
Abstract. This article describes real and gedanken experiments
where one can observe unusual space-time behavior of elemen-
tary particles.

1. Introduction

If you are going to a shop for a watermelon, you cannot be
making a world-tour or be present at an academic council at
the same time. If the watermelon turned out to weigh 8 kg,
neither you nor the salesman doubt that both before and after
weighing its weight was exactly 8 kg and not 15 kg. However,
God created this world much richer than it seems to our
common sense, and such intuitive ideas about space-time are
not always true for the microscopic world. Let us consider
such interesting situations in more detail.

2. The absence of photon number a priori values
before the registration of photons

Consider the following experiment. Let a light source
illuminate a detector (Fig. 1). Reducing gradually the
intensity of light, we approach the photon counting regime,
in which the detector registers quanta, i.e., the minimum
portions of energy. It is commonly believed that photocounts,
or bursts of the detector's photocurrent, correspond to the
arrival of photons. But is it so? Do quanta really exist in the
light field? The detector measures the number of photons in
the field. But does a definite value of this quantity exist before
the measurement?

Let us repeat the experiment many times. The radiation
source can be chosen in such a way that, in some trials
(realizations), one photon is registered, and in other trials,
two photons are registered. What does the light field then
look like? It seems that sometimes it consists of one photon,
and sometimes of two photons. However, one can experi-
mentally prove that this is not always true.

Consider an experiment (see Fig. 2) on three-order
interference in nondegenerate parametric down-conversion
[1]. In a transparent crystal with the quadratic nonlinearity
(piezoelectric crystal), a light beam with frequency fc
generates two beams, the signal one and the idler one, with
the frequencies fa and fb, so that fa � fb � fc. The efficiency
of the pump �c� conversion into the signal and idler beams is
small, only about 0.000001%. Therefore, the main portion of
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Figure 1. Schematic drawing of the apparatus for direct detection
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Figure 2. Schematic of an interference experiment that proves that values

of measurable quantities do not exist a priori. Single photons at frequency

fc are fed to the input. The photocount probability for the detector A is

proportional to 1� cos �Fa � Fb ÿ Fc�, which is evidence of the simulta-

neous presence of the field in all three channels, i.e., of the existence of all

three photons provided that they existed before the measurement (to be

precise, after the first crystal). However, the energy of a single input

photon provides only half of the energy of the three photons.



the pump radiation passes through the transparent crystal, so
that there are three light beams at the output. In all three
constituents of the radiation field, variable phase shifts Fa,
Fb, and Fc are introduced, and then the three beams interact
again in the second nonlinear crystal, which is similar to the
first one. This second crystal makes an inverse conversion of
the signal and idler beams into radiation at the pump
frequency, and at the same time it directly converts the
pump beam transmitted through the first crystal. At the
output of the optical scheme, detectors register the intensities
of all three beams. Figure 2 illustrates the nondegenerate case
where the beams are noncollinear.

Let the first crystal be illuminated by a single photon. It
was shown in Ref. [1] that the probability of occurrence of a
photocount on the detector A is proportional to
1� cos �Fa � Fb ÿ Fc�. This expression can be understood
as interference with the phase F � Fa � Fb ÿ Fc. The
proportionality coefficient, which we omit here, is deter-
mined by the efficiency of nonlinear transformation in the
crystals. The corresponding interference experiment has been
performed by Burlakov et al. [2], and the cosine dependence
on the combination of phases has been confirmed.

Let us try to interpret this result in the framework of an
explicit model supposing that a definite number of photons
exists a priori (before the registration) at the output of the first
crystal. For simplicity, assume the quantum efficiency of both
detectors to be equal to unity.

In the first set of trials, we remove the second nonlinear
crystal. Then, phase delays in the channels do not influence
the result and one observes photocounts either from detectors
A and B or from detector C. This picture agrees with the
assumption that there is either one photon with frequency fc
or two photons with frequencies fa and fb at the output of the
first crystal.

In the second set of trials, we put the second crystal back.
Now, the photocount probabilities depend on all three phases
Fa, Fb, and Fc.

Interference with the unit contrast given by the depen-
dence 1� cos �Fa � Fb ÿ Fc� testifies that by varying the
phase delay for any field component, Fa, Fb, or Fc, one can
make cos �Fa � Fb ÿ Fc� � ÿ1 and, hence, completely sup-
press the photocounts. Let us do it, so that there are no
photocounts from detector A. Then, let us shut out the light
in channel C between the two crystals. Immediately,
photocounts with nonzero probability appear in channel A.
It follows that even if in one of the realizations of the scheme
with three open channels the field in channel C were absent,
there would be nonzero photocount probability in channel
A. But this probability is equal to zero! Thus, the field in
channel C (single pump photons) is present in each
realization. Similarly, by shutting out the light in other
channels one can prove that the radiation field is simulta-
neously present (there are photon pairs) in channels A and B
in each realization. In other words, if in some realizations,
with all channels open, the field were absent in at least one
channel, then the probability of occurrence of a photocount
on the detector A would be nonzero. It follows then that the
radiation field between the crystals exists in all three
channels A, B, and C in every realization. The cosine
dependence, 1� cos �Fa � Fb ÿ Fc�, of the photocount
probability on the linear combination of all three phases
also confirms this fact: it cannot be represented as a sum of
probabilities P�Fa;Fb� and P�Fc�. Although in the experi-
ment of Ref. [2] this harmonic dependence was observed with

a constant background, so that, strictly speaking, there were
no `zeros', this last reasoning is still valid.

Thus, all three photons have to be present in the field
between the two crystals. But this contradicts the energy
conservation law, since only one pump photon was fed to the
input of the first crystal, and its energy is half that of the three
photons. This experiment on the interference of field with a
definite energy and indefinite photon number contradicts the
model with an a priori number of photons. Even if one
assumes the interference of `photon parts' whose energies
sum up to give the constant energy of the radiation field, then
one has to accept that all three `photon parts' are present in
the free space between the crystals in Fig. 2, since the field
must exist simultaneously in all three channels. Then, in the
first set of trials, with the second crystal removed, detection
makes these `photon parts' instantly join into one photon or
two photons in a random way. But this is namely the absence
of photons in the light field before their registration by the
detector. ``A photon is the photon only if it is a detected
photon'' [3].

3. Quantum nonlocality

Consider next an experiment with the Mach ± Zehnder
interferometer (Fig. 3). Suppose there is a single-photon
state at the input and let us first remove the second beam
splitter which is placed before the photodetectors. The
detectors will register single photocounts in one of the
channels and never in two channels simultaneously, since
there is only one photon at the interferometer input.

Let us put the beam splitter back. The probability of
occurrence of photocounts on the detectors is given by the
harmonic function 1� cos �F1 ÿ F2�, where F1 and F2 are
the phase delays in the interferometer arms. The sign depends
on the detector that gives the photocounts. This harmonic
dependence cannot be represented as a sum of two prob-
abilities, P�F1� � P�F2�. Consequently, after the first beam
splitter, the photon seems to be present in both interferometer
arms simultaneously, although at the first stage of the
experiment it existed only in one arm and never in both. It is
this unusual spatial behavior that is called quantum nonlo-
cality. It cannot be explained from the viewpoint of intuitive
common sense, which is usually valid in the macroscopic
world. Most probably, the reason is that quantum state
vectors belong to the Hilbert vector space which does not
necessarily imply space locality.

Let us consider another example [4] of quantum nonlo-
cality (see Fig. 4). In some crystals, one can realize the so-
called type-II parametric interaction where linearly polarized
photons of laser radiation decompose into pairs of scattered
photons with mutually orthogonal polarizations. Creation of
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Figure 3. Schematic of the Mach ±Zehnder interferometer.
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a photon pair takes place at one time but the polarization for
each photon is not fixed beforehand. For instance, after the
analyzer, a photon of a pair can go to detector 2 of the first
observer, which means its polarization is in the plane of the
figure, while the second photon of the same pair will then
necessarily go to detector 1 of the second observer, which
corresponds to its orthogonal polarization. With the prob-
ability 1=2, the opposite case can happen, when detector 1 of
the first observer and detector 2 of the second observer come
into action in parallel. If we correctly understand the results
of the experiment considered in Section 2, then no photon of a
pair has a definite polarization a priori, i.e, before at least one
photon of the pair is detected. At the instant of registration,
when one of the detectors fires, the so-called quantum state
reduction takes place: if the second photon of the pair has not
reached the detector, then with the probability unity it
acquires polarization orthogonal to the one detected for the
first photon in the pair. According to the common viewpoint,
which is confirmed by experiment, reduction occurs instantly
(certainly, within the limits determined by the experimental
technique). The photons of a pair can bounce apart by a
distance of several kilometers but the `information' about the
result of the first photon detection instantly changes the
quantum state of the second one Ð it becomes the state with
a definite polarization.

Is it possible to speak in this case about the superluminal
transmission of information via spontaneous parametric
down-conversion? Apparently not, because a connection
between remote observers of photon pairs requires, in
addition to photodetectors, a `telephone' line. Indeed, with-
out the data about the result of the first photon detection, the
second photon observer sees in fact a random signal with
equally probable �1=2� polarization.

4. On the Bell paradox

In a simplified form, one of the experiments on verifying Bell's
theorem for two observers is depicted in Fig. 5. A light source
simultaneously emits pairs of photons, so that one photon is
sent to observer A, and the other one to observer B. Each

observer has ameasuring instrument that registers photons. It
can operate in two regimes, which are shown symbolically as
two positions of each switch, similarly to radio range
switches. When the instrument registers a photon, we obtain
binary information like `yes' or `no'. It is convenient to denote
the results of measurement as �1 or ÿ1. The observers write
down the measurement results indicating the arrival times of
the photons and the readings, �1 or ÿ1. If the photon
registration occurred with the switch `up', then the result �1
of the first observer is written asA � �1, and if the switch was
`down', then one writes the result A0 � �1. For the second
observer, everything is similar. The observers do not commu-
nicate (a brick wall is symbolically put up between them). The
measurement protocols are sent to the coordinator (a circle
on the right). The coordinator takes the results of simulta-
neous measurements and combines them into products of the
form AB or AB 0 (four possible combinations), depending on
the regime of photon measurements. In discussions with the
observers before the experiment, they are informed when they
should switch the regime. The products are averaged, and the
so-called Bell inequality is constructed:

jSj4 1 ; where S � hABi � hA
0Bi � hAB 0i ÿ hA 0B 0i

2
:

Here angle brackets denote averaging.
Deriving Bell's inequalities is very simple [3]. Suppose that

the result of measurements for any emitted photon pair is
completely predetermined by the light source at the instant of
their emission, and the source is not influenced by the
measuring instruments and the observers. Then all possible
results of measurements (values of A, A 0, B, and B 0) are
predetermined. Since their possible values are equal to �1 or
ÿ1, the value of �AB� A 0B� AB 0 ÿ A 0B 0�=2 is also equal to
�1 or ÿ1, respectively, and the averaging leaves S in the
interval �ÿ1;�1�.

Under certain conditions, Bell's inequality can be violated
(see, for instance, Refs [5 ± 11]). This means that the photons
of a pair behave not as independent objects but as a correlated
system, i.e., the result of photon registration by the first
observer (�1 or ÿ1) seems to immediately become `known'
to the second photon, although the photons may have been
separated by a very large distance. For instance, in the
experiments by Tittel et al. [8, 9], the distance between the
observers A and B was more than 10 km. The so-called
Franson's interference scheme was used, in which each
observer traps his photon and feeds it to the input of a
Mach ±Zehnder interferometer. The path difference in the
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Figure 4. An experiment with simultaneously emitted photon pairs:

although photons in the figure are shown with definite polarizations, in

reality, neither photon of a pair has definite polarization before any of

them is registered. Still, their polarizations always turn out to be mutually

orthogonal. At the point in time when one photon of the pair is registered,

the state of the other one is instantly changed and it acquires a definite

polarization.
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Figure 5. Schematic of the Bell inequality testing.
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interferometer arms was made larger than the coherence
length, so that usual single-photon interference, which we
discussed at the beginning of Section 3 (see Fig. 3), was
suppressed. Nevertheless, quantum correlation between the
photons flown apart by 10 km was still present, and the Bell
inequality was violated.

This fact can be explained in several ways. The first
explanation consists of the formal statement that the
parameters of photons simply have no measurable values.
This concept suggests the absence of a priori values for the
parameters of a photon. However, in this case we still face the
question: can there be any relation between nonexisting
parameters?

The second explanation implies a mysterious connection,
of unknown origin, between flying apart photons. This
connection is `switched on' instantly between remote
objects, i.e., the above-mentioned quantum nonlocality
manifests itself.

The third way to explain the experiment is to assume that
one of the two particles `lives' in `negative time', from the
future to the past. In other words, it is born in the detector and
travels to the source. At the instant of time it meets the source,
the other particle is born. Since the first particle looks like that
on a movie going backward, it seems to us that both particles
are simultaneously born in the radiation source.

However, one can look at these experiments from a
different viewpoint. The reasoning presented above is based
on the traditional concepts of space and time in which a light
field exists in reality. But these assumptions are not evident to
all physicists. For instance, Professor Yu S Vladimirov from
Moscow State University develops in his monographs [12, 13]
the theory according to which there is no general space and
time in the microscopic world. Such an approach seems to
resolve quantum paradoxes, since in the absence of time in
this world, the very concept of a priori existence disappears.
Time (and space) appears only as a result of averaging the
`individual times' of many elementary particles composing a
macroscopic object. Still, a detailed development of Vladi-
mirov's theory is still ahead.

Most important is the fact that the possibilities of
existence of objects beyond the space ± time is seriously
discussed in the scientific community. In this connection, let
us stress once again that the vectors of quantum states, which
belong to the Hilbert vector space, are not subject to standard
space ± time restrictions.

5. Bell's theorem with an account for losses

The experimental violation of Bell's inequality, observed by
Aspect et al. [5] and disproving the theory of hidden
parameters, has been criticized lately. The existence of losses
in a real situation allows the results to be formally explained
by the local theory of hidden parameters (see, for instance,
Refs [6,7] and the literature cited therein). In this section, it is
shown that the experiments carried out in Ref. [5] can be
rehabilitated.

If the local theory of hidden parameters is valid, then the
results of measurements in the scheme of Fig. 5 are
predetermined at the instant of time when two elementary
particles are emitted by the source; they can be described by
four-dimensional joint probabilities

PAA 0BB 0 �a; a 0; b; b 0� �
�
L�a; a 0 ; b; b 0�

P�l� dl ; �1�

which are the probabilities of a sort of simultaneous
measurement of all four quantities. Here, capital letters
denote the measured quantities, and small letters denote
their values (�1 or ÿ1). Let L�a; a 0; b; b 0� be the subset of
the complete set flg of the hidden parameters of the source,
for which the measured quantities take the values a, a 0, b, b 0,
andP�l� be the probability density distribution for the hidden
parameters. For brevity, let us denote the four-dimensional
probabilities by their corresponding values, for instance,

PAA 0BB 0 �a � �1; a 0 � ÿ1; b � ÿ1; b 0 � �1� � �� ÿ ÿ�� :

There are 24 joint probabilities of this kind. Their sum is equal
to unity, and each of them lies within the interval �0;�1�.
Then, the moment

hABi �
X16
1

abPAA 0BB 0 �a; a 0; b; b 0� ;

and analogously for the other three moments. If one
substitutes these moments in the expression for Bell's
observable

S � hABi � hA
0Bi � hAB 0i ÿ hA 0B 0i

2
;

which was introduced in the previous section, then one can
easily verify the Bell inequality in the Clauser ±Horne ±
Shimony ±Holt form:��hABi � hA 0Bi � hAB 0i ÿ hA 0B 0i��4 2 : �2�

This is the second way of deriving it. Quantum theory
predicts violation of Bell's inequality, and the experiments [5]
confirm this prediction. However, quantum efficiencies of the
detectors used in those experiments were less than unity, and
in fact, trichotomic variables a; a 0; b; b 0 � 0;�1 were mea-
sured. In this case, inequality (2) can be violated even in the
framework of the local theory of hidden parameters, since
additional combinations of joint probabilities are possible.
Their number becomes equal to 34. Specific examples are
given in Refs [6, 7].

However, certain restrictions can be imposed on joint
four-dimensional probabilities. Indeed, the probabilities that
detectors of the observersA and B come into action are equal
to their quantum efficiencies Za and Zb, which are assumed to
take into account all possible losses. Suppose that the
quantum efficiencies do not depend on the set of hidden
parameters flg (validity of this assumption will be discussed
below). Then, one finds

�� � ���Z< 1 � Z2aZ
2
b�� � ���Z� 1 ;

since the four-dimensional probability is a probability of four
photocounts. Sixteen joint probabilities with one zero can
also be expressed in terms of the probabilities for registering
particles by ideal detectors, for instance,

�0����Z< 1

� �1ÿ Za� ZaZ2b
��� � ���Z� 1 � �ÿ ����Z� 1

�
:

Thirty-two joint probabilities with two zeros are calculated
similarly to the following example

�0� 0��Z< 1 � �1ÿ Za� Za�1ÿ Zb� Zb
��� � ���Z� 1

� �ÿ � ���Z� 1 � �� �ÿ��Z� 1 � �ÿ �ÿ��Z� 1

�
;
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and each one from 16 joint probabilities with three zeros is
equal to the sum of 8 probabilities calculated for ideal
detectors and multiplied by �1ÿ Za�2�1ÿ Zb�Zb or by
�1ÿ Za�Za�1ÿ Zb�2, depending on the positions of the zeros.
The remaining probability, which corresponds to the instance
when no detector fires, is given by

�0000� � �1ÿ Za�2�1ÿ Zb�2
X
����

�� � ��� :

Now, we can find the moments

hABiZ< 1 � ZaZbhABiZ� 1 ; �3�

and analogously for the other three moments. Let us also
define the combination
jABj�Z< 1

� ZaZb : �4�

Therefore, the experiment with ideal detectors can be
described using the moments for a scheme with real
detectors, for instance,

hABiZ� 1 �
hABiZ< 1
jABj�Z< 1

�
P

M ab

M
; �5�

whereM is the number of simultaneous detections of particles
by both observers, i.e., when single photocounts are dis-
carded. But this is exactly the way the results of experiments
[5] were processed.

Let us return to the validity of the assumption that the
detectors' quantum efficiencies are independent of the hidden
parameters flg. If this assumption is true, then the final
relations (3) and (4) are also true, and they can be easily
verified in experiment by introducing controllable losses into
the channels of observers A and B. If the test confirms these
relations, then one can use relation (5). Although, strictly
speaking, it is not possible to test relations (3) and (4) in the
whole range of quantum efficiencies, from zero to unity. Still,
relations (3) and (4) are rather evident, and are hardly
doubted by specialists. Note that all possible losses in the
channels are included into quantum efficiencies. Thus, using
the moments measured in real experiment, one can recon-
struct the moments that would be obtained by an ideal
measuring instrument with no losses.

During the last 10 years, intensive efforts have been made
to experimentally disprove the theory of hidden parameters.
The experiments involve high-efficiency detectors and, there-
fore, are very expensive (see, for instance, Ref. [11]). Con-
siderations given here allow one to bring down the require-
ments to the detectors' quantum efficiency for the experi-
mental disproof of the local theory of hidden parameters.
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