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Small-scale phase separation
and electron transport in manganites

M Yu Kagan, A V Klaptsov, I V Brodski|̄,
K I Kugel', A O Sbo|̄chakov, A L Rakhmanov

1. Introduction
Manganites, manganese-based magnetic oxides like
LaMnO3, have been known for more than 50 years. In recent

years they have attracted considerable interest primarily due
to the discovery of the effect of colossal negative magnetore-
sistance in La1ÿxCaxMnO3materials in 1993 [1]. The unusual
physical properties and the richness of the phase diagram of
manganites have generated a wealth of papers concerned with
different aspects of the phase diagram and transport proper-
ties of these compounds.

Special attention to manganites arises from the possibility
of forming inhomogeneous charge and spin states of various
types, like lattice and magnetic polarons, droplet and stripe
structures, etc. Similar phenomena are inherent in many
strongly correlated structures with potential interaction
energy of electrons predominating over their kinetic energy.
In particular, they are widely discussed for materials exhibit-
ing high-temperature superconductivity. We note that one of
the first striking examples of inhomogeneous states of this
kind is ferromagnetic droplets (ferrons) [2, 3] in an anti-
ferromagnetic matrix under weak doping. The linkage
between phase separation and the nature of colossal magne-
toresistance in manganites has been the subject of wide
speculation in recent years.

Phase separation is commonly investigated in the range of
low densities and temperatures in the vicinity of the transition
point between the antiferromagnetic state and the ferromag-
netic ground state. However, there is some evidence that the
state of manganites is also inhomogeneous even in the range
of optimal densities and low temperatures (in the ferromag-
netic phase) [4]. At high temperatures and optimal densities,
experimental data once again testify to the presence of
significant short-range ferromagnetic correlations (tempera-
ture ferrons [5, 6]) in the paramagnetic phase.

The fundamental results of investigations of the gross
phase diagram of manganites, obtained by our group, were
published in a large review paper [6]. During the last two years
we have obtained a set of interesting new data concerning the
compromise between the canted state and small-scale phase
separation, as well as several results that are of considerable
importance in describing nontrivial transport properties of
manganites. Our paper is dedicated to precisely these new
results.

2. Theoretical model
To account for the correlations between transport and
magnetic properties in manganites, Zener [7] put forward a
double-exchange model. This model assumes that a conduc-
tion electron travels in La1ÿxCaxMnO3 along Mn4� ions and
strongly interacts (in a ferromagnetic way) with the local
moments of manganese ions. Since the spin of the conduction
electron should be parallel with the local spin, in the classical
picture this electron cannot move in the antiferromagnetic
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environment. Anderson andHasegawa [8] solved the problem
for the amplitude of atom-to-atom electron jump. They found
that the hopping amplitude is of the form teff � t cos �w=2�,
where t is the bare hopping amplitude, and w is the angle
between the local atomicmoments. Therefore, the conduction
electron tends to ferromagnetically order the nearby local
spins. This gives rise to competition between the antiferro-
magnetism of local spins (caused by the superexchange
mechanism) and the ferromagnetism of the local spins
through the conduction electron (the double-exchange
mechanism). De Gennes [9] hypothesized that this competi-
tion results in a homogeneous canted state: the angle between
the local spins of sublattices is constant throughout the
sample and varies monotonically from p (a collinear anti-
ferromagnetic structure) to 0 (a collinear ferromagnetic
structure) with increasing charge carrier concentration.
Later, Nagaev [10] included the quantum fluctuations of
local spins and concluded that an electron can travel even in
an antiferromagnetic environment with a small hopping
amplitude t=

��������������
2S� 1
p

.
Several authors independently predicted [2, 3] the

existence of a self-trapped electron state in an antiferromag-
netic matrix, which has come to be known as a magnetic
polaron or a ferron. For an electron embedded in an
antiferromagnetic environment it is quite often energetically
benefited to form a ferromagnetic domain around itself and
become autolocalized in it, resulting in a small-scale phase
separation between ferro- and antiferromagnetic phases.
One of the authors [6] showed that the double-exchange
model is, in the case of low charge-carrier concentrations,
unstable towards phase separation and that the energy of
ferron state is lower than the energy of the homogeneous
canted state [11]. However, the question arises of whether the
polaron state is stable with the inclusion of quantum
fluctuations of local spins.

The basic model suggested for the description of manga-
nite properties is the ferromagnetic Kondo lattice model (the
s ± d model):

Ĥ � ÿJH
X
i

Sisi ÿ t
X
hi; ji

c�is cjs � Jff
X
hi; ji

SiSj ; �1�

where Si is the local spin of d electrons of manganese,
si � c�ia sabcib is the spin of conduction electrons, and the
symbol hi; ji implies summation over the nearest neighbors.
We note that a strong Hund interaction prevents two
electrons with different spin projections from occupying a
common site. The first term in the Hamiltonian (1) describes
the Hund interaction of a local spin S � 3=2 with a spin of a
conduction electron. In real manganites, the magnitude of
Hund interaction JH is of the order of 1 eV. The second term
in expression (1) corresponds to the kinetic energy of
conduction electrons. We note that a strong electron ± lattice
interaction significantly narrows the conduction band width
�W � 2zt�, resulting in a small value of the hopping
amplitude t � 0:3 eV. The last term in the Hamiltonian (1)
corresponds to the weak antiferromagnetic interaction of two
neighboring local spins (Jff � 0:001 eV).

In the case of strong Hund interaction �JH 4W4 Jff�,
the Hamiltonian (1) takes the form

Ĥ � ÿ
X
hi; ji

t�wi j�a�i aj � JffS
2
X
hi; ji

cos wi j ; �2�

where a�i and aj are the creation and annihilation operators
for spinless fermions (conduction electrons whose spin is
aligned with the local spin), t�wi j� is the effective hopping
amplitude, and wi j is the angle between themagnetic moments
of two neighboring atoms. Interestingly, if all local spins were
ferromagnetically aligned, the conduction electrons would
move freely with a hopping amplitude t. Therefore, the
Hamiltonian (2) describes the competition between the
ferromagnetism due to double exchange (the first term) and
the antiferromagnetism due to superexchange (the second
term).

In Nagaev's quantum approach, the local spin and the
spin of a conduction electron form, at the site occupied by
the conduction electron, a state with a total spin S� 1=2,
but with two possible spin projections S� 1=2. By this
means there exist two effective bands corresponding to two
different projections of the total spin:

t��w� � t

2S� 1

� ���������������������������������������
2S� 1� S 2 cos2

w
2

r
� S cos

w
2

�
: �3�

The quantum hopping amplitude is significantly different
from the classical de Gennes ±Anderson ±Hasegawa hop-
ping amplitude t cos �w=2�. Unlike the classical description,
in the quantum case an electron can travel over the
antiferromagnetic matrix, forming a state with
Sz
tot � S� 1=2 at one site and a state with Sz

tot � Sÿ 1=2
at the adjacent one:����Sz

tot � S� 1

2

�
!
����Sz

tot � Sÿ 1

2

�
!
����Sz

tot � S� 1

2

�
. . . �4�

Therefore, when one electron moves along the antiferromag-
netic matrix, the widths of the two bands with Sz

tot � S� 1=2
are equal: t� � tÿ � t=

��������������
2S� 1
p

; in the case of motion along a
ferromagnetic matrix, one band is 1=�2S� 1� times narrower
than the other: t� � t and tÿ � t=�2S� 1�.

3. Ferron state
As discussed above, in the case of classical hopping
amplitude t cos �w=2�, an electron can autolocalize and form
a ferromagnetic droplet in an antiferromagnetic matrix. In
the simplest approximation we assume that the boundary
between the ferromagnetic and antiferromagnetic domains is
sharp, without the transition region of inhomogeneous
canting. In this case, the energy of the ferron state is given
by [6]

Epol � ÿtx
�
zÿ p2d 2

R 2

�
� 1

2
zJffS

2 4p
3

x

�
R

d

�3

ÿ 1

2
zJffS

2

"
1ÿ 4p

3
x

�
R

d

�3
#
; �5�

where R is the ferron radius, and d is the lattice period. The
first term in expression (5) describes the gain in the kinetic
energy owing to ferromagnetic domain formation. The
second term corresponds to the loss in the Heisenberg
energy of antiferromagnetic interaction of the local spins
in the ferron. The last term corresponds to the gain in the
energy of antiferromagnetic interaction outside of the
ferron. The ferron radius is derived from the energy
minimization condition dE=dR � 0. Eventually, we obtain
the following relations for the energy and the radius of the
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ferron (see Refs [6, 11]):

Epol � ÿzxt� 5

3
p2xt

�
2zJffS

2

pt

�2=5

ÿ 1

2
zJffS

2 ; �6�

Rpol � d

�
pt

2zJffS 2

�1=5

: �7�

We consider the case of quantum hopping amplitude (3).
Since the hopping amplitude t 6� 0 in the antiferromagnetic
domain and the conduction electron can travel along the
antiferromagnetic matrix with an effective mass
m � � ��������������

2S� 1
p

, in this situation it is instructive to investigate
the ferron state for stability. Since the analysis of the discrete
case (2) is a rather complicated task, we consider the
continuous limit, inferring the ferron radius to be far greater
than the lattice period d (in what follows we assume that
d � 1). Then, the total energy (2) can be written down as [12]

E � ÿ
��
zjCj2 �C �DC

�
t�w� dV� zJffS

2

�
cos2

w
2
dV ; �8�

t�w� � t

2S� 1

� ���������������������������������������
2S� 1� S 2 cos2

w
2

r
� S cos

w
2

�
:

One can see from Eqn (8) that the total energy will lie
between the two limiting values corresponding to electron
motion over the ferromagnetic matrix (FM) or the antiferro-
magnetic matrix (AFM):

EFM � ÿzt < E < EAFM � ÿ zt��������������
2S� 1
p :

Since the electron wave function should be normalized to
unity,

� jCj2 dV � 1, we will minimize the functional
F � E�C; w� ÿ tb

� jCj2 dV with respect to the parameters w
and C, where b is the Lagrange factor. The corresponding
Euler ±Lagrange equations take the form�

2zC� DC
�
t�w� � D

�
t�w�C�ÿ 2btC � 0 ; �9��ÿ

zjCj2 �C �DC
� qt�w�
q cos �w=2� ÿ 2zJffS

2 cos
w
2

�
sin

w
2
� 0 :

�10�

To solve this system of equations, we take advantage of the
following iterative procedure [12]: (i) select the trial function
for the canting angle w�r�; (ii) solve the first differential
equation (9) to obtain the electron wave function C�r�;
(iii) employing the resultant wave function C�r�, solve the
second algebraic equation (10) in order to define the canting
angle function w�r�, and (iv) revert to step (i) until the
acceptable accuracy is reached.

The functions C�r� and w�r� obtained through the
numerical solution of Eqns (9) and (10) are plotted in Fig. 1,
where they are compared with the classical solution (6).
Hence, a ferron constitutes a well localized object and the
transition region from the ferromagnetic phase �w � 0� to the
antiferromagnetic one �w � p� is rather narrow. However, the
ferron state may disappear for relatively small values of the
parameter a � t=JffS

2 9ac � 75. Indeed, one can see from
Fig. 2 that there exists a threshold-type transition from the
ferron state to the homogeneous antiferromagnetic state for
a < ac. In this case, the total energy of the ferron state
becomes equal to the energy of the bottom of the conduction

band in the antiferromagnetic matrix. We note that a more
precise calculation of the ac value calls for the solution of the
variational problem in the discrete case, since the ferron
radius becomes comparable to the lattice spacing for small
values of the parameter a and, accordingly, the continuous
approximation (8) is no longer correct. The solution of the
discrete problem will be considered in a separable publica-
tion.

4. Transport properties
The transport properties of manganites, being apparent from
the model of ferrons in a dielectric matrix, were first
considered in Refs [13, 14]. Below we briefly recall the main
points in the description of transport characteristics of
manganites and outline interesting new results concerning
the temperature and field dependences of magnetoresistance.

We address ourselves to a system consisting of N carriers
embedded in an antiferromagnetic matrix of volume Vs. In
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Figure 1. Electron wave function C�r� and canting angle w�r� in the

quantum (solid lines) and classical (dashed lines) cases.

0

E
n
er
gy

(E
=
t)

ÿ1

ÿ2

ÿ3

ÿ4

ÿ5

ÿ6
0 100 200 300 400 500

a � t=JffS
2

Figure 2.Ground-state energy of a ferron in the quantum (*) and classical

(*) cases for a local spinS � 3=2. The bottom of the electronic-conduction

band corresponds to EFM � ÿ6t in the ferromagnetic matrix, and to

EAFM � ÿ3t in the antiferromagnetic matrix.

August, 2003 Conferences and symposia 853



the ground state, the carriers form autolocalized ferron states
of radiusR. The ferrons and the current carriers in the sample
are assumed to be equal in number. In this case, the carriers
can tunnel from one ferron to a neighboring one to produce
empty and doubly occupied ferrons.

To produce a doubly occupied ferron, the system has to
overcome an energy barrier equal by order of magnitude to
the energy V of Coulomb repulsion between the carriers. If it
is assumed that the ferron radius is about 10 ± 20 A

�
and the

permittivity e � 10ÿ20, for the Coulomb repulsion energy we
getV � e 2=eR � 0:1ÿ0:2 eV. In what follows we suppose the
temperature to be low enough in comparison with the
magnitude of the Coulomb barrier V, and the probability of
forming a ferron containing more than two carriers can be
neglected. We note that the carriers in a doubly occupied
ferron can produce states with a total spin equal to 0 or 1. In
the latter case, due to the Pauli exclusion principle the carriers
occupy the ground and first excited levels in the ferron. The
spacing of these energy levels in the ferron can be shown to
exceed the Coulomb repulsion energyV, and we therefore will
consider only such doubly occupied ferron states wherein the
electron spins are antiparallel.

Let us introduce the following notation for the description
of ferron states: q � 0 corresponds to an empty ferron, q � 1"
or q � 1# corresponds to a ferron with one carrier whose spin
has a projection s=2 on the direction of the magnetic moment
of the ferron, and q � 2 corresponds to a doubly occupied
ferron. The ferron energy Eq in an external magnetic field,
with the inclusion of anisotropy field, then takes the form

E0 � zJffS
2 4p

3

�
R

d

�3

ÿM0�H cos y�Ha cos
2 c� ; �11�

E1; l � E0 � t

�
pd
R

�2

ÿ s�J ; �12�

E2 � E0 � 2t

�
pd
R

�2

� e 2

eR
; �13�

whereHa is the anisotropy field,M0 � mBgS 4pR 3=3d 3 is the
magnetic moment of the ferron, y and c are the angles
between M0 and H and between M0 and the easy axis,
respectively, s=2 is the carrier spin projection onto the M0

direction, mB is the Bohr magneton, and g is the LandeÂ
splitting factor. The third term in Eqn (12) describes the
energy of interaction between the autolocalized carrier and
the molecular magnetic field of ferromagnetically ordered
local spins Heff � �J=mB (here, �J � TCurie is the effective
exchange integral related to the ferromagnetic ordering
temperature).

We assume that the direction of the total magnetic
moment of the droplet changes relatively slowly with time
and the conventional thermodynamic treatment is valid. The
radius of a ferron with one carrier can then be determined by
minimizing the energy (12) with respect to the ferron radius.
In the linear approximation in the magnetic field value we
arrive at the expression

R�H� � Rpol

�
1� b

5
�H cos y�Ha cos

2 c�
�
; b � mBg

zJffS
;

�14�

whereRpol is defined by formula (7), and themagnitude of b is
measured in units of Tÿ1.

As shown in Ref. [13], the characteristic carrier tunneling
time is much shorter than the relaxation time of the spin
subsystem. Hence we can suppose that the radii of empty and
doubly occupied ferrons coincide with the radius of a ferron
containing one electron. We also assume that the total
number of ferrons (empty, singly occupied, and doubly
occupied) remains constant and equal to N.

In the framework of our model, the charge transfer can be
effected in one of the following ways [13]:

(1) Initially there are two ferrons containing one electron
each. Then, an electron tunnels from one ferron to the other,
and in the final state there is one empty ferron and one doubly
occupied ferron.

(2) An electron tunnels from a doubly occupied ferron to
an empty ferron. In the final state there occur two singly
occupied ferrons.

(3) An electron tunnels from a doubly occupied ferron to a
singly occupied ferron.

(4) An electron tunnels from a singly occupied ferron to an
empty ferron.

Each of the above-listed processes is defined by the
corresponding tunneling probability which assumes the
form [14]

W�q 01; q 02; q1; q2�

� o0 f �n� exp
�
ÿ r

l
� e�Er�

kT
ÿ Eq 0

1
� Eq 0

2
ÿ Eq1 ÿ Eq2

2kT

�
; �15�

where r and n are the distance between the ferrons and the
angle between the directions of their magnetic moments,
respectively, q1, q2 and q 01; q

0
2 are the initial (prior to the

electron transition) and final states of the pair of ferrons, l is
the tunneling length, and o0 is the characteristic frequency of
electron motion in the potential well. The pre-exponential
factor f �n� in Eqn (15) describes the spin-dependent tunnel-
ing which takes into account different orientations of the
electron spin in the initial and final states, and is of the form

f �n� � cosh
ÿ

�J cos �n=kT ��
cosh ��J=kT � : �16�

To calculate the conductivity, we should sum up the
contributions to the current made by each of the possible
tunnel processes. Eventually we arrive at the following
expression for the conductivity

s�H� � 32pe 2l 5o0

V 2
s kT

�
X
q1; q2

�Nq1
�Nq2

�
f �n� exp

�
Eq1 � Eq2 ÿ Eq 0

1
ÿ Eq 0

2

2kT

��
q1; q2

;

�17�

where �Nq is the average number of electrons in a ferron in the
q state, and h. . .iq1; q2 stands for averaging over the directions
of the magnetic moments of two ferrons in the states q1 and
q2. In the derivation of Eqn (17) it was assumed that the
directions of the magnetic moments of the ferrons remain
invariable in the course of electron tunneling from one ferron
to the other.

The change of conductivity in an external magnetic field
arises from the dependence of the transition probability
W�q 01; q 02; q1; q2� and average occupation numbers �Nq on the
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applied field. It is possible to recognize several main
contributions to magnetoresistance, which are possible to
calculate analytically in the limiting case of small fields. First,
the onset of magnetic field leads to a change in the ferron
radius R�H� described by Eqn (14), with a consequential
change in the ferron energy (11) ± (13) in the magnetic field.
The corresponding contribution to the magnetoresistance
will be of the form

MR1�H� � 3

100

M 2
0H

2

�kT �2 : �18�

Second, it is possible to distinguish the contribution from
spin-dependent tunneling. When a monocrystal is embedded
in an external magnetic field in such a way that the angle
between the easy axis and the magnetic field is b, the
corresponding contribution to magnetoresistance reads

MR2�H� � 2

225

M 3
0

�J 2HaH
2

�kT �5
�
cos2 bÿ 1

3

�
: �19�

In all previous calculations we assumed that ferrons were
spherical in shape and the field Ha was defined only by the
crystal anisotropy. However, the ferron shape effect can be

shown to be rather significant even for small departures from
sphericity owing to the demagnetization factor. The aniso-
tropy of a ferron shape contributes to the effective anisotropy
field Ha. In this case, assuming for the sake of simplicity that
the magnetic anisotropy is uniaxial, we can incorporate both
the magnetic crystalline anisotropy and the shape anisotropy
into the fieldHa.

Hence, in small magnetic fields the magnetoresistance
decreases with temperature asTÿ2 when the contribution (18)
prevails or as Tÿ5 when the term (19) becomes dominant. In
the general case, the magnetoresistance behaves as follows

MR�H� � AH 2

�kT �2 �
BH 2Ha

�kT �5 ; �20�

where A and B are the constants. In a strong magnetic field
(10 ± 20 T and over), the magnetoresistance increases expo-
nentially [13]:

MR�H� �
�J

kT
coth

�J

kT
exp

�
VbH

10kT

�
; �21�

and its valuemay range even up to several hundred percent far
from the percolation threshold.
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Figure 3. Experimental magnetoresistanceMR � a�T �H 2 of different samples measured as a function of temperature and external magnetic field value

(inset to figure) [16]. The dashed line corresponds to the theoretical curve obtained by formula (19): MR�H� � H 2=T 5, employing the following

parameter values: S � 2, g � 2, z � 6, Nm � 4pR 3=3d 3 � 130, �J=k � 15 K, Ha � 0:5 T, and cosb � 1.
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5. Conclusions
We have shown that a conduction electron produces an
autolocalized state in a wide range of values of the parameter
a � t=JffS

2: the electron is localized in a ferromagnetic
droplet of finite radius, embedded into an antiferromagnetic
matrix. Therefore, the double-exchange model exhibits a
strong tendency towards phase separation. It was also
proved that the ferron state becomes unstable in the
quantum case for small values of the parameter a, and the
electron moves freely over the antiferromagnetic matrix with
an effective hopping amplitude teff � t=

��������������
2S� 1
p

. Our
approach to the single-electron problem corresponds to low
concentrations of charge carriers (for instance, holes in
La1ÿxCaxMnO3). It is intimately related to the recent
neutron experiments of Hennion's group on the experimen-
tal detection of small ferromagnetic droplets in an antiferro-
magnetic or canted matrix [15].

Employing the model of ferrons in an insulating matrix
[13], we calculated the temperature and field dependences of
magnetoresistance in manganites. In our earlier works we
also found the expression for the resistance in the framework
of the ferron model [13, 14]:

r � kT

128pe 2n 2o0l 5
exp

�
V

2kT

�
; �22�

where n is the ferron concentration. In recent experiments
performed to measure the resistance in the optimal doping
range [17 ± 20] and at temperatures above TCurie(the para-
magnetic phase), an exponential temperature dependence of
resistance of the form r � T exp �V=2kT � was discovered,
which is in qualitative agreement with formula (22) and
confirms our ideas of the nature of charge transfer in the
phase-separated domain.

Passing on to the analysis of magnetoresistance, we
emphasize once again that it exhibits the following tempera-
ture and field dependence in small magnetic fields:

MR�H� � AH 2

�kT �2 �
BH 2Ha

�kT �5 :

We note that such a dependence of magnetoresistance
on the temperature and the external field was experi-
mentally established by Babushkina's group [16] in
(La1ÿxPrx)0:7Ca0:3MnO3 samples (see Fig. 3). In particular,
in the strong-anisotropy case it was possible to observe the
dependence of magnetoresistance of the form MR�H� �
� H 2=T 5 derived theoretically in our work. Note that the
expression for magnetoresistance (20) is rather general,
depending only slightly on the specific model and operative
even in the situation with many-electron ferromagnetic
droplets [4, 21].
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Neutron diffraction analysis
of doped manganites

V L Aksenov, A M Balagurov, V Yu Pomyakushin

Doped manganites attract considerable attention from both
theorists and experimenters in connection with the colossal
magnetoresistance (CMR) effect observed in them. From the
physical standpoint, manganites are of interest primarily due
to an intimate connection between their electron, lattice, and
spin subsystems. Recently, it has become evident that an
important part in the physics of manganites is played by
inhomogeneous states that show themselves, for instance, as
the charge ordering of manganese cations, structural and
magnetic polarons or a low-temperature phase separation.
The employment of neutron diffraction analysis makes it
possible to obtain detailed information on the crystal and
magnetic structure of manganites, as well as to observe effects
related to phase separation. The first neutron diffraction
study of doped manganites was made even in the 1950s and
reported in Ref. [1], which is regarded as a classical work
concerned with the magnetic structure of La1ÿxCaxMnO3ÿd
compounds. It was found that there occur several different
types of magnetic structures (seven types were proposed by
Wollan and Koehler [1]), depending on the doping level and
the oxygen stoichiometry, and, moreover, their superposition
is also possible. Two mutually exclusive models were
discussed for a long time to account for the simultaneous
presence of diffraction peaks related to ferromagnetic (FM)
and antiferromagnetic (AFM) order in the neutron diffrac-
tion patterns, which were observed in LaMnO3ÿd in Ref. [1]
and later in other compounds (for instance, in
Pr0.7Ca0.3MnO3 [2]): the coexistence of two spatially sepa-
rated magnetic (FM�AFM) phases, and a homogeneous
state with a canted AFM structure. In the case of a mixed
state, the question of characteristic inhomogeneity dimen-
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