
Abstract. Ideas on characteristic behavior of correlation func-
tions underlie all models of turbulent diffusion. This paper sets
forth a consistent analysis of these correlation ideas, beginning
with Taylor's work of 1921, which pioneered the use of the
autocorrelation function, and ending with works on the percola-
tion theory of turbulent diffusion. Despite the fact that specific
physical problems are significantly different, the commonality
of the theoretical notions involved is emphasized. It is shown
how the ideas of `long-range' correlations and fractality enter
into the percolation method. The `universality' of the percola-
tion approach to the description of turbulent diffusion is dis-
cussed at some length.

1. Introduction

The aim of this paper is to discuss some theoretical ideas,
which have played an important part in the understanding of
turbulent diffusion. This scientific problem has an eighty-year
history. An abundance of papers is devoted to the problem,
but its complete solution is still a long way off. Turbulence is
one of the fundamental phenomena occurring widely in
nature. It manifests itself in quite different forms, depending
on whether a study is made of the turbulence of a liquid, an
atmosphere, or a plasma. A wide variety of plasma instabil-

ities are responsible for the development of different types of
plasma turbulence: Langmuir, ion-sound, drift, etc. The
diversity of forms necessitates not only new special descrip-
tion methods, but also an analysis of behavior mechanisms
common to different types of turbulence. Exactly 40 years
have passed since Vedenov, Velikhov, Sagdeev and Drum-
mond, and Pines constructed the quasi-linear theory for
weakly turbulent plasmas [1, 2]. We note that the decades
devoted to the development of quasi-linear ideas fall in the
middle of the historical space of time counted from Taylor's
pioneering work [3]. One can see that the analysis of
correlation effects and the interrelation between the diffu-
sion coefficient and the autocorrelation function have been of
major importance. It would therefore be instructive to trace
the relation between Taylor's work that introduced the
autocorrelation function with the works on percolation
diffusion [4 ± 6], whose foundation is the ideas of `long-range
correlations' borrowed from the theory of phase transitions.
The works considered in my paper were selected with
precisely the aim of demonstrating that this relation is of
prime importance for the understanding of the problem of
turbulent diffusion as a whole. Owing to the brevity of this
presentation, many issues will be omitted. However, both the
monographic literature [7 ± 16, 73, 74] and Physics ±Uspekhi
contain excellent reviews [17 ± 21, 72] which shed light on
different aspects of the problem under consideration.

2. Taylor's and Richardson's results

In 1921Taylor published a paper [3] in which he put forward a
formula establishing a direct relationship between the
diffusion coefficient and the velocity autocorrelation func-
tion. A radically new `instrument' was in fact proposed for the
analysis of diffusion. Continuing in the spirit of Langevin's
and Einstein's works, Taylor wrote a stochastic equation of
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motion of a probe Lagrangian particle in a random field:

x�t� �
�t
0

v�a; t� dt ; �1�

where x is the coordinate of the point, v�a; t� is the random
function of Lagrangian velocity, and a is the initial coordinate
of the Lagrangian particle. The object of his calculations was
the average square of a random particle displacement:

hx2i �
��t

0

v�a; t1� dt1
�t
0

v�a; t2� dt2
�
: �2�

Here, the brackets h i indicate an average over the ensemble
of Lagrangian trajectories. We omit the calculations, which
are given in detail in scientific and educational literature [7,
10, 11]. The final result of the calculations is represented in the
form

hx2i � 2

�t
0

dt1

�t1
0

C�t� dt ; �3�

where C�t� is the Lagrange correlation function:

C�t� � 
v�a; t� v�a; t� t�� : �4�

More recently, Kampe de Feriet [7] proposed a somewhat
different form of this formula:

hx2i � 2

�t
0

�tÿ t�C�t� dt : �5�

Estimates of the coefficient of turbulent diffusion in Taylor's
approach lead to the expression

DT�t� � 1

2

d

dt
hx2i �

�t
0

C�t� dt : �6�

From the standpoint of the modern theory of non-
equilibrium systems, in this formula it is already possible to
`envisage' the canonical Kubo ±Green result [22] for the
coefficient of turbulent diffusion:

D /
�1
0

C�t� dt : �7�

The specific form of the expression for the coefficient of
turbulent diffusion DT�t� depends on the form of the
correlation function C�t�. Most often recourse is made to
the exponential correlation function

C�t� � V 2
0 exp

�
ÿ jtj

t

�
;

where V0 is the characteristic velocity and t is the character-
istic correlation time. In addition, there are two asymptotic
cases of significance.

In the first case, when t4 t, upon simple rearrangement
of formula (5) we can obtain

hx2i � 2V 2
0 ttÿ 2

�1
0

tC�t� dt � �2V 2
0 t� t :

This representation coincides with the well-known Einstein
law for the root-mean-square displacement R2 / t.

In the case where t! 0, one can write the simplest
approximation of the correlation formula in the form

C�t� � V 2
0

�
1ÿ t 2

t2

�
:

Upon substitution of this expression into formula (5) we
obtain the law of ballistic motion R / t in the form
hx2i � 2V 2

0 t
2.

The calculation theory of autocorrelation functions was
actively developed during the last eighty years [6, 7, 10, 11] in
connection with an ever-increasing demand for the temporal
series analysis. We therefore restrict ourselves to only several
estimates important to the subsequent discussion. Note that
from formulas (6) and (7) there follows a dimensional
estimate of the diffusion coefficient DT different from the
`Brownian' one D0:

DT � V 2
0 t ; D0 � D2

t
: �8�

Another important relationship, which will be used in the
subsequent discussion, is the expression

d2

dt2
hx2i

����
t�t
� 2C�t� : �9�

Even from general considerations it is clear that the
correlation function is a more `flexible' instrument of
investigation than the constant diffusion coefficient. The
problem formulated by Taylor [3] turned out to be particu-
larly topical in connection with the investigations of turbulent
diffusion performed by Richardson in 1926 [23]. He revealed
a significant dissimilarity of the law of atmospheric diffusion
(the `relative' diffusion of two initially close particles) from
the classical one:

R2 / t 3 4 t ; or D � R2

t
/ R4=3 : �10�

The works of Taylor and Richardson undoubtedly
opened up a fundamentally new avenue of investigations
and had a profound effect on the subsequent development
of the theory of transfer processes.

3. The Monin equation

The notions of not only the diffusion coefficient, but also of
the form of diffusion equations underwent significant
changes in the theory of turbulent diffusion. Monin's paper
[24] came to be a significant work in this field. He took
advantage of the Einstein ± Smoluchowski functional [7, 14]
for the diffusing-particle density

qn�x; t�
qt

�
��1
ÿ1

�
K�x 0; x� n�x 0; t� ÿ K�x; x 0� n�x; t�� dx 0:

�11�

Here,K�x; x 0� dx 0 is the probability that a particle residing at
a point in time t at a point x executes a transition to an interval
x 0 � dx 0 in a time dt. Let us assume that

G�x 0; x� � K�x 0; x� ÿ d�xÿ x 0�
��1
ÿ1

K�x; x 0� dx 0 : �12�
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Here, d is the symbol of the Dirac function. Then, for a
uniform and isotropic medium we obtain G�x 0 ÿ x� �
G�jxÿ x 0j�. In the simplest case under consideration, the
functional (11) is in the form

qn�x; t�
qt

�
��1
ÿ1

G�xÿ x 0� n�x 0; t� dx 0 : �13�

Here, the Fourier representation in the x variable is con-
veniently employed for n�x; t�. Then, upon performing formal
calculations we arrive at the expression

q~nk�t�
qt
� eG�k� ~nk�k; t� : �14�

Here, � symbolizes the Fourier transform. This expression is
indicative of the absence of memory effects for the Fourier
harmonics. Here, to the classical diffusion equation there
corresponds the expression

eG�k� ~nk�t� � ÿDk2~nk�t� : �15�

It is pertinent to note that this approach was pursued by
Levy and Khintchine [25]. In Eqns (14) and (15) they
employed an approximation for eG�k� in the form

q~nk�t�
qt
� ÿka~n�k; t� ; 0 < a4 2 : �16�

It is easily seen that we obtain the Gaussian case (a
conventional diffusion equation) for a � 2. For a � 1 we
obtain the Cauchy distribution and for a � 3=2 the Holtz-
mark distribution [26]. It is significant that all probability
densities with a < 2 possess power-law `tails'.

Monin's work [24] along these lines anticipated the
present-day development of ideas regarding invoking addi-
tional fractional partial derivatives in diffusion equations.
Monin leaned upon Kolmogorov's ideas concerning the
universal properties of fully developed isotropic turbulence
[7]. In this formulation, all statistical characteristics are
defined only by the special scale length lk � 1=k and the
average rate of energy dissipation in a turbulent flow
e � �L2=T 3�. From considerations of dimension, Monin
obtained an expression for the kernel of the nonlocal
functional describing the turbulent diffusion (13) and (14):

eG�k� / eG�e; k� � e1=3k2=3 : �17�

This representation actually satisfies Richardson's results of
1926 [23]: if it is assumed that

eG�k� � ÿD�k� k2 ;
then

D�k� � R2

t
/ R4=3 / kÿ4=3 : �18�

Furthermore, according to present-day terminology [28],
equation

q~nk�t�
qt
� ÿk2=3 ~nk �t� �19�

is an equation with a fractional derivative with respect to x:

qan
qxa
/ n

�Dx�a ;

where a � 2=3 [see formula (16)]. From physical considera-
tions, such probability density was derived for the first time.
However, Monin did not content himself with the `symbolic'
form of the equation. There remained the possibility to
rearrange the equation to the conventional form. The point
is that Davydov [27] had earlier proposed the use of the
equation of telegraphy (which includes `memory effects' [7])
to describe turbulent diffusion:

qn
qt
� t

q2n
qt 2
� D

q2n
qx2

: �20�

Here, t is the characteristic correlation time. This is an
equation of the hyperbolic type, which opens up additional
possibilities of employing characteristics for the description
of nonlocal effects. Davydov proposed its use for taking into
account the final velocity of particles v in molecular diffusion.
The classical diffusion equation of the parabolic type

qn
qt
� D

q2n
qx2

results from the equation of telegraphy in the limit t! 0;
D � v 2t! const. As would be expected, in the ordinary case

v /
����
D

t

r
; or R2 / t ; v / 1���

t
p !1 :

Endeavoring to derive an equation as lucid as the
equation of telegraphy,Monin resorted to double differentia-
tion with respect to time to bring Eqn (19) to the form

q3n
qt 3
� e

q2n
qx2

: �21�

It is easy to generalize the nonlocal equation (14) by
representing the effects of memory and nonlocality in one
convolution-containing equation:

q~nk�t�
qt
�ÿk2

�t
0

~nk�t 0� eDk�k; tÿ t 0� dt 0

t

� ÿk2 eDk�k; t� � ~nk�t�: �22�

On applying the Laplace transformation with respect to time
we establish the fact that expression (15) has acquired a more
general form:

ÿDk 2nk;o ! ÿk 2 eDk;o�k;o� nk;o : �23�

We now see that many years after the theoretical works of
Davydov and Monin the diffusion equations have been
repeatedly `complemented' with various partial derivatives:

q2n
qt 2

;
q3n
qt 3

;
qan
qt a

;
qbn
qxb

; �24�

with the aim of describing the effects of nonlocality and
memory [28].

4. The Howells formula and Peclet number

In the dimensional analysis of the equation of turbulent
diffusion Monin employed only one quantity e Ð the rate of
energy dissipation. However, a significant part in the
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description of turbulence [7] is played by the spectral energy
function E�k�:
hv 2i
2
�
�1
0

E�k� dk : �25�

Howells [29] managed to derive a very important formula
which established a relationship between the coefficient of
turbulent diffusion D and the spectrum E�k�. However, his
result presumably became widely known only after the
publication of Moffatt's review [30]. We will follow the
presentation of Refs [30, 31]. Let us consider the `local'
diffusion coefficient dD�k� related to a specific scale length
lk � 1=k of the vortices with velocity Vk:

dD�k� � V 2
k t0 ; V 2

k � E�k� dk : �26�

Here, dk is a small interval of wave numbers and t0 is the
characteristic correlation time. t0 will be considered to arise
from molecular diffusion:

t0 � 1

k2D0
:

We arrive at the expression

dD�k�
dk

� E�k�
k2D0

; �27�

which is differential in form. We take into consideration that
the value ofD�k� should be taken into account along withD0.
We then obtain

dD�k�
dk

� E�k�
k2
ÿ
D0 �D�k�� : �28�

Upon solving this equation we obtain the expression for the
coefficient of turbulent diffusion, which takes into account
the effect of different scales:ÿ

D�k� �D0�2 �
�1
k

E�k�
k 2

dk�D2
0 : �29�

We have assumed that D�1� � 0. With neglect of molecular
diffusion effects we obtain an expression which will be
encountered several times:

D2 �
�1
k

E�k�
k 2

dk : �30�

From the viewpoint of dimensional estimates, the resul-
tant expression is notably different from that introduced by
Taylor. The ordinary dimensional estimate of the diffusion
coefficient is a formula closely associated with the model of
random walk D0 � D2=t. Here, l is the characteristic spatial
correlation scale length and t0 is the characteristic correlation
time. An analogous estimate in Taylor's formula is
DT � V 2 t. For the formula proposed by Howells we obtain
a different type of estimate for the diffusion coefficient:

DH � Vl :

It is possible to determine a relationship between these
expressions. We consider the Peclet number [30, 31]:

Pe � lV
D0

: �31�

This dimensionless quantity is analogous to the well-known
Reynolds number Re � Vl=Z and has the same significance.
Here, Z is the coefficient of viscosity. The Peclet number
enables us to estimate the fraction of convective transfer in
comparison with the diffusion one. In terms of the Peclet
number we obtain

D0 � D0 Pe
0 � D0 ; DT � D0 Pe

2 ; DH � D0 Pe : �32�

This form of presentation of results is now in wide use [4 ± 6,
30, 31]:

Deff � D0 Pe
a : �33�

5. Corrsin's assumption

The definition of the correlation function proposed by Taylor
[3] is based on the use of Lagrangian velocities:

C�t� � 
v�a; t� v�a; t� t�� : �34�

However, the experimental determination of the Lagrangian
velocities that enter into this formula is a serious problem.
That is why use is made of the Eulerian representation for the
correlation function involving consideration of the velocity
correlation at points separated by a distance D:

CE�D; t� �


u�a; t� u�a� D; t� t�� : �35�

In this formulation, the formula for the correlation function
proves to be more convenient for experimenters. We can also
write down the Lagrangian correlation function in terms of
the Eulerian velocity:

C�t� � 
u�a; t� uÿx�a; t� t�; t� t
��
: �36�

However, there is no one-to-one correspondence between
the Lagrangian and Eulerian correlation functions. This
circumstance was repeatedly emphasized in the works of
Lamley and Corrsin [32]. Indeed, in formula (35) the
Lagrangian constraint on the points a and a� D is absent.
Here, D is merely `some' arbitrary displacement.

In 1959, Corrsin proposed an approximation formula
[32], expressing the Lagrangian correlation function in terms
of the Eulerian correlation function:

C�t� �
�
r�D; t�CE�D; t� dD : �37�

In fact, use was made of the randomization procedure here.
However, a more important point is the idea of the diffusion
nature of the displacement D, because for r�D; t� Corrsin
employed the classical solution of the diffusion equation in
d-dimensional space in the form

r � 1

�2pDt�d=2
exp

�
ÿ D2

4Dt

�
: �38�

One can see that the idea of the diffusion spreading of
Lagrangian trajectories was put forward by Corrsin eight
years prior to the publication of Dupree's papers [34 ± 36].
However, it was precisely after the publication of Refs [34 ±
36] that this idea received wide recognition.
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6. The quasi-linear approximation

Mentionwasmade of the great significance of the quasi-linear
approximation in the Introduction of the present paper.
Quasi-linear equations were first considered [1, 2] as applied
to the problem of describing diffusion in the phase space
arising from wave ± particle interaction. For our purposes it
would suffice to invoke only some of the ideas of the work of
Vedenov, Velikhov, and Sagdeev related to equations aver-
aging [8, 9, 15, 33].

Let us consider the continuity equation for the density of a
passive scalar

qn
qt
� v qn

qx
� 0 : �39�

Here, n�x; t� is the spatial density of a passive scalar and
v�x; t� is the random velocity field. We apply averaging to
Eqn (39). We assume that the density field can be represented
as a sum of the average value n0 � hni and the fluctuation part
n1 � nÿ hni:

n � n0 � n1 ;

it was assumed here that hn1i � 0 and hvi � 0. After simple
calculations, which have repeatedly been given in the
literature [8, 9, 15, 33], we arrive at two equations:

qn0
qt
�
�
v
qn1
qx

�
� 0 ; �40�

qn1
qt
� v qn0

qx
� v qn1

qx
ÿ
�
v
qn1
qx

�
� 0 : �41�

The fluctuations n1 and v are assumed to be of the order of
smallness d in comparison with the average field n0. In the
equations (40) and (41) under consideration, terms of the
order of d2 are still retained. The quasi-linearity of the
approximation lies in the fact that we keep the nonlinear
term of the order of d2 in the equation for n0 (40), but keep
only the terms of the order of d in the equation for n1 (41).
Then, from the equation for n1 we obtain

qn1
qt
� v qn0

qx
� 0 ; n1 � ÿ

� t

ÿ1
v
qn0
qx

dt 0 : �42�

We substitute this expression for n1 into Eqn (40). On
simple rearrangement [8, 9] we obtain

qn0
qt
�
�1
0



v�0� v�s�� ds q2n0

qx2
: �43�

Therefore, in the quasi-linear approximation for the diffusion
of a passive admixture we arrive at the well-known Kubo ±
Green formula (7)

D �
�1
0

C�t� dt �
�1
0



v�0� v�t�� dt : �44�

The `weak link' of the quasi-linear theory is the incon-
sistency of retaining the quasi-linear term in the equation for
n0 and discarding the nonlinear terms in the equation for n1.
The authors of numerous papers have endeavored to `touch
up' the quasi-linear approximation. Their comprehensive
analysis can be found elsewhere [15, 33]. The greatest interest
in this field was aroused by Dupree's papers [34 ± 36]. He

invoked the idea of diffusion trajectory spreading close in
meaning to Corrsin's assumption (37), (38). Indeed, the
equation for n1 is linear and hyperbolic and retains the
Lagrangian character of correlations. This opens up the
possibility to describe the neglected correlation effects by
employing the diffusion approximation [34 ± 36]. The papers
that exploit this idea will be discussed in the following
sections.

7. The Taylor ±McNamara correlation model

Taylor and McNamara considered the problem of the
calculation of the Lagrangian correlation function for the
description of a strongly magnetized plasma [37]. However,
we set forth their heuristic method regardless of plasma
models. The basis for their calculations is the Fourier
representation of Lagrangian velocities appearing in the
correlation function

C�t� � 
v�x�t�; t� v�x�0�; 0��
�
X
k; k 0

D
~vk�t� exp

�
ikx�t��~vk 0 �0� exp �ik 0x�0��E : �45�

Here, recourse was made to the Fourier transformation with
respect to the spatial x-coordinate. The next step in correla-
tion splitting in expression (45) has come to be known as the
`independence hypothesis':

C�t� �
X
k



~vk�t� ~vk 0 �0�

�

exp

�
ik
�
x�t� ÿ x�0��	� : �46�

The next step made by Taylor and McNamara relied on
Dupree's ideas of `diffusion spreading of trajectories'
�x�t� ÿ x�0��2 � 2Dt. This is in fact a `recipe for calculating
the average' of the quantity exp�ikDx�t�� in accordance with
the formula

hexpAi � exp

� hA2i
2

�
: �47�

Performing calculations gives

exp

�
ikDx�t��� � exp �ÿk2Dt� : �48�

These steps are hard to substantiate rigorously, but the result
of these calculations convinces us of the need to regard this
assumption as a serious one. Taylor and McNamara [37]
obtained an expression for the correlation function in the
form

C�t� �
X
k



~v2k
�
exp�ÿk2Dt� : �49�

Prior to proceeding with the presentation of the results of
Ref. [37], we consider the resultant expression (49) from the
`correlation' standpoint. This expression may be interpreted
as the sumofGaussian exponential correlation functions with
`weight factors' proportional to the turbulence spectrum
E�k�:

C�t� �
X
k

E�k� exp
�
ÿ t

tk

�
: �50�

In this case it is good to bear in mind that this sum of a large
number of exponents may turn out to be a function that is by
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nomeans exponential in form. Also evident is the propinquity
of this expression to the Laplace transformation. Such
expressions are most extensively employed to obtain power
correlation functions [17, 18]. Another important property of
formula (50) is the following expression for the diffusion
coefficient

D �
�1
0

C�t� dt � 1

D

X
k

E�k�
k2

�1
0

exp�ÿk2Dt� d�k2Dt�

� 1

D

�
E�k�
k2

dk ; �51�

which results from this formula.
We take notice of the similarity of the resultant expression

to Howells's result

D2 �
�1
k

E�k�
k2

dk : �52�

It is also significant that the exponential form in formula (50)
is not a necessary condition. Another functional dependence
on the parameter z � k2Dt could also suit us to ensure the
derivation of expression (52).

One can see from the above analysis that the ideas of the
interplay of scales [29, 30] and the correlation ideas of
`diffusion trajectory spreading' [34 ± 36] are closely interre-
lated. Taylor andMcNamara performed elegant calculations
in their work to obtain a formula close to Howells's result.
They introduced a quantity R�t� � �Dx�t��2. Then,

C�t� � d

dt
D � d

dt

Dx2

t
� d2

dt2
R�t� : �53�

On the other hand, from formula (49) we obtain

C�t� �
�
E�k� exp �ÿ k2R�t�� dk : �54�

In fact, we have a `Newtonian'-type differential equation

q2

qt 2
R�t� � C

�
R�t�	 : �55�

We apply a formal procedure to obtain the final solution [37]

D2 � d

dt
R�t� �

�
E�k��1ÿ exp

�ÿ k2R�t��	 dk

k2
: �56�

Consideration of the case k2R�t�4 1 is sufficient for obtain-
ing expression (52).

However, it is pertinent to note that Ref. [37] does not
contain a reference to Howells's paper [29]. It is likely that
Howells's result became widely known more recently [30, 31].

8. The Dreizin ±Dykhne superdiffusion model

The problem of calculating the coefficient of turbulent
diffusion is intimately related to the problem of the behavior
of the correlation function. In everyday language, `correla-
tion' means some relation of events. The probability theory
employs the rigorous mathematical notion of `return of a
roaming particle' to the initial point [11, 17] as a possibility to
describe correlation effects. In 1971, Corrsin made a very
interesting report [38] devoted to the probabilistic problems

of turbulence, wherein he formulated several problems calling
for solution. One was the inclusion of `returns' [11, 17], which
diffuse in the turbulent particle flow. Virtually simultaneously
published was a paper by Dreizin and Dykhne [39] concerned
with conduction in anisotropic media. In this paper Dreizin
and Dykhne proposed and considered a physically clear
model of the behavior of a particle under the action of a
sharply anisotropic diffusion. We select the longitudinal
direction (related to the direction of the magnetic field) and
assume that a `seed' diffusion with the coefficient D0 acts in
this direction. In the transverse direction, the diffusing
particle experiences random pulsations, which produce
narrow convective flows with a velocity V0 and a width a
(Fig. 1).

Dreizin and Dykhne came up with a simple model for
calculating the coefficient of diffusion in the transverse
direction D?:

D? � l2?
t
; l? � V0tP : �57�

Here, P � dN=N is the fraction of `uncompensated' pulsa-
tions and the quantityN � ����������

2D0t
p

=a is the number of flows of
width a intersected by the particle. The authors of Ref. [39]
made an estimate with the aid of `Gaussian statistics'
dN � ����

N
p

to obtain

D? � V 2
0 a

������
t

D0

r
: �58�

This is in fact a superdiffusion mode:

l? � V 2
0 a������
D0

p t3=4 4 t1=2 : �59�

z

D0

V0

a

Figure 1. Model of Dreizin ±Dykhne anisotropic superdiffusion: D0 Ð

`seed' diffusion coefficient; V0 Ð velocity of transverse pulsations; a Ð

transverse dimension of pulsations.
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To explain this result, Dreizin andDykhne considered the
correlation function of the Eulerian form

C�t1; t2� �
�1
ÿ1



V�0�V�z��F�z; t2 ÿ t1� dz ; �60�

where

F � 1ÿ
4pD0�t2 ÿ t1�

�1=2 exp

�
ÿ z2

4D0t

�
: �61�

This representation is in complete agreement with Corrsin's
idea of the diffusion nature of `decorrelations' (37), (38).

However, invoking the hypothesis of the significant role
of `returns' [17] in the diffusion model under consideration
became the main link in the description of the anomalous
diffusion nature. Under these assumptions we study the
situation with z! 0. Then,

C�t1; t2� � C�t� � V 2
0 a�������������

2pD0t
p ; t � t2 ÿ t1: �62�

The result (59) is now easy to obtain by performing
calculations [see expression (3)]:

hl2?i �
V 2

0 a�����������
2pD0

p
�t
0

�t
0

dt1 dt2�������������
t1 ÿ t2
p � V 2

0 a�����������
2pD0

p t 3=2 : �63�

As a result of analysis and calculations we see that the
nature of superdiffusion in theDreizin ±Dykhnemodel [39] is
related to the significant role of `returns', which are
responsible for the correlated nature of movements of the
diffusing particle. An interesting analysis of the part played
by `returns' in `strip-like' flows was performed by Chukbar in
Ref. [40]. Also given in Ref. [40] was the diffusion equation
corresponding to the model of Ref. [39] and containing
fractional derivatives:

q2

qt 2

� t

0

n�t 0; x� dt 0������������������
p�tÿ t 0�p ÿ V 2

0 a�������
2D
p q2n�t; x�

qx2
� ÿ n0�0; x�

2
���
p
p

t 3=2
: �64�

One more remark concerning the findings of Ref. [39] is
appropriate here. A close look at formula (62) will show that
the number of flows intersected by the particle enters
explicitly into the formula. In the one-dimensional case
involved this number is

Nw �t� /
��������
D0t
a

r
: �65�

We now can endeavor to generalize the result of Dreizin and
Dykhne to the case of a more general `topology' of the flows
with d > 1:

C�t� � V 2
0

Nw �t� : �66�

By way of simple calculations using this formula it is possible
to obtain other scalings describing superdiffusion. In parti-
cular, an estimateNw / t 2=3 is well known [17] for d5 2, and
hence we arrive at a scaling x / t 2=3.

A similar formula for the correlation function is encoun-
tered in statistical physics [22] and has a clear physical
meaning:

C�t� � hV0Vti � V0
V0

NI�t� ; �67�

where NI is the number of particles that the `probe' particle
had interacted with,

NI�t� � nRI�t� / n�Dt�d=2 : �68�

Here,RI is the interaction radius calculated on the basis of the
diffusion model in the d-dimensional space.

9. The Kadomtsev ±Pogutse hydrodynamic
approximation

In this sectionwe briefly outline only some of the results of the
well-known paper by Kadomtsev and Pogutse [41]. This
paper is concerned with the problem of anomalous electron
transport in a stochastic magnetic field [42]. In connection
with the question of the effect of correlations on turbulent
transport, a particular role is played by the model of magnetic
field diffusion under conditions whereby the quasi-linear
approximation is invalid, which was considered by Kadomt-
sev and Pogutse. They considered a three-dimensional
problem in which a weak random field B 0�Bx;By; 0� is
superimposed on a strong constant field B�0; 0;B0� aligned
with the z-axis. As regards the way of describing anisotropy,
this model is very close to that ofDreizin ±Dykhne. However,
in the case considered byKadomtsev and Pogutse, themotion
along the z-axis is not diffusive in character. That is why the
correlation effects in this formulation will not depend directly
on `returns'.

The analysis of diffusion in the quasi-linear limit was
based on the stochastic equations for field lines

dr?
dt
� b�z; r?� ; b � B 0

B0
� b0 :

Here, b0 is the characteristic relative perturbation scale. For
the transverse diffusion coefficient of magnetic field lines,
then, we obtain on averaging

DF � 1

4

�1
ÿ1



b�z; 0� b�0; 0�� dz / b20Dz : �69�

Here, Dz is the longitudinal correlation scale length. It is
evident that this representation will be valid only when the
diffusion displacement in the transverse direction is far less
than the transverse correlation scale length: b0Dz 5D?.

Kadomtsev and Pogutse considered the opposite case as
well, when b0Dz 5D?. The authors ofRef. [41] introduced the
continuity equation for the density of magnetic field lines

qnb
qz
� bHnb�r?; z� � 0 : �70�

They represented nb as the sum of the average value n0 � hnbi
and the fluctuation part n1:

nb � n0 � n1:

In this formulation, the problem is close to the problem of
quasi-linear diffusion of a passive scalar (40) and (41). Indeed,
the authors of Ref. [41] took advantage of the traditional
form of the equation for n0:

qn0
qz
� Hhbn1i � 0 : �71�
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However, in the equation for n1 they replaced the previously
discarded small second-order terms with a term diffusive in
form. In essence, following the ideas by Dupree, they related
the previously neglected correlation effects to the diffusion
spreading of trajectories:

qn1
qz
ÿDFH2

?n1 � ÿbHn0 : �72�
The equation has retained linearity, but instead of the

hyperbolic form (42) it assumed a parabolic form. Applying
the technique of Green's function to Eqn (72)

qG
qz
ÿDFH2

?G � d�rÿ r 0� ; �73�
Kadomtsev and Pogutse derived the final expression for n0:

qn0
qz
� DFH2

?n0 ; �74�

DF � 1

2

�
b2�k�

ikz � k2?DF

dk ;

b2�k� � 1

�2p�2
� 


b�0� b�r�� exp�ÿikr� dr : �75�

For Dkz > k2?DF, it was possible to derive a quasi-linear
expression [8, 9]

DF � p
2

�
b2�k� d�kz� dk / b20Dz : �76�

In the case of strong transverse correlations Dkz < k2?DF, we
arrive at the expression resembling Howells's result [29] [see
expression (30)]:

D2
F �

1

2

�
b2�k�
k2?

dk : �77�

This result of Kadomtsev and Pogutse demonstrated once
again the significance of including correlation effects, which
are neglected in the quasi-linear approach, and their intimate
relationship with the problem of including the effects of
different scales in the theory of turbulent transport. The
ideas concerning detailed consideration of scale hierarchy
were subsequently developed in the works on continuous
percolation [4 ± 6].

10. Continuous percolation and diffusion

Kadomtsev and Pogutse were the first to propose the use of a
percolation approach for the description of anomalous
diffusion in plasmas [41]. Late in the 1970s, the ideas of
scaling, fractality, and percolation received wide acceptance
[43 ± 45]. A physically clear presentation of these ideas can be
found in review papers [17, 18] and in books [16, 46]. In the
subsequent discussion we assume that the reader is familiar
with the basic definitions given therein. In the context of this
approach, the lines of flow C � C�x; y� are treated as
coastlines arising from flooding a hilly landscape with water.
It is anticipated that there is a sharp transition from isolated
lakes on boundless dry land to isolated isles in the infinite
ocean. The percolation theory necessitates the existence of at
least one coastline of infinite length.

Kadomtsev and Pogutse [41] related the anomalous
character of diffusion to the fractal character of behavior of

the lines of two-dimensional flow near the percolation
threshold (Fig. 2). They proposed the use of scaling for the
length of a percolation line of flow:

L�e� / 1

e2:4
: �78�

Here, e is a small quantity which characterizes the degree of
departure of the system from the critical state (the percolation
threshold);

e � h

lV0
;

where h has the dimension of the stream function C, l is the
characteristic dimension, andV0 is the characteristic velocity.

The subsequent progress of research on diffusion pro-
cesses in systems with complex structures, like convective cells
(Fig. 3) [31], led to the understanding of the significance of the
percolation layer width D (the stochastic layer `width') [47].
The percolation theory contains a scaling for the effective
diffusion coefficient [17]

Deff�e� � D0P1�e� : �79�
Here, D0 is the `seed' diffusion coefficient and P1 is the
fraction of space occupied with the percolation cluster. In the

D�e�

a�e�

L�e�

Figure 2. Fractal line of flow: L�e�Ð length of a percolation line of flow;

D�e�Ðwidth of the percolation layer; a�e�Ð correlation dimension; eÐ
small parameter of the percolation theory.

D0 D0

D0 D0

D

l

Figure 3. Model of turbulent diffusion on convective cells: D0 Ð `seed'

diffusion coefficient; l Ð typical cell dimension; D Ð boundary layer

thickness.
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case of convective cells, the magnitude of P1 is easy to
estimate when a parameter l Ð the cell dimension Ð is
introduced:

P1 � LD

l2
: �80�

This formula reflects the simple `topology' of percolation
diffusion in a plane.

Osipenko, Pogutse, and Chudin [47] proposed a diffusion
estimate of the stochastic layer width D

D �
���������
D0l
V0

s
�

��������
D0t

p
: �81�

Here, t is the correlation time scale. This formula has the lucid
physical significance of particle number balance. From a
convective cell there escape D0�n=D�l particles per unit time.
Convection along the boundary layer carries away nV0D
particles. Taking into account that the convective flow exists
only in a D=l fraction of space, we obtain

Deff / lV0
D
l
: �82�

The authors of Ref. [47] eventually arrived at the
following estimate for the coefficient of turbulent diffusion:

Deff � const
��������������
D0V0l

p
: �83�

Somewhat later the same estimate was obtained in Ref. [48].
In terms of the Peclet number this formula takes on the form

Deff � const
l2

t

��������
V0l
D0

s
� D0 Pe

1=2 : �84�

Close examination of formula (83) shows that, despite the
substantial advance made in Ref. [47], the anticipated
percolation character inherent in the Deff � Deff�e� depen-
dence was lost. This in fact signifies the loss of the direct
relation to `long-range correlation' effects, which underlie the
percolation approach based on the power-law behavior of the
correlation scale: a�e� � ljejÿv.

11. Percolation in the stationary case

The team of authors of Ref. [4] was able to realize the
potentiality of the Kadomtsev ± Pogutse percolation
approach. They considered a two-dimensional stationary
flow with a zero average velocity, the flow being defined by
the bounded stream function C�x; y� of `general position'.
They implied an isotropic-on-average oscillating function
with a quasi-random location of saddle points in height. The
following scales were selected:

C0 � lV0 ; l �
���� C
HC

���� :
The authors of Ref. [4] based themselves on formula (79) for
effective diffusion and invoked the notion of the convective
nature of the flow along the percolation streamline:

Deff�e� � a2

t
L�e�D�e�

a2
: �85�

Here, t is the correlation time scale and a is the only
parameter which characterizes the spatial scale in the

percolation theory [49, 50]. It is precisely through a that the
`long correlation' effects enter into the expression for the
diffusion coefficient. This is in fact a formula from Ref. [47].
However, continuing in the spirit of the works on percolation
theory, the authors of Ref. [4] suggested a `renormalization',
i.e., a way of calculating the universal value of the small
parameter e in their percolation diffusion theory. They
identified the small `width' of a percolation streamline with
the small parameter of the percolation theory (see Fig. 2):

D�e� � le : �86�

We employ the well-known expressions (81) to obtain the
equation for the determination of the `universal' value of
e� � h�=�lV0� as a function of the flow parameters D0, V0,
and l:���������������

D0L�h�
V0

s
� h

V0
: �87�

It is possible to bring the calculations to completion if
advantage is taken of the rigorous scaling results of the
percolation theory [16, 17, 51 ± 53] obtained for the correla-
tion scale a and the length of a fractal streamline L as
functions of e:

a�e� � leÿv ; L�e� � l
�
a

l

�Dh

; v � 4

3
; Dh � 1� 1

v
:

�88�

The functional form of these dependences reflects the fractal
behavior of streamlines introduced by Kadomtsev and
Pogutse. Calculations in terms of the Peclet number lead to
the expressions

h� � lV0 Pe
ÿ3=13; �89�

Deff � D0 Pe
10=13: �90�

It is pertinent to make several general remarks here.
Formula (90) derived in Ref. [4] possesses broad generality,
which may be comparable to that of Bohm's scaling for
plasma diffusion. Like Bohm's scaling, it rests upon the
`elimination of the characteristic dimension' (86) (see also
Krommes's comment on Bohm's scaling [15]). Some arbi-
trariness in expression (86) in the selection of the value le, and
not le2 or le3, may be interpreted as a will to have a universal
small parameter, just as there exists a single characteristic
dimension Ð the correlation length in the theory of phase
transitions. Here it should be particularly emphasized that the
fractal percolation streamline is not infinitely long in the
framework of Ref. [4]: the small parameter e� does not tend to
zero, but has a final value e� � h�=�lV0� for all types of flow
with the characteristic D0, V0, and l values. Therein lies the
universality of formula (90). Apart from the scalings (89) and
(90), we can also obtain some additional information useful
for the subsequent analysis. We note that the percolation
mode is intermediate in terms of the Peclet number between
the mode of convective cells from Ref. [47] and the purely
convective mode Deff � lV0. The volume fraction occupied
with percolation streamlines is estimated as

P1 � L�e�D�e�
a�e�2 � e4=3 / 1

a
: �91�
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This result was later used as a `universal' one in another work
on transient percolation [5].

The correlation time is described by the following scaling:

t � L�e�
V0
� l

V0

1

e7=3
: �92�

It is instructive to establish a closer relation of the results of
Ref. [4] to the formulas of the percolation theory [16, 17]. We
prescribe the scaling relationships for

P1 / e b ; Deff / e m : �93�

Comparing formulas (91) and (93) gives b � v � 4=3 for P1.
We employ formula (85) and the scaling forDeff from formula
(93) to obtain m � 1. The complete formula for Deff with
D0 / 1=r y gives the expression

Deff � rÿye m � e yv�b : �94�

Therefore, we can calculate the internal dimensionality of
random walking [16, 17] in the case of fractal streamlines:

dw � 2� y � ÿ 7

4
; or D0 � a2

t
� a1=4 :

Some other estimates are also possible (see Refs [16, 17]).
It is interesting to note that abandoning the relation le in

favor of relation le w (with some arbitrary index w) would
result in the transition from theDeff � D0 Pe

10=13 mode to the
Deff � D0 Pe

1=2 mode only for w > 7. A transition to the
Deff � D0 Pe mode would necessitate values w! 0.

Concluding the analysis of the results of Ref. [4] we
remark that we sought to make the presentation simple, but
the simplicity of the results is deceptive. It will suffice to recall
in this connection the entire `hierarchy' of scales used by the
authors of Ref. [4] for their analysis:

a

e
� L4 a4 l4D � le � h

V0
: �95�

Here,

L�e�� � l
1

e 7=3�
; a�e�� � l

1

e 4=3�

are not infinitely large.

12. Percolation in the transient case

Continuing in the spirit of Ref. [4], Gruzinov, Isichenko, and
Kalda [5] considered the percolation limit of the turbulent
diffusion of a scalar admixture in a transient incompressible
two-dimensional flow. On estimating the time it takes the
flow pattern to change completely as T0 � 1=o, the authors
of Ref. [5] focused their attention on the low-frequency case
o5V0=l, or l5V0T0.

In this formulation of the problem, the main parameter is
the lifetime of an individual percolation streamline t. For the
diffusion coefficient, advantage can be taken of the conven-
tional expression

D��e� � a2

t
: �96�

In the context of this problem,

t � e
1

o
� eT0 ;

where e is the small parameter of the problem similar to that
of Ref. [4]. In the transient case under consideration, one
would expect a universal result provided that a specific
`universal' value of e� were possible to calculate. For this
purpose, the authors of Ref. [5] proposed a simple expression
which takes into account the convective nature of motion
along the percolation streamline during the lifetime of this
streamline:

t � e
1

o
� L�e�

V0
: �97�

Here, it is easy to see the analogy with formula (87).
Employing the scaling from the percolation theory for L�e�:

a�e� � leÿv ; L�e� � l
�
a

l

�Dh

; v � 4

3
; Dh � 1� 1

v
;

�98�

we easily obtain e� � h�=�lV0� as a function of the flow
parameters o, V0, and l:

e� �
�
lo
V0

�1=�2�v�
� Kuÿ3=10 / o3=10 : �99�

Here, we have conveniently introduced the Kubo number
Ku � V0=�lo�. The expression for D� is obtained by direct
substitution in expression (96):

D��e�� � a�e��2
t�e�� : �100�

We note, however, that the dependence on T0 � 1=o appears
quite odd:

D� / T
1=10
0 � 1

o 1=10
: �101�

The slow `restructuring' of the flow is unlikely to result in a
significant growth of turbulent diffusion. The reason lies in
the fact that we have not taken into account the fraction P1
of percolation streamlines in the total flow:

P1 � L�e�D�e�
a�e�2 : �102�

It is now evident that we need additional information on the
magnitude of D�e�, despite the fact that we have calculated
e� � h�=�lV0�. Unlike Ref. [4], in addition to expression (97)
we are forced to make additional assumptions here. The
authors of Ref. [5] adopt D�e� � le, similarly to Ref. [4]. In
fact, use is made of formulas (86) and (91):

D � e�l ; P1 � e4=3 / 1

a�e� : �103�

Calculations now lead to the final expression for Deff:

Deff � D0 Ku7=10 / o3=10 : �104�

The resultant formula accounts for the universal character of
percolation diffusion in transient flows, since the value
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e� � h�=�lV0� depends only on the flow parameters o, V0,
and l.

Additional estimates should be made of the effect of
diffusion escape of particles from the lines of flow. The
formulas of Ref. [5] were obtained assuming that t < tD. To
make estimates, we make use of the streamline diffusion
coefficient Dc and relate it to the `seed' diffusion coefficient
D0:

tD � h2

Dc
; Dc � V 2

0D0 : �105�

The applicability condition for the results of Ref. [5] takes on
the form

1

o
h

lV0
<

h

V 2
0D0

: �106�

This is in fact a limitation on the magnitude of the `seed'
diffusion coefficient D0:

D0 <
l
V0

ho�h� / h v�3 : �107�

To conclude the discussion of this issue, we give the set of
characteristic times in the problem on percolation in a
transient flow:

1

o
h

lV0
5

h2

V 2
0D0

5
1

o
� T0 : �108�

In a similarmanner to the above-considered scale hierarchy in
the stationary percolation (95), this set of characteristic times
makes it possible to distinguish the flow modes wherein the
effects of `long-range' correlations become the principal ones.

13. Conclusions

Even a brief consideration of the above papers shows how
broad the range of investigations is in the field of turbulent
diffusion analysis on the basis of correlation ideas. The
methods which employ `renormalizations' and correlation
analysis for these purposes are under steady improvement
[55 ± 69]. In particular, the percolation approach has pro-
gressed towards the inclusion of multiple scales [6]. In this
approach, advantage has been taken of the l scale hierarchy
in lieu ofC0 � V0l. We then obtain new scaling dependences,
which employ the indexH:

Cl � C0

���� ll0
����H; Vl � V0

���� ll0
����Hÿ1:

With the use of multiple scales it has been possible to
consider from a general standpoint the Dreizin ±Dykhne
models generalized to the cases d > 1.

Percolation estimates were alsomade [82 ± 85] of diffusion
effects in a stochastic magnetic field [41, 42, 80, 81]. A
modification of the percolation method was proposed for a
nonzero average flow velocity [86, 87].

In active use is the approach involving the factorization of
the Eulerian correlation function CE�D; t� � f �D� g�t� [88 ±
90]. Methods based on `renormalization' of the equation for
the correlation function are progressing [91].

Recently, considerable interest was attracted by the works
on `self-organized criticality' related to the description of

anomalous transfer in plasmas [92 ± 94]. An analysis of
experimental data led to the employment of a simple scaling

x / tH ; H � 0:62ÿ0:72 :

Using simple estimates one can show that this leads to the
power form of correlation functions and hence to the
necessity of considering `long-range non-Gaussian correla-
tions':

C�t� / d

dt
D / x2

t 2
/ 1

tb
; H � 1ÿ b

2
: �109�

It is evident that the quest and analysis of models wherein
correlation effects are of first importance remain a topical
problem.

The author is grateful to V D Shafranov and E I Yurch-
enko for their assistance and repeated helpful discussions of
this work.
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