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Realization of topologically protected
quantum bits in a Josephson junction array

L B loffe, M V Feigel'man

1. Introduction

The present work proposes a new type of topologically
nontrivial Josephson lattice, capable of realizing a topologi-
cally ordered, spin-liquid-type quantum ground state. At the
same time this new state is a superconductor with a charge
quantized in units of 4e instead of the usual pair charge 2e.
The new ground state has a degeneracy of 2X, K being the
number of topologically nontrivial cycles on the lattice. It is
shown that the system we propose possesses the ‘built-in’
quantum error correction property in the sense that the effect
of any type of local noise is exponentially small for a large
lattice size. This makes it possible to use the system for
creating quantum bits (or arrays thereof) with very large
coherence times.

Quantum computing [1, 2], if realized, would be a
powerful tool for solving classically intractable problems
such as the factorization of large numbers into primes [3] or
a search through large databases [4]. The discovery of
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quantum error correction algorithms [5] showed that build-
ing a working quantum computer is in principle accomplish-
able. Doing so, however, remains a formidable challenge
because the basic element of the quantum computer — its
‘quantum processor’ — must be a system with a huge number
2K (where K ~ 10°) of quantum states which are degenerate
(or almost degenerate) in energy in spite of external perturba-
tions present in any real system. A quantum algorithm
consists in specifying the Hamiltonian of this system as a
function of time, and this in such a way that the relative
uncertainty of the Hamiltonian parameters is less than
10~4—107% in order that error correction algorithms could
be used. If the level of noise and the uncertainty in the
Hamiltonian parameters could be reduced even further, by
several orders of magnitude, then systems of much smaller
size, with K ~ 10*, could be used (noise considerably affects
how many elements should be added to the processor to
ensure that error correction algorithms work) [6]. In other
words, the desired system should have the following property:
its Hilbert space must have (what we shall call) a protected
subspace such that for any local perturbation operator O we
have (n|0|m> = 000un + 0o(exp(—L)), where n and m are any
two of the 2X states of the protected state, and L is the linear
dimension of the system, which can be made very large. Such
a system would realize the nearly complete correction of
quantum errors ‘physically’ rather than ‘algorithmically’ —
due to certain properties of the set of its low-lying states.

Although the above requirements appear at first glance to
be too unusual for a physical system to meet, recent advances
in the theory of strongly correlated quantum systems suggest
that things are not so hopeless after all and that examples of
systems with somewhat similar properties are in fact already
known. Particularly noteworthy work in this connection is
that of Wen et al. [7, 8], which shows that the states of the
fractional quantum Hall effect on a closed surface with a non-
trivial topology have an exponentially weak sensitivity to
local perturbations; thus, the state with a filling factor of 1/3
on the surface of a torus should be threefold degenerate. This,
of course, should be considered as a purely theoretical result
because it is practically impossible to create a two-dimen-
sional electron gas on the surface of a torus and, in addition to
that, to apply a strong magnetic field transverse to the surface.
Still, this example shows that a quantum system with such
properties is in principle conceivable, and the matter simply
depends on finding a practically feasible version of this
system.

An entirely different theoretical approach to essentially
the same problem originates from the long-standing idea of
Anderson [9] (see also Ref. [10]) of the unusual spin-liquid-
type quantum state which can exist on a triangular lattice of
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antiferromagnetically interacting spins 1/2. Even though
recent large-scale numerical computations have shown that
such a lattice does have a state with antiferromagnetic order
(albeit strongly suppressed by quantum fluctuations), similar
models were found to exist in which the ground state is indeed
spin-liquid in character [11, 12], with toroidal boundary
conditions leading to a degenerate ground state in these spin
systems also. These ideas were used by Kitaev in his pivotal
paper [13], which formulates the general approach to
constructing a quantum system with a topologically pro-
tected subspace of states, and which proposes a quite simple
model Hamiltonian satisfying all necessary requirements. The
idea of Kitaev’s approach can be formulated as follows: it is
necessary to find a quantum system (a) which does not possess
a usual (local) order parameter (in other words, a local
observer sees it as a ‘structureless liquid,” (b) which has a
gap in the energy spectrum, and (c) in which a degenerate
ground state occurs under topologically nontrivial boundary
conditions.

The following picture illustrates clearly what kind of a
system we are interested in: imagine an observer traveling
over a surface of the closed strip type. There are two possible
surfaces of this kind, the cylinder and the Mdbius strip.
Clearly, if the traveller’s range of vision is small compared
to the width and length of the strip, he cannot discern one
surface from the other. What he needs in order to do this is to
‘make a tour round the world,’ i.e., to travel around the entire
strip along its generatrix. In quantum language, such a trip is
analogous to the effect of a nonlocal operator, the only means
by which two ‘topologically different’ states can be distin-
guished.

The simplest Hamiltonian possessing all these properties
has been proposed and solved in Ref. [13]; its important
feature is binary quantum variables — spins — associated
with the edges of the lattice on which the system is defined.
Kitaev showed that in the low-energy limit the system he
proposed is described by an effective gauge Z, theory on a
lattice with anyons as elementary excitations. He also showed
that the anyon character of excitations and the topology-
dependent ground state degeneracy are interrelated features.
The first physical realization of a Hamiltonian with proper-
ties similar to those of Kitaev’s was proposed in Ref. [14]. This
paper showed how an array of Josephson junctions (with a
relatively large charging energy Ec) can be used to realize a
model of quantum dimers on a triangular lattice — a model
which had already been considered in connection with studies
in the spirit of Anderson’s approach to the spin liquid
problem [12] (to be comprehensive, we note that a number
of interesting theoretical studies have most recently been
made on spin liquids [15-22]). Another point shown in
Ref. [14] is that (in a certain range of parameters) a triangular
lattice of quantum dimers does indeed possess all the proper-
ties needed to realize a topologically protected qubit — and
even a set of such qubits.

However, given the current level of fabrication technology
of submicron Josephson junctions, the system proposed in
Ref. [14] is rather difficult to realize experimentally. In the
present talk we will describe a new approach to the problem,
which is more practical and at the same time closer to Kitaev’s
original model (see Refs [23, 24] for a detailed discussion).

2. Josephson lattice and the effective Hamiltonian
The building block of our Josephson array is a rhombus of
four superconducting islands connected by identical tunnel-

ing contacts. A transverse magnetic field applied to the system
creates within each rhombus a flux @, equal to @(/2, i.e., half
of the superconducting flux quantum. As a result, each of
these rhombi taken separately is a bistable quantum system.
In the case considered below, of a relatively large Josephson
junction energy Ej > Ec, where Ec = e2/2C and C is the
capacitance of the tunneling contacts, a rhombus can be
described quasi-classically in terms of the superconducting
currents it carries. Two quasi-classical states minimizing the
Josephson energy differ in the sign of the phase difference on
the junctions (which can be equal to +1/4) and hence in the
direction in which the current flows around the rhombus. The
potential energy barrier for the transition between these two
states is of the order of Ej. The role of kinetic energy in this
case is played by the charging energy Ec, and the amplitude of
the quantum tunneling process — the transition between
states with oppositely directed currents — is of the order of
EJ3/4EC1/ exp (—Sp), where the tunneling action Sp~
(EJ/EC)I/z. A quantitative analysis requires using the
Lagrangian of a rhombus of the from

Lihomb = (z): ﬁ(@éi — ;)" + Eycos (¢, — b; — a;j) . (1)
ij

where ¢, is the phase of the superconducting order parameter
in an ith island, and the a;; are chosen in such a way as to
ensure the correct value @, of the magnetic flux through the
rhombus; the summation is over i, j = 1,2, 3, 4. The potential
energy of the rhombus as a function of the phase difference
along its major diagonal is obtained by minimizing the
Josephson energy with respect to the phases of two ‘side’
islands, to give

). @

This energy has two minima at ¢,; = £mn/2, which can be used
to create an elementary ‘unprotected’ qubit [25]. In either of
these states the phase changes by +n/4 on each junction in the
clockwise direction around the rhombus. We will denote these
states by | 1) and | | ), respectively, and set them to correspond
to the projections of the fictitious ‘spins’ 1/2 described in the
basis of Pauli matrix ¢*. The operator of transition between
these states will then have the form ve*. By numerically
solving equations written in the quasi-classical approxima-
tion we obtain
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for the tunneling amplitude.

The next stage in ‘constructing’ the array is to assemble
superconducting rhombi into a hexagonal lattice with major
diagonals of the rhombi as edges (Fig. 1). We assume the
linear dimensions of the elements to be chosen in such a way
that the same magnetic field ensures the magnetic flux
Ppex = (n+ 1/2)Py through each hexagon of the array (here
n is any integer; it should also be noted that we assume the
condition LI, <€ &g, with L the inductance of a rhombus, to
be fulfilled everywhere; the same condition should be fulfilled
for the hexagon made of rhombi). Let us consider possible
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Figure 1. Example of the proposed Josephson lattice. Thick lines represent
superconducting wires, with one Josephson junction on each wire as
shown in the inset. The array is in a magnetic field, whose flux through
each rhombus and each hexagon is equal to a half-integer number of
superconducting flux quanta. Thin lines are ‘effective’ bonds from which
the hexagonal lattice is built. The Josephson interaction on these effective
bonds has a period of m as a function of the phase difference. The lattice
has one large hole, which corresponds to the number of ‘qubits” K = 1.

low-energy states of a hexagon constructed from rhombi. The
total number of such states 2° = 64 corresponds to the
independent enumeration of all the binary states possible for
the rhombi. Of these states, however, not all actually have a
low energy but only those for which the numbers of
‘clockwise’ and ‘counterclockwise’ rhombi in the hexagon
are even. Indeed, note that the total accumulation of gauge-
invariant phase difference which arises as we go around the
rhombus should be equal to 2tm in order that the condition of
uniqueness be fulfilled for the superconducting wave func-
tion. Noting that in the lowest-energy states of each rhombus
the phase differences along the rhombus’s major diagonal are
+n/2 and that the magnetic field inside the hexagon adds a
phase shift of n, we conclude that the allowable configura-
tions should contain even numbers (i.e., 0, 2, 4, 6) of rhombi
with a phase difference of n/2 (and, correspondingly, also
with a phase difference of —m/2). As for the states obtained
from the ‘allowed’ ones by reversing the current in an odd
number of rhombi, these unavoidably must contain rhombi
with a non-optimal phase difference along the diagonal (to
compensate the extra phase difference of m which arises as we
go around the hexagon). This means that in such states the
current around the hexagon is of the order of a fraction of I,
and therefore the energy of these states exceeds that in the
‘allowed’ states by an amount of the order of Ey. We can
neglect states with this energy when considering the system’s
low-energy spectrum. Mathematically, this can be expressed
by introducing the projection operator of the hexagon,
= [, 0., where the product is taken over all six rhombi,
and by imposing the condition P|¥) = |¥) on the space of
allowable quantum states.
Let us now consider the total effective lattice shown in
Fig. 2 and let the Latin letters a, b, c. . . denote the sites of the
triangular lattice dual to the lattice of our hexagons. Then
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Figure 2. Arrangement of the effective discrete Z, degrees of freedom of
the Josephson lattice depicted in Fig. 1. Spin variables are associated with
the bonds of the triangular lattice (shown by thick lines), and constraints
on allowable configurations are determined at the sites of this lattice. The
contours y and y’ are used for constructing the operator of the topological
order parameter and that of elementary excitations, respectively.

each rhombus is put in correspondence with a pair (a, b) of the
neighboring sites of the dual lattice; the rule of correspon-
dence is obvious: the edge (a, b) of the dual lattice intersects
the rhombus. The Hilbert space of the low-lying states is
determined by the constraint

Po|¥) =) 4)

for all sites @ on the dual lattice. The Hamiltonian operating in
this space has the form

H_f’ZQabca

(abe)

Olabe) = TupT3c0.q » (5)

and the amplitude r of the simultaneous ‘flip’ of the three
rhombi ab, be, ca which have an island in common is of the
order of

re EJ3/4E(13/4 exp (—350), (6)

where S is defined in Eqn (4). The ‘triple’ processes described
by the Hamiltonian (5) are the lowest order ones (perturba-
tively) which are compatible with condition (4).

3. The ground state, topological degeneracy,

and elementary excitations

The Hamiltonian (5), together with the projection condition
(4), permits a simple exact solution. This has to do with the
fact that all individual projection operators P, commute with
all the operators QA(ab(,) entering the Hamiltonian. Therefore
the exact ground state wave function can be constructed as
follows: take state |0), which is an eigenstate (with an
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eigenvalue of +1) for all the rhombus operators ¢}, and act
on it by a projector which separates out only those config-
urations satisfying Eqn (4),

6) =TT j;“ 0). )

It is the state G which, as is easily verified, is the exact ground
state. In the language of the effective ‘spin” Hamiltonian this
state is a ‘spin liquid’ because spin operators in this state do
not have nonzero averages (a non-magnetic state). In the case
of a topologically trivial lattice, all the remaining states are
separated from the ground state G by a gap equal to 2r, as will
be shown shortly. What we are interested in, however, is
lattices with topologically non-trivial cycles because such
cycles lead to an exactly degenerate ground state. To see
this, consider the operators

Ty =11oa, (8)
()

where the contour y, starts at one boundary of the lattice and
ends at another [for a lattice with K holes, K independent
operators of the type (8) can be defined]. Each of these
operators commutes with the Hamiltonian as well as with
the condition (4). The physical meaning of these operators is
simple: they compute the parity of the number of rhombi in
the state | ) which intersect the contour y,. Let us now define
the quantum states

l—i—c[
|Gr) = H ’ —=16), 9)

where ¢, = £1 is the eigenvalue of the operator 7,. Each of
these states involves only configurations with a definite parity
of rhombi in the state | T) which intersect the contour y,, so it
can be said that the states Gy possess a definite phase
difference (either 0 or ) between the lattice boundaries. It is
a set of 2K such states on a lattice with K holes, which forms
the 2X-dimensional basis of the topologically protected
subspace we are looking for.

Elementary excitations can be constructed in a similar
manner. Let us separate out an island (abc) and define the
state |v(ae)) by applying an operator defined as ¥ =
H,},, O'(de), where the product is taken over all rhombi
intersecting the path 7’ which starts at the outer boundary
of the lattice and terminates at the island (abc),

ab( H1+L5111H]+P ab(|0>

The operator (4, does not commute with only one of the
operators Q ., namely with that at the end of the contour y’.
Therefore this state differs from the ground state only in the
respect that this unique Q operator has an eigenvalue —1
instead of +1, i. e., the excitation energy is 2r. It is important
to note that this excitation is strictly localized in a definite
island. The physical meaning of the excitation is very simply
understood by noting that the ground state G of the system
describes macroscopically a superconductor with an elemen-
tary charge 4e (two Cooper pairs) instead of the usual 2e. This
occurs because the magnetic flux @(/2 has a frustrating effect
on each of the rhombi, thus suppressing the transport of
individual Cooper pairs (a similar phenomenon was predicted

(10)

[26] for a chain of the same kind of rhombi as ours). As a
result, an ‘odd’ Cooper pair which finds itself on one of the
islands is a localized excitation above the ground state. A
general excited state is constructed as a set of elementary
excitations |v(,)). Note that creating an excitation at one
lattice boundary and moving it to another is equivalent to the
action of the operator T,: in other words, this process is
equivalent to the operator 7/ acting in the 2K_dimensional
basis of a protected subspace.

Now consider the matrix elements O, = (G, |0|Gg) of the
local operator O between two states of a protected space. The
term local will refer to an operator containing a small
(compared with the linear dimensions of the system) number
of operators ¢ ,”"%. Let us first see that for o # f such matrix
elements vanish. For this, just note that with the ground states
as given by Eqn (9) it is possible to replace O by O’ = POP,
where P = [[,(1 + P,)/2,in such a calculation. It is now easy
to see that all the operators involved in O’ commute with the
operators T and therefore matrix elements between states
differing in the eigenvalues of some of the operators 7, 4
vanish. Similarly, the difference of the matrix elements of
O between states of different parity along one of the contours
74 is calculated to be zero. Thus, the Hamiltonian we consider
describes a system which can represent an ideal quantum
memory. The ‘reduced’ model (4) and (5) we have considered
here is actually very similar to the original model of Kitaev
[13] and differs from it by the lattice geometry and by
replacing one part of the Hamiltonian by the projection
condition (4), which is equivalent to neglecting one of the
two types of elementary excitations (see below). In a real
physical system of Josephson junctions there are of course
processes which are not taken into account in the idealized
model (4) and (5). Below we show that the effect of such
processes (which we assume to be small perturbations) boils
down to producing differences between the matrix elements
O, and const x §,p, which are exponentially small in the
lattice size.

4. Effect of physical perturbations; half-vortices

and the phase diagram

Let us now consider corrections to the ideal model (4) and (5).
Static corrections are due primarily to two facts: the fluxes
through the rhombi, @,, and through the hexagons, @,
differ from their nominal half-integer values, and the critical
currents through different Josephson junctions are different.
Assuming these corrections to be small (which is quite
realistic for present-day technology of Josephson arrays
fabrication) one can obtain the perturbation Hamiltonian in
the form

0H, =

Z Vabo_ab + Z Vab d)aab cd7

(ab), (cd)

(11)

where the first sum accounts for the difference between @, and
/2, ie., Vo =€ =nV2Ey(®, /Py — 1/2), and the coeffi-
cients V) (ca) in the second sum contain contributions
proportional to the spatial fluctuations Ey and to uncertain-
ties in specifying the quantities @pex. The summation in the
first term runs over all the neighbors b(a) of a given site (a) in
the dual (i.e., triangular) lattice, and then also over all its sites
(a); thus, this is an independent summation over all rhombi.
In the second term, the summation is over all pairs of rhombi
which belong to the same hexagon, and then over all the
hexagons. The quantities V), (cq) are second order in 8 Ey/ Ej
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and 3P /Py and hence are generally small in comparison
with V(4. Treating the first term in Eqn (11) perturbatively
modlﬁes the ground state wave functions giving

Z J(ab |Gi

(ab)

G+) = |G+) + (12)

This perturbation theory is applicable as long as ¢ < r. It is
easily seen that the matrix elements of local operators
calculated with the modified wave functions (12) are, as
before, proportional to d,3. Nontrivial matrix elements arise
only in Lth order of perturbation theory, when terms
containing L operators ¢° appear in the corrected wave
function. Physically, this corresponds to including the
tunneling of excitations (i.e., of single Cooper pairs) across
the lattice, from its outer to the inner boundary or vice versa.
As already mentioned above, such processes correspond to
the operator 7/ in the basis of states with definite eigenvalues
of the operators T In particular, they lead to an exponen-
tially small energy spllttlng, E.—E ~0,—-0_~ (e/2r) .

Let us now consider processes leading to transitions of the
type |G.) — |G_) between states of definite parity. In our
discussion thus far the amplitudes of such processes have been
zero, due to the prohibition we imposed from the outset, on
‘wrong-parity’ configurations violating condition (4).
Although this prohibition may in fact be violated, this entails
a penalty, in the form of a large energy of the resulting excited
state. This state is similar in nature to a usual superconducting
vortex, with the difference that the phase accumulation about
the center of the vortex is m rather than the usual 2n. The
reason is that in our system the energy of an individual ‘edge’
of the hexagonal lattice has a periodicity of « [see Eqn (2)].
The energy of such a vortex on a hexagonal lattice is

TEEJ

VG

Ey(R) = (InR+c¢), =12, (13)

and contains a logarithmic dependence on the lattice size R.
Let us consider a single-hole lattice as in Fig. 1. The values of
the topological invariant T, , can change in a process in which
two half-vortices of different sign emerge near the inner
boundary, one of which tunnels around the entire hole and
then annihilates with the other. The amplitude of such a
process arises in the order A4 > 1 of perturbation theory in
v/Ey(L), where v is flip amplitude for an individual rhombus
defined in Eqn (4), and A the hole perimeter. The processes we
have described ultimately lead to terms of the form /.t ", with
hy ~ [v/E,(L)]", in the effective Hamiltonian operating in
the protected subspace.

The above picture is valid as long as the condition
Ec < Ejis fulfilled, i.e., that quantum effects are numerically
small. As Ec increases, ultimately (at Ec > Ej) a phase
transition to an insulating state should occur (see, for
example, the review article [27]). On the other hand, when
the values of the flux @, deviate from @, /2, then the unusual
state which we found — one with paired Cooper pairs —
should give rise to the usual superconducting state with
charge quantum 2e. This transition, as can be shown, is a
second-order phase transition equivalent to the order-—
disorder transition in the two-dimensional quantum Ising
model, and it occurs at ¢ ~ r. The phase diagram of our model
is shown schematically in Fig. 3. It is assumed that the
quantum phase transition from the ‘topologically ordered
superconductor’ phase we discovered occurs immediately to

0.2
30g/ Dy
SC
Ins
SCT
0 n EC/EJ

Figure 3. Schematic phase diagram for the case of half-integer @y, at low
temperatures. Here @4 is the deviation of the magnetic flux through each
rhombus from its ideal value ®/2, and the parameter  ~ 1. SC denotes
the usual superconducting phase, and SCT is a phase with long-range
order with respect to the variable cos 2¢) in continuous variables and with
discrete topological order. The phases SCT and SC are separated by the
line of a phase transition equivalent to a quantum transition in the two-
dimensional Ising model in a transverse field. Ins is the insulating phase.

the usual insulating phase. Generally speaking, various
insulating phases, with or without topological order, can
exist. This question was considered elsewhere [24] and will
not be pursued here.

Let us turn finally to the question of the exchange
statistics of excitations in the ‘topologically ordered super-
conductor’ phase being studied here. As we have seen,
there are two different types of elementary excitations:
localized single Cooper pairs (carrying a charge g, = 2e)
and half-vortices (carrying a magnetic flux @, = ¢y/2 =
hc/4e). Consider a process in which a half-vortex adiaba-
tically moves in a closed contour around a Cooper pair.
Then all the coordinates of the system return to their
original values, but because of the Aharonov—Bohm effect
its full wave function is multiplied by the phase factor
exp (ige®y/hc) = —1. Thus, the state under study realizes
the simplest version of the anyon statistics of elementary
excitation [28].

5. Quantum manipulations

Let us now consider the simplest quantum operations which
can be performed upon the states of a protected subspace.
Recall first that the eigenvalues of the operator 7, 4> equal to
+1, have a simple physical meaning: they correspond to phase
differences of either 0 or m between the inner and outer
boundaries, respectively, of the system of Fig. 1. This fact
enables the rotation operator U; = exp (iEJt‘L';) to be realized
by closing the outer and inner (index ¢) boundaries of the
array be means of a weak Josephson junction with energy ¢;
for a time 7. In an entirely similar manner, the two-qubit
operator U; , = exp (ie/’ 17, rp) can be realized by connecting
via a Josephson junction two mner boundaries corresponding
to the ¢gth and pth qubits.

The operations described above depend on a continuous
parameter and can therefore be performed only with finite
accuracy. In our system, a number of discrete quantum
operators can also be realized, which can be specified with
a much higher accuracy These include, for example,
the operators 77 and t7 and their square roots, /77 =

(1 +it7)/V/2i and \/r—; (1+it¥)/V/2i; see Ref. [23] for
more details on the reahzatlon of these operators. Unfortu-
nately, the discrete operations which can be carried out in our
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system do not constitute a complete set of operators needed M= 22.

for universal quantum computing. Nor should they: as shown
in Ref. [13], the complete set of exact quantum operators can

the proposed model can be considered as a model of an ideal
quantum memory, but as yet not a model of an ideal quantum
computer. A theory of Josephson lattice-based topologically-
ordered lattice systems with a non-Abelian gauge group has
been given recently in Ref. [29].

6. Conclusions

In the present talk, which is the development of the ideas of
Ref. [14], we offer a new type of a Josephson lattice, capable of
acting as an ‘ideal’ quantum memory. Compared to the
original version outlined in Ref. [14], there are a number of
important advantages to the new system, namely: (i) it
operates in the parameter range Ej > Ec, thereby reducing
the level of poorly controlled electric noise due to offset
charges in the insulating substrate; (ii) it employs only one
type of Josephson junctions and is therefore much simpler to
fabricate; (iii) in the ideal case it is exactly 2X-fold degenerate,
whereas in the version in Ref. [14] degeneracy was achieved
asymptotically with the size of the system, with accuracy
exp (—cL), where ¢ ~ 1; for the new system a similar constant
is calculated, including small perturbations, to be of the order
of In(r/€) > 1, i.e., an array of smaller size will suffice to
achieve the desired accuracy.

We have greatly benefited from numerous discussions
with G Blatter, D A Ivanov, A S lIoselevich, S E Korshunov,
A 1 Larkin, A Millis, B Pannetier, and E Serret when working
on the idea outlined here.
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Electrodynamics of materials
with negative index of refraction

V G Veselago

Over the past few years there has been an avalanche of
progress in a new branch of electrodynamics — electrody-
namics of materials with negative refraction. Experiments in
this area were pioneered by a group of physicists at the
University of California at San Diego, USA [1, 2]. They
demonstrated the unusual electrodynamic properties of some
composite materials, which can be explained purely formally
by ascribing a negative index of refraction n to these
materials. These composites are the assemblies of small
metallic elements arranged into strictly regular crystal-like
geometric structures. The structures can be considered
continuous for wavelengths considerably longer than the
size of and the separation between its constituent elements.
The UCSD experiments were performed in the centimeter
wavelength range on composites with element size and
separation typically of the order of 7 to 10 mm.

The key experimental finding of the San Diego study was
a rather unusual manifestation of Snell’s law of refraction for
such materials. In Fig. 1 is shown the passage of a light ray
through the interface between two media with indices of
refraction n; and ny. If we take n; =1 (without loss of
generality) then, customarily, a refracted ray takes the path
1—4.In the San Diego experiments the ray took the path 7—3.

Figure 1. Refraction of light at the interface between two media. The paths
/-4 and -3 are taken by the incident and refracted rays in the cases
ny > 0and ny < 0, respectively.
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