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Bloch oscillations
in quantum dot superlattices

R A Suris, I A Dmitriev

1. Introduction
In the present paper it is shown that the electronic spectrum of
ideal two- and three-dimensional quantum dot superlattices

in a static electric field can be either discrete or continuous
depending on the orientation of the field relative to the
superlattice's crystallographic axes. In the case of a contin-
uous spectrum the width of the forming transverse miniband
depends exponentially on the crystallographic index of the
field direction. A quantum theory of Bloch oscillation decay
in such superlattices is constructed. It is shown that, unlike
quantum well superlattices, the scattering of oscillating
electrons in quantum dot superlattices by phonons can be
strongly suppressed by properly choosing the magnitude and
direction of the field. As a result, even at room temperature
the decay time of Bloch oscillations can be as long as
hundreds of periods.

The huge interest in quantum dots in semiconductor
heterostructures is due to the fact that the discrete spectrum
of carriers in a quantum dot differs considerably from bulk
crystal or quantum well spectra, which are continuous.
Practical advantages due to this feature are well illustrated
by quantum dot injection lasers, where using an active
medium with a purely discrete spectrum makes it possible to
achieve a cardinal reduction in and high temperature stability
for the threshold current density compared to that in
quantum well lasers [1 ± 6].

Another very promising approachmay be to use quantum
dots in unipolar devices, for example, cascade lasers, in which
radiation is generated by transitions between the states of the
carriers of one and the same type (for example, electrons). The
concept of a unipolar semiconductor laser, first proposed as
the idea of a stimulated radiation for a superlattice [7 ± 9], was
later embodied in the quantum well cascade laser [10, 11].
Using ordered arrays of quantum dots can possibly cause a
significant increase in the efficiency of cascade lasers as well
[12 ± 15].

It took considerable effort to practically realize arrays of
structurally perfect quantum dots of sufficiently high surface
concentration and uniform size and shape [16]. Today, one
can expect that fabricating perfectly periodic semiconductor
structures in the form of quantum dot lattices may be around
the corner. As we shall show below, in such structures
terahertz Bloch oscillations with extremely high Q-factor,
can be excited. The present talk presents the theoretical
results of Refs [17 ± 19] in which a theory of carrier
localization by a static electric field in ideal 2D and 3D
QDSLs and on the decay of Bloch oscillations in such
superlattices was developed. We will demonstrate that,
compared to quantum well superlattices, in QDSLs new
attractive possibilities open up for controlling the spectrum,
localization region, and the scattering of carriers by choosing
the magnitude of the electric field and its orientation relative
to the principal axes of the QDSL.
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2. The spectrum and localization of carriers
in ideal two- and three-dimensional quantum dot
superlattices in a static electric field
The system to be studied here is an array of weakly coupled,
identical quantum dots that repeat themselves strictly
periodically in space to form an ideal one-, two-, or three-
dimensional lattice of quantum dots. In Fig. 1 a two-
dimensional square QDSL is shown as an example. We
assume that each quantum dot forms a potential well for
electrons, similar to what occurs in laser structures. The
spectrum of electrons is discrete in each well. In the absence
of an electric field the electron spectrum in a superlattice is a
set of minibands, due to the tunneling coupling between the
quantum dots forming the superlattice. Note that a remark-
able aspect of the electrical properties of layered periodic
structures Ð the possibility of negative differential conduc-
tivity Ð was first pointed out by Keldysh [20]; Esaki and Tsu
[21] realized this effect experimentally in layered semiconduc-
tor heterostructures Ð one-dimensional semiconductor
superlattices. We shall assume in our work that the electric
fields and resonance integrals between quantum dots are so
small in magnitude that the `isolated' miniband condition
�hOD5W 2 [22] Ð i.e., the condition for there being no inter-
miniband transitions due to a static electric field F Ð is
fulfilled and that the one-miniband approximation is applic-
able. 1 Here �hO � eFa is the Stark frequency, i.e., the
electrostatic energy gained over the superlattice period a in
the direction of the electric field, D is the width of the
miniband of allowed energies, and W is the energy gap
between the minibands. Following, we specify that a mini-
band is formed from the quantum ground level of an isolated
quantum dot.

For a chosen QDSL miniband described by the Hamilto-
nian Ĥ0 in the absence of an electric field, the SchroÈ dinger
equation for an electron in a static electric field has the form

ĤFC � �Ĥ0 � eF � r�C � EC : �1�

This equation is conveniently solved by taking as the basis the
miniband Wannier functions, whose strong-coupling form is
close to wave functions in isolated quantum dots and is given

by the relation [23]

j q i � 1����
N
p

X
K

exp
�
iK�rÿ q�� uK�r� ; �2�

whereN is the total number of sites in the QDSL, q �Pi niai
are site vectors, ai are the QDSL basis vectors, the summation
is over all allowed values of the wave vector K within the
QDSL's first Brillouin zone, and exp �iKr� uK�r� are the Bloch
eigenfunctions of the Hamiltonian Ĥ0. From Eqn (1),
expanding the wave function in terms of the Wannier
functions C �PCq j qi we obtain for the amplitudes Cq the
equation

�Eÿ eF � q�Cq ÿ
X
q1

1

4
Dqÿq1Cq1 � 0 ; �3�

where the quantities Dq =4 are the field modified resonance
integrals linking quantum dots one QDSL vector q apart.

The solutions of Eqn (3) are qualitatively different for two
classes of electric field directions [17]. If all the quantities
F � ai=F � ak, i 6� k Ð the ratios of the field projections onto
the QDSL basis vectors Ð are irrational for a given field
orientation (Firr in Fig. 1), then the electric potentials of the
QDSL sites turn out to be different. The spectrum in this case
is discrete and forms a two-dimensional (2D QDSL) or three-
dimensional (3D QDSL) Wannier ± Stark ladder as follows:

eR � ÿeF � R � ÿ
X

ni�eF � ai� : �4�

When the ratio of the projections of the electric field onto
the QDSL basis vectors is a rational number (a rational field
direction), then chains of quantum dots with the same electric
potential form in the direction perpendicular to the field
(Fig. 1). Neglecting interdot tunneling in these chains leads
to a degenerate discrete spectrum of carriers in the form of
Eqn (4). The inclusion of resonance integrals between the dots
in the chains leads to qualitative changes in the spectrum and
the wave functions. The motion in transverse chains is not
quantized and transverse minibands form. The resonance
integrals between quantum dots in transverse chains decrease
exponentially with increasing quantum dot separation, so
that the width of the transverse bands depends exponentially on
the field direction: the longer the period of the transverse
quantum dot chains, d?, the smaller the width of the
transverse miniband, D?, which is four times the resonance
integral between the nearest quantum dots in transverse
chains (Figs 1, 2). Taking into account the quantization of
the motion of the carriers along the field direction, the
spectrum forms a one-dimensional Stark ladder of states
(Fig. 3b)

eN�k� � 1

2
D? cos �kd?� ÿNeFdk ; �5�

D? / exp �ÿad?� ;
where the number N labels the steps of the Stark ladder, k is
the wave vector of the transverse motion along the chains, dk
is the separation between transverse QD chains, and a is a
positive coefficient dependent onmaterial parameters and the
geometry of a particular structure.

The discussion so far has been concerned with the ideal
QDSL. However, in a system of such technological complex-
ity, with many heteroboundaries in it, a certain spread in

1 The isolated miniband condition as formulated here is obtained from the

results of Ref. [22] by noting that the effective mass of an electron in a

miniband is related to the miniband width by the relation m � �h 2=Da2.

Frat k �5; 1�
Frat k �1; 1�

Frat k �0; 1�

Firr

Figure 1. Examples of rational �Frat� and irrational �Firr� field directions in

a square two-dimensional quantum dot superlattice.
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parameters is inevitable, creating dispersion in the dimen-
sional quantization energies and in the resonance integrals
involved. In addition, real structures are spatially limited and
the number of rational field directions is finite. It has been
shown [24] that for weak diagonal disorder in a strong
coupling-model chain, an electron is localized on the length
lloc � d�D?=2�2=hde 2i, where d is the chain period, and hde 2i
is the mean square dispersion of the quantization levels in a
QD. Let us denote by L the linear dimension of the QDSL in
the direction transverse to the field. Clearly one can speak of a
continuous transverse spectrum only if the condition
lloc 4L4 d is fulfilled. If, however, the relationship between
the dispersion and the widths of the transverse minibands D?
is such that lloc < d, complete localization occurs in the
direction transverse to the electric field, making the corre-
sponding resonance integral negligible. In the intermediate
region d < lloc < L the localization length in the transverse
direction is determined by the amount of spread in quantiza-
tion levels. We conclude that in real QDSLs delocalization in
the direction normal to the electric field does not occur for all
rational field directions but only for several principal
directions. Except for these principal rational directions, in a
strong enough field the nearest-neighbor approximation is
sufficiently accurate to describe the spectrum and wave
functions.

3. Bloch oscillations
The problem of an electron traveling in an ideally periodic
crystal lattice in a static uniform electric field has attracted
physicists' attention since the very beginning of quantum
solid state theory. In the fundamental work of 1928 [25],
where Bloch laid the foundations of this theory, he showed,
using quasi-classical arguments, that in the absence of
scattering and transitions between allowed energy bands an
electron in such a system undergoes oscillations (both in
momentum and coordinate spaces) at a frequency

f � eFa

h
; �6�

where F is the electric field strength, a is the lattice spacing in
the electric field direction, and h is the Planck constant.

Let us apply this simplest picture to the case of QDSLs.
The spectrum of a given QDSL miniband in the strong
coupling approximation has the form

E�K� �
X
R

DR

4
exp �iK � R� ; �7�

whereK is the wave vector lying within the first Brillouin zone
of the QDSL. Now if an electric field is switched on
instantaneously, electrons are distributed over miniband
Bloch states in equilibrium initially. Under the action of the
éeld the electrons will move in K space at a constant velocity
eFt=�h, undergoing Bragg reêections on the Brillouin zone
boundary ì which corresponds to oscillations in coordinate
space. Applying the laws of quasi-classical dynamics

�hv�K� � HKE�K� ; q
qt
��hK� � eF ; �8�

to the electrons and using Eqn (7), the current of Bloch
oscillations is found to be

j�t� � ene

�
dKv

�
K� eFt

�h

�
f �K�

�
X
R

eneDRR

2�h



cos �K � R�� sin �ORt� ; �9�

where OR � eF � R �P ni�eF � ai� �
P

niOi are the QDSL
Stark frequencies; ne is the electron density; f �K� is the initial
electron distribution function normalized to one electron; and
the angular brackets indicate averaging with the distribution
function.

From Eqn (9) it can be seen that, compared to layered
quantum well superlattices, QDSLs offer significant advan-
tages for the practical use of Bloch oscillations. In layered
superlattices oscillations occur at a single frequency of
O � eFa=�h, with a the superlattice spacing. In QDSLs, the
spectrum of the oscillations consists of two (2D QDSL) or
three (3D QDSL) basic frequencies Oi (the resonance
integrals DR=4 decrease exponentially with quantum dot
separation jRj and, consequently, the amplitude of other
harmonics is exponentially smaller than that of the basic
components). By controlling the magnitude of the electric
field and its orientation relative to the basic vectors of the
QDSL, the basic frequencies can be changed independently
[12].

Another possible way to describe Bloch oscillations is
based on the Stark representation of the eigenfunctions of the
Hamiltonian ĤF for a QDSL in a static electric field. In this
formalism, Bloch oscillations are quantum beats between the
states of the Stark ladder. Suppose that at the initial time the
wave function of an electron is a coherent mix of Stark states
(5),

C�t � 0� �
X

w 0
N; kjN; ki : �10�

The temporal evolution of Stark states is known, allowing us
to write down the solution of the non-stationary SchroÈ dinger
equation straightaway in the from

C�t� �
X

w 0
N; k exp

�
ÿ i

�h
e kNt
�
jN; ki : �11�

�1; 1�

�3; 2� �2; 1�
�3; 1�

�4; 1�
�1; 0�

Figure 2. Variation of the transverse miniband width with the crystal-

lographic index of the electric field direction for a two-dimensional

quantum dot superlattice (on the logarithmic scale).
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Because the levels of the Stark ladder are equidistant, this
implies that the quantum beats result in the electron density
oscillating at the Stark frequency in each quantum dot. When
the electric field is switched on instantaneously, the electrons
are distributed over the Bloch states of a QDSL miniband in
equilibrium initially. In this case one can obtain an expression
for the current identical to that obtained earlier in the quasi-
classical approximation (9), but with a different meaning. In
this picture Bloch oscillations are quantum beats arising due
to the coherent excitation of carriers to Stark ladder states.

It is known that the phenomenon of Bloch oscillations is
very hard to observe experimentally because of the extremely
severe requirement that scattering over the oscillation period
be weak,

tÿ1eff <
O
2p
� eFa

h
; �12�

where tÿ1eff is the effective collision rate. Therefore, predicted
theoretically as long ago as 1928 by Bloch [25], these
oscillations were not observed until the early 1990s Ð
specifically, in ideally pure, periodic layered heterostructures
in the form of A IIIBV quantum dot superlattices [26, 27]. The
periodicity scale of superlattices is tens of times larger than
the interatomic separation, allowing the condition (12) to be
fulfilled already at quite realistic electric fields of tens of
kV cmÿ1; the oscillation frequency then is of the order of
terahertz. It is this fact Ð and particularly the promise of
creating sources and detectors of terahertz radiationÐwhich
explains the great applied interest in the phenomenon of
Bloch oscillations.

However, in layered superlattices, as well as in bulk
semiconductors, whatever the magnitude of the electric field
applied, carriers are strongly scattered by lattice vibrationsÐ
an unavoidable factor which leads to the fast decay of the
oscillations. Even in the very low temperature rangeT ' 10K
the lifetime of Bloch oscillations is only ten oscillation periods
[28]. We will show later on that, unlike layered superlattices,
in QDSLs all scattering channels can be strongly suppressed
by effectively controlling and manipulating the electronic
spectrum by varying the magnitude and direction of a static
electric field. Our analysis shows that in technologically
perfect QDSLs, hundreds of Bloch oscillation periods can be
observed at room temperature. By comparison, in layered
superlattices it takes one period for Bloch oscillations to
practically completely decay at room temperature [29].

4. Scattering of carriers in layered
and quantum dot superlattices
Let us now perform a layered vs QD superlattice analysis of
possible ways to suppress scattering. In Fig. 3a is shown the
spectrum of a layered superlattice in an electric field. The
paraboloids on each of the Stark ladder's steps describe the
momentum dependence of the electron energy in the plane of
the quantum well. It is owing to the broad energy spectrum
for electron motion along the quantum dots that the
scattering remains strong for any magnitude of the electric
field. Due to the energy overlap of the states in different
ladder steps, both elastic scattering and that with the
participation of optical and acoustic phonons are possible.

The situation in a QDSL is cardinally different. Here, as
we have seen, the width of the transverse bands can be
changed by varying field orientation relative to the QDSL's
principal axes thus effectively allowing control of the QDSL

spectrum Ð and hence of the scattering.
Indeed, from Fig. 3b it is seen that scattering with the

participation of optical phonons is not possible within a
transverse miniband if its width becomes less than the energy
of the optical phonons:

�ho0 > D? : �13�

Suppose now that the transverse bands have no overlap in
energy and that for all natural n the condition

nO� D?
2�h

< o0 < �n� 1�Oÿ D?
2�h

�14�

is fulfilled, where �hO � eFak is the separation between the
Stark ladder steps andD? is the width of the transverse bands.
Then the interband processes of both elastic and optical
phonon scattering also become completely suppressed
(Fig. 3b).

Moreover, it turns out that miniband scattering on
acoustic phonons can be arbitrarily strongly suppressed.
This can be seen by noting certain aspects of the interaction
with acoustic phonons in QDSLs.

The wave function of an electron in the Stark ladder state
(5) contains two characteristic scales: the characteristic length
for carrier localization by the electric field, Lloc � Dk=eF, and
the characteristic scale of the Wannier function, i.e., in the
strong coupling approximation, the size of the quantum dot

in

�hO

Lloc

el

a

QWSL

b

in
�hoopt

4 �ho� �hO

EN�k?�

k? N

in, el

2D QDSL

D?

Figure 3. Inelastic (in) and elastic (el) scattering channels (a) in a layered

quantum well superlattice (LQWSL) in a static electric field and (b) in a

two-dimensional quantum dot superlattice for rational field directions

(�hO � eFa is the Stark ladder level separation, D? is the width of the

transverse minibands, �hoopt is the optical phonon energy, �ho � � �hsp=RD

is the upper limit on the energy of actual acoustic phonons).
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RD. It is this latter Ð the smallest Ð scale which determines
the upper limit for the wave vectors of the phonons effectively
interacting with electrons. It has been shown [18] that the
probability of a photon's being emitted or radiated by an
electron in a QDSL is proportional to the form factor

Q�q� � ��
 qj exp iq � rj q���2 � 1 ; q5 q � ;�
q

q �

�ÿb
; q4 q � ;

8<: �15�

where q � � p=RD, and that in Eqn (15) the exponent b � 8 if
the Wannier function falls off exponentially outside the
quantum dot and has no discontinuities in its first deriva-
tive. But if electron effective masses inside and outside of the
dot are different, then the discontinuity wave yields b � 6.

Such strong dependence of the form factor on the phonon
wave vector makes it possible to virtually completely suppress
scattering on acoustic phonons between the transverse
minibands of the Stark ladder (Fig. 3b). Indeed, from
Eqn (15) it follows that if the energy gap between the
transverse bands exceeds the energy of the actual acoustic
phonons �ho� � �hsp=RD determined by the form factor, i.e., if

�hOÿ D? > �ho� ; �16�

then the probability of acoustic phonon scattering between
the minibands falls off as ��hOÿ D?�ÿb, b5 6 as the energy
spread increases.

The fulfillment of the conditions (13), (14), and (16) leaves
scattering on acoustic phonons within the transverse bands
the only effective scattering channel for the ideal QDSL.
Generally speaking, it is not at all obvious that such scattering
should lead to the decay of the Bloch oscillations because
these relate to motion along the electric field direction, and in
this channel only the transverse motion of the carriers is
scattered. So in order to estimate the oscillation decay rate for
scattering within transverse minibands, it is not at all
sufficient to calculate transition probabilities, and a more
rigorous and consistent theory is needed. Because Bloch
oscillations are beats between Stark ladder states in the
Stark representation, the decay of oscillations in this
representation is a consequence of the fact that these states
lose coherence when a phonon is emitted or radiated in a
transition of an electron from one of them to another. A
natural way to describe the decay of Bloch oscillations then is
through density matrix formalism: it is the non-diagonal
elements of the density matrix which describe the degree of
coherence of the states.

5. Decay theory of superlattice Bloch oscillations.
The quantum kinetic equation describing phase relaxation
In constructing the quantum relaxation equation to describe
the decay of oscillations we [18] mainly follow Kohn and
Luttinger's procedure [30] which was applied, in particular, to
the kinetics of carriers in layered superlattices [7 ± 9, 31]. We
assume that scattering is weak over the oscillation period (12).
This assumption makes it possible to obtain a closed system
of linear equations for the quantities rk; k

N;N 0 , the elements of the
density matrix in the Stark representation (5), which are
nondiagonal in the Stark indices N, N 0 and diagonal in the
wave vectors k of the transverse band motion. In the absence
of scattering these elements oscillate at the Stark frequency,
r k; k
N;N 0 � r k; k

N;N 0
��
t�0 exp

�ÿi�NÿN 0�Ot�, which, for the case of
an electric field switched on instantaneously, yields the same

expression (9) earlier obtained in the quasi-classical limit for
the oscillation current.

Because the general equations of Ref. [18] are quite
difficult to analyze, we will only consider here the case in
which the electric field is along one of the basic vectors of a
two-dimensional rectangular QDSL and in which the nearest
neighbor approximation is applicable. For an electric field
switched on instantaneously the density matrix is spatially
uniform,

r k; k
N�n;N 0�n � r k; k

N;N 0 ; �17�

and the current density in the nearest neighbor approxima-
tion is expressed in terms of the only density matrix element
present, r k; k

N;N�1, which describes quantum beats between the
nearest Stark ladder steps,

j � ÿe tr �r̂v̂� /
�
dk Im rk; k

N;N�1 : �18�

The equation for rk; kN;N�1�t� has the following form [18]:�
ÿ q
qt
ÿ iO

�
r k; k
N;N�1

�
X
q; k 0

�
Wk; k 0

q r k; k
N;N�1 ÿ cos �qkak�Wk 0; k

q r k 0 ; k 0
N;N�1

�
: �19�

Here O � eFak=�h is the Stark frequency, ak is the QDSL
spacing in the direction of the electric field, and q and qk are
the phonon wave vector and its component along the electric
field, respectively. The right-hand side of Eqn (19) describes
the loss of coherence between the Stark states due to the
interaction with phonons (with wave vector q). The first term
on the right corresponds to the movement of electrons from
states jN; ki, jN� 1; ki to any other states with probability
Wk; k 0

q . In this process r k; k
N;N�1 decreases simply due to the

decrease in the number of electrons with transverse wave
vector k which participate in the coherent mixing, and the
phase factor is absent. On the contrary, for electron
transitions to states jN; ki, jN� 1; ki it is important what
phase they acquire when interacting with a phonon described
by the factor cos qkak.

Suppose that the non-uniformity scale of the scattering
potential (in our particular case, the phonon wavelength) in
the direction of the electric field greatly exceeds the QDSL
spacing or, in the general case, qkak is a multiple of 2p. Then
the longitudinal wave vector of an electron is virtually
unchanged by scattering, and the phase factor cos qkak is
close to unity. Noting now that the oscillation current (18) is
proportional to the integral of the function r k; k

N;N�1 over
transverse quasi-momenta and integrating both sides of
Eqn (19) over k under the condition qk � 0 we discover that
the right-hand sides of these equations integrate up to
absolute zero: the Bloch oscillation current does not decay
under these conditions. This reflects the specific nature of
phase scattering: there is no loss of coherence between Stark
states jNi and jN� 1i if the perturbation affects both of them
equally. In particular, the oscillations do not decay if a
scattering process changes only the electron wave vector in
the direction perpendicular to the electric field and if qk � 0.
In the quasi-classical picture qk is the longitudinal momentum
an electron loses (acquires) when emitting (absorbing) a
phonon. Thus, the oscillation decay rate has much the same
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meaning as the scattering rate of the longitudinal electron
quasi-momentum.

This view can easily lead to misunderstanding, however.
In a strong electric field, motion along the field is quantized,
and the concept of longitudinal quasi-momentum loses its
physical meaning. It may seem from what has been said that
in the absence of transitions between the transverse Stark
ladder bands, Eqn (5), scattering within these bands should
not lead to the decay of the oscillations because this
scattering is the one affecting the carriers' transverse
motion. But this is not so. In transitions within the
transverse bands the longitudinal momentum of the
phonon emitted or absorbed by an electron may have any
value, qk 6� 0. The conservation law for the longitudinal
momentum component of the QDSL as a whole is obeyed
as before, but the recoil momentum is now acquired not by
the electric-field-localized electron but by the superlattice as
a whole. Thus, for scattering within the transverse bands
cos qkak 6� 1, and such scattering does lead to the decay of
the oscillations.

It should be noted that in the derivation of the quantum
kinetic equation it was assumed that at zero time a coherent
mixing of Stark states forms. Hence, because of the weak
scattering, the amplitude of the Bloch oscillation current is
much larger than the direct current, and this latter can be
neglected. On the contrary, at large times, when coherence
between the Stark states is already completely destroyed,
the right-hand side of Eqn (19) is dominated by the
diagonal elements of the density matrix, which are
neglected in the present work, and non-diagonal elements
are different from zero only to the extent of the scattering.
The procedure for deriving equations for the density matrix
at large times and for calculating direct current in layered
superlattices while accounting for the electric-field-induced
electron heating is described in depth in Ref. [31] and is
suitable equally well for calculating the IÿV curve of a
QDSL.

6. Decay of Bloch oscillations
in a one-dimensional quantum dot chain
Equation (19), describing the decay of Bloch oscillations that
arise due to the sudden switch-on of an electric field, takes the
following simple form for a one-dimensional chain of
quantum dots with the period a:�

q
qt
� iO� g

�
rN;N�1�t� � 0 : �20�

Bloch oscillations decay exponentially in time, with the
decrement

g � p

�h2

X
n; q

�2nq � 1���Vq
N�1;N�1�n ÿ V

q
N;N�n

��2 d�nOÿ oq� :
�21�

Here, as before, q denotes the phonon wave vector, Vq
n is the

matrix element for the transition to n chain spacings by
spontaneously emitting a phonon, and the nq are phonon
occupation numbers. The expression for the decay decrement
contains the difference of the interaction matrix elements in
neighboring Stark states losing coherence in accordance with
Eqn (21). Unlike the usual probability of an electronmaking a
transition by absorbing or emitting a phonon, Wn

q , the
expression for g contains the phase factor 1ÿ cos qka: from
Eqns (19) and (21) it follows that g �Pn; q�1ÿ cos qka�Wn

q .

This reflects the specific nature of phase scattering: coherence
between the states jNi and jN� 1i survives if the scattering
potential affects both states equally.

Because of the absence of transverse minibands it is
possible by increasing the field to achieve (in an ideal one-
dimensional QDSL) an arbitrarily long lifetime for Bloch
oscillations: if the conditions (13), (14), and (16) are fulfilled,
the rate of scattering is proportional to F ÿb, b > 6. This
actually means that in experimental conditions the decay of
oscillations for O4 sp=RD will be determined by the
imperfection of the real structure rather than by scattering
on phonons.

7. Decay of Bloch oscillations
in two- and three-dimensional quantum dot superlattices
In two- and three-dimensional QDSLs, because carriers can
move perpendicularly to the electric field, the decay of
Bloch oscillations is no longer exponential, and the decay
decrement itself turns out to be a function of time. The
decay rate, G�t� � ÿq=qt� j�t�=j0�t��, where j0�t� is the non-
scattering current oscillation, is, as before, determined by
g�k�, a quantity which is similar in structure and physical
meaning to the oscillation decay decrement g, Eqn (20), in
one-dimensional QDSLs, but which now depends on the
wave vector k characterizing the motion of an electron in
the transverse miniband. However, besides g�k�, the
quantum relaxation equation in 2D and 3D QDSLs
contains terms that account for mixing processes in
transverse minibands. This mixing in itself does not lead to
oscillation decay but its effect on the decay time dependence
turns out to be significant. Reference [19] examines the time
dependence of the oscillation decay rate and analyzes in
detail how the decay rate depends on the width of the
transverse minibands and on the electric field for the case of
the scattering of carriers on acoustic phonons in the
transverse minibands of the Stark ladder. Here, we will
only present results on the maximum (in time) oscillation
current decay rate for the case in which (a) the electric field
is switched on instantaneously along one of the basis vectors
of a rectangular 2D QDSL, (b) the conditions (13), (14), and
(16) are fulfilled, and (c) only scattering on acoustic
phonons in the transverse minibands is of significance.

Under these conditions the oscillation decay rate G�t� is
maximum immediately after the electric field is suddenly
switched on, and tends to a constant value at large times.
The dependence of the maximum oscillation decay rate
G�0� on the degree of field-induced electron localization
and the transverse miniband width at room temperature is
shown in Fig. 4. It is seen that in the range of parameters
of interest the decay rate varies by two orders of
magnitude. Knowing this dependence it is possible, by
choosing the magnitude and direction of the electric field
in 2D and 3D QDSLs, to strongly suppress scattering and
to increase the lifetime of Bloch oscillations. The fulfillment
of the condition �hOÿ D? > �ho� for the suppression of
scattering on acoustic phonons between transverse mini-
bands implies, for the parameters chosen, that the fre-
quency of Bloch oscillations fBO � O=2p > 1012 Hz. Then
from Fig. 4b it follows that the lifetime of Bloch
oscillations in a QDSL can reach hundreds of oscillation
periods at room temperature. Such strong scattering
suppression is fundamentally unachievable in layered
superlattices, where it takes on the order of one period
for oscillations to decay at room temperature [29].
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8. Conclusions
We have seen that quantum dot superlattices allow control
of scattering processes. It has been shown that the lifetime
of Bloch oscillations in such superlattices can be increased
by several orders of magnitude compared to layered super-
lattices of quantum wells, and that it can reach hundreds of
oscillation periods at room temperature. Such strong
scattering suppression becomes possible due to a new
means, absent in layered superlattices, of controlling the
electronic spectrum Ð by changing not only the magnitude
of the applied electric field but also its orientation relative to
the principal axes of a two- or three-dimensional super-
lattice of quantum dots.

Specifically, changing the magnitude and direction of an
electric field in a quantum dot superlattice makes it possible:

Ð to widely vary the width of the transverse minibands
corresponding to motion in the direction perpendicular to the
electric field (using the fact that the width depends exponen-
tially on the field orientation);

Ð to completely suppress single-optical-phonon scatter-
ing processes determining the scattering rate of carriers in
layered III ±V superlattices;

Ð to virtually completely suppress scattering on acoustic
phonons between transverse minibands on various steps of
Stark's ladder of states; and

Ð by properly choosing the magnitude and direction of
the electric field, to strongly suppress scattering on acoustic
phonons in the transverse minibands.

Moreover, unlike layered superlattices, in quantum dot
superlattices in two and three dimensions the spectrum of
Bloch oscillations consists of two or three basic frequencies
that can be retuned independently by changing themagnitude
and direction of the electric field.

All these features make two- and three-dimensional
quantum dot superlattices very attractive for electronic and
optoelectronic device applications.
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Figure 4. (a) Maximum decay rate of Bloch oscillations G�0� at room

temperature in a two-dimensional square GaAs QDSL with a period

a � 100 A
�

against the electron localization length in an electric field

(expressed in units of the superlattice spacing a) and the transverse

miniband width D? (in units of �ho� � �hsp=RD � 4:3 meV); RD � 25 A
�
is

the QD size. (b) The same for a fixed localization length of 3 superlattice

spacings (upper curve); the lower curve corresponds to the asymptotic

large-time value G�1� of the oscillation decay rate.
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