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‘Stark ladder’ laser
with a coherent electronic subsystem
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1. Introduction

As was shown theoretically many years ago [1, 2], the
application of a static electric field Ey to a semiconductor
(or a superlattice [3, 4]) leads to a radical change in the
electronic spectrum: the continuous spectrum becomes a
discrete set of equidistant levels (Stark ladder, Fig. 1) with
the energy separation /iwg (wg = eFEa is the Bloch frequency,
a the spacing of the crystal or the superlattice). Since then,
attempts have been and are being made to employ inter-level
transitions for generating an electromagnetic field. These
attempts face fundamental challenges, however:

(1) Scattering and dissipation lead to the broadening of
the levels.

(2) Generation, if possible, should at best occur at the
surface [5] because the probabilities of transitions involving
the radiation and absorption of field compensate each other.

(3) Quasi-classical theory [6] does predict amplification,
however, but one with an unusual, polarization-type, line
shape. The amplification is zero (changes sign) at the Bloch
frequency w = wg. It can therefore be expected that the
fluctuations of a static field strongly suppress amplification.

(4) Electric field domains form due to the low-frequency
negative differential conductivity (NDC).

As for the first problem, it has to a large extent been
overcome by advances in the fabrication technology of
superlattices of quantum wells, wires, and dots.

The present work proposes a way of overcoming the
remaining challenges by obtaining a coherent regime in finite
superlattices of N sites. The purpose of the work is to examine
theoretically whether coherent generation is possible. In this
regime electrons are delivered to the lattice by means of a
resonance, make N coherent radiative transitions, and then
are removed by means of resonance tunneling. There are three
questions we are trying to answer in this work:

(1) Is such a regime in principle possible?

(2) How to obtain it?

(3) What are its properties and can problems 2, 3, and 4 be
solved?

In this work it is shown that the coherent regime is
possible if the time an electron spends in the structure is
smaller that the decoherence time. Such a regime occurs when
electrons within a sufficiently narrow energy range tunnel
resonantly into a structure and when certain conditions on the
structure’s parameters are fulfilled.

Coherent generation turns out to be bulk generation
(power is proportional to the number of wells) which has a

Figure 1. Single subband Stark ladder.

symmetric (stable to fluctuations) gain contour and does not
cause domain formation. The reason is that in a coherent
situation radiative transitions do not depend on populations
[7] and the NDC tends to zero.

In this work we were able to obtain exact analytical
solutions for the case of N wells. For structures with an odd
number of wells the energy of the incoming electrons must
simply be equal to the resonance energy of any field. That is,
the energy tuning necessary for a single-well structure [7] is
not needed in this case. Universal relations are found for the
parameters of an N-well structure which ensure that reso-
nance conditions are fulfilled for all the wells simultaneously.

2. The model

Specific calculations were performed for a two-miniband
Stark ladder (Figs 2 and 3). In this case vertical radiative
transitions occur, which lead to higher gain than does the
single-miniband sublattice (diagonal transitions, see Fig. 1).
The static electric field Ey shifts the levels such that the energy
61(’17{1) of the lower level of the (n — 1) well coincides with the
energy sz(g of the upper level of the n well. The difference in
energy is approximately equal to the electromagnetic field
frequency E(f) = Ecoswt. The amplitude of the field is
determined from the equation for the field [7]
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Figure 2. Two-subband Stark ladder.
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Figure 3. A structure with N = 4.
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where J. is the reduced polarization current, in phase with the
field. The current J; describes transitions between the levels.
Here 7y is the photon lifetime in the cavity, and x is the
dielectric constant.

The current Jo(x) can be found using the familiar
expression

J(x, 1) :fie[‘l’ %—f—cc] (2)

where the wave function of the system ¥(x,f) obeys the
Schrodinger equation

alp o’y .
i = W+U(x)‘1’+V(x,z)‘I/‘ (3)

Here

U(x) = aad(x + a) + Z ad(x — an)

+a18[x — a(N —1)]
:Z@[x—(n— 1)a],

the o; are the barrier powers (x> for the left most well, o; for
the right most, and « in-between); 2m = /i = 1. The last term
in Eqn (3) describes the interaction of electrons with the
electromagnetic field (4, being the Coulomb gauge vector
potential):

- EO(/)(X) ’ (4)

I, x>0,
@(x):{m veo O
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VW = 2eid, = V]exp (iwt) — exp (—iwt)] e »
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)

Following Ref. [7], we seek the steady-state (stationary)
solution of Eqn (3) in the form

¥ (x,1) ZZexp{flt[chmw Eo(n+ 1)} ¢,u(N,x),
(7)
m=0,£1,£2,..., I<n<N.

The function ,,,(x, N) describes states with quasi-
energies ¢+ mm in the nth well and satisfy the following
system of equations:

Y
[8 + mow — E()(l’l + 1)}1#,1,7, +W
_ dl//n,mfl d'wbn,erl
_V< nnet_ QW ) (8)

It is well known that the main contribution to laser
generation comes from two resonance levels that differ in
energy by the frequency w. In the present case, for the nth well
these are the upper level with energy 82(R) and the lower level
with s]R) The wave functions corresponding to these levels are
V,n(x) and ¥, (x), so that the wave function (7) reduces to
two terms for each well,

Vi exp {~it[e = Eo(n — 1)]}
¥ exp {~itfe — o — Eo(n = D]},

an-2)<x<(n—1a,

Y(x, 1) =

©)

I<n<N.

The functions ¥, and v, satisfy the system of equations
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with appropriate boundary conditions [7]. The boundary
conditions describe the flow of electrons from x = —oo,
their reflection, the exit to x = +o0, as well as the continuity
of the wave functions and the jump in their derivatives at the
boundaries of the quantum wells.

Formally, the problem reduces to the solution of a set of
4N nonhomogeneous algebraic equations. In this work, the
exact solutions, the shape of the wave function, and the
currents for any N are obtained.

3. Single-well structure
The problem for N =1 was solved earlier in Ref. [7]. The
current J.(1) and equations for the field have the form

0 F2
Jo(1) :L dx Jo(1,x) = ﬁ (12)
ra,e) =amf=or?, )
f,8) = (P +T2 =) +4r2e?,

where Q is the pump current, I is the width of the resonance
levels,

16p1pre?E?

A(l) m [Apds + 27b(N)], 2= 3 » (14

w

A1 and 434 are determinants, & = ¢+ &g, and b(l) is a
constant.

The dependence of the current J (1) and the laser field A
on £ is determined by the square of the resonant determinant
f(1,¢). The minimum of f(1,¢) corresponds to the max-
imum of the current and laser field. The equation for the
extreme values of ¢ has two solutions. The first, &, =0,
corresponds to the minimum of f for A < I' and to the
maximum for A > I'. The second,

J=)-r? i>T, (15)
yields the minimum of f(1, &) for the strong field case 2 > I

From Eqn (13) we obtain the laser power /2, whose

dependence on the pump current Q is linear

P(1)=)? = (16)

e

for & = &,, and the square root,

P(1) = r(\/a— F)

foré =¢, =0.
The physical meaning of the solution &, is clarified by
calculating the reflection coefficient

2412 12)2

R(é) = ~ I
EXOl

R(&) =0. (17)
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From this it follows that the energy ¢ = &r + &, coincides
with the resonant energy of the structure in an alternating
field.

4. Two-well structure

Many fundamental features of the multi-well structure
emerge already for N =2. Let us find the value of the
reduced current in the first well. We have

0
5o =] ez ax, (18)
oo A2 T
Jie(2) ~ {1|4|12|‘150—+214‘12} ce. (19)
|4(2)]
where
A(2) ~ [A12434®0 + 27b(2)] (20)
by = 4[01 sin ( p1a) cos ( paa) + pi1 cos (pra) sin ( paa)
+ p>cos (pra) sin ( pra)] (21)

and b(2) is the function of £. It is not difficult to see that the
first term in Eqn (19) vanishes, and the only contribution
comes from the second term, which is proportional to the
square of the field 2> and to the imaginary part of 4 125

) Tk
A"Im4,,

ch(z) ~ ’A(Z)‘z

(22)

This fundamentally important result implies that the
decay causing radiative interlevel transitions in the first well
is induced by the current in the second (right) well and is
proportional to 2%, This result will persist for any number of
wells N > 2, but the decay will be proportional to JAN=D)
Because there are no dissipative processes in a coherent
system, it is the ‘current-transmitted’ decay of the rightmost
well which is the cause of generation.

Let us proceed to the analysis of the current Ji¢(2) of the
first well in the two-well system. The key quantity here is the
resonant determinant 4(2), Eqn (20). The fundamental
difference between A4(2) and A(1) [see Eqn (14)] is the
appearance of a new elemental resonance determinant @,
Eqn (21). The vanishing of &y,

@ =0, (23)

gives the equation for the spectrum of two tunneling-coupled
quantum wells. Equation (23) has two solutions, antisym-
metric (with no energy shift) and symmetric. The energy of the
latter solution shifts downward, and the levels split. The
upper level in the first well and the lower level in the second
one also shift downward in energy because of the finite values
of oy and «;, the powers of the end barriers. Their shift is
determined by the equations

Red;; =0, Redy=0. (24)

We can achieve the simultaneous fulfillment of the resonance

conditions and Eqns (23) and (24) by satisfying the following

relations:
4o

Oy =—(,

- (25)

o
o ==z,

o] +0op =0
3 1 2

for any a. These relations retain their validity for multi-well
structures, in which case o, and o are the powers of the first
and the last wells, respectively.

The dependence of the current on the electron energy £ is
determined only by the absolute value squared of the reduced
determinant |4 (2, RIS

2\ 2
e =lieof = (e -2 -

2
P (2 2, ’
+ T (f - g A . (26)
The optimum energies of the delivered electrons ¢ are found
from the minimum condition for f(2, ¢) to be
22
2 L4 2. 92

éz = ? ’ 63 = A7,
The solutions &; and &; correspond to the minimum of
f(2,¢), and &, to the maximum of f. Unlike the single-well
structure, the minimum of f(2) for &, = 0 occurs for any A.
Besides, it is more convenient in that no electron energy
tuning is required. It is the solution &; = 0 which is of most
interest.

Comparing the current of the first well J;¢(2, 0) with that
of a single-well structure we see that they are practically
identical,

A>Ty, (27)

Je(2,0) = S 1e(1,7).

5 (28)

Note that the solutions ¢; and &; lead to the linear
dependence of the generation power on the pump current,
whereas &, leads to the square root dependence. Thus, the
reduced current of the two-well structure is equal to that of
the first well, J.(2) = Ji¢(2). Because the currents Ji¢(2,0)
and J;(1, A) are identical to within a factor of 8 /9 according to
Eqn (28), it follows that the field generated by the two-well
structure at £=0 is given by the formula (16) with
0 — (8/9)0. The total power P(2) is naturally twice that,

20
=2 5 -

P(2) (29)

5. Even-membered structures with NV > 4
We start with the four-well structure. In the approximation
adopted we have

A(4) ~ A d3a® 4 72b(4) + 2tc(4), (30)

where b(4) and ¢(4) are the functions of ¢. The structure of the
determinant has a clear physical meaning. The first term is the
product of the determinants of the end wells and of the three
determinants of the collectivized levels of the inner wells. Of
fundamental importance is the fact that the second (4?) term
also contains the determinant @,. In addition, as is the case
with 4(3), the terms with 2* must be retained.

It can be shown that the solution &; = 0 corresponds to
the minimum of |4 (4)|2 and is optimal. This property is
common to structures with even N.

It turns out that for the optimal solution &, =0, @) =0
the wave function of the first well of the four-well structure is
identical to that of the two-well structure. Hence, the reduced
current of the N = 4 structure is

Jo(4,0) = J1c(2,0) . (31)

This property is valid for any even N, so that the reduced
current of such a structure has the form

Je(N,0) = J1c(2,0). (32)
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By extending Eqn (29) we obtain the total power of the
N-well structure,

N0

P(N) = N5

(33)

i.e., is proportional to the number of wells V.

6. Conclusions

In this work we have proven that coherent generation is
possible in a structure containing any number of wells in the
absence of dissipation processes. As is known, the emission of
a photon requires decay, which in large systems is due to
interaction with phonons. In the structure studied, decay is
due to the exit of electrons from the lowest level of the
rightmost well. The stationary interband current ‘transmits’
this decay to all the wells and causes the emission of photons
in each well. Electrons delivered by resonant tunnelling make
N transitions from upper to lower levels, retain their phase in
doing so, and this process is independent of level population.
Hence, amplification and generation in such a structure are
bulk phenomena, unlike the non-coherent situation [5]. The
total generation power is proportional to the number of wells
N.

As found out in the present study, there are a number of
requirements for the generation to be effective: the resonance
condition for each of the wells, choosing the optimal energy of
the supplied electrons, a narrow enough electron energy
distribution (Ag), and, finally, coherence conditions for the
electronic subsystem.

It is shown that these requirements can be met in
superlattices of quantum wells and wires and, especially, in
quantum dot superlattices.
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Transport in weak barrier superlattices
and the problem of the terahertz
Bloch oscillator

A A Andronov, M N Drozdov, D I Zinchenko,
A A Marmalyuk, I M Nefedov, Yu N Nozdrin,
A A Padalitsa, A V Sosnin,
A V Ustinov, V I Shashkin

1. Introduction
The subject matter of this work is the transport properties of
weak barrier semiconductor superlattices and whether these

e(k)

Figure 1. Superlattices with wide (b) and narrow (d) forbidden bands;
(a) shows Bloch oscillations, and (c) shows the Zener breakdown.

superlattices can be used as a basis for creating the terahertz
Bloch oscillator. Because of interminiband tunneling occur-
ring in strong fields, the current is a growing function of the
field. At the same time, in such superlattices tunneling and
Bloch oscillations can lead to dynamic negative differential
conductivity in the terahertz frequency range. It is pointed out
that such a system is a no-inversion laser because the laser
transition occurs between equally populated (Wannier—
Stark) levels. Monte Carlo calculations for weak barrier n-
GaAs—GaAlAs superlattices are presented which show that
dynamic negative conductivity can exist in the frequency
range of 1—7 THz for superlattices with moderate mobility
at 77 K. The first experimental results on the transport
properties of such superlattices are presented.

The idea of a Bloch oscillator (or generator) dates back to
the work of Bloch (1928), Kroemer (1954), Keldysh (1962),
Esaki and Tsu (1970), a.o., and is based on the following
argument (see also Ref. [1]). If an electric field E applied along
an axis of a semiconductor superlattice (SL) with period d is
strong enough that an electron moves nearly unscattered
between Brillouin zone boundaries (4— A4’ in Fig. 1a) within
one energy band, then an electron performs Bloch oscillations
(BOs) at the (Bloch) frequency

_ctid
ekt

Taking E=3kV cm™!, d =150 A we obtain the frequency
/8 = wp/2n = 1 THz. This frequency is continuously tuned
by the applied electric field, creating prerequisites for
developing a universal tunable radiation source (generator)
in the terahertz range. Clearly, the fact that oscillations exist
does not guarantee that they can be used for radiation
generation purposes. It is negative conductivity near the
Bloch frequency which makes the generator.

Negative conductivity is a traditional topic in the study of
transport in semiconductor superlattices in the presence of
strong electric fields (see, for example, a review in Ref. [2]).
Most studies in this area consider transport in superlattices
with strong barriers and wide forbidden (mini) bands. In this
case Bloch oscillations in strong electric fields actually involve
transport within one miniband only as shown in Fig. la.
Negative differential conductivity (NDC) in such systems
occurs in the frequency range from @ = 0 to wg (Ktitorov,
Simin, Sindalovskii [3], Fig. 2b). A Bloch oscillator (gen-
erator) might look as follows (Fig. 3a). On a conducting
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