62 699 (2000)

http://dx.doi.org/10.1103/PhysRevA.42.7511
OMIS
Holyst R Phys. Rev. A 42 7511 (1990)

http://dx.doi.org/10.1103/PhysRevE.58.2027
OMIS
Poniewierski A et al. Phys. Rev. E 58 2027 (1998)

http://dx.doi.org/10.1103/PhysRevE.59.3048
OMIS
Poniewierski A et al. Phys. Rev. E 59 3048 (1999)

http://dx.doi.org/10.1103/PhysRevLett.82.755
OMIS
Price A C et al. Phys. Rev. Lett. 82 755 (1999)

http://dx.doi.org/10.1134/1.1131076
OMIS
Mirantsev L V Fiz. Tverd. Tela 41 1882 (1999) [Phys. Solid State 411729 (1999)]

http://dx.doi.org/10.1103/PhysRevE.62.647
OMIS
Mirantsev L V Phys. Rev. E 62 647 (2000)

http://dx.doi.org/10.1103/PhysRevE.63.031706
OMIS
Romanov V P, Ul'yanov S V Phys. Rev. E 63 031706 (2001)

http://dx.doi.org/10.1103/PhysRevE.65.021706
OMIS
Romanov V P, Ul'yanov S V Phys. Rev. E 65 021706 (2002)

http://dx.doi.org/10.1103/PhysRevA.26.1820
OMIS
Miyano K Phys. Rev. A 26 1820 (1982)

http://dx.doi.org/10.1103/PhysRevE.49.R3587
OMIS
Stoebe T, Mach P, Huang C C Phys. Rev. E 49 R3587 (1994

http://dx.doi.org/10.1103/PhysRevE.53.1662
OMIS
Stoebe T et al. Phys. Rev. E 53 1662 (1996

http://dx.doi.org/10.1103/PhysRevE.66.061701
OMIS
Romanov V P, Ul'yanov S V Phys. Rev. E 66 061701 (2002)

http://dx.doi.org/10.1103/PhysRevE.62.681
OMIS
Fedorov D O, Romanov V P, Ul'yanov S V Phys. Rev. E 62 681

OMIS
(2000)

http://dx.doi.org/10.1103/PhysRevLett.70.2439
OMIS
Dorshow R B, Turkevich L A Phys. Rev. Lett. 70 2439 (1993)

http://dx.doi.org/10.1063/1.468805
OMIS
Cao B H, KimMW, Cummins H Z J. Chem. Phys. 102 9375 (1995)

http://dx.doi.org/10.1063/1.472463
OMIS
Huang Q R, Wang C H J. Chem. Phys. 105 6546 (1996)

http://dx.doi.org/10.1103/PhysRevLett.81.3167
OMIS
Monroy F, Langevin D Phys. Rev. Lett. 81 3167 (1998)

http://dx.doi.org/10.1063/1.475771
OMIS
Huang Q R, Wang C H, Deng N J J. Chem. Phys. 108 3827 (1998)

http://dx.doi.org/10.1103/PhysRevE.59.1880
OMIS
de Boer D K G Phys. Rev. E 59 1880 (1999)

http://dx.doi.org/10.1103/PhysRevB.38.2297
OMIS
Sinha S K et al. Phys. Rev. B 38 2297 (1988)

http://dx.doi.org/10.1103/RevModPhys.75.181
OMIS
de JeuWH, Ostrovskii B I, Shalaginov A N Rev. Mod. Phys. 75 181

OMIS
(2003)

http://dx.doi.org/10.1103/PhysRevLett.65.2157
OMIS
Tweet D J et al. Phys. Rev. Lett. 65 2157 (1990)

http://dx.doi.org/10.1103/PhysRevLett.65.2153
OMIS
Holyst R, Tweet D J, Sorensen L B Phys. Rev. Lett. 65 2153 (1990)

http://dx.doi.org/10.1103/PhysRevLett.79.3439
OMIS
Mol E A L et al. Phys. Rev. Lett. 79 3439 (1997)

http://dx.doi.org/10.1103/PhysRevLett.71.1391
OMIS
Geer R E et al. Phys. Rev. Lett. 71 1391 (1993)

http://dx.doi.org/10.1103/PhysRevE.51.R8
OMIS
Geer R E, Shashidhar R Phys. Rev. E 51 R8 (1995)

http://dx.doi.org/10.1103/PhysRevE.52.671
OMIS
Geer R E et al. Phys. Rev. E 52 671 (1995)

http://dx.doi.org/10.1103/PhysRevE.60.7285
OMIS
Salditt T et al. Phys. Rev. E 60 7285 (1999)

http://dx.doi.org/10.1103/PhysRevE.63.020601
OMIS
Fera A et al. Phys. Rev. E 63 020601(R) (2001)

http://dx.doi.org/10.1103/PhysRevLett.85.2316
OMIS
Fera A et al. Phys. Rev. Lett. 85 2316 (2000)

http://dx.doi.org/10.1103/PhysRevLett.39.1668
OMIS
Als-Nielsen J et al. Phys. Rev. Lett. 39 1668 (1977)

http://dx.doi.org/10.1103/PhysRevB.22.312
OMIS
Als-Nielsen J et al. Phys. Rev. B 22 312 (1980)

http://dx.doi.org/10.1103/PhysRevLett.57.2718
OMIS
Safinya C R et al. Phys. Rev. Lett. 57 2718 (1986)

http://dx.doi.org/10.1103/PhysRevE.66.012701
OMIS
Dupres V et al. Phys. Rev. E 66 012701 (2002)

http://dx.doi.org/10.1103/PhysRevA.43.4344
OMIS
RobbinsMO, Andelman D, Joanny J-F Phys. Rev. A43 4344 (1991)

http://dx.doi.org/10.1103/PhysRevLett.66.2108
OMIS
Tidswell IMet al. Phys. Rev. Lett. 66 2108 (1991)

http://dx.doi.org/10.1103/PhysRevLett.40.773
OMIS
Young C Y et al. Phys. Rev. Lett. 40 773 (1978)

http://dx.doi.org/10.1103/PhysRevLett.42.1220
OMIS
Rosenblatt C et al. Phys. Rev. Lett. 42 1220 (1979)

http://dx.doi.org/10.1103/PhysRevLett.57.98
OMIS
Brock J D et al. Phys. Rev. Lett. 57 98 (1986)

http://dx.doi.org/10.1103/PhysRevLett.59.1112
OMIS
ChengMet al. Phys. Rev. Lett. 59 1112 (1987)

http://dx.doi.org/10.1103/PhysRevA.45.7355
OMIS
Sprunt S, SpectorMS, Litster J D Phys. Rev. A 45 7355 (1992)

http://dx.doi.org/10.1103/PhysRevB.21.5312
OMIS
Nelson D R, Halperin B I Phys. Rev. B 21 5312 (1980)

http://dx.doi.org/10.1103/PhysRevB.23.402
OMIS
Bruinsma R, Nelson D R Phys. Rev. B 23 402 (1981)

http://dx.doi.org/10.1103/PhysRevLett.59.1002
OMIS
Dierker S B, Pindak R Phys. Rev. Lett. 59 1002 (1987)

http://dx.doi.org/10.1103/PhysRevE.59.4143
OMIS
Andreeva P O et al. Phys. Rev. E 59 4143 (1999)

http://dx.doi.org/10.1134/1.559032
OMIS
Andreeva P O et al. Zh. Eksp. Teor. Fiz. 116 1329 (1999) [JETP 89

OMIS
713 (1999)]


	1. Introduction
	2. Equations of motion of smectics
	3. Dynamics of smectic-A films
	3.1 Freely suspended films
	3.2 Solid-supported films

	4. Continuous model
	4.1 Comparison of continuous and discrete models
	4.2 Surface fluctuations

	5. Thermal fluctuations of smectic films
	5.1 Freely suspended films
	5.2 Films on a substrate

	6. X-ray scattering in smectic films
	6.1 Scattered radiation intensity
	6.2 Effect of thermal fluctuations on the shape of Bragg peaks
	6.3 Scattering in films on a substrate
	6.4 Dynamic X-ray scattering

	7. Light scattering
	7.1 Fluctuations of the {c}-director and light scattering in ferroelectric films
	7.2 Light scattering in smectics I and F

	8. Conclusion
	 References

