
Abstract. The large number of available stable isotopes and well
developed isotope separation technology have enabled growing
crystals of C, LiH, ZnO, CuCl, CuBr, Cu2O, CdS, a-Sn, Ge,
Si, etc.with a controlled isotope composition. Experimental and
theoretical studies provide evidence that the isotope effect has
an influence on the thermal, elastic, and vibrational properties
of crystals. In this paper it is shown that in Ge and C crystals
isotope effect causes only weak phonon scattering whereas in
LiH the scattering potential changes are so strong that they lead
to experimentally observable phonon localization. It is empha-
sized that a systematic description of isotope effects requires
that anharmonicity be taken into account.

1. Introduction

The concept of isotopes was introduced by Soddy in 1910 in
his studies of radioactivity (see, for example, Ref. [1]).
According to Soddy, isotopes are chemical elements having
the same atomic number (electric charge of the nucleus), but
different atomic mass (number of neutrons). In 1912,
Thomson found by mass separation in magnetic and electric
fields that neon consisted of two isotopes: 20Ne and 22Ne.
About 300 stable and 1000 radioactive isotopes are known
today. Some elements are isotopically pure (for example, Co),
while others may contain numerous isotopic modifications
(for example, Sn has 10 stable isotopes with atomic masses
ranging from 112 to 124, while Xe has 23 isotopes, 9 of which
are stable) [2].

Isotopes have long been used for different scientific
applications, especially in atomic [3] and molecular [4]
spectroscopy. It is interesting to note that the isotope shift
of the vibration band in oxygen (O ±O) was a direct proof
of existence of zero-point vibrations [5]. The discovery of
zero-point oscillations called for the introduction of the
half-integer quantum number in quantum mechanics. It is
well known that the energy of zero-point vibrations is
different for the ground and the excited electron states,
and cannot be changed by any external force. It is the
different value of the energy of zero-point vibrations in
different isotopes that causes the energy shift of the purely
electron transition in molecules with different isotope
composition. Moreover, taking into account the interaction
between electrons and vibrations (which depends on isotope
composition) leads to additional renormalization of electro-
nic terms [5]. Simultaneously, it has been noticed that,
already in the description of the isotope shift in the purely
electronic transition in molecules (for example, for substitu-
tion of deuterium for hydrogen), harmonic approximation
of the theory is insufficient [5, 4]. Note that isotope
spectroscopy has already resolved quite a few contradic-
tions in nuclear physics [6].

Even more pronounced are isotope effects in solids. A
vivid example is provided by experimental data demonstrat-
ing that after D substitution forH the change in the transition
energy in a solid (for example, LiH) is two orders of
magnitude larger than in atomic hydrogen [7]. The first
experimental investigations of isotope effects in solids were
carried out already in the 1930s. In 1935 Ubbelohde [8]
noticed that substitution of one isotope by another leads to
changes in vibrational and rotational frequencies of mole-
cules, but does not influence the structure of interatomic
potential. In the above-mentioned papers the main emphasis
was on studying the isotope effects in structural properties
(see also Ref. [9]).

As already mentioned, the existence of many stable and
long-lived isotopes allows us to talk about the emergent
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spectroscopy of solids with a given and controllable isotope
composition. The latter allows us to carry out studies of
crystals with varying isotope compositions that previously
were simply impossible because of the absence of the object of
study. The well-perfected modern technology of isotope
separation (see, for example, Ref. [10]) has made it possible
to obtain high-purity materials with practically 100%
homogeneity in their isotope composition. Besides LiH [11,
12], Cu2O [13 ± 15], ZnO [16, 17], and CdS [18] crystals with
varying isotope composition in anionic and cationic sub-
lattices, which were already grown a long time ago, recently
crystals of diamond [19, 20], germanium [21, 22], silicon [23,
26], copper chloride and bromide [24, 25], ZnSe, and GaAs
[27] have been grown.

Besides traditional applied problems, let us mention new
isotope engineering issues such as new media for information
recording, fiber optics, doping semiconductors by neutron
transmutation, thermosensors from ultrapure materials,
quantum computers, and many others of a potentially
applied nature (see, for example, [28 ± 32]).

Beginning with the classical theory of the isotope
defect by Lifshitz [33], the interest in the dynamics of
lattices with defects has not weakened in the already more
than five decades (see, e.g., the reviews [34 ± 40]) that have
passed. Such focused attention on the simplest defect
problem can be explained, in particular, by the successful
application of the methods used in its solution not only to
mixed crystals, but also to disordered systems in general
[34, 36, 39]. By definition, in the isotope-defect model it is
only the mass that changes, the force constant remaining
the same [33, 34]. Using numerical methods, Dean [35]
and Bell [36] have shown that a spectrum of the
disordered system has two characteristic domains: one
continuous, related to extended states, and the second
spiky, related to the localized ones. The nature of the
latter is often related to a single center, pair, and so on,
with a subsequent clusterization of defects (see also
Refs [41 ± 43]). With increasing concentration of isotopes,
when interaction between defects becomes essential, in the
limit an isotopically mixed crystal is obtained. A mixed
systems of this type could maximally correspond to the
virtual-crystal model because, at first sight, no changes in
the effective charge and force constant should happen in
them. As to the dependence of the lattice parameter of
the isotopically mixed crystals on isotope concentration, it
is, as a rule [23, 44, 45], linear (see, however, Ref. [46]).

Therefore, the simplest isotopically mixed crystals could
provide a model bridge between the physical properties of
isolated impurity (isotope defect) and the properties of
amorphous [47] or fully disordered materials (see also
Refs [39, 41]). As the concentration of isotopes can vary in
a broad interval (0 < x < 100%), one can hope that this
gives a rare chance of tracing the percolation threshold that
separates localized states in the phonon spectrum from the
extended ones [48, 49]. Not only does the isotope substitu-
tion modify the lattice dynamics, but it also allows us to
separate the effects due to the isotopic disorder in the crystal
lattice from anharmonic processes. Investigations of this
kind help in better understanding the phonon decay
mechanisms and their influence on other properties of
crystals (phonon ± phonon interaction, lattice parameter,
thermal conductivity, etc.). It is now becoming clear that
harmonic approximation is insufficient even at low tem-
peratures. Because of zero vibrations, the influence of

anharmonicity does not disappear even at T � 0 K. This
influence turns out to be most pronounced for small masses
of ions (atoms) when zero vibrations are, correspondingly,
large (for example, in diamond or lithium hydride). As a
result, equilibrium positions do not coincide with the
minimum of the potential energy. The role of anharmoni-
city in various cases and different effects in solids are
discussed in extensive reviews [50, 51] and monographs
[52, 53]. Here it is appropriate to note that the equilibrium
volume of the crystal depends on its isotope composition
precisely due to the anharmonic effects and zero vibrations.
As was already mentioned, the energy of the latter can be
significant and depends only on the nuclear mass.

In the present review we discuss the effects related to the
influence of isotope substitution on elastic, thermal and
vibrational properties of dielectric and semiconducting
crystals. The most pronounced isotope effects are observed,
in a wide concentration range, in mixed LiHxD1ÿx and
12Cx

13C1ÿx crystals. This is not puzzling because, first, the
Hÿ and Li+ ions have the maximal possible ratio of the
masses of isotopes. Second, the smallness of ionmasses results
in relatively large vibration frequencies (this is also true for
diamond). Because of this, the observation of quantum
properties in many phenomena is, in contrast to other
crystals discussed in this review, possible up to room
temperature. Third, the deviation from the purely ionic
bond in LiH (ionicity equals 0.8 ± 1 [54]) results in a
significant contribution of noncentral and three-body forces
which manifest themselves in the anomalies of elastic and
other characteristics.

A brief review of experimental and theoretical results on
the lattice dynamics of the LiHxD1ÿx crystals in a wide range
of concentrations has been made in [55]. Comparing the ionic
radii rLi� � 0:68 A

�
and rHÿ � 1:5 A

�
and the lattice para-

meter a � 2:042 A
�
, one sees that in the lithium hydride the

lithium and hydrogen ions significantly overlap. More
detailed information on the physicochemical characteristics
of lithium hydride can be found in Ref. [56], and that for
diamond in Ref. [57]. The common features of the results
obtained for C, LiH, ZnO, ZnSe, Cds, CuCl, CuBr, Cu2O,
GaAs, Ge and Si crystals with isotope substitution witnesses
the emergence of a new direction in lattice dynamics. Thus, it
seems timely to give a brief review of experimental results on
the isotope effects in lattice dynamics. A step-by-step
comparison with existing theoretical models (see, e.g.,
Ref. [58]) could not only reveal the degree of agreement (or
disagreement), but provide a new impulse both for the
development of new theoretical ideas and for conducting
new experiments.

Finally, note that the present review constitutes a logical
development of the recent reviews by Zhernov and Inyush-
kin [59], where, however, the main emphasis has been put
on the dependence of thermal conductivity of crystals on the
isotope composition in crystals with weak scattering
potential relevant for isotope substitution. The latter
circumstance allows an easy description of the observed
effects in the framework of perturbation theory in harmonic
approximation. In the present review we consider the
influence of the isotope effect on elastic, thermal, and
vibrational properties of various crystals, including the
case of a strong phonon scattering potential relevant for
isotope substitution, for a description of which, as will be
shown, the harmonic approximation turns out to be
insufficient.
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2. Elastic properties

2.1 Theoretical foundations
The velocity of elastic wave v in a crystalline substance
depends on its density r and the adiabatic elastic constant
Ci j. The propagation velocities of the three modes can be
calculated by solving the Kristoffel equation��Gi k ÿ di krv2

�� � 0 ; �1�

where

Gi k � Ci j k l nj nl ; �2�

in which nj are the directional cosines with respect to the
direction of propagation (see, e.g., Ref. [60]). It is known [61]
that substances having cubic symmetry have three indepen-
dent elastic constants. For each h100i direction the solutions
of (1) can be written in the following form:

v1 �
�
C11

r

�1=2

; �3�

v2 � v3 �
�
C44

r

�1=2

; �4�

where v1 is the velocity of the longitudinal wave and v2 is that
of the transverse one. For the h100i direction we obtain from
(2)

v4 �
�
1

2
�C11 � C12� � C44

�1=2
rÿ1=2; �5�

v5 �
�
C44

r

�1=2

; �6�

v6 �
�
C11 ÿ C12

r

�1=2

: �7�

In these expressions v4 is the velocity of the longitudinal wave,
v5 is the velocity of the transverse wave with particles moving
in the h001i direction, and v6 is the velocity of the transverse
wave with particles moving in the h110i direction.

Choosing an appropriate crystal orientation and a set of
measured sound velocities and using Eqns (3) ± (7), one can
calculate the elastic constants C11, C12, and C44. For most
directions in the crystal, Eqn (1) does not provide a simple
relation between the elastic constants and the corresponding
velocities. However, as shown in Ref. [62], it is possible to
determine the elastic constants from measured velocities of
ultrasound propagating in an appropriate direction by using
the method exploiting perturbation theory. The authors of
Ref. [63] used this method in estimating the elastic constants

of TlCl crystal, where it was possible to use Eqns (3) ± (7),
because the h100i and h110i planes could not be obtained with
sufficient accuracy. Later this method was used in determin-
ing the elastic constants of LiH and its isotope analogue LiD
[64].

Another method of determining elastic constants in solids
is the Mandelstam ±Brillouin light-scattering method. It has
got wide coverage in the literature (see, e.g., [65 ± 67]). Here it
is reasonable to remind the reader that for materials having a
cubic structure the phonon quasi-momentum conservation
law in the case of Mandelstam ±Brillouin scattering takes the
form

q � ��ki ÿ ks�; jqj � �2jkij sin y
2
; �8�

where q, ki, and ks are the wave vectors of the phonon, the
incident and the scattered light, respectively, and y is the angle
between ki and ks. Note that ki; s and y are determined inside
the material and, therefore, in this case the effects related to
the refracting crystal surfaces are not taken into account.

In an isotropic medium the velocity of an elastic wave v is
calculated from the frequency shift dn of the Mandelstam ±
Brillouin scattering line using the following relation:

dn
n0
� 2n

v

c
sin

y
2
; �9�

where c is the speed of light, n is the refractive index for the
radiation frequency n0, y is the scattering angle inside the
crystal, and dn is the frequency shift of the scattering line (for
more details see Ref. [66]).

2.2 Experimental results
2.2.1 LiH crystals. The low-temperature values of C11 and
C44 have been determined in Ref. [64] by measuring the
velocities of longitudinal and transverse waves propagating
in the h100i direction. The authors have measured the sound
propagation time and, using equations (3) and (4) and
taking into consideration the size, density, and thermal
expansion of the specimen, have found Cik. According to
[68, 69], at room temperature the densities of LiH and LiD
are equal to 783 and 891 kg mÿ3, respectively. Considering
the errors arising in measuring the specimen length,
propagation time, and density, the above-mentioned
authors give for C12 an absolute error of �5%, whereas
the error in determining C11 and C44 is much smaller (for
more details see Ref. [70]).

At room temperature the elastic constants of 7LiH and
7LiD crystals have been measured in [68, 71], and for the LiH
crystal in [69]. The values of elastic constants obtained by
different authors for lithium hydride and lithium deuteride
crystals are given in Table 1.

Table 1. Values of elastic constants in 7LiH (C 1
i j ) and

7LiD (C 2
i j ) (all in GN mÿ2).

C 1
11 C 1

12 C 1
44 dCtheor dCexper B1

s ,
10ÿ11 dyn sÿ1 mÿ2

C 2
11 C 2

12 C 2
44 B2

s ,
10ÿ11 dyn sÿ1 mÿ2

References

65:31� 0:2 14:85� 0:3 45� 1:1 66:26� 2 14:63� 0:3 45:53� 1:8 [71]

67:1� 0:3 14:9� 0:3 46:0� 0:2 32:0 67:8� 0:2 14:2� 0:2 47:8� 0:2 31:7 [68]

67:2� 1:3 14:93� 2:3 46:37� 1:6 32:4 33:5 [69]

67:1� 0:7 17:5� 3:5 46:0� 0:5 [90]

67:49� 0:33 14:74� 0:74 46:2� 0:23 1:8 2:2 ë 3:4 34:2 (10 K) 35:6 (10 K) [64]
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We see that the results for 7LiH are in good agreement. It
is necessary to mention an essential disagreement in the value
of C12. The reasons for this are not quite clear. The results in
Table 1 show a large distinction in the values of the constants
C11 and C44 in LiH and LiD. It is well known [72] that for
crystals with an inversion center, in the model of central
forces, the Cauchy rule C11 � C44 should hold. In micro-
scopic description of lattice dynamics the Cauchy rule follows
from the spherical distribution of ionic charges. This rule
holds for quite a few ionic crystals. The biggest deviation from
the Cauchy rule is observed in LiF, where C11=C44 � 1:53,
and the effective Szigetti charge e�S � 0:8 (see, e.g., Ref. [55]).
As is seen from Table 1, this ratio for LiH (LiD) exceeds 3.
This means that noncentral forces play an important role (see
alsoRef. [73]). The essence of the isotope effect reveals itself in
the values of C11 and C44, in LiD being larger than those in
LiH, while the opposite statement is true for C12. Note in
passing that, according to direct calculations of the elastic
constants in LiH [69], the value ofC44 is strictly dependent on
the allowance for interaction between the nearest neighbors in
the next coordination shell.

In the low-temperature limit, the Debye temperature
(Table 2) is determined from the relation that takes into
account the velocities of the longitudinal and transverse
waves (see, e.g., Ref. [70]):

y � �h

kB

�
9N

2V

�1=3�
1

v 3
l

� 1

v 3t

�ÿ1=3
: �10�

Analysis of the values of y obtained in experiments on
measuring the elastic constants and calorimetric measure-
ments demonstrates good agreement [55] (see Section 3). It
should be noted that for isotope substitution in LiH (D
substituted for H), Cik grows by 3%, and in diamond by
0.5% [79]. Suchmeasurements of dCik are possible not only in
ultrasound measurements, but in Mandelstam ±Brillouin
light-scattering as well.

2.2.2 Diamond crystals. Many of the properties of diamond
are unique: the small atomic mass, the largest elastic

constants, the fastest speed of sound and, certainly, high
Debye temperature, attesting to, as in the case of LiH [55],
quantum properties at room temperature (see also Ref. [57]).
The dependence of diamond elastic constants on isotope
composition has been studied in a number of papers [79 ±
82]. The Mandelstam ±Brillouin light-scattering method was
used in [79, 81, 82] (Fig. 1), while in Ref. [80] the measurement
of the elastic constants was made by the ultrasound method.
Experiments on Mandelstam ± Brillouin light scattering
have been made in backscattering geometry for the vector
q of the phonons propagating along the h001i, h111i and
h110i directions. The laser light beam was perpendicularly
incident on the surface of the specimens studied (see Fig. 3).
In Ref. [81] a theory of determining the isotope dependence
of the frequency of the limiting optical phonon �ho0, the
lattice parameter a, and the elastic constants Cik has been
given. The earlier developed lattice-dynamics theory for
crystals with diamond structure [83 ± 85] was based on the
model that takes into account changes in the bond lengths
and angles. The model of anharmonicity used in Ref. [84]
included three harmonic and three anharmonic force
constants. The authors of [81] have considered a simple
model taking into account four parameters: two harmonic
and two anharmonic. The harmonic part is analogous to the
one already used in [60]. Following the authors of Ref. [81],
we denote by Drin the change in the distance between the
central ion and its tetrahedral surroundings, and by Dyi j n
the change in the bond angle between two adjacent
tetrahedral ions. The energy required for the increase Dri
in the bond length equals

1

2
k1�Dri�2 ÿ 1

6
g1�Dri�3 � . . . �11�

To change the above-mentioned angle by Dyi j n, one needs an
energy

1

2
k2�RDyi j�2 ÿ 1

6
g2�RDyi j�3 � . . . �12�

Here, k1 and k2 are the force constants in the harmonic part of
the potential, whereas g1 and g2 determine, in the lowest order

Table 2. Thermal and dielectric characteristics of lithium hydride , lithium deuteride, and diamond.

Substance y, K e0 e1 aT � 106, Kÿ1 e�S=e oTO, cmÿ1 oLO, cmÿ1

LiH 860 [74]
1190� 80
(T � 0 K) [75]
1080
(T � 300 K) [75]
1083
(T � 300 K) [68]
1135 [69]

12:9� 0:5 [55] 3:61 [55] 36:5
(T � 300 K) [55]

0:53� 0:02 [55] 592 [55] 1120� 10

1109
(Li7H) [55]
1129
(Li6H) [55]

LiD 1030� 50
(T � 0 K) [75]
905
(T � 300 K) [68]
1032
(T � 300 K) [68]

14:0� 0:5 [64] 3:63 [55] 41:4
(T � 300 K) [55]

0:56� 0:02 [55] 444 [66] 880� 9 [55]
837 [76]

12C 1860
(T � 300K) [77, 78]
2200
(T � 300K) [79]

1280 [77]

13C 2114
(T � 300 K) [78]

1332 [79]
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in perturbation theory, the anharmonic contributions. Tak-
ing into account only the interaction between the nearest
neighbors, we have for the deformation energy

DU�
X
n

DUn �
X
n

�
1

2
k1
X
i

�Drin�2� 1

2
k2
X
i< j

�RDyi j n�2

ÿ 1

6
g1
X
i

�Dri n�3 ÿ 1

6
g2
X
i< j

�RDyi j n�3 � . . .

�
: �13�

Elastic modulus.The energy required for deformation that
does not change the symmetry and changes the distance from
R to R� u (u5R), i.e., Drin � u and Dyi j n � 0, is written as

DU � N

�
2k1u

2 ÿ 2

3
g1u

3 � . . .

�
; �14�

where N is the number of primitive cells in the crystal.
The change in volume is equal to DV � 3Vu=R, so that

DU � k1�DV�2
6aV

ÿ g1�DV �3
72

���
3
p

V 2
� . . . �15�

The dependence of the free energy on volume is expressed by
the following equation:

DF � 1

2
�DV�2

�
q2F
qV 2

�
0

� . . . � �DV �
2B

2V
; �16�

where B is the volume modulus. Comparison of (15) and (16)
at T � 0 K gives

B � k1
3a

: �17�
Energy of the limiting optical phonon �hx0.When two face-

centered sublattices move against each other along the h111i
direction, the term g2 exactly cancels, so that the deformation
energy for this relative shift is

DU � N

�
2

3
�k1 � 4k2� u2 ÿ 4g1u

2

27
� . . .

�
: �18�

In this relative motion, the kinetic energy corresponding to
one primitive cell is equal toP2=M, where P is the momentum
canonically conjugate to u, and M is the mass of the atom
(M=2 is the reduced mass in the case of diamond). Then the
Hamiltonian corresponding, for this motion, to the primitive
cell, is

H � P2

2M
� 2

3
�k1 � 4k2� u2 ÿ 4g1u

3

27
� . . . �19�

In harmonic approximation, the angular frequency of the
optical phonon F2g in the center of the Brillouin zone
(O0 � �ho0) equals

O0 � ÿ
�
8�k1 � 4k2�

3M

�1=2
: �20�
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Figure 1. Mandelstam ±Brillouin light-scattering spectra of (Ð) natural and (- - -) isotopically enriched 13C diamond: (a) the spectra measured in the

backscattering geometry for lL � 5145 A
�
and laser beam excitation along the h111i direction. The scattered light was analyzed by a (5+4) tandem of

Fabry ± Perot interferometers. L and T denote the longitudinal and transverse waves respectively; (b) Mandelstam ±Brillouin spectrum for 13C in the

same geometry as in Fig. 1a, but with the spectrum analyzed by a five-wayFabry ±Perot interferometer. The intensity of the longitudinal L and transverse

T wave peaks is approximately 8.4 and 5.4 orders of magnitude less than the intensity of the exciting laser line; and (c) same as in Fig. 2b, but for 12C. The

intensity of L and T peaks is now 8.7 and 5.7 orders of magnitude less than that of the exciting laser line [81].
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In order to estimate the effect of zero vibrations, in the cited
paper [81] the Hamiltonian (19) has been quantized. Choos-
ing, following [81], the normalized wave function in the form

C�u� �
�

a���
p
p
�1=2

exp

�
ÿ a2

2
�uÿ d�2

�
; �21�

where a and d are the variational parameters, one can
calculate the value of the HamiltonianH in the stateC�u�

E�a; d� � �h2a2

2M
� 2

3
�k1 � 4k2�

�
d2 � 1

2a2

�
ÿ 4g1

27

�
d3 � 3d

2a2

�
� . . . �22�

For a given d, the minimum of E�a; d� corresponds to the
following value of a:

a �
�
MO0

2�h

�1=2�
1ÿ 16g1d

9MO2
0

�1=4

: �23�

Then,

E�d� � �hO0

2
� 1

4
Mo2

0

�
dÿ 8�hg1

9M 2O3
0

�2

ÿ 16�h2g21
81M 3O4

0

� . . .

�24�
with

o0 � O0

�
1ÿ 32�hg21

81M 3O5
0

�
: �25�

We see that the minimum of the total energy corresponds to a
displacement d � 8�hg1=9M

2O3
0 with respect to the classical

value obtained by neglecting the kinetic energy due to zero
vibrations of the atoms. The latter effect results in the
renormalization of the optical phonon frequency according
to formula (25).

Let us now briefly discuss the impact of zero vibrations on
the magnitude of the volume modulus B. To this end, let us
consider the homogeneous expansion of a crystal without
changing its symmetry but taking into account the effect of
zero vibrations. Let us use a procedure analogous to the one
considered above used for the renormalization of o0. For a
homogeneous change in volume, the Hamiltonian of the
primitive cell reads

H � P2

M
� 2k1u

2 ÿ 2

3
g1u

3 � . . . �26�

Using the variational wave function as in (21) andminimizing
the average value of theHamiltonian (26) with respect to a, we
obtain

E�d� � �h

�
2k1
M

�1=2

� 2K1�dÿ d0� � . . . ; �27�

where K1 determines the renormalized stiffness constant

K1 � k1

�
1ÿ �hg21

8
���
2
p

k
5=2
1 M 1=2

�
; �28�

d0 � �hg1
���
2
p

8k
3=2
1 M 1=2

: �29�

As a result, the renormalized volume modulus T is described
by the following relation:

T � K1

3a
: �30�

Taking into account the effect of zero vibrations on the
lattice parameter, we have

a0 � a1 � �hg1���
6
p

k
3=2
1 M 1=2

; �31�

where a1 is the distance between the nearest neighbors in the
case of the infinite mass of the atoms and when zero
vibrations are neglected. Simultaneously taking into account
the dependences of the lattice parameter a�x� and the
frequency of the limiting optical phonon o0�x� on the energy
of zero vibrations and the anharmonicity, we have

a�x� � a�0� ÿ �hg1

�6k31M0�1=2
�
1ÿ

�
M0

Mx

�1=2�
;

o�x��o�0�
�
M0

Mx

�1=2�
1� 32�hg21

81M3
0o�0�5

�
1ÿ

�
M0

Mx

�1=2��
:

The values of the elastic constants have been determined from
the experimental results of Ref. [81] (Table 3). The elastic
constants X were calculated from the formula

X�x� � C 2r�x�
4o2

Ln
2�x� Do

2�x� ; �32�

where the density of 13C depends on the isotope concentration
x as follows:

r�x� � 8Mx

a3�x� ; Do � �2oL n
Vs

c
sin

y
2
;

and a�x� was determined, following Ref. [86], from the
formula

a�x� � 3:56715ÿ 0:00053x : �33�
The thus-found value of r�x� � 3:5152 g cmÿ3 is, taking into
account (33), comparable with the value of density
3.5153 g cmÿ3 mentioned in Ref. [87]. In Ref. [81] the values
ofC11,C12, andC44 for three concentrations of x equal to 0.0,
0.01105, and 0.992 have also been found (see Table 3). In the
last formulas, oL is the frequency of the laser radiation, n is
the refractive index of the scattering medium (in our case,
diamond), Vs is the speed of sound, and c is the speed of light
in a vacuum.

A theoretical estimate for T�x� has been given by the
following expression:

T�x�
T�0� �

a�0�
a�x�

�
1� �hg21

8�2k51M0�1=2
�
1ÿ

�
M0

Mx

�1=2��
� 1� 0:0012x ; �34�

Table 3. Elastic constants Ci j and the volume modulus T in units of
1012 dyn cmÿ2 in diamond [81].

x Sample C11 C12 C44 T

0.0
0.01105
0.992

D29
D1. D2. D17
D30

10.799(5)
10.804(5)
10.792(7)

1.248(10)
1.270(10)
1.248(14)

5.783(5)
5.766(5)
5.776(7)

4.432(8)
4.448(8)
4.429(12)
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where for diamond k1�4:76� 105 dyn cmÿ1 and g1�
�4:5� 0:4� � 1014 erg cmÿ3.

The third-order elasticity modulus T 0 can be expressed
through the parameter of anharmonicity g1:

T 0 � dT

dP
� V

T

qT
qg1

qV
qg1
� g1

12
���
3
p

T
� g1a

4
���
3
p

k1
� 4:9 : �35�

Assuming further that the volume modulus is linearly
dependent on pressure, one can obtain the Mungham
equation of state

V0

V
�
�
1� p

T 00
T0

�1=T 0
0

; �36�

where T 00 is the derivative of the volume modulus with respect
to pressure estimated at P � 0. The experimentally derived
value of T 00 [82] equals 4.03, so that it can be concluded that
themolar volume of 12C equals that of 13C under a pressure of
P � 0:2 GPa. One has, therefore,

T �13C� ÿ T �12C�
T �12C� � 1:8� 10ÿ3 : �37�

This estimate is in reasonable agreement with the previous
value obtained from formula (34). An analysis of the contra-
dictory results of the ultrasound measurements of the elastic
constants in diamond [80] can be found in reference [70].
Based on the results of the experiment on LiH and LiD in
Ref. [88], a value g1 � 3:5� 1015 erg cmÿ3 has been obtained.
It is easy to see that by substituting equation (28) into
expression (32) one can find the relation describing the
renormalization of elastic constants due to the isotope effect

(see also Ref. [70]),

DC44 � k1
8a

�
1ÿ

�
�hg1
8K 2

�2
1�������
Km
p

�
; �38�

where m is the reduced mass of the primitive cell. According
to the experimental data of Ref. [69], the relative change
dC44 after isotopic substitution in lithium hydride is equal to
2.2 ± 3.4%, whereas the estimate of (37) gives a value of
1.8% [88]. In the last paper it is mentioned that the
difference between the theory and experiment can be
explained even by taking into account only the lowest
order anharmonicity that was used in this paper (see also
Ref. [89]).

2.3 Temperature dependence of elastic constants
Temperature dependence of elastic constants in LiH and LiD
crystals has been studied by both the ultrasound method [64,
68, 69] (Fig. 2) and the Mandelstam ±Brillouin light-scatter-
ing method [74, 90] in a temperature interval of 4.2 ± 300 K. It
has been shown that the constants C11 and C44 grow with
decreasing temperature, whereas C12 diminishes. The weak
dependence of the volume modulus on temperature is
explained by the partial cancellation of C11 and C12 contribu-
tions (see also Refs [91 ± 96]).

The authors of Ref. [52] have shown that the temperature
dependence of the elastic constants can be described as
follows:

Ci j�T � � Ci j�0� �1ÿD�e� ; �39�

where D is the parameter depending either on the type of the
crystal or on the model, and �e is the energy of a single

15.6

C
1
2
,
G
N

m
ÿ2

15.2

14.8

14.4

14.0

13.6

a

0 50 100 150 200 250 300

Temperature, K

C
1
1
,
G
N

m
ÿ2

C
4
4
,
G
N

m
ÿ2

77

75

73

71

69

50

49

48

47

46
0 50 100 150 200 250 300

Temperature, K

b

Figure 2. (a) Temperature dependence of the elastic constant C12 of (�) 7LiH and (�) 7LiD crystals [64]; and (b) temperature dependence of the elastic

constants C11 and C14 in (�) 7LiH and (�) 7LiD crystals. The solid lines show the results of calculations according to formula (39) [64].
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oscillator. When using the Debye ±Einstein model, the above
expression gives a sufficiently good description of the

temperature dependence of the elastic constants. Using this
particular method, in Ref. [64] a reasonably good agreement
between theory and experiment for the crystal of lithium
hydride and its isotopic analogue has been obtained [97 ±
101].

The temperature dependence of the elastic constants in
diamond has been studied by the Mandelstam ±Brillouin
light-scattering method in Ref. [82]. For a theoretical
description of the elastic constants of diamond, the authors
have used a polynomial of the following form:

Ci j�T � � C0 � C1�Tÿ 300� � C2�T 2 � 3002� : �40�

To describe the elastic constants of diamond, it has been
necessary to use nine free parameters C0, C1, and C2 (Fig. 3).
As a result, the following values of the elastic constants at
room temperature have been obtained: C11 � 1080:4 GPa,
C12 � 127:0 GPa, and C44 � 576:6 GPa. The authors of
Ref. [82] have described the temperature dependence of the
volume modulus by the following expression:

B�T � � 444:8ÿ 0:000012�T 2 ÿ 3002� : �41�

The authors of the cited works have demonstrated that,
after heating from room temperature to T � 1600 K, the
diamond hardness diminished by 7 ± 9 %.

Studies of the temperature dependence of elastic constants
[82, 90] have allowed us to estimate the temperature
dependences of force constants at the atomic level. Calcula-
tions of the force constants are done using either the model of
Ref. [84] or that of Ref. [83]. In spite of the assumptions in
these two models being the same, the physical results are,
nevertheless, different. The first model [84] has two para-
meters, a and b, related to the zones of the stretching and
bending vibrations, whereas the second one [83] comprises
four force constants. The authors of [82] have used two
constants k1 and k2, describing, correspondingly, the stretch-
ing and bending vibrations (for more details see Ref. [70]).

3. Thermal properties

3.1 Dependence of the thermal conductivity of diamond,
germanium, and silicon on isotope composition
Thermal conductivity of crystals has been a subject of many
experimental and theoretical studies (see, e.g., reviews and
monographs [102 ± 105]). The first experimental results (see,
e.g., [106]) have already pointed out the existence of
maximum of the thermal conductivity coefficient km at
about T � 0:05yD, where yD is the Debye temperature
(Fig. 4). The growth of k at low temperatures has been
related to phonon scattering due to Umklapp-type processes
(see also Ref. [107]). In the vicinity of km, thermal conductiv-
ity is quite sensitive to impurities and defects in the specimen.
In the usual models, the thermal conductivity of insulators, in
which the carriers are scattered only by phonons, is described
by the thermal conductivity equation in the relaxation-time
approximation (see Refs [53, 102]).

3.1.1 Theoretical models. In this paragraph we give a brief
description of the main theoretical models used in the
analysis of experimental data on thermal conductivity
[102, 106, 108]. Klemens [102] has obtained the phonon
scattering rate (analogous to the Rayleigh photon scatter-
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ing) equal to

tÿ1 � Ao4 ; �42�

A � gV

4pv 3
B

: �43�

Here, the constant A describes the change in the mass,

g �
P

ciM
2
i ÿ �

P
ciMi�2

�P ciMi�2
; �44�

where ci and Mi are the concentration and the isotope mass,
respectively. The mean free path calculated by Klemens was
defined as Li � gT 4, where g is a quantity describing the
isotope change of the mass. In formulas (42) and (43), V
denotes the atomic volume and vB the mean sound velocity.
Equation (42) corresponds to the Debye-like density of states
D�o� � o2 which, as will be seen below, is taken into account
in explaining the experimental results.

At low temperatures and for phonon scattering by crystal
boundaries, the thermal conductivity behaves as k � T 3 with
a prefactor being determined by both the specimen geometry
and the details of the surface. The scattering rate can be
written as follows:

tÿ1 � vB
LE

; �45�

where LE is the effective phonon mean free path, which
depends on many factors (specimen geometry, phonon
focusing, mirror (diffuse) reflection from the surface, etc.).

Below, a brief account of the widely used k�T � scattering
theory that was formulated by Callaway [109] and of its
modifications introduced by Holland [103] is presented.

The Callaway model. According to this model
(1) one assumes aDebye-like phonon spectrum not having

any structure, with no account for any type of anisotropy or

phonon polarization (indistinguishibility of transverse and
longitudinal phonons);

(2) only the mean sound velocity vB is considered;
(3) the scattering by the surface is assumed to be

exclusively diffusive [see equation (45)];
(4) the normal three-phonon processes, having relaxation

times tÿ1N � B2o2T 3, operate only for low-frequency longi-
tudinal phonons;

(5) the relaxation time of the Umklapp processes is
described analogously to that of the normal processes,
tÿ1U � B1o2T 3 (see also Ref. [102]);

(6) the relaxation times of all scattering processes are
described separately;

(7) the relaxation times of various scattering processes are
considered to be additive.

Within these assumptions, the full thermal conductivity
takes the form (see also [110])

k � k1 � k2 ; �46�
where k1 and k2 are defined as follows:

k1 � cT 3

� y=T

0

tC�x� J�x� dx ; �47�

k2 � cT 3

n � y=T
0

�
tC�x�=tN�x�

�
J�x� dx

o2

� y=T
0

�
tC�x�=tN�x� tR�x�

�
J�x� dx

� cT 3�bI� :

�48�
Here,

b �
� y=T
0

�
tC�x�=tN�x�

�
J�x� dx� y=T

0

�
tC�x�=tN�x� tR�x�

�
J�x� dx

;

I �
� y=T

0

tC�x�
tN�x� J�x� dx ; �49�
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Figure 4. Temperature dependence of the Debye temperature of (a) LiH and (b) LiD crystals [98].
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and

J�x� � x4 expx

�expxÿ 1�2 ;
1

tC�x� �
1

tN�x� �
1

tR�x� ;

x � �ho
kBT

; m � kB
�h
; c � kBm

3

2p2vB
: �50�

In formula (50), kB is the Boltzmann constant, �h is Planck's
constant, and tN �tR� is the relaxation time of the normal
processes (resistive processes). As is seen from Eqn (50),
relaxation rate tÿ1C is a sum of the normal, nonresistive (N)
and resistive (R) processes. As opposed to the earlier Klemens
[102] and Ziman [108] models, in the Callaway formulation
the probabilities of all resistive processes are additive, i.e.,
1=tR �

P
i�1=ti� (where ti, tB, and tU are the relaxation times

corresponding to scattering by isotopes and crystal bound-
aries and due to Umklapp processes, respectively). From this,
there follows that all corresponding phonon scattering
mechanisms are assumed to be independent.

The term k2 does not, as is sometimes assumed in the
literature (see, e.g., Ref. [109]), constitute a correction to k1,
but is a normal counteraction to the effects of N-processes in
tC if they are all resistive. Therefore, k2 is an integral part of
the Callaway theory. Usually the quantity k2 is determined by
the concentration of point defects. In the main cases which
present physical interest, resistive scattering dominates,
tN 4tR ) tC � tR ) k25 k1, and it is important to keep k1
only. This is precisely for this reason that only the k1 term is
considered in the literature. However, when N-processes
become comparable to the resistive ones (tN � tR), for
example in a very pure, monoisotopic specimen, the integrals
determining k2 (48) make a sizeable contribution to thermal
conductivity [110]. Therefore, in monoisotopic specimens, the
normal three-phonon processes determine the phonon mean
free path to a larger extent than the Umklapp ones.

The Holland model. The Holland theory constitutes the
next step as compared to the Callaway theory because it
explicitly includes both kinds of phonons, longitudinal and
transverse. It is assumed that k2 � 0. Because the changes in
relaxation times with changing frequency and temperature
are strictly determined by the types of the branches of
phonons participating in the process and by their disper-
sions, the contributions to the thermal conductivity from the
two types of phonons (longitudinal and transverse) are
essentially different, although the normal processes are
taken into account through the structure of the crystals
considered, as earlier assumed in the paper by Herring [111].

Consideration of the transverse phonons in Ge, which has
a large dispersion [112], is the most realistic. This leads to the
division of the integration domain into two subdomains, low-
and high-frequency, having different temperature and fre-
quency dependences.

The four scattering mechanisms (see Table 4) of phonons
in the Callaway model have the following temperature and
frequency dependences:

tÿ1I � Ao4 ; �51�

tÿ1B �
vB
LE

; �52�

tÿ1TO � BToT 4 at 04o < o1 ; �53�

tÿ1LO � BLo2T 3 at 04o < o3 ; �54�

tÿ1TU �
BTU o2

sinh x
at o1 4o4o2 ;

0 at o < o1;

8<: �55�

where x � ��ho=kBT �, and the indices T(L) refer to the
transverse (longitudinal) acoustic phonons. According to
Holland, the integral k1 (in the Callaway notation) accounts
for separate contributions from TA and LA, described by the
expressions for kT and kL. The kT term is split into two terms,
corresponding to contributions of the N-processes (kTO) and
U-processes (kTU):

k � kT � kL � kTO � kTU � kL �56�
where

kTO � 2

3
HTOT

3

� y1=T

0

tTOC �x� J�x� dx ; �57�

kTU � 2

3
HTUT

3

� y2=T

0

tTUC �x� J�x� dx ; �58�

kL � 1

3
HLT

3

� y3=T

0

tLC�x� J�x� dx ; �59�

and

tTOC �x� �
�
vB
LE
� Am4x4T 4 � BTmxT 5

�ÿ1
;

tTUC �x� �
�
vB
LE
� Am4x4T 4 � BTUm

2x2T 2

sinh x

�ÿ1
;

tLC�x� �
�
vB
LE
� Am4x4T 4 � BLm

2x2T 5

�ÿ1
;

Hi � kBm
3

2pvi
; m � kB

�h
: �60�

In each of the three integrals, the constant Hi includes the
corresponding sound velocity vi. It is necessary to stress that
in equation (57) one neglects the U-processes, because their
contribution below o1 (for y1 � 101 K for Ge) is equal to
zero. In equation (58) the term corresponding to N-processes
is omitted because above o1 their contribution is relatively
small. As follows from the quantitative check [113], these
assumptions are justified (for more details see Ref. [59]).

3.2 Experimental results
Diamond. The role of isotopes as an additional channel of
phonon scattering and their influence on thermal conductiv-
ity were first theoretically studied by Pomeranchuk in 1942
[114], and were experimentally studied using Ge in 1958 [115].
According to the results of the latter reference, for a Ge
specimen (having 95.8% 74Ge), a threefold growth of the
thermal conductivity coefficient as compared to the specimen
of germanium with normal isotope composition was
observed. Later, the influence of isotopes on diamond
thermal conductivity was studied many times [78, 116 ± 120].
The first results on diamond thermal conductivity have
already shown that approximately a 1% decrease in the
concentration of 13C isotope in natural diamond (from 1.108
to 0.07%) leads to a 50% increase in km, where km is the
thermal conductivity coefficient at the maximum of the
corresponding curve.

As an example, in Fig. 5a, according to the results of
Ref. [113], the temperature dependence of the thermal
conductivity of two specimens of type IIA diamond is
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shown. The observed values of thermal conductivity agree
well with those obtained earlier in the whole temperature
interval. It is necessary to note, however, that a 10%
difference in the values of thermal conductivity in the two
specimens reflects, in the opinion of the cited authors,
different concentrations of defects in the specimens studied.
To describe the large growth of diamond thermal conductiv-
ity at a 1% drop in the concentration of 13C isotope (Fig. 5b),
the authors of Ref. [113] have used the Debye model

k�T � � NkB
X3
i�1

vi

�
T

yDi

�3 � yDi
=T

0

l�x� x4 exp x

�exp xÿ 1�2 dx ;

�61�
where N is the density of atoms (for diamond
N � 1:762� 1023 cmÿ3), the summation over i includes one
longitudinal and two transverse modes, vi is the speed of
sound, vl � 1:75� 106 cm sÿ1 [120], vt � 1:28� 106 cm sÿ1,
and y � yDi

is the effectiveDebye temperature of the ithmode

yDi
� 2:997� 10ÿ11viN 1=3sK : �62�

Here, s is the number of vibrational branches, K is the
combination of elastic constants (for more details see
Refs [49, 53]), l�x� is the mean free path, and

x � �hvi
kBTl

; �63�

where l is the phonon wavelength. As before [see formula
(50)], it is assumed that the scattering velocity in the resistive
processes is additive, i.e.,

l�x� � ÿlÿ1bound � lÿ1def � lÿ1Umkl

�ÿ1 � l
2
: �64�

The terms lbound, ldef and lUmkl are the phononmean free paths
related to the boundaries of the specimen, point defects, and
U-processes, respectively. The term l=2 is included to avoid a

nonphysical singularity in the case when the mean free path
becomes comparable to the phonon wavelength.

In spite of the fact that in the literature the Debye model is
often called the Klemens ±Callaway model, the authors of
Ref. [113] have chosen the former name. As is known,
Klemens assumed that phonon scattering rates are additive
and ignored N-processes, whereas Callaway took the latter
into account.

It is necessary to note that in his analysis of experimental
data [115] Callaway did not take into account N-processes
and used a simple Debye model. According to Ref. [113], the
mean free path is written as

lÿ1bound �
1

A
; �65�

lÿ1def �
B

l4
; �66�

lÿ1umkl � C
T

l2
exp

�
ÿD

T

�
: �67�

Formulas (65) and (66) have already been used by Klemens
[102] and Peierls [107]. A good agreement with experiment has
been obtained [113] using the following values of parameters:
A � 0:1 cm, B � 4:0� 10ÿ25 cm3, C � 2:0� 10ÿ12 cm Kÿ1,
and D � 550 K. The parameter values established are
reproduced in Table 4. These values are quite close to those
published earlier [78, 118, 120]. In reference [113] it was
assumed that the scattering rate in N-processes is much larger
than that in the resistive processes, both giving the same value
of thermal conductivity in the Callaway and Ziman models,
which is described by the following expression:

k�T � � NkB
X3
i�1

vi

�
T

yDi

�3

�
h � yDi

=T

0 x4 exp x�exp xÿ 1�ÿ2 dx
i2

� yDi
=T

0 lÿ1�x� x4 exp x�exp xÿ 1�ÿ2 dx
; �68�
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Figure 5. (a) Temperature dependences of the thermal conductivity of two type IIA diamond specimens [113]: (1) specimen No. 1 and (2) specimen No. 2;

(b) temperature dependences of natural (type IIA) and synthetic diamonds with a 13C concentration of 0.07%. The results of computations in the Debye

model are shown by dashed line 2. The solid line 1 describes the thermal conductivity of an almost monoisotopic (12C) diamond, the Rayleigh term having

served as a fitting parameter [113].
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where lÿ1�x� is the inverse quantity of that determined by
formula (64). In this case the parameters describing the
experiment on thermal conductivity of diamond take the
following values: A � 0:055 cm, B � 1:5� 10ÿ26 cm3,
C � 1:4� 10ÿ12 cm Kÿ1, andD � 730 K (Table 4, Callaway
model). It is not surprising that these parameters differ from
those found earlier in the framework of the Debye model.
Thus, the observed influence of isotope scattering of
phonons on the thermal conductivity of diamond is suffi-
ciently well described by the modern theory taking into
account the N-processes. At the same time one should add
that the assumption of the dominance of N-processes leads to
a disagreement between theory and experiment in describing
the temperature dependence of thermal conductivity (see also
[70]).

Germanium and silicon. Taking into account the high
degree of purity (jNd ÿNaj < 1014 cmÿ3) and perfection of
Ge specimens used in Ref. [121], we will mainly describe the
experimental results obtained in this paper. Four phonon
scattering mechanisms that determine the temperature
dependence of thermal conductivity were considered:

(1) normal (N) three-phonon scattering processes,
(2) three-phonon processes,
(3) phonon scattering by the boundaries,
(4) isotopic (I) fluctuation of mass (point defects).
In Ref. [121] the parameters of the last two mechanisms

were determined by the conditions of the theoretical model
and have therefore been fixed. In that paper, the phonon
scattering by dislocations has also been considered. The
temperature dependence of the thermal conductivity of five
Ge specimens with different isotope compositions is shown in
Fig. 6a. The maximum value of km� 10:5 kW mÿ1 Kÿ1 was
observed, in the vicinity ofT � 16:5 K, for the 70Ge specimen
of 99.99% purity, which is significantly higher than the value
for sapphire (6 kW mÿ1 Kÿ1 around Tm � 35 K) and
comparable to the value for silver (11 kW mÿ1 Kÿ1 near
Tm � 15:4 K). The authors of Ref. [121] note that all speci-
mens (with the exception of that containing 95.6% 70Ge) had,
within 10% accuracy, the same geometry. It can be seen that
the thermal conductivity dependence is typical of dielectrics
with a low concentration of defects Ð a T 3 law at low
temperatures due to the scattering of phonons by the crystal
boundaries and a maximum appearing due to the normal and
Umklapp scattering processes and leading to 1=T dependence
at T > 100 K. Comparison of experimental results shows
(Fig. 6a) that, at its maximum, the thermal conductivity of
the 70/76Ge (91.91%) specimen is 14 times less than that of
70Ge (91.91%). An increase in k reaches, however, only 30%
at T � 300 K (see also Refs [59, 122]).

When using the Callaway model in its original form [see
formulas (47), (48)], the two free parameters (B1 and B2) were
chosen in combination with the four considered scattering
mechanismswith a fixed rate of phonon scattering by isotopes
and crystal boundaries. With these assumptions, the follow-
ing parameter values have been obtained: V � 22:6�
10ÿ30 m3; vB � 3500 m sÿ1; 0:01�10ÿ54 g4 58:7�10ÿ5;
3:64LE 4 4:8. It is appropriate to note that an agreement
between the theory and experiment has been achieved only at
T4 30 K. Analysis of experimental data has led the authors
of [121] to the conclusion that in the framework of the
Callaway model for monoisotopic specimens it is the normal
three-phonon processes that are the main ones determining
the phonon mean free path.

Let us now briefly discuss the experimental results of
Ref. [121] obtained in the framework of the Holland model.

Table 4. Parameters of the Callaway and Debye models that describe the
experiments on thermal conductivity of diamond [121].

Sample A, cm B, cm3 C, cm Kÿ1 D, K

Debye model
Natural diamond
(type IIA)
Synthetic diamond
(enriched with 12C)

0.1

0.1

4:0� 10ÿ25

0:6� 10ÿ25

2:0� 10ÿ12

2:0� 10ÿ12

550

550

Callaway model
Natural diamond
(type IIA)
Synthetic diamond
(enriched with 12C)

0.055

0.055

1:5� 10ÿ26

0

1:4� 10ÿ12

1:4� 10ÿ12

730

730
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Figure 6. (a) Temperature dependence of thermal conductivity for five Ge

specimens with different isotope composition: (ÿ � ÿ) the low-temperature

T 3 law expected for phonon scattering by the boundary, (� � �) 1=T
dependence expected for phonon scattering at high temperatures [121],

and (ÿÿÿ) calculation in the Callaway model; (b) thermal conductivity

of highly enriched 28Si crystals (the SI284 specimen, black circles) and

natural Si crystal (SINI, open circles). Black and open triangles corre-

spond to results for highly enriched 28Si and natural Si obtained in Ref.

[104]. The thin solid and dashed lines correspond to theoretical computa-

tion of thermal conductivity for monoisotopic 28Si and natural Si

specimens, respectively, performed in Ref. [124]. The thick solid line

corresponds to the analogous theoretical computation of thermal con-

ductivity of the SI284 specimen with the real value of g2 � 10ÿ7 [125].
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As already was mentioned, Holland was the first to explicitly
include transverse and longitudinal phonons into considera-
tion of thermal conductivity mechanism, assuming k2 � 0. In
theHollandmodel, the authors of [121] have used three fitting
parameters BT, BL, and BTU, equal to 1:1� 10ÿ11 Kÿ4,
6:9� 10ÿ24 s 5:0� 1018 s Kÿ4, and 5:0� 1018 s, respec-
tively. Using the Holland model, the authors of [121] have
obtained a good agreement between theory and experiment in
the temperature range of 2 ± 200 K (for more details see Refs
[70, 121]).

The thermal conductivity of monoisotopic and isotopi-
cally mixed specimens of silicon crystals has been studied in
three papers [123 ± 125]. Since the most detailed results have
been obtained by the authors of [125], we restrict ourselves to
their consideration. It is well known that natural silicon
consists of three isotopes: 28Si (� 92%), 29Si (� 5%), and
30Si (� 3%). The use of monoisotopic silicon (for example,
28Si) can substantially reduce the value of dissipated energy
scattered in electronic elements made of silicon (e.g., in the
memory of electronic computers; see also Refs [32, 126]). The
results of studies of the thermal conductivity of monoisotopic
and isotopically mixed crystals are shown in Fig. 6b.
According to the results presented in this figure, for the
SI284 specimen k � 237�8� W mÿ1 Kÿ1 at 300 K, whereas
for the SINI (natural Si) specimen it is equal to
150 W mÿ1 Kÿ1. This means that at 300 K the thermal
conductivity of a monoisotopic 28Si specimen grows, as
compared to the natural silicon, by 60%. At the same time,
at about 20 K (in the vicinity of the maximum of the silicon
thermal conductivity curve) k reaches the value of
30000� 5000 W mÿ1 Kÿ1, which is 6 times higher than the
value k � 5140 Wmÿ1 Kÿ1 for the natural specimen (see also
Ref. [104]).

The thin solid and dashed lines in Fig. 6b correspond to
the results of theoretical computations of thermal conductiv-
ity for a monoisotopic specimen SI284 and for a specimen
with the natural silicon isotope composition. In these
calculations, the model of the Ge thermal conductivity
developed in [121] with a modified Debye temperature y and
phonon mean free path LE has been used. For fitting, the
authors have used the low-temperature results, where the
thermal conductivity is described by the T 3 law. Calculations
presented in Fig. 6b were performed, for the natural speci-
men, for LE � 5:0 mm (dashed line). For comparison, let us
point out that in Ref. [123] the analogous quantity was equal
toLE � 5:7 mm, and for the isotopically pure SI284 specimen
the value was LE � 14:0 mm (thin solid line). As seen from
Fig. 6, there is agreement between theory and experiment,
which has also been mentioned by the authors of Ref. [125]
themselves. They have also pointed out good agreement
between their experimental results and calculations made in
Ref. [127], except for the domain ofU-processes. Besides that,
Ruf and co-authors have mentioned an unsatisfactory
agreement between theory and experiment in the domain of
high temperatures (300 ± 400 K), especially for the specimen
with natural isotope composition. They think that this
disagreement can occur due to fundamental reasons that
require further study. In particular, taking into account the
fine structure of the nonequilibrium phonon distribution
function could bring theoretical and experimental results
much closer (see also Refs [59, 122, 128]). A qualitative
comparison of the influence of the isotope effect on the
thermal conductivity of germanium, silicon, and diamond is
given in Table 5.

3.3 Influence of temperature and isotope composition
on the lattice parameter
It is widely known that the lattice parameter is, at any
temperature, determined by three factors. The first and the
most important are the atomic radius and the nature of the
chemical bond between the atoms. The latter determines not
only the interatomic spacing, but also the crystal structure.
The second contribution to a is due to the influence of
temperature on the interatomic distance. As a rule, an
increase in temperature leads to the expansion of the
crystalline lattice due to increased amplitudes of the atoms'
oscillations around their equilibrium positions. The third
contribution is related to atomic displacements due to zero
vibrations Ð a purely quantum-mechanical effect. As the
latter contribution is usually small at T � 0 K, it is often
neglected. The fact that this contribution is difficult to
detect experimentally is also of importance. There is,
however, an important exception to this rule. It is related
to isotope substitution. Inasmuch as, in this case, the
chemical substances are identical (this practically is the
same substance), the first contribution (atomic size) is
constant for substances containing different isotopes. A
difference in the lattice constant will, therefore, be fully
determined by the differences in thermal expansion and
displacements due to zero vibrations. The differences
mentioned are indeed great for lithium hydride and its
isotopic analogs, lithium deuteride and lithium tritide. This
follows mainly from the big change in the mass at isotope
substitution and, therefore, from a big change in the
reduced mass of the unit cell.

The results of many experimental studies have shown that
crystals with light isotopes have a significantly larger lattice
parameter and a smaller thermal expansion coefficient [129 ±
132] as compared to crystals with heavier isotopes. It has
many times been stressed that the effects described are most
visible at low temperatures. Let us add that this important
conclusion is self-consistent. According to the above discus-
sion, a smaller value of the Debye temperature ensures a
greater value of the heat capacity (cf. Ref. [75]) at low
temperatures and, through the GruÈ neisen relation, a greater
value of the thermal expansion coefficient.

Using the Einstein free energy function, London [133]
arrived at the following expression:

M

V

dV

dM
� gb

V
�Uÿ E0 ÿ TCV� d ln n

d lnM
; �69�

where V is the molar volume, M is the atomic mass, g is the
GruÈ neisen coefficient (g � aV=bCV, where a is the volume
expansion coefficient), b is the compressibility, CV is the
molar heat capacity, E0 is the potential energy, n is the
phonon frequency, and U is the full energy. For monatomic

Table 5. Influence of isotope effect on the thermal conductivity of Ge, Si,
and C specimens [118, 113, 121 ± 125] at 300 K.

Sample Growth
of k, %

y, K g, 10ÿ4

Ge
Si
C

30
60
50

376
658
1868

5.80
2.01
0.76

Note. The concentration of other isotopes was determined by the relation

g �Pi fi�DMi=M�.
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solids, we have

d ln n
d lnM

� ÿ 1

2
; �70�

where dn= dM can be expressed through the Debye function
with a characteristic Debye temperature yD. At high tempera-
tures, one can expand the Debye function in a series in the
parameter �yD=T �2. Then, Eqn (69) takes the form

M

V

dV

dM
� ÿ 1

20
aT
�
yD
T

��
1� 11

420

�
yD
T

�2

� . . .

�
; �71�

and at T � 0 K we have

M

V

dV

dM
� ÿ 9

16

gb
V

RyD : �72�
In the last equation, R is the gas constant.

For two-atomic cubic crystals with atomic masses M and
m (see also Ref. [65]), we have

n2 /
�

1

M
� 1

m

�
: �73�

Thus,

d ln n
d lnM

� ÿ 1

2

1

�1� �M=m�� : �74�

As a result, we arrive at the following expression:

M

V

dV

dM
� ÿ 1

20
aT
�
yD
T

�2
1

1�M=m
: �75�

As has been pointed out by London [133], to give a more
exact description of this dependence one needs more detailed
information on the phonon frequency spectrum, because the
dependence of n onM is complicated. Add that a comparison
between the theory and experiment carried out by London
has shown good agreement between them (for more details
see Ref. [133]).

Lithium hydride. The dependence of the lithium hydride
lattice constant on isotope composition has been the subject
of many experimental and theoretical studies [44, 134 ± 138]
(see also the reviews [139, 140]). These studies have shown
that, as has been already mentioned above, the lighter isotope
corresponds to a greater lattice parameter and a smaller value
of the thermal expansion coefficient as compared to the
heavier isotope. Following the classical work by London
[133], a simple empirical dependence of the lattice parameter
on the reduced mass of isotopes in the unit cell has been
obtained in Ref. [134]:

a � Am� B : �76�

Here, A and B are constants depending, however, on
temperature (see also Ref. [141]). The experimentally
observed [132, 134] (Fig. 7) nonlinear dependence of the
lattice parameter in LiH and LiD (LiT) is sufficiently well
described by a second-order polynomial [55]

Da
a
�

���������
mLiD
p ÿ ���������

mLiH
p���������������������

mLiH=mLiD
p h

A� B�Tÿ T0� � C�Tÿ T0�2
i
;

�77�

where Da � aLiH ÿ aLiD, 1=mLiH�1=MH � 1=MLi, T�25 �C,
and yD � 1080 K is the Debye temperature of LiH crystals.
The constants A, B, and C were determined by the least
squares method, and their values are given in Table 6. For
comparison we also show the values of these constants found
in the same way for the crystals of diamond, silicon, and
germanium according to the data of Ref. [23]. According to
the calculations of Ref. [55], the lattice parameters of LiH and
LiD crystals have the same value at T � 810 K, equal to
4.165 A

�
. This means that the rate of change of a�T � is greater

for LiD (the heavier isotope) than for LiH and, in so doing,
yLiD < yLiH. This is a generic statement, because it is valid for
covalent crystals as well (for more details see Ref. [70]).

Germanium. Crystals of Ge were the first among semi-
conducting crystals for which the dependence of the lattice
parameter on their isotope composition was studied both
theoretically and experimentally [142 ± 144]. In Ref. [144] this
dependence has been experimentally studied in high-quality
Ge crystal with natural isotope content (Mav � 72:59) and in
highly enriched Ge, containing 95.8% 74Ge (Mav � 73:93).
To describe the observed dependence, the authors of [143]
have used an equation [analogous to (77)] of the form

Da
a
� ÿ C

a3
DM
M

�
go�ho0 � 3

4
gakByD

�
; �78�

where go � 1:12 and ga � 0:40 are the GruÈ neisen parameters
for optical and acoustic photons, respectively; yD � 374 K is
the Debye temperature, and �ho0 � 37:3 meV. With the help
of (78), Buschert and coauthors have obtained a decrease in
the lattice parameter by 12� 10ÿ6 and 6� 10ÿ6 at T � 0 and
300 K, respectively. The observed decrease in the lattice
parameter in Ge is more than three orders of magnitude less
than that observed in LiH crystals. After this paper, two

a, A
�

4.15

4.10

4.05

200 400 T, K

1

2

3

Figure 7.Temperature dependence of the lattice parameter: 1, LiH; 2, LiD,

and 3, LiT [55].

Table 6. Values of coefficients in the polynomial (77) describing a
temperature dependence of the lattice parameters at isotope substitution.

Crystal A� 103 B� 106 C� 109

LiH
C
Si
Ge

55.4
ÿ5.48
ÿ1.60
ÿ0.72

ÿ55.54
3.55
3.94
2.27

ÿ102.8
8.2
ÿ6.90
ÿ6.40
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theoretical papers [23, 144] and one experimental paper [145]
appeared. Results agreeing with those already published on
the isotope dependence of the lattice parameter in crystals
have been obtained in [144, 145]. Note, in passing, that in
Ref. [146] the isotope dependence of the lattice parameter of
silicon crystals has been studied theoretically.

Diamond. Dependence of the lattice parameter on the
isotope composition of diamond crystals has drawn attention
in relation to experiments on thermal conductivity (see
paragraph 3.2). Banholzer and collaborators [147] have
published the values of the lattice parameters in natural
diamond and grown 13C, obtained from the X-ray diffrac-
tion pattern that were taken from powder and crystalline
specimens. Studies of the dependence of the lattice parameter
of isotopically mixed crystals were made by Holloway and
collaborators [45, 86]. According to Ref. [45], isotope
dependence of the lattice parameter of diamond is, analo-
gously to the case of LiH, a linear function of the isotope
concentration x and has the form

a�x� � 3:56714ÿ 5:4� 10ÿ4x : �79�
Dependence of the lattice parameter on the isotope

concentration in diamond crystals with a different isotope
composition has been studied by Yamanaka and collabora-
tors [46]. They have shown that a change in the lattice
parameter lies in the interval (5 ± 9)�10ÿ5 A

�
and is, once

again, three orders of magnitude less than the corresponding
variations in LiH crystals. The authors of Ref. [46] described
the isotope dependence found in their experiments (Fig. 8)
using the following second-order polynomial:

a�x� � 3:56712ÿ 9:0� 10ÿ4x� 3:7� 10ÿ4x2 ; �80�

where x � � 13C �=� 12C� 13C �. Equation (80) is not in agree-
ment with the linear dependence of a�x� obtained in Ref. [45].
One of the reasons for this disagreement could be different
values of compressibility and GruÈ neisen parameters for
different isotopes (for more details see Ref. [55]). Concluding
this section, let us note that by now an isotope dependence of
the lattice parameter has also been observed in GaAs and

ZnSe crystals [25, 26, 77]. It is necessary to point out the
absence of the isotope effect for the lattice parameter in KCN
crystals [148].

4. Vibrational properties

4.1 Dispersion curves and density of phonon states
The main characteristics of a phonon spectrum are the
dispersion relation o�q� and the frequency distribution
function g�o� [149]. Both are mainly determined in experi-
ments on the scattering of thermal neutrons, provided it turns
out to be possible to separate coherent and incoherent
scattering. An important role of neutrons in studying lattice
dynamics is related to the fact that the energy of thermal
neutrons (kBT � 10ÿ1ÿ10ÿ2 eV) is of the same order as the
energy of phonons. At the same time their de Broglie
wavelength is comparable with the interatomic distance in
crystals. In this respect neutrons have advantages over
electromagnetic waves, for which one can only obtain
agreement either in energy (IR range), or in wavelength (g
radiation). Special features of the scattering of thermal
neutrons by the lattice are determined by the following main
factors.

1. Since the neutron wavelength is much larger than the
size of the nucleus, the scattering is isotropic and does not
depend on the neutron's energy.

2. Scattering of neutrons by the first nucleus is described,
with good accuracy, by the Fermi pseudopotential propor-
tional to the d function:

Ul�r� � 2p�h2bl
mn

d�rÿ Rl� ; �81�

wheremn is the neutron mass and bl is the so-called scattering
length.

3. The total cross section of scattering on the ensemble of
nuclei forming the crystal is determined by summing over the
individual nuclei with due account for the phase relations for
the scattered waves. If the nuclei oscillate, the neutron
scattering can be both elastic and inelastic, i.e., can be
accompanied by the creation or annihilation of one or
several phonons.

4. The scattering length bl can strongly differ for isotopes
of one and the same element. In addition, for nonzero nuclear
spin, bl depends on the relative orientation of the spins of the
neutron and nucleus. It is precisely these factors that lead to
the appearance of incoherent scattering, i.e., such scattering,
in which the momentum conservation does not hold due to
the violation of translational symmetry (for more details see
Ref. [150]).

The principle of the measurement of phonon dispersion
with the help of one-phonon coherent scattering can be easily
understood from energy and momentum conservation

Ei ÿ Es � �h2

2m
�k2i ÿ k2s � � �hoj�q� ; �82�

Q � ki ÿ ks � q�G ; �83�
where Ei and Es are the energies of the incident and scattered
neutrons, �hk are their momenta, G is the reciprocal-lattice
vector, Q is the phonon vector, and j is the index of the
phonon spectrum branch. Measuring the neutron velocities
before and after interaction, one finds from (82) the frequency
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Figure 8. Isotopic dependence of the lattice constant of diamond crystals:
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calculated by the formula x � �13C �=� 12C� 13C �; 2, quadratic dependence
described by equation (80) obtained in Ref. [46].
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of the phonon that participated in the scattering process. If,
in addition, one measures the scattering angle, then, with the
help of (83), one can calculate the values of the phonon wave
vector q, thus completely determining the dispersion relation
in one point of the Brillouin zone. In reality the situation is
complicated by the presence, at a given q, of several frequency
values. In other words, for each value of transferred
momentum Q there exist several groups of neutrons scat-
tered at each branch (for more details see Ref. [149]).

For incoherent scattering there holds only the law of
energy conservation (82), so that the energy spectrum of
scattering turns out to be continuous in the limits of
Ei � �homax. The scattering cross section is proportional to
the frequency distribution function g�o�, but also contains
onemore frequency-dependent multiplier, which is a function
of phonon polarization vectors es�q� [150]. Thus, the function
g�o� reconstructed from experimental data reflects to a
certain degree the model used for determining the polariza-
tion vectors.

In the case of lithium hydride crystals, the scattering of
neutrons is strongly dependent on the isotope composition.
The nonzero spin of the hydrogen nucleus leads to very strong
incoherent scattering, so that for lithium hydride one can
measure the frequency distribution function but not the
dispersion relation. On the contrary, in LiD (with 100%
content of D) only coherent scattering takes place. However,
already a small percentage of hydrogen in LiD allows one to
observe incoherent scattering as well.

Measurements of the scattering of thermal neutrons by
LiH (LiD) crystals were carried out in Refs [151, 152]. In the
paper by Zemlyanov et al. [151], the incoherent scattering of
neutrons was measured. In Figure 9a we show the dispersion
curves for lithium deuteride obtained in [152]. According to
the estimate of the authors, the accuracy of these data
constitutes 3 ± 4%. In spite of the serious efforts undertaken
by the authors of [152], it has turned out to be impossible to
observe the scattering by longitudinal optical phonons. This
has been interpreted as a consequence of the small lifetime of
LO phonons (see also Ref. [70] and references therein). To
describe experimental results, the authors of Ref. [152] have
used a shell model with seven parameters: A�ÿ and B�ÿ are
the constants of the short-range potential of the interaction
of nearest neighbors; Aÿÿ and Bÿÿ are the same constants
for the interaction of nearest anions; Z is the effective charge;
a and d are the electric and `mechanical' polarizabilities of the
deuterium ion, respectively (cations were considered to be

nonpolarizable). All the parameters mentioned were deter-
mined from a condition of reaching the best agreement of
calculation with experimental results. The values of the
parameters obtained in this way are given in Table 4 of
Ref. [55].

The solid curves in Fig. 9a correspond to dispersion curves
calculatedwith the above-described values of parameters. It is
seen that, as should have been expected (see alsoRef. [70]), the
maximum deviation is observed in the vicinity of the point L
of the Brillouin zone. Using the obtained values of para-
meters, one can calculate elastic and dielectric characteristics
and compare them with experimental data. Add that the
ionicity Z � 0:88 obtained in the shell model agrees well with
the above-presented estimates.

As has already been mentioned, for LiH crystals it is
impossible to measure the dispersion curves. Following the
authors of Ref. [152] it is, however, reasonable to assume that
with good accuracy all parameters of the model remain the
same Ð excluding, of course, the anion masses for LiH and
LiDcrystals.Dispersion curves calculatedwithin this assump-
tion in Ref. [152] are published in Ref. [55]. The shell model
correctly predicts not only the values of the frequencies of TO
and LO phonons, but also of other phonons found from
absorption spectra of the color centers in LiH crystals [153].

In Figure 9b, frequency distribution functions g�o�
calculated within the shell model for the crystals of lithium
hydride and deuteride (see, for example, Ref. [55]) are shown.
We see that the spectral distribution of phonons in LiH and
LiD is practically the same in the acoustic vibration range
(� 450 cmÿ1). At the same time the optical zone in LiH is

���
2
p

times broader than in LiD. This follows from the fact that in a
crystal lattice with significantly different ion masses the main
participants of acoustic vibrations are the heavy ions, whereas
the light ones mainly participate in the optical vibrations.
Besides that, in the g�o� distribution of LiH crystals a narrow
gap in the interval from 583 to 608 cmÿ1 is present, which is
absent for LiD. It is appropriate to add that in LiH the
frequency of the transverse optical phonon corresponds to the
edge of the gap, so that the density of states corresponding to
this frequency is very small.

Very accurate measurements of diamond dispersion
curves have been carried out in Ref. [154], those of silicon
(Fig. 10a) in Ref. [155], and germanium in Ref. [156].
Numerous theoretical computations of phonon dispersion
curves in crystals, Refs [58, 154, 157], show good agreement
with experiment, except for the diamond crystal.
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Figure 9. (a) Dispersion curves of phonons in the crystal of 7LiD [55]; and (b) phonon frequency distribution function g�o� in LiH (1) and LiD (2) crystals

[141].
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The unusual properties of diamond, e.g., the small value
of the lattice parameter, the unusually large value of the
volume compression modulus, etc., are well known [67, 78,
120, 141]. Besides this, diamond is characterized by the
presence of a maximum in the dispersion curve that is located
not at the G point of the Brillouin zone. In this respect, much
interest in the lattice dynamics of diamond has always been
drawn by the presence of a narrow peak in the two-phonon
density of phonon states (Fig. 11a), located 2 cmÿ1 higher
than the doubled value of the energy of LO phonons. This
picture is sharply different from the two-phonon density in
Ge and Si. Such a singularity in the two-phonon density of
phonon states has traditionally been related to the bending
of the dispersion curve along the D direction (for more
details see Ref. [70]). Very recently, such a behavior of the
dispersion relation was obtained in Ref. [160]. However, in
the cited work a shift of the peak, equal to 25 cmÿ1 (�3 meV),
has been found to take place above the edge of the phonon
spectrum, i.e., an order of magnitude larger than the

experimentally observed one. Recently, the character of the
diamond dispersion curves was again studied by neutron
scattering [161] and inelastic X-ray scattering [159]. The
results of the latter study are presented in Fig. 10b. There,
we also show, for comparison, theoretical and experimental
results. We see that good agreement between theory and
experiment takes place. Thus, these studies close the discus-
sion on the nature of the high-energy peak observed in the
density of the two-phonon states in diamond (for more details
see Ref. [141]).

The two-phonon density of states calculated by the
method of the plane-wave pseudopotential in the local
density-functional approximation (for more details see Ref.
[58]) for diamond [160] and silicon [162] crystals is shown in
Fig. 11. As can be seen from Fig. 11a, in accordance with
experiment (on Raman light scattering), in the domain above
the edge of 2LOphonons a sharp peak, which is not, however,
observed in the DOS spectra of Si crystals, is clearly
reproduced.
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4.2 Raman scattering spectra of isotopically mixed single
crystals
4.2.1 Small concentrations: local, resonance, and gap vibra-
tions. Studies of vibrational properties of crystals containing
impurities (defects of various origin) are sufficiently well
described and documented in a number of excellent reviews
[33 ± 43]. Traditionally these results are classified as referring
to two domains, the domain with a low (C4 10%) concen-
tration of defects (impurities) and the domain of high
(C5 10%) concentration. The latter, the so-called mixed
crystals, will be described in the next section. Here, we
analyze the results in the low-concentration domain, i.e.,
when the interaction between defects (impurities) can be, in
the first approximation, neglected [33, 34].

The simplest defects in a crystal lattice that break its
translational symmetry are the isotopes of the elements that
form the crystal. In the majority of cases, the influence of
isotopes on vibrational spectrum is small and is not taken into
account in calculations of dispersion curves. The case of the
LiH ±LiD system is different. A significant change in mass
taking place after substitution of D for H displaces the whole
zone of optical vibrations by �250 cmÿ1. It is thus clear that
small concentrations of isotopes can also generate substantial
effects [141], especially in phenomena related to themotion of
the defects themselves [32, 163]. In the case of small
concentrations, the main effects consist of the appearance of
various processes induced by the defects. For example, an IR
absorption of the ideal lattice includes, in harmonic approx-
imation, one delta-shaped peak at the frequency oTO�G�,
whereas after introducing defects the selection rule related to
the wave vector is lifted, resulting in the appearance of
additional absorption in the whole range of frequencies
(with intensity proportional to the concentration of defects).
For vanishingly small concentrations, one has an adequate

theory developed by Lifshitz [33]. In the case of isotope
defects this theory does not contain free parameters (see also
Ref. [34]). The approach by Lifshitz is based on the technique
of Green's functions. Using this method is particularly
convenient since it allows one to write a solution of equations
describing vibrations in the presence of point defects of
various types (for more details see Ref. [164]). The change in
the mass of the atom causes the appearance of three types of
features in the phonon spectrum [164, 165]: local, gap, and
quasi-local (resonance) vibrations. Vibrations of the first type
have frequencies located above the maximum frequency of
the phonon spectrum and arise in the case of a sufficiently
small decrease in the mass of an atom (ion). The frequencies
of vibrations of the second type are located in the gap between
the optical and acoustic zones. These vibrations can exist both
for decreasing and increasing mass. Resonance vibrations
arise if the mass of a defect is much larger than that of the
replaced ion. They are characterized by sharp maxima in the
frequency distribution function in the range o5omax.
Frequencies of vibrations of all these types are determined
by the following equation [33]:

1 � lso2 ReGs
0�o� : �84�

Here, ls � 1ÿM 0
s=Ms (M

0
s is the mass of the defect in the sth

sublattice) and

Gs
0�o� �

1

3N

X
q j

�� es�q j ���2
o2 ÿ o2

q j � i0
� 1
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X
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�� es�q j ���2
�o2 ÿ o2

q j�P
� ip

1

3N

X
q j

��es�q j ���2d�o2 ÿ o2
q j� : �85�

In this formula, P denotes the principal value.
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In lithium deuteride the condition of the appearance of
local vibration after replacing a D ion by an H ion takes the
form M 0

s=Ms � 0:66 [55] (for phonon spectrum in the shell
model). Thus, placement of H ions into the lattice of a LiD
crystal should lead to the appearance of a local vibration.

In Figure 12a the spectrum of second-order Raman
scattering (RS) of light in pure LiD crystal at room
temperature [55] is shown. First of all, it is necessary to note
the good agreement of this spectrum and those measured
earlier [166, 167]. In spite of the fact that, according to the
nomogram of the exciton states [168], the crystal studied
should be considered to be pure, its RS contains a clear high-
frequency peak around 1850 cmÿ1. The observed peak does
not have an analogue in RS spectra of pure LiH and has
already been observed earlier in the second-order RS spectra
[169] and has been interpreted, starting from Ref. [169], as a
local vibration of the hydrogen ion in LiD crystals. The
calculated value of oloc lies in the interval 917 ± 995 cmÿ1.
We see that the peak at oloc � 1850 cmÿ1 observed in RS
agrees well with the doubled value o � 917 cmÿ1 calculated
in the most consistent way. Although the actual concentra-
tion of H in the LiD crystals studied is very small (according
to Ref. [168], the location of the maximum of the n � 1S line
in reflection and luminescent spectra corresponds to the pure
LiD crystal), it is, as seen from Fig. 12a, however, sufficient
for observing a local mode in the second-order RS spectra.

Calculation of the concentration of hydrogen ions
(estimates of concentration in Ref. [168] have been based on
the location of the ground-state level of the exciton in
reflection spectra) leads [55] to growing intensity of the peak
of the local mode and its small high-frequency shift. The
described behavior holds for hydrogen ion concentrations
C4 10%. It is necessary to stress that a systematic study of
the concentration dependence of the shape of the local mode
peak allows us to obtain a detailed understanding of the
percolation threshold separating the local phonon states from
the extended ones (see also Refs [70, 141]). Based on the RS
spectra studied in [55, 141], in Fig. 12b the dependence of the
local vibration frequency on hydrogen ion concentration was
constructed. In Figure 12b we also show a theoretical
calculation of the oloc � f �x� dependence from Refs [169 ±
171]. In Ref. [170] a concentration dependence of the

frequency and intensity of the local mode in LiHxD1ÿx has
been calculated with the help of a temperature Green's
function. For the calculation, a model phonon spectrum
containing two Gaussian bands and limited by the frequency
interval oTO < o < oLO (as became clear after the work by
Verble et al. [152], this approximation is not quite satisfac-
tory) was used. Using the real phonon spectrum of LiD
crystal measured in Ref. [152], the authors of Ref. [171] have
repeated, in the framework of the model of deformed dipoles,
the calculation of the concentration dependence of frequency
and intensity of the local mode. As has already been
mentioned above, the calculated values for oloc obtained in
Refs [169, 170] are close to each other, but are somewhat
higher than the values obtained in the improved calculation of
Ref. [171], where the result was oloc � 917 cmÿ1. More
serious disagreements in the oloc � f �x� dependences were
found in Refs [170, 171]; namely, according to the results of
Ref. [171], the value ofoloc grows with x, whereas it decreases
according to Ref. [170]. In spite of this disagreement, it is
necessary to stress the good agreement in the variation of the
intensity of the local-mode band as a function of concentra-
tion found in the above-cited papers (see also Ref. [55]). The
experimentally observed [55] oloc � f �x� dependence is
practically parallel to the theoretical one calculated in
Ref. [169], but is shifted to lower values (Fig. 12b). On the
other hand, it agrees very well with the newly calculated value
of oloc at x � 0 from Ref. [171]. From this, one can conclude
that the model of deformed dipoles describes the behavior of
the local mode related to vibrations of hydrogen ions in the
lithium deuteride crystals sufficiently well. After introduction
of deuterium ions into LiH crystal there appears a gap
excitation. Its sufficiently detailed analysis has been per-
formed in a number of publications (see, e.g., Refs [55, 141,
172]).

4.2.2 Large concentrations: isotopically mixed crystals. If an
impurity content in the crystal rises to such a limit that
interaction between the impurity atoms (ions) becomes
essential, it is customary to describe these systems as mixed
crystals with different degrees of disorder. One distinguishes
two types of disorder: disordered alloys (isotope mixtures);
and mixed crystals and glassy systems with a more pro-
nounced spatial disorder than the configurational one. One
can consider, as a first theoretical model of the dynamics of
mixed crystals, a linear chain model that develops the virtual-
crystal model by Nordheim [173]. In spite of its simplicity, the
model describes the general features of the lattice dynamics of
mixed alkali-halide crystals sufficiently well. In this model
two independent force constants f and f 0 are introduced. As a
rule, they are determined from the formula
f � o2mM=2 �m�M�, where o are the observed frequen-
cies of LO phonons of pure substances, and m andM are the
masses of crystal-forming particles. Concentration depen-
dence of the force constant is described by the relation
F � f 0xÿ � f 0 ÿ f �x, assuming that the growth (decay) of
f � f 0 � as a function of concentration is linear (see, e.g.,
Ref. [37]). Allowance for the more complex dependence of
the force constant, as well as a description of the cluster and
isoshift models in lattice dynamics using the coherent
potential approximation [37, 42, 174] or T-matrix averaging
(see, e.g., Refs [36, 41]), are described in the exhaustive
reviews of Refs [37 ± 39, 42].

First-order scattering spectra. Semiconducting crystals (C,
Si, Ge, a-Sn) with a diamond-type structure present ideal
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objects for studying the isotope effect by the Raman light-
scattering method. At present this is facilitated by the
availability of high-quality crystals grown from isotopically
enriched materials. In this section, the modern understanding
of first-order Raman light scattering spectra in isotopically
mixed elementary and compound (CuCl, GaN, GaAs)
semiconductors having a zinc blende structure is described.
Isotope effect in light scattering spectra in Ge crystals was
first investigated in the paper by Agekyan et al. [21]. A more
detailed study of Raman light scattering spectra in the
isotopically mixed Ge crystals has been performed by
Cardona and coworkers [175 ± 177].

It is known that materials having a diamond structure are
characterized by the triply degenerate phonon states in the G
point of the Brillouin zone (k � 0). These phonons are active
in the Raman scattering spectra, but not in the IR absorption
ones [178]. Figure 13a demonstrates the dependence of the
shape and position of the first-order line of optical phonons in
germanium crystal on the isotope composition at liquid-
nitrogen temperatures [175]. The coordinate of the center of
the scattering line is proportional to the square root of the

reduced mass of the unit cell, i.e.,
�����
M
p

. It is precisely this
dependence that is expected in the harmonic approximation.
An additional frequency shift of the line is observed for the
natural and enriched germanium specimens and is equal, as
shown in Refs [176, 179], to 0:34� 0:04 and
1:06� 0:04 cmÿ1, respectively (see, e.g., Fig. 7 in Ch. 4 of
Ref. [70]).

First-order Raman light-scattering spectrum in diamond
crystals also includes one line with the maximum at
oLTO�G� � 1332:5 cmÿ1. In Fig. 13b, the first order scatter-
ing spectrum in diamond crystals with different isotope
concentrations is shown [180]. As shown below, the max-
imum and the width of the first-order scattering line in
isotopically-mixed diamond crystals are nonlinearly depen-
dent on the concentration of isotopes x. The maximum shift
of this line is 52.3 cmÿ1, corresponding to the two limiting
values of x � 0 and x � 1. Analogous structures of first-order
light scattering spectra and their dependence on isotope
composition has by now been observed many times, not
only in elementary Si [181] and a-Sn [177], but also in
compound CuCl [182] and GaN [176] semiconductors (for
more details see Ref. [141]). Already this short list of data
shows a large dependence of the structure of first-order
light-scattering spectra in diamond as compared to other
crystals (Si, Ge). This is the subject of a detailed discussion
in Section 3.3.

Second-order scattering spectra. Second-order Raman
scattering spectra in natural and isotopically mixed diamond
crystals have been studied by Chrenko [19] and Hass et al.
[183]. Second-order Raman scattering spectra in a number of
synthetic diamond crystals with different isotope composi-
tions shown in Fig. 14 are measured with resolution
(� 4 cmÿ1) worse than for first-order scattering spectra. The
authors of the citedwork explain this fact by theweak signal in
the measurement of second-order Raman scattering spectra.
It is appropriate to note that the results obtained in Ref. [183]
for natural diamond (C13C � 1:1%), agree well with the
preceding comprehensive studies of Raman light-scattering
spectra in natural diamond crystals [184]. As is clearly seen
from Fig. 14, the structure of second-order light scattering
`follows' the concentration of the 13C isotope. It is necessary
to add that in thepaper byChrenko [19] oneobserves adistinct
small narrow peak above the high-frequency edge of LO
phonons and at the concentration of 13C x � 68 at.%. Note
in passing that second-order spectra in isotopically mixed
diamond crystals were measured in the work by Chrenko [19]
with a better resolution than the spectra shown in Fig. 14.

Second-order Raman [185] and IR absorption [186] light-
scattering spectra in crystals of natural and isotopically
enriched 70Ge measured at 100 K are shown in Fig. 15,
which distinctly demonstrates the influence of the isotope
composition of Ge on the DOS spectrum. We see that the
dominant effect of the isotope shift and broadening is
observed in a high-frequency, i.e., optical, part of the DOS
spectrum. The clearest illustration of this is given in Fig. 16,
where the maximum broadening of the spectra is observed for
2TO (W) and 2TO (L) phonons in natural Ge, as compared to
the isotopically enriched 70Ge.

A comprehensive interpretation of the whole structure of
second-order Raman light-scattering spectra in pure LiH
(LiD) crystals is given in Refs [167, 76, 187, 188]. Leaving
this question, let us now analyze the behavior of the highest
frequency peak after the substitution of hydrogen for
deuterium (see also Ref. [141]).
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Absorption behavior of an IR-active phonon in mixed
crystals with a change in the concentrations of the compo-
nents can be classified into two main types: one- and two-
mode (see, e.g., the review [42]). Single-mode behavior means
that one always has a band in the spectrum with a maximum
gradually drifting from one endpoint to another. Two-mode
behavior is defined by the presence, in the spectrum, of two
bands characteristic of each component of the mixed crystal.
Changes in the concentration of the components lead not only
to changes in the frequencies of their maxima, but mainly to a
redistribution of their intensities. In principle, one and the
same system can show different types of behavior at opposite
ends [38]. The described classification is qualitative and is
rarely realized in its pure form (see also Ref. [41]). The most
important necessary condition for the two-mode behavior of
phonons (as well as of electrons [189]) is considered to be the
appearance of the localized vibration in the localized-defect
limit. In the review of Ref. [42] a simple qualitative criterion
for determining the type of the IR absorption behavior in
crystals with an NaCl structure type has been proposed (see
also Ref. [189]). Since the square of the TO(G) phonon
frequency is proportional to the reduced mass of the unit
cellM, the shift caused by the defect is equal to

D � o2
TO

�
1ÿ M

M
0

�
: �86�

This quantity is compared in Ref. [42] with the width of
the optical band of phonons which, neglecting acoustical
branches and using the parabolic dispersion approximation,
is written as

W � o2
TO

�
e0 ÿ e1
e0 � e1

�
: �87�

A local or gap vibration appears, provided the condition
jDj > �1=2�W is fulfilled.Asmentioned, however, inRef. [42],
in order for the two peaks to exist up to concentrations on the
order of �0:5, a stronger condition jDj >W has to be met.
Substituting the numerical values from Tables 1 and 2 into
formulas (86) and (87) shows that for LiH (LiD) there holds
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(since D � 0:44o2
TO and W � 0:58o2

TO) the following rela-
tion:

jDj > 1

2
W : �88�

Thereby it follows that at small concentrations the local
vibration should be observed. This conclusion is in perfect
agreement with the earlier described (Fig. 12a) experimental
data. As to the second theoretical relationD >W, one can see
from the above discussion that for LiH (LiD) crystals the
opposite relation, i.e.,W > D, is observed [55].

Following the results of Ref. [49], in Fig. 17 we show the
second-order RS spectra in mixed LiHxD1ÿx crystals at room
temperature. In addition to what has been said on RS spectra
at high concentrations (see Ref. [49]), we note that as the
concentration grows further (x > 0:15) one observes in the
spectra a decreasing intensity in the maximum of 2LO(G)
phonons in LiD crystal with a simultaneous growth in
intensity of the highest frequency peak in mixed LiHxD1ÿx
crystals. The nature of the latter is in the renormalization of
LO(G) vibrations in mixed crystal [190]. Comparison of the
structure of RS spectra (curves 1 and 2 in Fig. 17) allows us,
therefore, to conclude that in the concentration range of
0:1 < x < 0:45 the RS spectra simultaneously contain peaks
of the LO(G) phonon of pure LiD and the LO(G) phonon of
the mixed LiHxD1ÿx crystal. For further concentration

growth (x > 0:45), one could mention two effects in the RS
spectra of mixed crystals. The first is related to an essential
reconstruction of the acoustooptical part of the spectrum.
This straightforwardly follows from a comparison of the
structure of curves 1 ± 3 in Fig. 17. The second effect
originates from a further shift of the highest frequency peak
toward still higher frequencies, related to the excitation of
LO(G) phonons. The limit of this shift is the spectral location
of the highest frequency peak in LiH. This is especially clearly
seen when comparing curves 2 and 4 in Fig. 17. Finishing our
description of the RS spectra, it is necessary to note that a
resonance intensity growth of the highest frequency peak is
observed at x > 0:15 in all the mixed crystals (for more details
see Ref. [19]).

Using the results described and the data obtained for
other crystals [49], in Fig. 18b we plot the dependence of the
frequency of the highest frequency structure in the RS spectra
of pure and mixed crystals on the concentration of isotopes
(curve 1). In the same plot we also show, for comparison, the
dependence (curve 2) of the frequency of the TO(G) phonon
bandmaximum determined from the IR absorption spectrum
in thin LiHxD1ÿx films [192]. A nonlinear dependence of both
curves is clearly seen. Curve 2 has already been discussed
when analyzing the concentration dependence of the fre-
quency and intensity of the local mode (for more details see
Ref. [141]). Here, we add that, up to now, nobody has been
able to give a self-consistent description of the concentration
dependence in a broad interval. We stress once again that in
the domain of small concentrations the agreement between
theory and experiment is sufficiently good. This cannot be
said about large concentrations. As seen from the results in
Fig. 18b, in the concentration range of x < 0:45 one observes
a two-mode character of LO(G) phonons. This is in direct
contradiction with the predictions of the CPA model [42,
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194], in which for concentrations x � 0:5 the width of the
band of optical vibrations (W) should be smaller than the shift
(D) of the frequency of the transverse optical phonon, i.e.,
D >W. At the same time, calculations using formulas (86)
and (87) produce, for LiH(LiD) crystals, an inverse relation,
i.e., D >W [55]. According to Ref. [49], the observed
disagreement between the experimental results and theoreti-
cal predictions of the CPA model is primarily related to the
strong phonon scattering potential due to a large variation of
masses when substituting deuterium for hydrogen. This is
also supported by the observation of the local mode in these
systems (see Fig. 12). The experimental results presented in
this section provide, therefore, evidence of, first, strong
scattering potential (most importantly, for optical phonons)
and, second, of the insufficiency of the CPA model for a
consistent description of these results (see also Ref. [24]).

4.3 Disorder effects in Raman light-scattering spectra of
isotopically mixed crystals.
Effects related to isotopic disorder have by now been
observed in the phonon states of practically all the isotopi-
cally mixed semiconducting crystals, as well as in the well-
studied model system LiH±D (see, e.g., Refs [7, 41]). As
clearly shown above, a weak scattering of phonons due to
isotopic disorder shows itself in the shift and broadening of
lines in the RS phonon spectra. On the whole, the data on the
isotope shift of the maximum of first-order scattering line in
diamond can, in the first approximation, be described in the
framework of the virtual-crystal approximation [42]. How-
ever, the virtual-crystal model does not include any proper
broadening induced, for example, by isotopic disorder in the
crystal lattice. To take this into account, in the studies of light
scattering in germanium and silicon in Refs [195 ± 197], the
coherent-potential approximation has been used. As is well
known [42, 170], the main idea of the coherent-potential
method is in the introduction of an auxiliary medium with a
regular, i.e., spatially periodic, potential. By definition, in the
model this potential is complex. Therefore, the self-energy of
this medium is also complex. The real part of the self-energy
describes the frequency shift, and the imaginary part
describes the broadening of lines in the spectra of phonon
states of isotopically mixed crystals. The formalism of the
coherent-potential model is very simple, convenient for
performing calculations, and does not include fitting para-
meters, because of using of the density of phonon states from
the virtual-crystal model (VCA) [181, 183]:

gVCA�o� � �6N�ÿ1
X
q j

d
ÿ
oÿ oq j

�
; �89�

where N is the number of cells in the normalized volume, q is
the wave vector of the phonon with a frequency oq j, and j is
the phonon branch. In the one-phonon scattering case the
density of states in the coherent-potential approximation is
described by the following expression (see also Ref. [195]):

g�o�� ÿ 2

po

�1
0

gVCA�Z� dZ Im
�

Z2

o2
�
1ÿ ~e�o� ÿ Z2

��: �90�
As shown in Ref. [183], in the case of a weak potential of

isotopic scattering of phonons, their self-energy e�o� does not
depend on q. This is precisely the situation observed for C and
Ge. Indeed, if we express the mass fluctuation DM=M (M is
the mean mass of all isotopes) in the form of the variation of

the phonon bandwidthDo0 � 12 cmÿ1 at q � 0 and compare
it with the width of the band of optical phonons inGe equal to
�100 cmÿ1, we will see that the variation is very small. Under
these conditions the localization of optical phonons in Ge is,
naturally, absent, and, as observed in the experiment, they
stay delocalized. Moreover, direct measurements of the
phonon lifetime in Ge show that, in the case of anharmonic
decay, it is two orders of magnitude shorter than the lifetime
that is due to the additional scattering by isotopes, i.e.,
tanharm � tdisord � 10ÿ2 [175]. Therefore, the contribution of
anharmonicity to the half-width of the first-order light
scattering line in Ge is two orders of magnitude greater than
that caused by the isotopic disorder in crystal lattice.

In Fig. 19a, the oLTO � f �x� and DoLTO � f �x� depen-
dences in first-order Raman scattering (RS) spectra in
diamond found in the virtual-crystal model (VCA) and the
coherent-potential approximation (CPA) [183, 198] are
comparable. Note, first of all, the good agreement of the
results shown in Fig. 19b with the data by Chrenko [19] and
Hanzawa et al. [180]. Both sets of data in Fig. 19b demon-
strate a nonlinear (with respect to the virtual-crystal model)
dependence of both functions on the concentration of
isotopes, which is perfectly described in the coherent-
potential approximation. Hass et al. [183] have concluded
that the observed nonlinear dependence is a direct conse-
quence of an additional phonon scattering due to isotopic
disorder in the crystal lattice. Such concentration-related
nonlinearity has been observed in many other parameters
and properties of alloys (for example, in the energy of
interband transitions in semiconducting alloys [199] and
isotopically mixed crystals [200]. In diamond, the deviation
from linearity for middle isotope concentrations constitutes
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Figure 19. Dependence on the concentration of isotopes of the frequency

of the maximum of (a) the LTO phonon scattering line in first-order RS

spectra in crystals of diamond and (b) its half-width [198]. The dotted line

corresponds to the virtual-crystal approximation; the solid line, to the

coherent-potential approximation. Experimental data: (D) corresponds to
the results of Ref. [183], (�) to those of Ref. [19], and (�) to the results of

Ref. [198].
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�5 cmÿ1. This value is much greater than the experimental
error and, naturally, has to be taken into account if the
maximum oLTO is used as a measure of concentration of
isotopes (for more details see Ref. [183]). The measured half-
width of the first-order RS line (Do) is, at middle isotope
concentrations, greater in comparison with the endpoints. A
complete analogy with what has just been said is observed in
the case of the half-width of a 2LO-phonon scattering line in
isotopically mixed crystals of LiHxD1ÿx (Fig. 18a). The
maximum value of the half-width of the scattering line is, in
both cases, observed in the vicinity of x � 70%. The
calculated Do in the CPA model is a contribution to the
half-width of the RS line in diamond due to the isotopically
disordered crystal lattice. According to Hass et al. [183], the
observed half-width includes, in addition to the contribution
due to the instrumental resolution (�1:8 cmÿ1), the anhar-
monic one. The anharmonicity-related line broadening
constitutes, according to Wang et al., �1 cmÿ1 at 300 K.
Assuming that the anharmonic contribution is independent
of the concentration of isotopes, we conclude that the CPA
model reproduces the experimental results obtained on
diamond quite well (see Fig. 19).

Detailed calculation of the shape of the lines in RS spectra
of semiconductors has been performed by Spitzer et al. [198].
In their paper, a quantitative agreement with the experi-
mental data on diamond and germanium has been obtained.
Comparing the half-widths of the scattering lines in first-
order RS spectra in diamond and germanium (see Fig. 13), it
is easy to see that the observed line broadening due to isotopic
disorder in diamond is much greater than that in germanium.
As is known [141], the reason for this is that the k � 0 point is
not the highest point in the diamond dispersion curve
(Fig. 10b), whereas in the case of germanium it is the highest
point [202]. The shift of the maximum from the G point
(k � 0) leads to a much larger density of states in the vicinity
of oLTO in comparison with the normal one calculated by the
formula

Nd / Re

�
oLTO ÿ o� i

�
DoLTO

2

��1=2

(for more details see Ref. [202]). The density of states in
diamond is asymmetric with respect to oLTO, causing
asymmetry in the shape of the scattering line [198]. This
asymmetry also leads to the asymmetric concentration
dependence of the half-width of the scattering line.

As has been mentioned many times, the isotopic disorder
in the crystal lattice lifts the forbiddenness imposed by the
quasi-momentum conservation law, thus allowing a contribu-
tion to the half-width of the scattering line from other
phonons from the domain with the maximum density of
states, especially from the TO branches. The two structures
observed in the spectrum of first-order RS near 275 and
290 cmÿ1 correspond to the maximum of the density of states
of TO phonons, which become active because of the violation
of the quasi-momentum conservation law by the isotopic
disorder in the crystal lattice (Fig. 20). Theoretical calcula-
tions of the observed features are, on the whole, in agreement
with experimental data (see, however, Ref. [203]). The effect
of the development of an additional structure in RS spectra
was observed relatively long ago [204] in isotopically mixed
LiHxD1ÿx crystals (Fig. 21) and, very recently, in isotopically
mixed crystals of diamond [198] and a-Sn [177]. The effects
caused by isotopic disorder in the crystal lattice in isotopically

mixed crystals are analogous to those described above. There
exist, however, principal differences (see also Ref. [55]). In
contrast toGe andC, in which the first-order spectra exhibit a
one-mode character, the second-order spectra of LiHxD1ÿx
crystals have one- and two-mode characters for LO(G)
phonons, and also contain a contribution from the local
excitation at small values of x. Figure 21 demonstrates the
dependence of the half-width of the line of LO(G) phonons in
light-scattering spectra on the concentration of isotopes. One
clearly sees a substantial growth (by a factor of 2 ± 4) of the
half-width of the line with increasing concentration of
isotopes, as well as the existence of a short-wavelength
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the profile of the line of exciting light [141].
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structure that has already been related in Ref. [204] to the
excitation of TO phonons in isotopically disordered crystal
lattice (for more details see Ref. [200]).

5. Conclusions

In this review, we have presented the results of experimental
and theoretical studies of the influence of isotope substitution
effects and crystal lattice disorder on the elastic, thermal, and
vibrational properties of semiconducting and dielectric
crystals. The limited applicability of the traditional approach
in finding the energy spectrum of disordered systems, when it
is possible to separate the potential into ordered and mildly
disordered parts, becomes evident. This approach, which
works very well for weak phonon scattering in isotopically
mixed crystals of diamond and germanium, is not capable of
describing media with strong scattering potential (as, for
example, in LiHxD1ÿx crystals), which induces LO(G)
phonon localization in such systems. From this, there follows
a necessity of developing such an approach that would lead to
a self-consistent model of lattice dynamics, within which a
unified description of not only local (small concentration
range), but also crystal vibrations of mixed crystals in the
whole range of the component's concentrations will be
possible. A more consistent way of accounting for anharmo-
nicity, beginning, probably, already from the isotope-defect
model, is also required. Without such an approach it is
impossible to describe neither elastic nor vibrational proper-
ties of isotopically mixed crystals. Our view is that it is
precisely the consistent way of treating anharmonicity that
will allow us to develop such a model of lattice dynamics and
will make it possible to describe not only weak, but also
strong scattering of phonons due to isotopic disorder.
Concluding this short section, it is impossible to refrain
from mentioning the applied aspect of the problem consid-
ered in this review. Asmentioned in the short review [32], wide
possibilities of isotope engineering open broad perspectives
for its application in solid-state and quantum electronics,
materials science, the production of memory elements for
modern personal computers, and the development of quan-
tum computers [205].
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