
Abstract. Experimental data on quantum phase transitions in
two-dimensional systems (superconductor ± insulator, metal ±
insulator) and transitions in the conditions of integer quantum
Hall effect are critically analyzed.

1. Introduction

Currently there are quite a few reviews and even books (see,
e.g., Refs [1 ± 9]) devoted to quantum phase transitions, where
themain focus is on theoretical ideas, while experimental data
are used for illustrative purposes only. In this review, the
experimental data on quantum phase transitions in two-
dimensional systems are critically analyzed. The aim of this
analysis is to reveal well-established facts, to formulate
directions for future research, and to determine unresolved
problems.

It is convenient to start the explanation of the nature of
quantum phase transitions from continuous phase transi-
tions, i.e., those not having a stationary coexistence of the two
distinct phases (and, therefore, not having stationary phase
boundaries either). Thereby, at the continuous phase transi-
tion point, a body homogeneously changes its phase state.
The change in the body's phase state at continuous phase
transition is brought into relation with an order parameter
which is finite in one of the phases and becomes zero, without
experiencing a discontinuity, at the transition point. Finding
an appropriate order parameter for some particular phase
transition often presents a nontrivial problem in itself.

Above the transition point the system is characterized by
stationary and homogeneous disorder. Therefore, for all
continuous transitions, as the transition point is
approached, the duration tc and characteristic size rc of the
fluctuations of the order parameter diverge.

The class of continuous phase transitions includes con-
tinuous thermodynamic phase transitions (e.g., second order
phase transitions) characterized by singularities in the
derivatives of thermodynamic potentials with respect to
temperature. The continuous thermodynamic phase transi-
tions occur due to the thermal fluctuations in the system. The
divergence of the size of carbon dioxide (CO2) density
fluctuations in the vicinity of a critical point of the contin-
uous thermodynamic phase transition was for the first time
established experimentally in 1869 [10] by observing a
refraction of the visible light on the density fluctuations.

One can imagine continuous phase transitions to occur at
zero temperature as well. The variation of the system's state
is, in this case, not related to changing temperature, but to the
variation of a certain external parameter (magnetic field,
doping level, material composition, etc.). At zero tempera-
ture it is, of course, impossible to register a phase transition
through singularities in the temperature derivatives of
thermodynamic potentials, therefore one should exploit
some other properties of the system, for example, its kinetic
characteristics, in order to find it.

Repeated measurements of a physical quantity with an
operator not commuting with the Hamiltonian of the system
under investigation lead, even for a system in a stationary
state and at arbitrary low temperature, to different results: the
measured quantity experiences quantum fluctuations. In
many repeated measurements one can evaluate dispersion,
and in periodic measurements, the spectral density of
fluctuations. Both of these quantities are determined by the
position of the quantum levels of the system in the vicinity of
the stationary state under investigation. If the temperature
exceeds the characteristic distance between quantum levels,
the main reason for getting different results in repeated
measurements is the considerable probability of finding the
system in different stationary states, i.e., the thermal fluctua-
tions. Finally, for temperatures that have an order of a
characteristic distance between quantum levels, both types
of fluctuations are equally important. At zero temperature,
due to the absence of thermal fluctuations of the order
parameter, only quantum fluctuations could drive the phase
transition in this case. As a result of the quantum fluctuation
of diverging size and duration, the system homogeneously
changes the ground state after the external control parameter
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reaches its critical value: K � Kc, thus experiencing a
quantum phase transition.

At first glance one might get the impression that quantum
phase transitions cannot be studied experimentally and have
practical importance because of the impossibility of reaching
a temperature of absolute zero. In reality, in the range of
temperatures in which quantum fluctuations compete with
thermal ones, and at values of the external parameter close to
the critical one, a behavior of the system studied shows special
features signaling the existence of a zero-temperature quan-
tum phase transition.

Let us consider, for example, a quantum phase transition
located at the end of the second order phase transition curve
(Fig. 1). At fixed temperature and increasing external
parameter K, one observes a second order phase transition
at the intersection with the solid line in Fig. 1. The state of
the system is changed through thermal disordering, i.e., there
is a transition from the ordered to the thermally disordered
state. This phase transition is the only real transition
observed at finite temperature. At zero temperature, we
expect a quantum phase transition from ordered to dis-
ordered state when the external parameter reaches its critical
value Kc. As a transition should occur simultaneously in the
whole system, we should conclude, in accordance with the
above discussion, that at the phase transition point the
critical frequency tÿ1c of quantum fluctuations, correspond-
ing to the energy gap between the ground state and the
lowest excited state of the system, should tend to zero, and
the spatial scale of fluctuations rc (correlation length) should
tend to infinity.

Let us return to the finite temperature case. Assuming that
the critical frequency and correlation length of quantum
fluctuations are temperature-independent, we can mark, in
the �K;T � plane, the lines on which the critical frequency tÿ1c

of quantum fluctuations equals the temperature kT=�h. These
lines shown by the dot-and-dash lines in Fig. 1 border the so-
called quantum critical region, in which the characteristic size
of coherent quantum fluctuations is less than the correlation
length rc and is bounded by the temperature. At fixed
temperature, as this region is intersected, a gradual crossover
from the thermally disordered to the quantum disordered

state takes place. The observed continuous variation of
properties in the quantum critical region is reminiscent of
the quantum phase transition.

Thereby, the motion along the horizontal in Fig. 1
corresponds, consequently, to a continuous phase transition
characterized by its own correlation length of order para-
meter fluctuations and attached to the solid line in the figure,
and to subsequent gradual change in the kinetic character-
istics of the system in the quantum critical region with the
temperature-dependent boundaries around Kc.

There are systems in which the existence of the quantum-
ordered phase is assumed at absolute zero of temperature
only. Such a system resides in the quantum-ordered state at
T � 0, K < Kc, experiencing a quantum phase transition at
K � Kc. At finite temperatures this system is disordered
(Fig. 2). Moving along the horizontal line in Fig. 2 at fixed
temperature leads to a consequent observation of the
thermally disordered phase, to a gradual change in its
properties towards those characteristic of quantum disorder
and, further, beyond the boundaries of the quantum critical
region, to the observation of properties peculiar to a
quantum-disordered system.

In experiments, the interval of temperatures available for
studying the properties of the transition region is principally
restricted from both the low- and high-temperature sides. In
the low temperature limit, a continuous phase transition is
observed at K � Kc. In this case, when moving along the
horizontal line in Fig. 1, the critical region of the second order
phase transition is inseparable from the quantum critical one.
A restriction at high temperatures is related to the fact that the
correlation length cannot be arbitrarily small and is deter-
mined by characteristic scales of the problem (coherence
length, mean free path, etc.).

In the quantum critical region, a gradual change of
thermodynamic and kinetic properties occurs. Characteris-
tics of the system are the functions of only one scaling variable
u, namely the ratio of the correlation radius rc to the
temperature-assigned phase breaking length Lf / T ÿ1=z,
where z is the so-called dynamic critical index. Assuming
that in the vicinity of the phase transition point the
correlation radius diverges as rc / jKÿ Kcjÿn, the scaling
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Figure 1. A diagram of second-order phase transition; K � Kc, and T � 0

is the phase transition point. The dotted lines indicate the boundaries of

the quantum critical region.
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Figure 2. Phase diagram of a system experiencing a quantum phase

transition at K � Kc, T � 0. The dotted lines indicate the boundaries of

the quantum critical region.
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variable can be written in the form

u � jKÿ Kcj
T 1=y

; y � zn ; �1�

where n is the critical index of the correlation radius. In other
words, in the quantum critical region one expects that kinetic
characteristics (for example, resistance) will be of the form

R � R0 f

�jKÿ Kcj
T 1=y

�
: �2�

A competition of quantum and classical fluctuations can
also be defined by the ratio of the frequency of critical
quantum fluctuations to the temperature. Using this ratio
leads, of course, to the same scaling parameter u and
equation (2).

Inmost experimental papers, an observation of the scaling
relation similar to equation (2) was considered as a reliable
identification of the quantum phase transition, although in
some publications [11, 12] the remark was made that in a
restricted temperature range the occurrence of such a relation
can be accidental.

At finite temperature, a typical behavior indicative of a
quantum phase transition can be observed in two-dimen-
sional systems. These are the superconductor ± insulator and
metal ± insulator phase transitions, as well as transitions in
the quantum Hall effect regime. In what follows the authors
present a short review of experimental works on studying the
quantum phase transitions in these systems.

2. Quantum superconductor ± insulator phase
transitions in thin films

Decreasing one of the sizes d5 l (l is the depth of penetration
of the magnetic field into a massive sample) of a super-
conducting sample lowers the temperature of the transition
to the resistive state. The effect of the transition temperature
decrease due to the enhanced role of thermal fluctuations in
two-dimensional systems was first predicted by V L Bere-
zinski|̄ [13] and theoretically explored in Refs [14, 15]. Since
then a continuous phase transition from superconducting to
resistive state in thin films is known as the Berezinski|̄ ±
Kosterlitz ± Thouless transition (BKT). In the absence of an
external magnetic field, one observes the generation of
vortices in a thin superconducting film due to thermal
fluctuations. It is energetically favorable for vortices with
opposite circulation to form bound pairs. At low enough
temperatures T < TBKT, the `vortex ± antivortex' pairs are
stable and a film is in the superconducting state. A
temperature increase up to the critical one, T � TBKT, leads
to dissociation of `vortex molecules' accompanied by the
continuous phase transition of a superconducting film to a
resistive state. The temperature of the BKT phase transition
decreases with increasing disorder in the film, as estimated
from its resistivity (Fig. 3). Moreover, one observes the
following fact: films with a resistance smaller than the critical
one,Rc, experience BKT transition, but forR > Rc the film is
still in the resistive state up to the lowest experimentally
reachable temperatures.

Evolution of BKT phase transition also happens due to
changes in other external parameters, for example, of the film
thickness or magnetic field. In Fig. 4, temperature depen-
dences of the resistance of amorphous bismuth films of

varying thickness d � 0:94ÿ1:5 nm are presented. The films
having a critical thickness dc � 1:3 nm have an approximate
temperature-independent value of resistance Rc � 7 kO. In
the low-temperature range, films having a thickness exceed-
ing the critical one exhibit a positive derivative dR=dT > 0
characteristic of metallic conductivity and, with further
temperature decrease, experience a transition to the super-
conducting phase. Films having a thickness less than the
critical one show, however, a negative derivative dR=dT < 0.
A decrease in the film's thickness up to values of the order of
d � 0:9 nm increases its resistance up to� 104 kO. Therefore,
films having a thickness d < dc show quasi-dielectric proper-
ties without experiencing the BKT transition.

3

TBKT, K

2

1

0
2.0 2.5 3.0 3.5 4.0

R, kO

Rc

Figure 3. Temperature of BKT phase transition, TBKT, as a function of the

degree of disorder of an In=InOx film 10 nm thick. As a measure of

disorder in the film, its resistance per unit surface area at room

temperature has been chosen [16].
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Figure 4. Temperature dependences of resistance per unit surface area of

amorphous Bi films of varying thickness d � 0:94ÿ1:5 nm, changing with

the step of 0.08 nm (according to the data of Ref. [17]).

August, 2003 Quantum phase transitions in two-dimensional systems 779



The magnetic field exerts an analogous influence on BKT
phase transition. Isomagnetic curves of the temperature
dependence of resistance in amorphous InO film of thickness
d � 20 nm, measured in the magnetic fields B � 1:7ÿ3:0 T,
are shown in Fig. 5. The temperature-independent value of
the film's resistance Rc � 8 kO corresponds to the critical
magnetic field Bc � 2:1 T. For magnetic fields lower than the
critical one, the film shows a positive temperature coefficient
of resistance dR=dT > 0 characteristic of metallic conductiv-
ity. Lowering the temperature transfers the films possessing
the metallic conductivity type to the superconducting state
(see Fig. 5). For magnetic fields larger than the critical one,
the film exhibits quasi-dielectric properties with a negative
derivative dR=dT < 0 and no signs of its transition to the
superconducting state can be observed up to the temperature
T � 0:35 K.

Therefore, the available experimental data allow us to
state that when an external parameter (film thickness, degree
of disorder, magnetic field) reaches its critical valueKc at zero
temperature, the ground state of the film changes in a
fundamental way: from the superconducting state to the
insulating state. In other words, a thin film undergoes the
quantumphase transition from superconducting to insulating
state at K � Kc. The pioneering paper [19] provides a
theoretical ground for quantum superconductor ± insulator
phase transitions in thin films.

A quantum superconductor ± insulator phase transition at
the critical value of external parameter K � Kc can be
considered as the quantum analogue of continuous BKT
phase transition. At absolute zero of temperature, the
vortices arising due to quantum fluctuations in a thin film
are localized (`pinned' by the defects) and form the so-called
`vortex glass'. Strengthening the external magnetic field
increases the concentration of vortices with orientation
corresponding to that of the field. Elevating the degree of
disorder in the film (or decreasing its thickness) also increases
the concentration of vortices. When a concentration of
vortices approaches its critical value, the localization length
of vortices diverges in line with diminishing distance jKÿ Kcj

from the critical point. Finally, at the critical value of the
external parameter K � Kc, the vortices delocalize. As shown
in Ref. [19], delocalization of vortices is necessarily accom-
panied by the localization of Cooper pairs, thus leading to the
formation of the so-called `Cooper pair glass'. Such
`complimentarity' in the behavior of two boson systems is
due to the duality of their Hamiltonians in a two-dimensional
film [19]. At zero temperature, a localization of Cooper pairs
transforms the thin film from the superconducting to the
insulating state. The metallic state, in which Cooper pairs and
vortices move diffusively with a finite resistance, is an
intermediate one in between the insulating and superconduct-
ing states at absolute zero of temperature.

As an example, let us consider a transformation of an
amorphous InO film with a thickness d � 20 nm from
superconducting to resistive state, induced by the magnetic
field [20]. These films are two-dimensional for the vortices,
because the penetration length of the magnetic field is
l5 100 nm. However, for the conductivity electrons the
InO film constitutes a bulk sample, because the electron
mean free path in films is l � 1 nm. Experimental depen-
dences of the resistance of such a system on the magnetic field
directed perpendicularly to the film's surface, measured at
various temperatures, are displayed in Fig. 6a. The tempera-
ture-independent value of resistance Rcn � 8 kO corresponds
to the critical magnetic field Bcn � 2:2 T for the quantum
phase transition between the superconducting and insulating
states of the film. At a finite temperature, the increase of film
resistance from its zero value corresponds to its transition
into the resistive state separated from the superconducting
one by the BKT phase transition curve (Fig. 7). The
boundaries of quantum critical region at an arbitrary
temperature, B�T �, can be determined from the coincidence
of resistance measured at the maximal temperature in the
experiment, T � Tmax, with that corresponding to the
temperature T after normalizing one of the resistances on
the basis of the ratio �Tmax=T �1=zn. The thus found boundaries
of the quantum critical region in the temperature range
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Figure 5.Temperature dependences of the resistance of an amorphous InO

film with thickness d � 20 nm, measured for various inductions

B � 1:7ÿ3:0 T of the magnetic field (according to the data of Ref. [18]).
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T � 60ÿ480 mK are shown in Fig. 7 by circles and triangles.
The boundary of BKT phase transition in Fig. 7 is determined
from the film resistance exceeding 1=1000 of its maximal
value in the resistive state. The phase diagram of the BKT
phase transition in the perpendicularly oriented magnetic
field (see Fig. 7) is qualitatively similar to the theoretical
model presented in Fig. 1. There exists, however, difference in
the sign of the second derivative of the BKT phase transition
temperature with respect to distance jBÿ Bcj from the critical
point. According to the model ideas [19], the BKT phase
transition temperature changes in the presence of the
magnetic field as TBKT / jBÿ Bcj0:5 with a negative second
derivative (see Fig. 1). Experimentally, however, instead of
the `convexity' of the BKT phase transition curve, one
observes, in agreement with the positive second derivative of
TBKT / jBÿ Bcnj2:49, its `concavity' (see Fig. 7).

Let us now discuss the changes of boundaries of quantum
critical region with temperatures in the phase diagram of
Fig. 7. In Refs [18, 20], it was shown that in the quantum
critical region the resistance of amorphous InO films in the
perpendicularly oriented magnetic field is a function of the
scaling variable u / jBÿ BcnjT ÿ1=zn with the exponent
zn � 1:15 ± 1.22. The value of the product zn of critical
indices obtained in Refs [18, 20] is not universal. For
continuous BKT phase transitions in the magnetic field in
amorphous InOx andMoGe films, the exponent was equal to
zn � 1:26ÿ1:31 [21] and 1.27 ± 1.37 [22], respectively; in
amorphous and granular In films zn � 0:48� 0:04 and
0:62� 0:04 [23]; in Nd2ÿxCexCuO4 films �x � 0:15� zn � 0:5
[24], and in amorphous Bi films zn � 0:7� 0:2 [17, 25]. For
continuous BKT transitions in amorphous bismuth films
with varying thickness in a zero or constant magnetic field
oriented normally to the film surface, zn � 1:4� 0:2 [17, 25].
In Refs [22, 25], in additional studies of electric field scaling
for MoGe and Bi films, the universal value z � 1:0 of the
dynamic critical index was obtained. The spread in values of
the product zn of indices in thin films was explained by the
variations in the critical index n.

Let us use the value zn � 1:15ÿ1:22 [18, 20] obtained in
the studies of temperature scaling, for constructing the
expected boundaries of the quantum critical region for the
BKT transition in the perpendicularly oriented magnetic
field. The corresponding boundaries are shown in Fig. 7 by
dotted lines. As seen from the figure, the experimentally
derived temperature dependence of the boundaries of
quantum critical region does not quite correspond to the
theoretically expected one.

Besides the phase transition in amorphous InO films with
thickness d � 20 nm in the magnetic field with perpendicular
orientation, Gantmakher et al. [20] studied a transition from
the superconducting to the resistive state in the magnetic field
oriented parallel to the film surface. The experimental
dependences of the InO film resistance on a magnetic field
with parallel orientation at different temperatures are
depicted in Fig. 6b. The isotherms R�B� intersect at the
critical value Bcp � 5:4 T of the magnetic field. The observed
crossing of isotherms looks very much like evidence of a
quantum phase transition between superconducting and
insulating states of the film in the parallel field B � Bcp. To
the critical magnetic field there corresponds a temperature-
independent value of the film resistance Rcp � 5 kO. Let us
determine, using the experimental data from Fig. 6b, the
phase transition boundary and the boundaries of the
quantum critical region in the temperature range T �
32ÿ195 mK by the method which has been described above
for the transition in the magnetic field of perpendicular
orientation. The corresponding phase diagram of the transi-
tion in an amorphous InO film from superconducting to
resistive state in the parallel field is shown in Fig. 8.

Phase diagrams of the transition in an InO thin film from
the superconducting to the resistive state in the parallel and
perpendicularly oriented magnetic fields are strikingly simi-
lar. The transition temperature decreases with strengthening
the magnetic field irrespective of its orientation. In the
parallel magnetic field, Tc / jBÿ Bcpj 1:78 (see Fig. 8). In
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Figure 7. Diagram of continuous BKT phase transition in an amorphous

InO film with thickness d � 20 nm in �B;T � coordinates (according to the

data of Ref. [20]). The magnetic field is oriented normally to the film

surface. The solid line marks the boundary between the phases, and the

dotted one the boundaries of the quantum critical region.
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�B;T � coordinates (according to the data of Ref. [20]). Magnetic field is

oriented parallel to the film surface. Solid line marks the boundary
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critical region.
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Ref. [20] it was shown that at the inductions of the parallel
magnetic field close to the critical value Bcp � 5:4 T,
resistance of amorphous InO films is also a function of the
scaling variable u / jBÿ BcpjT ÿ1=zn with the exponent
zn � 1:30. Knowing the product of critical indices, it is easy
to construct an expected boundary of the quantum critical
region (see Fig. 8). As seen from the figure, the agreement
between the line of the expected critical region boundary and
the experimentally found points is distinctly better for the
parallel field than for the perpendicular one.

Hence, although the experiments on studying the super-
conductor ± insulator phase transition in two-dimensional
objects qualitatively confirm theoretical predictions [19],
they also reveal a number of salient features. First, a BKT
transition boundary has a completely unexpected form.
Second, the theory developed for the perpendicular magnetic
field and essentially using the fact of the normal orientation of
the field Ð is unexpectedly formally suitable for describing
the results in the magnetic field parallel to the film surface.

3. Phase transitions in the integer quantum Hall
effect regime

It is considered as proven that, in the absence of a magnetic
field, a two-dimensional electron system in arbitrary chaotic
potential constitutes an insulator [26]. This statement, valid
for the systems in which one can neglect electron ± electron
interactions, means that at zero temperature the conductance
of a two-dimensional system starting from some, generally
speaking, large size is exponentially decreasing with a further
increase in the size of the system. In quantizing magnetic field
with oct4 1, where oc � eB=m � is the cyclotron frequency,
and t is the momentum relaxation time of electrons, the
ground state of the system depends on the relation between
the field strength and the number density ns of two-
dimensional electrons, determined by the filling factor
n � � ns=nB, where nB � eB=h is the number of magnetic flux
quanta h=e per unit surface. As was experimentally found in
1980 in a silicon MOS structure [27], in the vicinity of the
integer filling factors the diagonal resistance Rxx takes a zero
value, whereas the Hall component Rxy shows a set of
quantized plateaus. In the vicinity of the half-integer filling
factors, Rxx has maxima, and Rxy jumps from one quantized
plateau to another (Fig. 9). Such a behavior of the
components of resistance tensor, which received the name
integer quantum Hall effect (IQHE), was interpreted as the
presence of a number of insulating phases with zero
dissipative conductance and quantized Hall conductance
separated by metallic states [28]. An experimental proof of
the exact sxy quantization presents difficulties, because a
simple inversion of the resistance tensor assumes a uniform
current flow, whereas under conditions of the quantum Hall
effect a significant part of the current is located at the edges of
the sample [29].

The idea of consequent quantum phase transitions in the
strong magnetic field [28, 30] gives rise to two principal
questions: the first on how the passage to the zero magnetic
field takes place, and the second on the detailed description of
transfer between the two quantum plateaus. The first
question was theoretically considered in Ref. [31], where a
chain of quantum phase transitions with quantized sxy values
in the region of classically weakmagnetic fields was predicted.
Although the proposed picture, known as a `floating of
extended states', has a number of indirect experimental

confirmations [32 ± 34], there exist doubts about the possibi-
lity of realizing such a chain of transitions in samples of
reasonable size at reachable temperatures [35]. Below we
discuss the available experimental evidence regarding the
second question.

Let us choose, as an example, a two-dimensional electron
system in the long-period chaotic potential with the char-
acteristic size l0 4 lB in the plane, where lB is the magnetic
length [36]. The energy spectrum of an ideal system of
noninteracting electrons in the magnetic field constitutes a
set of delta functions ordered along the energy axis in
accordance with the values of the cyclotron energy �hoc, and
the spin splitting energy Es (Fig. 10b). A long-period chaotic
potential gives rise to the inhomogeneous broadening of each
of the quantum levels (Fig. 10c), so that at each level only one
state, corresponding to the percolation threshold, happens to
be delocalized. Electrons with distinguished energies are
localized within the confines of the corresponding extremum
of the chaotic potential. Under changes of the carrier
concentration or magnetic field, i.e., as the filling factor
changes, the Fermi level sequentially crosses the bands of
localized states in which sxx � 0 and sxy takes a quantized
value i�e 2=h� (i is an integer). Transition between insulating
phases with different indices i occurs via the metallic phase
corresponding to the coincidence of the Fermi level EF with
the energy of one of the delocalized states En. The number of
delocalized states beneath the Fermi level i, determining the
value of sxy, changes by unity, and the dissipative conduc-
tance shows a sharp peak.

In the symmetric potential at zero temperature, the
condition EF � En corresponds to the critical filling factor
n �cn � i� 1=2. When approaching the critical filling factor, a
localization length of the electrons at the Fermi level tends to
infinity as x / jEF ÿ Enjÿn / jn � ÿ n �cnjÿn. At a finite tem-
perature one expects a gradual change in Hall conductance
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and a broadening of the dissipative conductance peaks in the
quantum critical region of the transition between the two
insulating phases. The scaling parameter is a ratio of the
temperature-assigned coherence length Lin�T � / T ÿp=2 [37]
to the localization length of carriers at the Fermi level:

u �
�
Lin�T �
x�n ��

�1=n
/ jn � ÿ n �cnjT ÿp=2n : �3�

In the quantum critical region, the components of the
conductance tensor sab, or of the more frequently experimen-
tally found resistivity tensor rab, are functions of the scaling
parameter u.

The mth order derivatives of kinetic characteristics with
respect to the external parameter, taken at the critical point,
depend on temperature according to a power law�

qmr�n ��ab
qn �m

�
n � � n �cn

/ T ÿmp=2n : �4�

As follows from Refs [28, 30], the above-listed properties
are valid for an arbitrary electron system in an arbitrary
chaotic potential, if at each quantum level there exists one
delocalized state with infinite localization length.

As an example, let us consider the phase transitions
between the Hall insulators in the two-dimensional hole
system Si=Si0:87Ge0:13 [38]. Experimental dependences of the
Hall resistance of such a system on the filling factor are shown
in Fig. 11 for different temperatures. The temperature-
independent value of Hall resistance Rxy � 16 kO corre-
sponds to the critical filling factor n �c � 1:68 for a quantum

phase transition between the Hall insulators with i � 1 and
i � 2. In insulating states with i � 1 and i � 2, the Hall
resistances Rxy are equal to h=e 2 � 26 kO and h=2e 2 �
13 kO, respectively.

Based on the data presented in Fig. 11 it is possible to
construct a phase diagram similar to those shown in Figs 7
and 8. Deviation of the Hall resistance from the quantized
values h=ie 2 corresponds to the metallic state of the system,
which is separated from the insulating states by the phase
transition curves (Fig. 12). The boundaries of the quantum
critical region at arbitrary temperature, n ��T �, can be
determined through the coincidence of the Hall resistance,
measured at the maximum temperature T � Tmax of the
experiment, with the Hall resistance at T, when normalizing
one of the resistances on the basis of the ratio �Tmax=T � p=2n.
The thus-determined boundaries of the quantum critical
region are marked in Fig. 12 by the dashed lines.

Motion along the horizontal line at constant temperature
in Fig. 12 displaces the Fermi level from one band of localized
states to another one through crossing the delocalized state
with infinite localization length. At finite temperature, such a
behavior of the Fermi level corresponds to a sequence of
phase transitions from the insulating state i � 1 with Hall
conductance sxy � e 2=h to the metallic state, and then to the
new insulating state with i � 2.

It was shown in Refs [38, 39] that for Si=Si0:87Ge0:13
structures in the quantum critical region, the scaling
relations (3) are indeed fulfilled with the exponent
k � 0:70� 0:05 [39] for the transition between Hall insula-
tors with i � 1, i � 2, and with the exponent k � 0:68� 0:05
[38] for the transition with i � 0 and i � 1. The analysis of
experimental data was based on the assumption that all
phase boundaries depicted in Fig. 12 will, on decreasing
temperature, shrink into one point as shown by the thin solid
line and the dotted line in the figure. This assumption
corresponds to the existence of only one delocalized state
with infinite localization length at each of the quantum levels

a b c
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Figure 10.Dependence of the density of states of a two-dimensional system

of noninteracting electrons on energy: (a) in the absence of a magnetic

field; (b) in the absence of scattering by chaotic potential, and (c) with a

finite magnetic field and scattering.
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and can be substantiated only for noninteracting electrons in
the long-period chaotic potential.

It appears natural to extrapolate the phase boundaries to
zero temperature according to the experimentally established
law which is, as seen from Fig. 12, close to the linear one. If
such an extrapolation is correct, one should come to a
conclusion on the finiteness of the bandwidth of metallic
states at zero temperature and, correspondingly, on the
existence of two quantum phase transitions in the intervals
between the insulating phases. Although the experimental
evidence for the finite bandwidth of metallic states at zero
temperature was found in a number of papers [40 ± 43], in
none of them was a scaling analysis assuming the existence of
two successive quantum phase transitions performed.

Following the pioneering work by Wei et al. [44], an
analysis of the experimental data assuming one extended state
at the quantum level was performed for two-dimensional
systems InGaAs=InP [45 ± 49], AlGaAs=GaAs [50, 51], and
GeSi=Ge [52]. In all these works, the exponent was equal to
k � 0:42ÿ0:46. In Ref. [53], the value of k � 0:57 for
transitions between the Hall insulators with i � 1 and i � 0
in the InGaAs=InP system was obtained. For transitions
between the spin-degenerate insulating states in IQHE, a
value approximately two times less, k � 0:2 [45, 46], was
found. In experiments involving observation of IQHE in
MOS-Si [54] and two-dimensional AlGaAs=GaAs systems,
differing in the type and concentration of the dopant [55], a
dependence of the value of k on the number of the Landau
level, carrier mobility, and doping parameters was observed.

The spread in values of the scaling exponent is described
by the difference in the mechanisms of inelastic electron
scattering in various systems, which determine the value of
the exponent p in the temperature dependence of the
coherence length [39], or by transitions belonging to different
classes of universality [47]. The principal question on the

bandwidth of the delocalized states, especially in systems with
distinct effects of electron ± electron interactions, escaped the
attention of a majority of researchers. Moreover, in spite of
an abundance of experimental studies, in none of them was it
checked whether the discovered scaling relations are observed
only within the confines of the quantum critical region.

4. Metal ± insulator transition
in two-dimensional systems

Is it possible to observe a metal ± insulator phase transition in
a two-dimensional system in the limit of a zeromagnetic field?
Thirty five years ago there was no doubt about the answer: the
transition is possible, and this is the Mott ± Anderson
transition. The publication of the theoretical paper [26] in
1979 radically changed the answer to this question. The
authors of Ref. [26] employed a scaling approach to an
analysis of the conductance of systems in the approximation
of noninteracting carriers. According to the scaling hypoth-
esis, a logarithmic derivative of the dimensionless conduc-
tance g � 2�hG=e 2 with respect to the system size L at zero
temperature is a function only of the conductance itself. For
two-dimensional systems in the absence of spin ± orbit
interaction, this derivative is negative in the whole range of
values of dimensionless conductance. This means that with
unlimited growing size of the system its conductance is
continuously decreasing, i.e., a two-dimensional system of
infinite size is, at zero temperature, in an insulating state with
zero conductance independent of how large the initial
conductance of the finite system was. Electron ± electron
interaction in the `dirty' limit additionally enhances the
localization of carriers [56]. A theory of quantum corrections
to conductance [26, 56 ± 61] that considers a phenomenon of
weak localization and electron ± electron interactions in
disordered systems confirmed the asymptotic form of the
scaling function at large values of conductance.

The following two almost complete decades can be named
a time of triumph of the theory of quantum corrections
(TQC). This theory allowed the explanation and classifica-
tion of the experimentally derived low-temperature anomalies
in kinetic effects, in particular, negative magnetoresistance
and logarithmic temperature dependence of the conductance
of `dirty' semiconducting systems with two-dimensional
electron or hole gas. The first observations of the TQC-
predicted logarithmic dependence of conductance on tem-
perature in siliconMOS structures were made in Refs [62, 63].
The experimentally established negativemagnetoresistance of
Si MOS systems [64 ± 67] was also analyzed from the TQC
point of view. Characteristic sizes of the self-crossing
trajectories, phase relaxation times of the electron wave
function due to electron ± electron and electron ± phonon
collisions, and the electron ± electron coupling constant in
the diffusive channel were determined. Mechanisms of the
energy relaxation of electrons in classically weak and
quantizing magnetic fields were also identified [68]. Thus,
the experiments carried out in 1980s showed that TQC
provides a sufficiently complete description of the low-
temperature galvanomagnetic and kinetic effects in weakly
disordered two-dimensional systems. Hence, the question
about the nature of the ground state of a two-dimensional
system in a zero magnetic field was, for almost two decades,
considered to have a unique answer: at absolute zero of
temperature one should not expect anything but the insulat-
ing state.
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Against the background of numerous experimental
confirmations of the conclusions drawn in Ref. [26] concern-
ing the dielectric properties of the ground state of two-
dimensional systems, studies on the conductance of silicon
MOS transistors with a high (3� 104 cm2 Vÿ1 sÿ1) electron
mobility in the two-dimensional channel had a revolutionary
character. In Refs [69, 70], the temperature dependence of the
resistance of silicon MOS transistors with two-dimensional
electron gas in the range of sufficiently low electron concen-
trations ns 4 1011 cmÿ2 was measured. Structures having
electron concentrations 4 1011 cmÿ2 demonstrated a usual,
for localized states, negative derivative dR=dT < 0 of the
resistance with respect to temperature. However, at a certain
critical concentration nc � 1011 cmÿ2, the resistance of MOS
transistors took an approximately temperature-independent
value R � 2h=e 2. An even more unexpected fact was a sharp
decrease of the resistance in the structures with electron
concentration ns > nc with reduction in temperature, which
was observed down to the lowest experimentally reachable
temperatures of 200 mK in the absence of any signs of
electron localization (Fig. 13). The concentration nc corre-
sponding to a change in the sign of the derivative dR=dT
varied widely from sample to sample, depending on the
disorder parameter in the electron system considered. A
similar change in the sign of the derivative dR=dT, corre-
sponding to the critical carrier concentration nc�pc�, was
subsequently found in AlGaAs=GaAs heterostructures with
two-dimensional electron [71, 72] and hole [73 ± 80] gas,
quantum AlAs wells with two-dimensional electron gas [81],
as well as quantum SiGe wells with two-dimensional electron
[82] and hole [83, 84] gas. However, the temperature
dependence of the resistance of these low-dimensional
systems in the temperature range T < 1 K turned out to be
much less distinct than that in the silicon MOS structures
(Fig. 14).

In the vicinity of critical carrier concentration, the
resistance of MOS systems showed the scaling with respect

to temperature:

R�T; ns� � f1

�jns ÿ ncj
T 1=zn

�
and electric field strength:

R�E; ns� � f2

�jns ÿ ncj
E 1=�z�1�n

�

with the exponents z � 0:8� 0:1 and n � 1:5� 0:1 [70, 85].
The product of critical indices in silicon MOS structures was
equal to zn � 1:4ÿ1:7 [86]. In experiments studying the low-
temperature transport inMOS-Si with varying peakmobility,
a dependence of the zn on the momentum relaxation time of
electrons and critical concentration nc has been observed [87].
In AlGaAs=GaAs systems with two-dimensional electron
gas, the analysis of scaling in temperature and electric field
strength allowed the determination of the critical indices
z � 1:4� 1:0 and n � 1:9� 0:9 [72]. In AlGaAs=GaAs
heterostructures with p-type conductance, the product of
critical indices equals zn � 7:0� 1:5 and zn � 3:8� 0:4 for
systems with a concentration of two-dimensional holes p > pc
and p < pc, respectively [74]. In quantum SiGewells involving
two-dimensional electron gas with a concentration ns < nc,
the product of critical indices is zn � 1:6� 0:2 [82]. For two-
dimensional hole gas in quantum SiGe wells, the values of the
product of critical indices obtained by different authors are
equal to zn � 1:6ÿ2:0 [83] and zn � 2:24� 0:20 [84].

Could one consider a transfer between the regimes with
dR=dT < 0 and dR=dT > 0, observed at finite temperatures,
as a manifestation of the quantum phase transition of a two-
dimensional system from themetallic to the insulating state in
a zero magnetic field? This question should, first of all, be
posed and solved with respect to silicon (100) MOS
structures. There are a number of reasons for such a
conclusion. A change in the sign of the low-temperature
derivative dR=dT at some critical concentration in silicon
MOS transistors offers an experimental fact that was reliably

1000

R
=
�h
=
e2
�

T, K

100

10

1

0.1

0 2 4 6 8

nmin
s � 7:12� 1010 cmÿ2

nmax
s � 13:7� 1010 cmÿ2

Figure 13. Temperature dependences of the resistance of a silicon MOS

structure with a concentration of two-dimensional electrons changing in

the range �7:12ÿ13:7� � 1010 cmÿ2 in a zero magnetic field [70].

10

R
,k

O

1

0 0.2 0.4 0.6 0.8 1.0
T, ¬

1.17

1.25

1.41

1.55

1.7

1.9

2.2

2.6

Figure 14. Temperature dependences of the resistance of GaAs=AlGaAs

heterostructure with a concentration of two-dimensional holes varying in

the range �1:17ÿ2:6� � 1010 cmÿ2 in a zero magnetic field [79].

August, 2003 Quantum phase transitions in two-dimensional systems 785



established by independent groups of researchers [69, 70, 85 ±
89]. In other systems, for example, in AlGaAs=GaAs and
SiGe with two-dimensional electrons or holes, the tempera-
ture dependence of conductance on the `metallic' side of phase
transition is much more weak as compared to the silicon
structures (see Figs 13 and 14). Further cooling of these
systems below the critical temperature results in, at first,
saturation of some (previously `metallic') temperature depen-
dences of resistance, and then their transformation to the
regime with dR=dT < 0. Such an effect was observed in
AlGaAs=GaAs heterostructures with two-dimensional elec-
tron [72] and hole [79] gas, as well as for two-dimensional
holes in SiGe [90] and for two-dimensional electron gas on the
vicinal Si planes [91].

In numerous experiments on silicon transistors [69, 70,
85 ± 89] it was established that the critical carrier concentra-
tion corresponding to the change in the sign of the derivative
dR=dT is determined by the quality of the sample. Therefore,
the scaling of the dependences R�T � can be considered as
being occasional [12]. However, an anomalously sharp
growth of the conductance of samples with typically metallic
behavior with decreasing temperature cannot be explained
within the classical Drude theory. A giant change in the
conductance can be triggered by the change of the screening
properties of a two-dimensional system [92] with a sharp
reduction in the Fermi energy.

In the new experimental works [88, 93], the temperature
dependence of the conductance of silicon MOS systems with
the mobility of two-dimensional electrons of the order of
104 cm2Vÿ1 sÿ1, in which a change in the sign of the derivative
dR=dT at varying critical concentrations in the range of
super-low temperatures down to T � 30 mK, was
researched. Structures with a concentration of two-dimen-
sional electrons above the critical one showed a rapid linear
growth of the normalized conductance s�T �=s0 with decreas-
ing temperature in a sufficiently wide temperature range
(Fig. 15). Interpretation of the experimentally found linear
temperature dependence of `metallic' conductance in terms of

Ref. [94] revealed a strong increase of the effective mass in
silicon MIS structures, when the electron number density
approaches the value of 0:8� 1011 cmÿ2, which practically
coincided with nc in the best studied samples [93]. Such a
behavior of the cyclotron mass was observed in independent
experiments [95] on the measurement of the temperature
dependence of Shubnikov ± deHaas oscillations. An analysis
of the experimental data, analogous to that in Ref. [93] but
performed in the opposite limit with respect to the ratio of the
valley splitting energy to temperature and using the evidence
of other experimental groups and samples from other sources
[96, 97], confirmed the universality of the m ��ns� curve
(Fig. 16).

As has already been mentioned, a conclusion to be made
from the recent experimental findings should be that a change
in the sign of the derivative dR=dT at some concentration
cannot, analogously to the conductance scaling, be consid-
ered as convincing evidence of a quantum phase transition
due to disorder. The critical concentration nc corresponding
to a change in the sign of the derivative dR=dT varies from
one sample to another. However, the concentration n �c
estimated from the divergence of the effective mass most
probably takes a universal value or changes weakly from
sample to sample. For the best samples, a negative magne-
toresistance effect [98] disappears in the vicinity of this
concentration. If a quantum phase transition in MOS
structures exists, one should think that n �c is precisely the
quantum phase transition point. Such a phase transition is a
property of pure, rather than disordered, two-dimensional
systems with strong interparticle interactions, in particular, of
the most perfect MOS structures with a low electron
concentration [99].

5. Conclusions

In many experimental studies of the quantum phase transi-
tions in two-dimensional systems, the emphasis is, in our
opinion, put on the facts that confirm the theory. The facts
that are difficult to interpret within theoretical schemes are
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silently ignored. The full phase diagrams, similar to that
shown in Fig. 1, have been, to the best of our knowledge, for
the first time constructed from experimental data only in the
present review (see Figs 7, 8, and 12). A law describing the
boundary of the quantum critical region can be determined
from experiment and exploited for an independent control of
the scaling relations. This possibility of independent control
was, however, never exploited in the analysis of experimental
data. Moreover, when rescaling the experimental data using
the relation (2), in no experimental paper known to us was it
checked that rescaling is really carried out in the quantum
critical region.

Therefore, existing theoretical ideas that successfully
predicted and explained a number of experimental observa-
tions can hardly be currently considered as having been
confirmed experimentally.
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