
Abstract. The diffusion of particles and conservative, passive
tracer density fields in random hydrodynamic flows is consid-
ered. The crucial feature of this diffusion in a divergent hydro-
dynamic flow is the clustering of the conservative, passive tracer
density field (in the Euler description) and occasionally of the
particles themselves (in the Lagrange description)Ð a coherent
phenomenon which occurs with probability unity and should
arise in almost all dynamic scenarios of the process. In the
present paper, statistical clustering parameters are described
in statistical topography terms. Because of their inertial proper-
ties, particles and their concentration field can also cluster in
random divergence-free velocity fields, the divergence of the
particle velocity field itself being a crucial aspect of such a
diffusion. The delta-correlated in time velocity field for fluctu-
ating flow (as, e.g., in the Fokker ± Planck diffusion equation
for low-inertia particles) is in principle an invalid approxima-
tion for the statistical description of particle dynamics, and the
diffusion approximation accounting for the finite time correla-
tion radius should instead be used for this purpose.

1. Introduction

The question of the propagation of particles and the passive
tracer in random hydrodynamic flows is one of the problems
of statistical hydrodynamics and has important implications
for the solution of environmental problems associated with
tracer diffusion in the Earth's atmosphere and oceans [1 ±5],
diffusion in porous media [6], and large-scale mass distribu-
tion at the final stage of the formation of the Universe [7, 8].
The problem has been extensively studied since the pioneering
works [9 ± 11] were first published. Later, many researchers
derived a variety of equations to describe statistical char-
acteristics of a tracer field in both Eulerian and Lagrangian
descriptions (see, for instance, Refs [12 ± 15]). The derivation
of such equations for different models of fluctuating para-
meters in various approximation schemes (for both the
moment functions of tracer density field and tracer prob-
ability density) and their analysis has been underway over the
last decades (see, for instance, Refs [16 ± 28]).

Recently, the attention of both theorists and experimen-
talists has been drawn to the relationship between the
dynamics of averaged characteristics of the problem solution
and its behavior in individual realizations. This issue is of
great interest for the geophysics of oceans and atmosphere
where, generally speaking, there is no appropriate averaging
ensemble and experimenters have to deal with individual
realizations.

A solution to dynamic problems for concrete realizations
of medium parameters is virtually hopeless because they are
very complicatedmathematically. At the same time, research-
ers are interested in the main characteristics of the phenom-
ena being occurred rather than in their peculiar features,
hence, the attractiveness of the idea of using the well-
developed mathematical apparatus of random processes and
fields Ð that is, to consider statistical averaging over the
entire ensemble of possible realizations rather than individual
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realizations of the processes under study. Suffice it to say that
presently the approach to almost all problems concerning the
physics of the oceans and the atmosphere is to a greater or
lesser extent based on statistical analysis.

Introduction of randomness into parameters of the
medium gives rise to stochasticity of physical fields them-
selves. Individual realizations of, say, two-dimensional scalar
fields

r�r; t�; r � �x; y�

resemble a complex mountain terrain with randomly dis-
tributed peaks, ridges, valleys, passes, etc. Methods usually
employed for statistical averaging (i.e., computation of
averages like the mean value hr�r; t�i, space ± time correla-
tion function hr�r; t� r�r 0; t 0�i, etc., where h. . .i indicates
ensemble averaging over realizations of random parameters)
tend to smooth qualitative peculiarities of individual realiza-
tions; as a result, statistical characteristics thus obtained not
infrequently have little to do with the behavior of different
realizations or, at first glance, contradict one another. By way
of example, statistical averaging over all realizations smooths
out the mean passive tracer field in a random velocity field,
while each of its individual realizations tends to be increas-
ingly rugged in space due to the mixing of regions with
significantly different concentrations.

Therefore, statistical averages of this type normally
characterize `global' spatial ± temporal scales of a region in
which stochastic processes occur but tell nothing about
details of progressing these processes inside the region. In
the meantime, such details for the given example strongly
depend on the velocity field that can be either divergent or
divergence-free. Then, in the former case, certain realizations
lead (with probability unity) to the formation of clusters Ð
that is, compact regions of elevated tracer concentration (see,
for instance, Refs [29, 30]) surrounded by vast low-density
`voids'. In this case, however, all statistical moments of the
interparticle spacing exponentially grow in time, which
implies statistical dispersion of particles in the mean (see, for
instance, Refs [31 ± 33]).

It is natural to call physical processes and phenomena that
occur with probability unity coherent (see paper [34] and
books [36] where this issue is discussed at greater length).
Such `statistical coherence' may be viewed as a mode of
organization of a complex dynamical system, while identifica-
tion of its statistically stable characteristics is analogous to the
notion of coherence as the self-organization of multicompo-
nent systems arising from chaotic interactions between their
constituent elements (see, for instance, Ref. [37]).

Doubtless, complete statistics (for example, a totality of
space ± time n-point moment functions) contain all the
information about a dynamical system. In practice, how-
ever, it is possible to study only the simplest statistical
characteristics largely associated with simultaneous and
one-point probability distributions. The problem then is
how to deduce principal qualitative and quantitative peculia-
rities of the behavior of individual realizations of the system
from its statistical characteristics and specific features and to
describe such physical phenomena as clustering of particles
and passive tracer density fields in hydrodynamic flows.

A possible solution to the problem should be sought by
methods of statistical topography (see, for instance, paper
[35] and books [36]) that permit the revision of the
`philosophy' of statistical analysis of stochastic dynamical

systems and may be used by experimenters when planning
statistical treatment of experimental materials.

Starting from the classical work of G Stokes published in
1851 [38] (see also books [39, 40]), investigations into
dynamics and diffusion of inertial particles in hydrodynamic
flows have been the focus of attention of many scientists due
to their numerous practical applications (see, for instance,
books [41, 42] and papers [43 ± 47] containing a comprehen-
sive bibliography). It is worthwhile to note that one of the
earliest works [45] was the first to emphasize that the velocity
field of inertial particles in the divergence-free velocity field of
a hydrodynamic flow is divergent, unlike that of inertialess
passive particles. This fact was widely employed in papers [48,
49] when analyzing a multiplicity of applications to hydro-
dynamics, geophysics, and astrophysics. Divergent character
of the velocity field of inertial particles implies clustering of
such particles and the passive tracer field formed by them,
even in a divergence-free hydrodynamic flow. The principal
task is to evaluate the main parameters that characterize such
clustering [50].

2. Formulation of the problem

2.1 Low-inertia particles and low-inertia tracer field
Diffusion of the number density field n�r; t� of inertial
particles travelling in random hydrodynamic flows that are
described by the Euler velocity field U�r; t� satisfies the
continuity equation�

q
qt
� q
qr

V�r; t�
�
n�r; t� � 0 ; n�r; 0� � n0�r� : �1�

Here, V�r; t� denotes the velocity field of particles in a
hydrodynamic flow.

The total number of particles is conserved in the course of
evolution, i.e., one finds

N0 �
�
n�r; t� dr �

�
n0�r� dr � const :

If the particle density is r0, the evolution of the density
field r�r; t� � r0n�r; t� of a passive tracer moving in a
hydrodynamic flow is also described by the continuity
equation�

q
qt
� q
qr

V�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� ;

which can be rewritten as�
q
qt
� V�r; t� q

qr

�
r�r; t� � qV�r; t�

qr
r�r; t� � 0 : �2�

We do not take into consideration the effect of molecular
diffusion that is correct at the initial stages of the development
of diffusion, and then the total tracer mass remains unaltered
during evolution, i.e., we have

M �M�t� �
�
r�r; t� dr �

�
r0�r� dr � const :

Velocity field V�r; t� of particles in a hydrodynamic
flow U�r; t� for low-inertia particles can be described by a
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partial derivative quasi-linear equation (see, for instance,
Refs [43 ± 47])�

q
qt
� V�r; t� q

qr

�
V�r; t� � ÿl�V�r; t� ÿU�r; t�� ; �3�

which we shall regard as a phenomenological one. In the
general case, the nonuniqueness of the solution of Eqn (3),
discontinuities, etc. are possible. However, in an asymptotic
case of low-inertia particles (parameter l!1), which is of
special interest to us, there exists a unique solution over a
reasonable time interval. It should be noted that the term
F�r; t� � lV�r; t� on the right-hand side of Eqn (3), linear in
the velocity field V�r; t�, is the well-known Stokes formula for
a resistive force acting on a slowly moving particle. If the
particle is approximated by a ball of radius a, then one obtains

l � 6paZ
mp

;

where Z is the coefficient of dynamic viscosity, and mp is the
particle's mass (see, for instance, Refs [39, 40]).

In the general case, the hydrodynamic Eulerian velocity
field has the form

U�r; t� � u0�r; t� � u�r; t� ;

where u0�r; t� is the deterministic component of the velocity
field (mean flow), and u�r; t� is the random component.
Random field u�r; t� may have both solenoidal [for which
div u�r; t� � 0] and potential [for which div u�r; t� 6� 0] com-
ponents.

As mentioned above, Eqns (1) ± (3) provide the Eulerian
description of the evolution of the number density field of low-
inertia particles and the density field of a passive tracer. These
equations are actually first-order partial derivative equations
and can be solved by the method of characteristics.

Introduction of characteristic curves r�t�, V�t� that
describe particle motion with the help of equations

d

dt
r�t� � V

ÿ
r�t�; t� ; r�0� � r0 ;

�4�
d

dt
V�t� � ÿl�V�t� ÿU

ÿ
r�t�; t�� ; V�0� � V0�r0�

allows for the passage from Eqns (1) and (2) to ordinary
differential equations

d

dt
n�t� � ÿn�t� qV

ÿ
r�t�; t�
qr

; n�0� � n0�r0� ;
�5�

d

dt
r�t� � ÿr�t� qV

ÿ
r�t�; t�
qr

; r�0� � r0�r0� :

It should be emphasized that Eqns (4) are ordinary
Newton equations for the dynamics of a particle with the
linear frictional force described by the Stokes force
F�t� � ÿlV�r�t�; t�, under the effect of a random force
f�t� � lU�r�t�; t� induced by the hydrodynamic flow.

The solutions for Eqns (5) have a clear geometric
interpretation. They describe the evolution of particle
number and passive tracer densities in the vicinity of a fixed
particle, the trajectory of which is determined by the solution
r � r�t� to the system of equations (4). It follows from
equations (5) that particle number and passive tracer

densities in divergent flows vary; specifically, they are greater
in the regions of compression, and smaller in the regions of
rarefaction of the medium.

2.2 Inertialess particles and inertialess tracer field
For inertialess particles, the parameter l!1 and, as follows
from Eqn (3), we arrive at

V�r; t� � U�r; t� :

In this case, the particle's trajectory and number density in a
hydrodynamic flow with the velocity field U�r; t� are
described by the equations

d

dt
r�t� � U

ÿ
r�t�; t� ; r�0� � r0 ;

�6�
d

dt
r�t� � ÿr�t� qU

ÿ
r�t�; t�
qr

; r�0� � r0�r0� ;

and the Euler density field satisfies the equation�
q
qt
�U�r; t� q

qr

�
r�r; t� � qU�r; t�

qr
r�r; t� � 0 : �7�

Thus, the problem of determining trajectories of inertialess
particles in a hydrodynamic flow is a purely kinematic one.

Let us now consider stochastic peculiarities of the solution
of problem (6) for a system of particles in the absence of
average flow �u0�r; t� � 0�. According to Eqn (6), each
particle travels independently. However, if the random field
u�r; t� has a finite spatial correlation radius lcor, the particles
spaced less than lcor are all located in the zone of influence of
the random field u�r; t�; therefore, new collective features are
likely to appear in the dynamics of such a system of particles.

For a stationary velocity field u�r; t� � u�r�, Eqn (6) is
simplified and acquires the form

d

dt
r�t� � u�r� ; r�0� � r0 :

It follows, thence, that the stationary points ~r at which
u�~r� � 0 remain fixed. Depending on whether these points
are stable or unstable, they either attract or repel particles in
their neighborhood. By virtue of the stochastic nature of the
function u�r�, the positions of points ~r are random too. A
similar situation ought to persist in the general case of
random space ± time velocity field u�r; t�.If some points ~r
remain stable during a sufficiently long period, then in
certain realizations of the random field u�r; t� cluster regions
of particles ought to form in their neighborhood (i.e.,
compact regions of increased particle concentration located
mostly in rarefied zones). If, however, the stable points
become unstable soon enough and the particles have no time
to rearrange, cluster regions do not form.

Numerical simulation (see Refs [27, 51, 52]) shows that the
dynamic behavior of a system of particles differs considerably
depending on whether the random velocity field is divergent
or divergence-free. By way of example, Fig. 1a illustrating a
concrete realization of a stationary divergence-free velocity
field u�r� schematically depicts evolution of a system of
particles (two-dimensional case) uniformly distributed
within a circle in dimensionless time related to the statistical
parameters of the field u�r�. In this case, the area enclosed by
the contour is conserved, and the particles more or less
uniformly fill the region of a space bounded by the distorted
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contour. Only the strong unevenness of the contour in a
fractal-like fashion makes itself evident. In the case of a
divergent velocity field u�r�, the particles that were initially
uniformly distributed inside a square eventually huddle in
clusters in the course of time evolution. The results of
numerical simulation for this case are presented in Fig. 1b.
It should be emphasized once again that cluster formation in
this case is a purely kinematic phenomenon. Evidently, this
feature of particle dynamics disappears upon ensemble
averaging of random velocity field realizations.

The simplest example of particle clustering is that in a
random velocity field u�r; t� having the structure [53]

u�r; t� � v�t� sin �2kr� ; �8�

where v�t� is the random vector process. Such a form of the
function u�r; t� corresponds to the first term of a series
expansion in terms of harmonic components; it is usually
used in numerical simulation of the problem [51, 52].

In this case, Eqn (6) can be written down as

d

dt
r�t� � v�t� sin �2kr� ; r�0� � r0 :

For such a model, the motion of a particle in the direction of
the vector k and in the perpendicular direction can be
resolved. If the x-axis is aligned with the direction of the
vector k, then the equations take the form

d

dt
x�t� � vx�t� sin �2kx� ; x�0� � x0 ;

�9�
d

dt
R�t� � vR�t� sin �2kx� ; R�0� � R0 :

The solution to the first equation in set (9) has the form

x�t� � 1

k
arctan

�
exp

�
T�t�� tan �kx0�	 ; �10�

where

T�t� � 2k

� t

0

vx�t� dt : �11�

Taking into consideration the equality that ensues from
formula (10):

sin �2kx�

� sin �2kx0� 1

exp
�ÿT�t�� cos2 �kx0� � exp

�
T�t�� sin2 �kx0� ;

the last equation in set (9) can be rewritten as

d

dt
R�tjr0�

� sin �2kx0� vR�t�
exp

�ÿT�t�� cos2 �kx0� � exp
�
T�t�� sin2 �kx0� :

Hence, we obtain

R�tjr0� � R0 � sin �2kx0�

�
� t

0

vR�t�
exp

�ÿT�t�� cos2 �kx0� � exp
�
T�t�� sin2 �kx0� dt :

�12�

Thus, the initial location x0 of the particle being such that

kx0 � n
p
2
; �13�

where n � 0;�1; . . . ; the particle will be fixed, and r�t� � r0.
Equalities (13) define planes and points in the general and

one-dimensional cases, respectively. They correspond to
zeroes of the velocity field. However, the stability of these
points depends on the sign of the function v�t� that changes in
the course of evolution. As a result, the particles can be
expected to crowd in the vicinity of these points if vx�t� 6� 0,
which corresponds to their clustering.

For a divergence-free velocity field, when vx�t� � 0 (and,
hence, T�t� � 0), one finds

x�tjx0� � x0 ; R�tjr0� � R0 � sin �2kx0�
� t

0

vR�t� dt ;

so that no clustering occurs.
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Figure 1. Results of the numerical simulation of particle's diffusion in

solenoidal (a) and divergent (b) random velocity fields u�r�.
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Figure 2a displays a fragment of the realization of the
random process T�t�, obtained by numerical integration of
equality (11) for one particular realization of the random
process vx�t� and used for numerical simulation of the time
evolution of the coordinates x�t� �x 2 �0; p=2� of four
particles having the initial coordinates x0�i� � �p=2��i=5�
�i � 1; 2; 3; 4� (see Fig. 2b). It can be seen that at a

dimensionless moment of time t � 4 (see Ref. [53]), the
particles form a cluster in the vicinity of point x � 0.
Furthermore, at the instant of time t � 16, this cluster
disappears and a new cluster forms in the neighborhood of
point x � p=2. At the instant t � 40, the cluster is formed
anew in the vicinity of point x � 0, and so forth. The particles
in these clusters remember their history and throughout each
transient period they become widely separated (Fig. 2c).

Thus, in this example, the cluster as an entity does not
move from one region in space to another but breaks down,
accompanied by the generation of a new one. As this takes
place, the lifetime of the clusters is much greater than the
transient time. This is apparently a specific property of the
given velocity field model related to the stationary position of
the points (13).

The diffusion of particles along the y-axis is not associated
with the formation of clusters.

It is also possible to follow up cluster formation in the
Eulerian description by taking the random velocity field of
the form (8) as an example. In this case, the density field r�r; t�
is described by the expression [53]

r�r; t� � r0�r0�
1

exp
�
T�t�� cos2 �kx� � exp

�ÿT�t�� sin2 �kx� ;
�14�

where the function T�t� is given by formula (11), and the
parameter r0 is found from expressions (10) and (12).

For a divergence-free velocity field, when vx�t� � 0,
T�t� � 0, one finds

r�r; t� � r0

�
rÿ sin �2kx�

� t

0

v�t� dt
�
:

In a particular case when the initial density distribution is
independent of r, i.e., r0�r� � r0, the equality (14) is
simplified, taking the form

r�r; t�
r0
� 1

exp
�
T�t�� cos2 �kx� � exp

�ÿT�t�� sin2 �kx� : �15�
Figure 3 illustrates space ± time evolution of an Eulerian

density field 1� r�r; t�=r0, calculated with the use of formula
(15) in dimensionless space ± time variables (unity is added to
avoid problems with logarithms at near-zero density values).
These figures clearly show sequential flow of the density field
to the narrow vicinities of points x � 0 and x � p=2; which
implies the formation of clusters. For example, Figs 3a and 3b
show the time sequence �t � 1ÿ10� of cluster formation in the
neighborhood of point x � 0. Figures 3c and 3d show the time
sequence �t � 16ÿ25� of density field flow from the neighbor-
hood of point x � 0 to the neighborhood of point x � p=2Ð
that is, cluster disintegration about a point x � 0 and the
formation of a new cluster in the vicinity of x � p=2. This
process is further repeated in time. It appears from the figures
that the `lifetime' of such clusters in the model under
consideration is of the same order as the `time of their
formation'.

Thus, we have considered the simplest model of tracer
(particles and Eulerian density field) diffusion in a random
velocity field that clearly discloses the process of cluster
formation. A specific feature of this model is the presence of
fixed points where clusters form. Evidently, this somewhat
compromises the value of the model.

20

T�t�

10

0

ÿ10

ÿ20
0 10 20 30 40

t

a

10 20 30 40

1.5

x

1.0

0.5

0
t

b

13 14 15 16 17

1.5

x

1.0

0.5

0

t

c

Figure 2. Fragment of realization of the random process T�t� (a) obtained
by numerical integration of equality (11) for a single realization of

the random process vx�t� and used to calculate time evolution of the

x-coordinates of four particles (b, c).
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However, this model permits us to understand the basic
difference between particle's diffusion in divergent and
divergence-free velocity fields. In divergence-free (incom-
pressible) velocity fields, particles (hence, the density field)
do not have enough time to drift to stable attraction centers,
while the latter still exist and only slightly fluctuate about
their initial positions. In divergent (compressible) velocity
fields, the same lifetime of the stable attraction centers proves
sufficient for the particles to be drawn to them because the
process of particle attraction is exponentially accelerated as
follows from formula (15).

It is worth noting that such clustering for a system of
particles and a tracer field was first reported in Refs [54, 55]
where numerical modeling of the so-called Eole experiment
was undertaken based on the simplest equations of atmo-
spheric dynamics. In the framework of this global experiment,
500 balloons of constant density were launched in Argentina
in 1970 ± 1971 and spread over the entire Southern hemi-
sphere at an altitude of roughly 12 km.

The results of statistical processing of relative distances
between particles, examined experimentally, can be found, for
instance, in Refs [56 ± 58].

Solution to the system of equations (6) depends on the
characteristic parameter r0, i.e., the particle's initial coordi-
nate (denoted by the vertical bar):

r�t� � r�tjr0� ; r�t� � r�tjr0� : �16�
The components of vector r0 that unambiguously determine
the position of an arbitrary particle are known as its

Lagrangian coordinates. Then, equations (6) correspond to
the Lagrangian description of the evolution of the number
density field of particles and active tracer density. The linkage
between Eulerian and Lagrangian descriptions is given by the
first of equalities (16). Its solution with respect to r0 yields a
relation that expresses the Lagrangian coordinates in terms of
the Eulerian ones:

r0 � r0�r; t� : �17�

Subsequent elimination of r0-dependence in the remaining
equality (16) using Eqn (17) leads back to the Eulerian
description of the passive tracer density field:

r�r; t� � r
ÿ
tjr0�r; t�

� � � r�tjr0� j�tjr0� dÿr�tjr0� ÿ r
�
dr0 ;

�18�

where a new function called divergence was introduced:

j�tjr0� � det k ji k�tjr0�k � det





 qri�tjr0�qr0k





 :
Differentiation of Eqn (6) with respect to components of the
vector r0 yields equations for elements of the Jacobian matrix
jik�tjr0�:

d

dt
ji k�tjr0� � qUi�r; t�

qrl
jl k�tjr0� ; ji k�0jr0� � di k :
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Figure 3. Space ± time evolution of the Eulerian density field.
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It follows herefrom that the determinant of this matrix is
described by the equation

d

dt
j�tjr0� � qU�r; t�

qr
j�tjr0� ; j�0jr0� � 1 ; �19�

with j�tjr0� being a quantitative measure of the degree of
compression or expansion of physically infinitely small liquid
particles. Comparison of Eqns (6) and (19) shows that

r�tjr0� � r0�r0�
j�tjr0� : �20�

Therefore, expression (18) can be rewritten as the equality

r�r; t� �
�
r0�r0� d

ÿ
r�tjr0� ÿ r

�
dr0 ; �21�

which relates the Lagrangian and Eulerian characteristics.
The delta-function on the right-hand side of Eqn (21) is an
indicator function for the position of a Lagrangian particle.
Hence, averaging equality (21) over the ensemble of realiza-
tions of a random velocity field yields the well-known relation
between the mean passive tracer density in the Eulerian
description and simultaneous probability density

P�t; rjr0� �


d
ÿ
r�tjr0� ÿ r

��
of the position of an inertialess Lagrangian particle (see, for
instance, Ref. [1]):


r�r; t�� � � r0�r0�P�t; rjr0� dr0 :
Evidently, this equality also holds true for low-inertia

particles described by Eqns (2).
Thus, the behavior of inertialess particles and passive

tracer density is described in the Lagrangian representation
by ordinary differential equations (4), (19). It is easy to pass
from them to the linear Liouville equation for indicator
functions in the corresponding phase space (see, for
instance, Refs [36, 61]). For this purpose, the following
indicator function should be introduced:

FLag�t; r; r; jjr0�� d
ÿ
r�tjr0� ÿ r

�
d
ÿ
r�tjr0� ÿ r

�
d
ÿ
j�tjr0� ÿ j

�
;

�22�

the form of which explicitly takes into account that the
solution of the input dynamic equations depends on the
Lagrangian coordinates r0. Differentiation of Eqn (22) with
respect to time and the use of Eqns (4), (5), and (19) lead to the
Liouville equation equivalent to the original problem:�

q
qt
� q
qr

U�r; t�
�
FLag�t; r; r; jjr0�

� qU�r; t�
qr

�
q
qr

rÿ q
qj

j

�
FLag�t; r; r; jjr0� ;

�23�
FLag�0; r; r; jjr0� � d�r0 ÿ r� dÿr0�r0� ÿ r

�
d� jÿ 1� :

The simultaneous probability density for the solution of
statistical equations (4) and (19) coincides with the indicator
function averaged over the ensemble of realizations:

P�t; r; r; jjr0� �


FLag�t; r; r; jjr0�

�
:

For the description of the density field in the Eulerian
representation, an indicator function analogous to Eqn (22) is
introduced:

F�t; r; r� � d
ÿ
r�r; t� ÿ r

�
; �24�

which is localized on the surface r�r; t� � r � const in the
three-dimensional case or on the contour in the case of two
dimensions. This function is related to the Lagrangian
indicator function by an explicit equality

F�t; r; r� �
�
dr0

�1
0

dj jFLag�t; r; r; jjr0�

and, therefore, satisfies the equation�
q
qt
�U�r; t� q

qr

�
F�t; r; r� � qU�r; t�

qr
q
qr

�
rF�t; r; r�� ;

�25�
F�0; r; r� � d

ÿ
r0�r� ÿ r

�
;

suggesting that salient peculiarities arise only for the
divergent velocity field U�r; t�. Certainly, Eqn (25) can be
obtained directly from dynamic equation (7) (see, for
instance, Refs [36, 61]).

In this case, the one-point probability density for the
solution of dynamic equation (2) coincides with the indicator
function averaged over the ensemble of realizations:

P�t; r; r� � 
dÿr�r; t� ÿ r
��
:

It means that one-point probability density of a density field
in the Eulerian description is related to simultaneous
probability density in the Lagrangian description by the
equality

P�t; r; r� �
�
dr0

�1
0

dj jP�t; r; r; jjr0� : �26�

Besides, the Euler indicator function gives a wealth of
qualitative and quantitative information about the geometric
structure of the random field r�r; t� (statistical topography).
The main object of statistical topography, as in the conven-
tional topography of mountain massifs, is a set of contoursÐ
that is, level lines (in the two-dimensional case) or surfaces (in
the three-dimensional case) of constant values defined by the
equality

r�r; t� � r � const :

For the analysis of a set of contours (for simplicity, we
discuss the two-dimensional case), it is convenient to
introduce the singular indicator function (24) located on
them and serving as the functional of the parameters
specifying the medium.

In terms of function (24), it is possible to express such
quantities as the total area of the regions enclosed by the level
lines, where r�r; t� > r:

S�t; r� �
�1
r

d~r
�
drF�t; r; ~r� ; �27�

and the field's total `mass' confined within these regions:

M�t; r� �
�1
r

~r d~r
�
drF�t; r; ~r� : �28�
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By way of example, for passive tracer dynamics described
by the Liouville equation (25), differentiation of equalities
(27) and (28) with respect to time yields the expressions

q
qt

S�t; r� �
�
dr

�1
r

d~r
qU�r; t�

qr

�
q
q~r

~r� 1

�
F�t; r; ~r� ;

q
qt

M�t; r� �
�
dr

�1
r

d~r
qU�r; t�

qr
~r
�

q
q~r

~r� 1

�
F�t; r; ~r� :

Thus, the size of the area enclosed by the contour
r�r; t� � r � const, and the total mass concentrated in this
area are conserved for a divergence-free velocity field.
Evidently, in this case, the number of closed contours is also
conserved since they can neither arise nor disappear in the
medium; rather, they undergo evolution in time depending on
their spatial distribution patterns at an initial moment,
defined by the equality r0�r� � r � const.

If the velocity field has a potential component, all these
quantities undergo time evolution.

Values of expressions (27) and (28) averaged over the
ensemble of realizations are directly defined by the one-point
probability density.

Additional information on the detailed structure of the
field r�r; t� can be obtained by considering its spatial gradient
p�r; t� � Hr�r; t�. For example, the quantity

l�t; r� �
���p�r; t��� dÿr�r; t� ÿ r

�
dr �

�
dl �29�

describes the total length of contours r�r; t� � r � const.

3. Statistical analysis of diffusion
of inertialess particles and tracer density field

Let us now consider the problem of the statistical description
of the diffusion of inertialess particles and the density field of
a passive tracer in a random velocity field in the absence of an
average flow �u0�r; t� � 0�.

The random component of the velocity field is assumed in
the general case to be divergent �div u�r; t� 6� 0� and, at the
same time, approximated by a statistically homogeneous,
isotropic in space, and stationary random Gaussian field
with correlation and spectral tensors �hu�r; t�i � 0�

Bi j�rÿ r 0; tÿ t 0� � 
ui�r; t�uj�r 0; t 0��
�
�
Ei j�k; tÿ t 0� exp �ik�rÿ r 0�� dk ;

�30�
Ei j�k; t� � E s

i j�k; t� � Ep
i j�k; t� ;

where spectral components of the velocity field tensor have
the structure

E s
i j�k; t� � E s�k; t�

�
di j ÿ kikj

k 2

�
;

�31�
E p
i j�k; t� � Ep�k; t� kikj

k 2
:

Here, E s�k; t� and E p�k; t� denote solenoidal and potential
components of the spectral density of the velocity field,
respectively.

The time correlation radius of the field u�r; t� is defined by
the equalities

t0s 2
u �

�1
0

Bi i�0; t� dt �
�1
0



u�r; t� t�u�r; t�� dt

�
�1
0

dt
�
dkEi i�k; t�

�
�1
0

dt
�
dk
��dÿ 1�E s�k; t� � E p�k; t�� ;

where the velocity field dispersion

s 2
u � Bi i�0; 0� �



u 2�r; t�� ;

and the parameter d stands for the space dimension.
The following cases are of immediate practical interest:
� A purely divergence-free hydrodynamic flow for which

div u�r; t� � 0 �E p�k; t� � 0�.
� The case of a purely potential velocity field

�E s�k; t� � 0�. Such a case is realized, for instance, during
tracer diffusion in random wave fields.
�Amixed case realized, for instance, during diffusion of a

floating tracer.
Because the velocity field u�r; t� is homogeneous and

isotropic, the following equalities hold true:

Bkl�0; t� � D0�t�dkl ; q
qri

Bkl�0; t� � 0 ;
�32�

ÿ q2

qri qrj
Bkl�0; t�� D s�t�

d�d� 2�
��d� 1�dkldi j ÿ dkidl j ÿ dk jdl i

�
� Dp�t�
d�d� 2�

�
dkldi j � dkidl j � dk jdli

�
:

Here, d is the space dimension, the summation over repeating
indices is implied as usual, and the following notations are
introduced:

D0�t� � 1

d



u�r; t� t�u�r; t��

� 1

d

���dÿ 1�E s�k; t� � Ep�k; t�� dk ;
D s�t� �

�
k2E s�k; t� dk ; �33�

D p�t� �
�
k2E p�k; t� dk �

�
qu�r; t� t�

qr
qu�r; t�

qr

�
:

Note that the integrals of coefficients (33) with respect to time
are described by the expressions

D0 �
�1
0

D0�t� dt � 1

d
s 2
u t0 ;

D s �
�1
0

D s�t� dt �
�1
0

dt
�
dk k2E s�k; t� ; �34�

D p �
�1
0

D p�t� dt � tdiv u

��
qu�r; t�

qr

�2�
;

where tdiv u is the time correlation radius of the field div u�r; t�,
and s 2

div u � h�qu�r; t�=qr�2i is the correlation dispersion.
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For a divergence-free velocity field �E p � 0�, equalities
(32) and (33) are simplified and the quantity

D s �
�1
0

dt
�
dk k2E s�k; t�

� ÿ 1

dÿ 1

�1
0



u�r; t� t�Du�r; t�� dt �35�

is related to the vortical structure of the random divergence-
free field u�r; t�.

The random field u�r; t� correlates with the solutions of
Eqns (23), (25) which are the functionals of the field u�r; t�.
Correlation splitting for the Gaussian field u�r; t� is governed
by the Furutsu ±Novikov formula


uk�r; t�R
�
t; u�r; t���

�
�
dr 0
� t

0

dt 0 Bkl�rÿ r 0; tÿ t 0�
�
dR
�
t; u�r; t��

dul�r 0; t 0�
�
; �36�

which holds for the random Gaussian field u�r; t� with the
zero mean value and its arbitrary functional R�t; u�r; t��,
04t4 t (see, for instance, Refs [59, 60] and also [36, 61]).

3.1 Approximation of delta-correlated
in time velocity field
The statistical properties of the diffusion of inertialess
particles and the density field can be computed using the
approximation of the delta-correlated in time velocity field
u�r; t�, in the framework of which the correlation tensor (30) is
approximated by the expression

Bi j�r; t� � 2B eff
i j �r� d�t� ; �37�

where

B eff
i j �r� �

1

2

�1
ÿ1

Bi j�r; t� dt �
�1
0

Bi j�r; t� dt :

In this case, equalities (32) are replaced by the equalities

B eff
kl �0� � D0dkl ;

q
qri

B eff
kl �0� � 0 ; �38�

ÿ q2

qri qrj
B eff
kl �0� �

D s

d�d� 2�
��d� 1�dkldi j ÿ dkidl j ÿ dk jdl i

�
� D p

d�d� 2�
�
dkldi j � dkidl j � dk jdl i

�
;

respectively, with the coefficients defined by expressions (34).
Tracer diffusion in a random velocity field is described in

the Lagrangian representation by the Liouville equation (23),
and by Eqn (25) in the Eulerian representation. Averaging
these equations over the ensemble of realizations of the
velocity field fug yields equations for the simultaneous
Lagrangian probability distribution P�t; r; r; jjr0� and the
one-point Eulerian probability density distribution P�t; r; r�.

Correlation splitting for the Gaussian field u�r; t� with its
functionals is based on the Furutsu ±Novikov formula (36),
which is simplified for the delta-correlated field u�r; t� and
takes the form (see also Refs [36, 61])


uk�r; t�R
�
t; u�r; t���

�
�
B eff
kl �rÿ r 0�

�
dR
�
t; u�r; t��

dul�r 0; tÿ 0�
�
dr 0 ; �39�

where 04t4 t.

3.1.1 Lagrangian description (particle diffusion). Averaging
Eqn (23) over the ensemble of realizations of the random field
u�r; t� with the help of the Furutsu ±Novikov formula (39)
and taking into account the equality

d
dub�r 0; tÿ 0� FLag�t; r; r; jjr0�

�
�
ÿ q
qrb

d�rÿ r 0� � qd�rÿ r 0�
qrb

�
q
qr

rÿ q
qj

j

��
� FLag�t; r; r; jjr0�

and relations (38) lead to the Fokker ± Planck equation for
the simultaneous Lagrangian probability density
P�t; r; r; jjr0� of the particle's coordinate r�tjr0�, density
r�tjr0�, and divergence j�tjr0�:�

q
qt
ÿD0D

�
P�t; r; r; jjr0�

� Dp

�
q
qr

r 2 q
qr
ÿ 2

q2

qr qj
rj� q2

qj 2
j 2
�
P�t; r; r; jjr0� ;

P�0; r; r; jjr0� � d�rÿ r0� d
ÿ
r0�r0� ÿ r

�
d� jÿ 1� : �40�

Equation (40) has the solution

P�t; r; r; jjr0� � P�t; rjr0�P�t; jjr0� d
�
rÿ r0�r0�

j

�
; �41�

where

P�t; rjr 0� � exp �D0tD� d�rÿ r 0�

� 1

�4pD0t�d=2
exp

��rÿ r 0�2
4D0t

�
�42�

is the probability distribution of the coordinates of the passive
tracer particle, and

P�t; jjr0� � exp

�
Dpt

q2

q j 2
j 2
�
d� jÿ 1�

� 1

2j
�����
pt
p exp

�
ÿ ln2 � j exp t�

4t

�
�43�

is the probability distribution of the field of divergence in its
neighborhood. Here [Eqn (43)] and in what follows, the
dimensionless time t � D pt is used. It should be emphasized
that solution (41) implies statistical independence of coordi-
nates r�tjr0� and divergence j�tjr0� in the vicinity of a particle
with the Lagrangian coordinates r0. The logarithmically
normal distribution (43) means that the quantity
w�tjr0� � ln j�tjr0� is distributed according to the Gaussian
law with the parameters


w�tjr0�
� � ÿt ; s 2

w �t� � 2t : �44�

Specifically, the following expressions for the moments of
a random field of divergence ensue fromEqn (43) and directly
from Eqn (40):


j n�tjr0�
� � exp

�
n�nÿ 1�t� ; n � �1;�2; . . . �45�

It should be emphasized that the mean divergence is constant:
h j�tjr0�i � 1, while its highest moments exponentially
increase with time.
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Also, it is worthwhile to note that, in accordance with
Eqns (20) and (45), the following expression holds for the
Lagrangian density moments:


r n�tjr0�
� � r n

0 �r0� exp
�
n�n� 1�t� :

In particular, it suggests the exponential growth of the mean
density and its highest moments in the Lagrangian represen-
tation. Probability density for the particle's density here takes
the form

P�t; rjr0� � 1

2r
�����
pt
p exp

�
ÿ ln2

ÿ
r exp �ÿt�=r0�r0�

�
4t

�
: �46�

It can also be obtained as the solution of the Fokker ± Planck
equation following from Eqns (40):

q
qt

P�t; rjr0� � Dp q
qr

r 2 q
qr

P�t; rjr0� ;

P�0; rjr0� � d
ÿ
r0�r0� ÿ r

�
:

The above paradoxical behavior of statistical character-
istics of divergence and density, manifested as the simulta-
neous increase of their moments in time, finds an explanation
in terms of the log normal probability distribution (see
Refs [34, 36, 62]). Thus, the typical realization of a random
divergence is given as the exponentially decaying curve

j ��t� � exp �ÿt� :

It should be recalled that we mean by the curve of typical
realization of the random process z�t� the deterministic curve
z ��t� possessing the following property: for any time interval
�t1; t2�, the random process z�t� proceeds as if it `winds
around' the curve z ��t�, so that the mean time during which
the inequality z�t� > z ��t� is fulfilled coincides with the mean
time during which the inverse inequality z�t� < z ��t� is
fulfilled, i.e., one finds


Tz�t�> z ��t�
� � 
Tz�t�< z ��t�

� � 1

2
�t2 ÿ t1� : �47�

Moreover, realizations of a log normal process also admit
majorant estimates, for example, with probability p � 1=2,
one has

j�tjr0� < 4 exp

�
ÿ t
2

�

over the entire time interval t 2 �t1; t2�.
Similarly, for density realizations, there are a typical

realization curve and minorant estimate:

r ��t� � r0 exp �t� ; r�tjr0� > r0
4

exp

�
t
2

�
:

It should be emphasized that the above-studied Lagran-
gian properties of a particle in flows containing a random
potential component are qualitatively different from its
statistical properties in divergence-free flows, where
j�tjr0� � 1 and the density in the vicinity of the fixed particle
is conserved: r�tjr0� � r0�r0� � const. The above statistical
estimates for the particle indicate that statistics of the random
processes j�tjr0� and r�tjr0� are shaped by outliers of their
realizations in relation to typical realizations.

At the same time, probability distributions of the
particles' coordinates in the cases of both divergent and
divergence-free velocity fields are essentially the same.

Let us now consider the joint dynamics of two particles in
the absence of a mean flow. In this situation, the indicator
function

F�t; r1; r2� � d
ÿ
r1�t� ÿ r1

�
d
ÿ
r2�t� ÿ r2

�
is described by the Liouville equation

q
qt

F�t; r1; r2� � ÿ
�

q
qr1

u1�r; t� � q
qr2

u2�r; t�
�
F�t; r1; r2� :

Averaging this function over the ensemble of u�r; t�-field
realizations and taking into account the Furutsu ±Novikov
formula (36) and the equality

d
duj�r 0; tÿ 0� F�t; r1; r2�

� ÿ
�

q
qr1j

d�r1 ÿ r 0� � q
qr2j

d�r2 ÿ r 0�
�
F�t; r1; r2�

leads, for the joint probability density of the position of the
two particles

P�t; r1; r2� �


F�t; r1; r2�

�
;

to the Fokker ± Planck equation

q
qt

P�t; r1; r2� �
�

q2

qr1i qr1j
� q2

qr2i qr2j

�
B eff
i j �0�P�t; r1; r2�

� 2
q2

qr1i qr2j
B eff
i j �r1 ÿ r2�P�t; r1; r2� : �48�

Multiplying Eqn (48) by the function d�r1 ÿ r2 ÿ l� and
integrating with respect to r1 and r2 yields, for the probability
density of relative diffusion of the two particles

P�t; l� � 
dÿr1�t� ÿ r2�t� ÿ l
��
;

the Fokker ± Planck equation

q
qt

P�t; l� � q2

qla qlb
Dab�l�P�t; l� ; P�0; l� � d�lÿ l0� ; �49�

where

Dab�l� � 2
�
B eff
ab �0� ÿ B eff

ab �l�
�

is the structural matrix of the vector field u�r; t�, and l0 is the
initial distance between the particles.

In the general case, Eqn (49) is insoluble. However, the
initial distance between the particles being l0 5 lcor [where lcor
is the spatial correlation radius of the velocity field u�r; t�], the
function Dab�l� can be expanded in a Taylor series to give the
first-order approximation

Dab�l� � ÿ
q2B eff

ab �l�
qli qlj

����
l� 0

lilj :

With the use of the representation (31) ± (33), the diffusion
tensor becomes simplified and can be written down in the

676 V I Klyatskin Physics ±Uspekhi 46 (7)



form

Dab�l� � 1

d�d� 2�
�ÿ
D s�d� 1� �D p

�
dab l 2

ÿ 2�D s ÿD p� lalb
�
; �50�

where d is the space dimension.
Substituting Eqn (50) into Eqn (49), multiplying both

sides of the resulting equation by l n, and integrating with
respect to l leads to the closed equation

d

dt
ln


l n�t�� � 1

d�d� 2�
�ÿ
D s�d� 1� �D p

�
n�d� nÿ 2�

ÿ 2�D s ÿD p� n�nÿ 1�� ;
the solution of which corresponds to exponentially growing in
time functions for all moments �n � 1; 2; . . .�. In this case, the
random process l�t�=l0 has the log normal probability
distribution. It is worthwhile to note that multiplying
Eqn (49) by d�l�t� ÿ l� and integrating with respect to l
readily leads to the equation for probability density of the
modulus of the vector l�t�:

P�t; l� � 
dÿ��l�t���ÿ l
�� � � dÿ��l�t���ÿ l

�
P�t; l� dl

having the form

q
qt

P�t; l� � ÿ q
ql

Di i�l�
l

P�t; l� � q
ql

N�l�P�t; l�

� q2

ql 2
N�l�P�t; l� ;

where N�l� � ljliDi j�l�=l 2.
It can be concluded that the typical realization for the

distance between the two particles is the time exponential
function

l ��t� � exp

�
1

d�d� 2�
�
D sd�dÿ 1� ÿDp�4ÿ d�	t� : �51�

Hence it follows that in the two-dimensional case �d � 2�,
the expression

l ��t� � exp

�
1

4
�D s ÿD p� t

�

is essentially dependent on the sign of the difference
�D s ÿD p�. In particular, for a divergence-free velocity field
�D p � 0�, there is an exponentially growing typical realiza-
tion corresponding to exponentially fast dispersion of closely
spaced particles. This result holds for as long as

1

4
D st5 ln

�
lcor
l0

�
;

in which case expansion (50) remains valid. In another
limiting case (potential velocity field: D s � 0), the typical
realization is represented by an exponentially decaying curve
that suggests a tendency towards particle `coalescence'.
Simultaneously, liquid particles undergo compression, lead-
ing to the formation of clusters, i.e., compact regions of high
particle concentration interspersed to a greater extent within

rarefied zones. This observation is consistent with the results
of numerical simulation of the evolution of the realization of
the initially uniform particle distribution in a random
potential velocity field, depicted in Fig. 1b (although for a
totally different statistical model of the velocity field). This
means that clustering by itself is independent of the random
velocity field model, even though statistical parameters
characterizing this phenomenon can strongly depend on the
model structure.

In the three-dimensional case �d � 3�, it follows from
Eqn (51) that

l ��t� � exp

�
1

15
�6D s ÿD p�t

�
;

and the typical realization for the interparticle spacing
exponentially decays in time if a more stringent (than in the
two-dimensional case) condition is satisfied:

D p > 6D s :

In the one-dimensional case, one has

l ��t� � exp �ÿD pt� ;

so that the typical realization always decays in time because
the velocity field in this situation is invariably divergent.

3.1.2 Eulerian description. A description of the behavior of
realizations of a tracer field in the random velocity field
implies the knowledge of the probability distribution for the
tracer density. An equation for Eulerian probability density is
easy to derive based on formula (28), multiplying Eqn (40) by
j, and integrating it with respect to all possible values of j and
r0. The resultant equation for probability density of the
density field has the form�

q
qt
ÿD0D

�
P�t; r; r� � D p q2

qr 2
r 2P�t; r; r� ;

�52�
P�0; r; r� � d

ÿ
r0�r� ÿ r

�
:

Equation (52) can also be obtained directly by averaging
Eqn (25) over the ensemble of realizations of the delta-
correlated in time random field u�r; t� in the absence of a
mean flow, using the Furutsu ±Novikov formula (39) and the
expression for the variational derivative

dF�t; r; r�
dub�r 0; tÿ 0�

�
�
ÿd�rÿ r 0� q

qrb
� qd�rÿ r 0�

qrb

q
qr

r
�
F�t; r; r� :

It follows from Eqn (52) that moment functions of the
tracer density field are described by the equation�

q
qt
ÿD0D

�

r n�r; t�� � D pn�nÿ 1�
 r n�r; t�� ;

�53�

r n�r; 0�� � r n

0 �r� :
Its solution assumes the form


r n�r; t�� � exp
�
n�nÿ 1�t� � P�t; rjr 0� r n

0 �r 0� dr 0 ; �54�

where the function P�t; rjr 0� is described by equality (42).

July, 2003 Clustering and diffusion of particles and passive tracer density in random hydrodynamic êows 677



In particular, the initial tracer density being the same
throughout, r0�r� � r0 � const, the probability density dis-
tribution is independent of r and logarithmically normal with
the probability density

P�t; r� � 1

2r
�����
pt
p exp

�
ÿ ln2

ÿ
r exp �t�=r0

�
4t

�
: �55�

In this case, all moment functions starting from the second
one exponentially grow in time as


r�r; t�� � r0 ;


r n�r; t�� � r n

0 exp
�
n�nÿ 1�t� ; �56�

whereas the typical realization of the tracer density field at
any fixed point in the space falls off exponentially with time as

r ��t� � r0 exp �ÿt� : �57�

This suggests the cluster nature of medium density fluctua-
tions in arbitrary divergent flows. Formation of the Eulerian
statistics of the tracer density at any fixed point in the space
comes about through density fluctuations about the curve.

So far, we have studied the one-point probability density
distribution of a tracer in the Eulerian representation and
have drawn a few conclusions concerning the behavior of
realizations of the tracer density field in time at fixed points in
the space. Now, we shall demonstrate that this distribution
can also be used to elucidate certain characteristic peculia-
rities of the spatial ± temporal structure of tracer density field
realizations.

For clarity, we shall confine ourselves to the two-
dimensional case. As mentioned above, important data
about the spatial behavior of the field realizations are
provided by the analysis of level lines defined by the equality

r�r; t� � r � const ; �58�

and such functionals of the density field as the total area
S�t; r�, where r�r; t� > r, and the total tracer mass M�t; r�
enclosed in these regions, the mean values of which are
described by one-point probability density:


S�t; r�� � �1
r

d~r
�
drP�t; r; ~r� ;

�59�

M�t; r�� � �1

r
d~r ~r

�
drP�t; r; ~r� :

By substitution of the solution of Eqn (52) and applying
simple transformations, it is easy to derive explicit expressions
for these quantities:


S�t; r�� � � F� 1

2
���
t
p ln

�
r0�r� exp �ÿt�

r

��
dr ;

�60�

M�t; r�� � � r0�r�F� 1

2
���
t
p ln

�
r0�r� exp t

r

��
dr ;

where F�z� is the error integral:

F�z� � 1������
2p
p

� z

ÿ1
exp

�
ÿ y 2

2

�
dy :

It is clear, in particular, that for t4 1 the mean area of the
regions where the tracer density is above r contracts with time

according to the law

S�t; r�� � 1��������

ptr
p exp

�
ÿ t
4

�� �����������
r0�r�

p
dr ; �61�

whereas the mean tracer mass enclosed within these regions,
namely



M�t; r�� �Mÿ

������
r
pt

r
exp

�
ÿ t
4

�� �����������
r0�r�

p
dr ; �62�

tends monotonically toward the total mass of the system,
M � � r0�r� dr. This confirms once again our earlier conclu-
sion that in the course of time the tracer particles tend to
coalesce into clusters, i.e., compact regions of an increased
particle concentration amidst rarefied zones.

The dynamics of the cluster formation can be illustrated
by an example in which the tracer is at first uniformly
distributed over a plane: r0�r� � r0 � const. In this case, the
mean specific area of the regions in which r�r; t� > r is equal
to

s�t; r� �
�1
r

P�t; ~r� d~r � F
�
ln
ÿ
r0 exp �ÿt�=r

�
2
���
t
p

�
; �63�

where P�t; r� is the r-independent solution of Eqn (52), i.e.,
function (55), and the mean specific tracer mass (per unit
area) falling within these regions is described by the expres-
sion

m�t; r� � 1

r0

�1
r

~rP�t; ~r� d~r � F
�
ln
ÿ
r0 exp �t�=r

�
2
���
t
p

�
: �64�

It follows from Eqns (63) and (64) that the mean tracer
specific area at large times decreases exponentially according
to the law

s�t; r� � F
�
ÿ

���
t
p
2

�
� 1�����

pt
p exp

�
ÿ t
4

�
�65�

regardless of the ratio r=r0, whereas almost all the tracer's
mass aggregates inside this area:

m�t; r� � F
� ���

t
p
2

�
� 1ÿ 1�����

pt
p exp

�
ÿ t
4

�
: �66�

The character of time evolution of the cluster structure
formation essentially depends on the ratio r=r0 (see Refs [34,
36]). For example, if r=r0 < 1, then at the initial moment
s�0; r� � 1 and m�0; r� � 1. Furthermore, tracer particles
first tend to disperse, giving rise to small regions with
r�r; t� < r, which contain a minor part of the total tracer
mass. In the course of time, these regions rapidly grow in size,
while the mass contained in them flows to the cluster regions,
fairly rapidly reaching the asymptotic dependences (65), (66)
(Fig. 4). At the instant of time t � � ln �r=r0�, the specific area
is equal to s�t �; r� � 1=2.

In the opposite and more interesting case of r=r0 > 1, the
initial values are s�0; r� � 0 and m�0; r� � 0. The initial
dispersion of particles results in small cluster regions with
r�r; t� > r; these regions are virtually conserved in time and
intensively 'suck in' a sizable portion of the total tracer mass.
Thereafter, their areas contract, while the mass contained in
them increases to reach the same asymptotic dependences (65)
and (66) (Fig. 5).

As mentioned above, for a more detailed description of
the tracer density field in a random velocity field its spatial
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gradient p�r; t� � Hr�r; t� and, generally speaking, higher-
order derivatives need to be considered. For a divergence-
free liquid flow, the mean density gradient of a tracer particle
is conserved: hp�r; t�i � p0�r0�. Moment functions of the
density gradient modulus are described in this case by the
equations (see, for instance, Refs [27, 34, 36])

q
qt



pn�tjr0�

� � n�d� n��dÿ 1�
d�d� 2� D s



pn�tjr0�

�
;

�67�

pn�0jr0�

� � pn
0 �r0� :

This means that the modulus of the density field gradient
in the Lagrangian description is a log normal quantity, the
typical realization and moment functions of which exponen-
tially increase in time. Specifically, the first and second
moments in the two-dimensional case are described by the
corresponding equalities
��p�tjr0���� � ��p0�r0��� exp�38 D st

�
;

�68�

p2�tjr0�

� � p20�r0� exp �D st� :

It is worthwhile to note that the log normal distribution
for the tracer's gradient modulus, first postulated in Ref. [63],
is consistent with experimental findings for the atmosphere
[64, 65].

Moreover, it follows from formula (29) that the total
mean length of the contour r�r; t� � r � const (in the two-
dimensional case) also grows exponentially with time as


l�t; r�� � l0 exp �D st� ;

where l0 is the initial contour length [26, 27]. It should be
recalled that in this case a divergence-free velocity field
conserves the number of contours that can neither appear
nor disappear in the medium but only evolve in time starting
from their initial distribution in space.

Thus, the initially smooth tracer distribution acquires an
increasingly inhomogeneous spatial structure; its spatial
gradients sharpen and the level lines undergo fractalization.
Such a picture is presented in Fig. 1a based on numerical
simulation (although for an altogether different model of
velocity field fluctuations). This means that the aforemen-
tioned general behavioral patterns are insensitive to the type
of the models.

It has been shown in the foregoing that, in the presence of
the potential component of the velocity field, particles tend to
coalesce into clusters depending on the relationship between
the solenoidal and potential components of the velocity field.
At the same time, clustering inevitably occurs in the Eulerian
density field in the presence of the potential component.
Alongside dynamic equation (7), of certain interest is the
following equation for the nonconservative tracer transport
(see, for instance, Ref. [40]):�

q
qt
�U�r; t� q

qr

�
r�r; t� � 0 ; r�r; 0� � r0�r� :

In this case, the equation for particle dynamics in the
Lagrangian description coincides with Eqn (4); hence, the
possibility of clustering at the particle level. It is easy to see,
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Figure 5.Dynamics of cluster formation for (a) r=r0 � 1:5, and (b) r=r0 � 10.
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however, that the Eulerian density fields do not give rise to
clustering. This case is similar to the divergence-free one in
that it conserves the mean contour number, the mean area
where r�r; t� > r, and the mean tracer `mass'

�
r�r; t� dS

enclosed within these contours.

3.2 Conditions of validity of the delta-correlated
approximation and diffusion approximation
A usability condition for the approximation of the delta-
correlated in time random field u�r; t� (37) is the smallness of
the time correlation radius t0 of u�r; t� in comparison with all
the time scales of the problem being considered, namely,
t0 5 t1. In the presence of a mean flow, t1 � L=v or
t1 � L=

���������hu2ip
, where the parameter L is the typical scale of

length. This scale may depend on the mean flow properties
(e.g., L � v=jHvj is the typical eddy size) or tracer density
�L � r=jHrj�. In any case, these measures decrease with time
due to the appearance of small-scale structures. As a result,
the two time scales become comparable, and the delta-
correlated approximation turns inapplicable. It must be
taken into consideration that the time correlation radius t0
is finite. In the absence of a mean flow, the parameter L � l0
coincides with the spatial correlation radius of the random
field u�r; t�, and the usability condition for the delta-
correlated approximation to the random field u�r; t� is given
by the conditions

t4 t0 ;
s 2
u t

2
0

l 20
5 1 : �69�

The finiteness of the time correlation radius of the random
field u�r; t� can be taken into account in the framework of the
diffusion approximation (see, for instance, the review [34] and
books [36, 61]). This approximation is more demonstrable
and physically meaningful than the formal mathematical
approximation of the delta-correlated in time random
velocity field. In the framework of this approximation, it is
suggested that the effect of random factors on time scales of
order t0 is insignificantÐ that is, the particles and tracer field
evolve on these scales as free ones. The application of this
approximation will be discussed at greater length in the next
section devoted to the analysis of clustering of low-inertia
tracer particles. Here, it is worth noting that, in the absence of
a mean flow, the equations for the probability densities of
both Lagrangian and Eulerian variables upon the condition
t4 t0 totally coincide with the above equations derived in the
approximation of the delta-correlated field u�r; t�. Usability
conditions for the diffusion approximation are also given by
inequalities (69).

The limiting case of the stationary random velocity field
u�r�, corresponding to the limiting case t0 !1, cannot be
described in terms of the diffusion approximation. This case,
convenient for numerical simulation, is very difficult for an
analytical study even though some results have already been
published (see, for instance, Refs [17, 22]).

3.3 Peculiarities of tracer diffusion in rapidly varying
random wave fields
The motion of particles in the rapidly varying random
velocity fields or under effect of rapidly varying random
forces constitutes an important problem having numerous
implications for mechanics, hydrodynamics, plasma physics,
etc. It is well known that the stochastic transport in rapidly
varying vibration and wave fields is associated with a number

of important physical phenomena, such as the Fermi
acceleration, stochastic plasma heating, etc. [66, 67].

In certain cases, diffusion coefficients in both the delta-
correlated random field approximation and the diffusion
approximation tend to vanish. For example, such a case
takes place when particles travel in rapidly varying random
wave velocity fields [68] (see also Ref. [69]).

In such a way, diffusion of inertialess particles is described
by the equation

d

dt
r�t� � u�r; t� ; r�0� � r0 ; �70�

where u�r; t� is the random wave vector field, statistically
homogeneous in space and steady in time, such that
hu�r; t�i � 0.

Now, let us introduce a new field ~u�r; t� with the unit
dispersion, such that

u�r; t� � su~u�r; t� ;

where the velocity field dispersion is given by

s 2
u � Bi i�0; 0� :

Let us assume that this random field is of a wave origin; then,
its correlation tensor has the structure

Bi j�r; t� �
�
Fi j�k� cos

�
krÿ o�k�t	 dk ; �71�

where the spectral function Fi j�k� is such that
�
Fi i�k� dk � 1,

and o � o�k� > 0 is the dispersion curve for wave motions.
For example, for acoustic waves one haso�k� � ck, where c is
the velocity of sound; for gravitational waves at the surface of
a deep fluid, o�k� � �����

gk
p

; for internal gravity waves in a
stratified medium, o�k� � N

���������������
k2 ÿ k2z

p
=k, where N is the

Brunt ± Vaisala frequency; for the Rossby waves in the
atmosphere and the ocean, o�k� � ÿbkx=k2, where b is the
gradient of the Coriolis force in the direction y, and so forth.

For traditional wave motions, the spectral function of the
velocity field satisfies the condition Fi j�0� � 0, where
Fi j�o� �

�
Fi j�k� d

�
oÿ o�k��dk, while the tensor diffusion

coefficient in the corresponding Fokker ± Planck equation
vanishes, i.e., one obtains

Di j �
�1
0

Bi j�0; t� dt � 0 :

The same diffusion coefficient arises in the diffusion
approximation on the condition that t4 t0, where t0 is the
time correlation radius of the velocity field. Therefore, neither
the delta-correlated velocity field approximation nor the
diffusion approximation leads to a final result; the latter can
be obtained by taking into account the terms of the higher
order of smallness [68].

Let the maximum of the spectral function Fi j�k� corre-
spond to a certain wave number km, and that of the spectral
functionFi j�o� to the frequencyom. Let us define spatial and
temporal scales as l � 2p=km and t0 � 2p=om, respectively.
Then, the quantity e � sut0=l for real wave fields is, as a rule,
small andmay be regarded as themain small parameter of the
problem, i.e., e5 1. Let us also assume that the inequality
suk5o�k� holds for the entire area in which the velocity field
spectrum is known and is responsible for the absence of
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resonances between different components of the velocity
field.

The existence of maxima of spectral functions Fi j�k� and
Fi j�o� does not necessarily mean the presence of a quasi-
regular component in a random velocity field. The existence
of these maxima is due to the fact that the velocity field itself
results from differentiation (in space and time) of other
auxiliary wave fields (e.g., field of potential for the potential
velocity field or interface displacement field, etc.). Certainly,
if the spectral functions are too `narrow', that is if they are
delta-shaped with respect to the central frequency (wave
number), the problem can be preliminarily simplified by
means of dynamic averaging over fast oscillations with a
central frequency (wave number) of the input stochastic
equations. However, such a situation cannot be realized for
the majority of geophysical wave problems.

It should be noted that the hypothesis of statistical spatial
homogeneity has, generally speaking, limited implications
and does not hold for such phenomena as the waves in
atmospheric or oceanic waveguides, the transport by
bounded wave packets, etc. In what follows, we shall confine
ourselves to the consideration of the statistically homoge-
neous Gaussian wave velocity field with a focus on the
principal aspect of the problem. Concrete quantitative data
can be obtained if statistical models of the wave field itself are
considered up to the quadratic terms. Generally speaking, the
mean transport (Stokes drift) takes place in this case. Particle
diffusion in different concrete situations was considered, for
example, in Refs [70 ± 72] based on Taylor's approach [11].
Application of a more general and consistent approach to the
class of problems under consideration that holds for waves of
a different nature (proposed in Ref. [68] and based on the
consecutive approximation technique for the solution of
equations for variational derivatives) allows for certain
generalizations of the transport theory built around the
Fokker ± Planck equation. This approach permits us to
compute different statistical characteristics of the ensembles
of particles transferred with wave currents and analyze the
effects related to clustering and formation of coherent
structures in tracer density fields using statistical topography
methods.

3.3.1 Lagrangian description. By using spectral representation
of the velocity field (71) and its properties, it is possible to
compute diffusion coefficients in the second approximation
andwrite down the equation for the probability densityP�r; t�
of the particle's position at large time values �t4 t0� in the
form [68]

q
qt

P�r; t� � ÿs 2
u

�
dk

o�k� kiFki�k� q
qrk

P�r; t�

� s 4
u

p
2

�
dk1

�
dk2

o2
2

k1l k1j Fki�k1�Fl j�k2�

� d�o1 ÿ o2� q2

qrk qri
P�r; t�

� s 4
u

p
2

�
dk1

�
dk2

o2
2

k1l k2i Fki�k1�Fl j�k2�

� d�o1 ÿ o2� q2

qrk qrj
P�r; t� ; �72�

where o1 � o�k1�, and o2 � o�k2�.

Equation (72) is a Fokker ± Planck equation describing
probability density of the position of a particle transferred by
the statistically homogeneous Gaussian wave velocity field.

For isotropic fluctuations of the field ~u�r; t�, Eqn (72) can
be simplified to

q
qt

P�r; t� � Dd
q2

qr 2
P�r; t� ; �73�

corresponding to the Gaussian random vector process r�t�
with the mean value hr�t�i � r0 and dispersion

s2r �t� �

ÿ
r�t� ÿ r0

�2� � 2dDdt ;

where d is the space dimension, and the coefficient of
diffusion

Dd � s 4
u

p
2d

�
dk1

�
dk2

o2
2

k1l k1j Fi i�k1�Fl j�k2� d�o1 ÿ o2� :
�74�

In this case, the spectral tensor of the wave velocity field has
the structure

Fki�k� � F s�k�
�
di k ÿ ki kk

k2

�
� F p�k� ki kk

k2
; �75�

where F s�k� and F p�k� are the solenoidal and potential
components of the spectral tensor, respectively, and
o�k� � o�k�. Hence the following expression for the diffu-
sion coefficient:

Dd � s 4
u

p
2d

�
dk1

o2
1

k21Fii�k1�
�
dk2 Fl l�k2� d�o1 ÿ o2�

� s 4
u

p
2d

�
dk1

o2
1

k21
�
F s�k1��dÿ 1� � F p�k1�

�2
�
�
dk2 d�o1 ÿ o2� : �76�

For an anisotropic medium, spatial asymmetry of the
vector process r�t� arises. Its mean value and dispersion are
described by the expressions


rm�t�
� � r0m � ts 2

u

�
kiFmi�k� dk

o�k� ; �77�
s2r �t� �

D
r2�t� ÿ 
r�t��2E

� ts 4
u p
�
dk1

�
dk2

o2
2

k1l k1j Fi i�k1�Fl j�k2� d�o1 ÿ o2�

� ts 4
u p
�
dk1

�
dk2

o2
2

k1l k2i Fki�k1�Fl k�k2� d�o1 ÿ o2� :

Evidently, the diffusion coefficient is proportional to the
square of velocity field dispersion rather than velocity field
dispersion itself, because the problem in question does not
contain resonances of the `wave ± particle' type, which leads
to a decrease of the order of dispersion of the particles'
random drift velocity. The problem resembles that of
Kapitza's pendulum oscillations or the eddy drift of charged
particles in a rapidly varying electric field [66], where themain
effect is also of quadratic order.
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3.3.2 Eulerian description. Let us now turn to the statistical
description of the Eulerian representation. For simplicity, the
initial density field distribution is assumed to be constant, i.e.,
r0�r� � r0 � const; hence, the random function r�r; t� is
statistically homogeneous in space Ð that is, all its one-
point statistical characteristics are independent of the spatial
point r.

By using the spectral representation (71) and calculating
coefficients in the second approximation, it is possible to
derive the equation [68]

q
qt

P�t; r� � eD �2�d

q2

qr 2
r 2P�t; r� � eD �3�d

q2

qr 2
r 2 q

qr
rP�t; r� ;

�78�

where d is the space dimension, and

eD �2�d � s 4
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dk1 k1k k1i k1l k2j Fki�k1�
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2

Fl j�k2� d�o1 ÿ o2� :

Equation (78) holds for both isotropic and anisotropic
velocity field fluctuations. Therefore, the probability distribu-
tion P�t; r� in random isotropic compressible wave fields (in
the approximation being considered) is a log normal one, and
tracer field clustering must take place. Then, taking into
account formula (75), the following expression holds for the
coefficient eD �2�d :

eD �2�d � s 4
u

p
2d

�
dk1

o2�k1� k
4
1F

p�k1�
�
F s�k1��dÿ 1� � F p�k1�

�
�
�
dk2 d�o1 ÿ o2� :

In the case of anisotropic velocity fields, the solution of
Eqn (78) is expressed through the Airy function of the density
logarithm. Then in the range of small r, the solution becomes
negative. However, the high-density region, and hence the
moment functions of the field r�r; t�, are described correctly.
A certain change in the distribution function in the high-
density region does not hamper a tracer field clustering.

Thus, taking into account the first nonvanishing correc-
tions to the equation for the probability density of both
diffusing particles and the conservative passive tracer field in
random wave fields leads to nonzero transport coefficients.
For compressible anisotropic wave velocity fields, there
appear mean particle transport (Stokes drift) and anisotropy
in the probability distribution of the Lagrangian particle
positions. In this case too, clustering of the conservative
passive tracer field takes place.

It is worthwhile to note, however, that these processes
proceed on different spatial scales as expressed by different
powers of wave vectors ki in the diffusion coefficients entering
Eqns (72) and (78). By way of example, small-scale fluctua-
tions of the velocity field have a significantly greater effect on
tracer clustering in the Eulerian description than on Lagran-
gian particle diffusion. Expressions (79) for the diffusion

coefficients may be found divergent if the wave field has a
sufficiently broad spectrum (e.g., undergoing power-like
decay at sufficiently large wave numbers, as in the case of
turbulence). Then, the contribution of resonance effects to the
coefficient of diffusion (74) can also be calculated.

4. Clustering of a tracer
in random divergence-free hydrodynamic flows

It appears from the foregoing that the velocity field of a
hydrodynamic flow must be divergent if clustering of an
inertialess tracer field is to occur. In many problems
pertaining to the physics of the Earth's atmosphere and
oceans, the medium is normally considered to be incompres-
sible, i.e., described by a divergence-free velocity field. In this
situation, however, clustering is still possible in certain cases,
which are discussed below.

4.1 Floating tracer diffusion
Let us first of all consider the diffusion of a floating tracer
following the papers [29, 34]. If a passive tracer moves with
horizontal and vertical velocity components u � �U;w� over
the surface z � 0 in an incompressible medium
�div u�r; t� � 0� in the absence of a mean flow, then an
effective compressible two-dimensional flowwith two-dimen-
sional divergence

HRU�R; t� � ÿ qw�r; t�
qz

����
z� 0

is created on the surface. We assume that the spatial spectral
tensor of the velocity field u�r; t� has the form

Ei j�k; t� � E�k; t�
�
di j ÿ ki kj

k2

�
:

Representation of the floating tracer field as

r�r; t� � r�R; t� d�z� ; r � �R; z� ; R � �x; y� ;

substitution of this expression into Eqn (2), and integration
with respect to z leads to the equation�

q
qt
� q
qR

U�R; t�
�
r�R; t� � 0 ; r�R; 0� � r0�R� :

The resultant fieldU�R; t� is Gaussian, uniform and isotropic,
with the spectral tensor

Eab�k?; t� �
�1
ÿ1

E�k2? � k2z ; t�
�
dab ÿ k?a k?b

k2?

�
dkz ; �80�

a; b � 1; 2 :

Comparison of equation (80) with Eqns (30) and (31) yields
an expression for solenoidal and potential components of the
velocity U�R; t� in the plane z � 0 [29]:

E s�k?; t� �
�1
ÿ1

E�k2? � k2z ; t� dkz ; �81�
E p�k?; t� �

�1
ÿ1

E�k2? � k2z ; t�
k2z

k2? � k2z
dkz :

Therefore, the equation for the probability density of the
density field r�R; t� will be described by a two-dimensional
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equation (52), namely�
q
qt
ÿD0D

�
P�t; r; r� � D p q2

qr2
r2P�t; r; r� ;

�82�
P�0; r; r� � d

ÿ
r0�r� ÿ r

�
;

with the diffusion coefficients defined, in accordance with
Eqns (33), (34), and (81), by the equalities

D0 � 2p
�1
0

dt
�1
0

k2 dk E�k; t� ;

D s � 4p
3

�1
0

dt
�1
0

k 4 dk E�k; t� ; �83�

D p � 4p
5

�1
0

dt
�1
0

k 4 dk E�k; t� :

Thismeans that clustering of a density field in the Eulerian
description is needed for density diffusion of an inertialess
floating tracer. At the same time, no clustering occurs in the
case of diffusion of inertialess floating particles as suggested
by the inequality D s > D p ensuing from formulas (83).

4.2 Diffusion of low-inertia particles and tracer field
in random divergence-free hydrodynamic flows
Now, let us consider diffusion of low-inertia particles and the
tracer field in random divergence-free hydrodynamic flows,
following Refs [50, 73].

Diffusion of the number density field n�r; t� of particles
moving in a random hydrodynamic flow is described by the
continuity equation (1):�

q
qt
� q
qr

V�r; t�
�
n�r; t� � 0 ; n�r; 0� � n0�r� ; �84�

where the Eulerian tracer velocity field V�r; t� in the absence
of the mean flow velocity satisfies the equation (3):�

q
qt
� V�r; t� q

qr

�
V�r; t� � ÿl�V�r; t� ÿ u�r; t��: �85�

Let us assume the velocity field u�r; t� to be a Gaussian
random field that is divergence-free [i.e., div u�r; t� �
qu�r; t�=qr � 0], homogeneous, isotropic in space, and steady
in time, having a zero mean value and correlation tensor

Bi j�rÿ r 0; tÿ t 0� � 
ui�r; t� uj�r 0; t 0�� :
For such a model, spatial spectral and spatial ± temporal

spectral functions of the field u�r; t� are defined as

Bi j�r; t� �
�
Ei j�k; t� exp �ikr� dk ;

Bi j�r; t� �
�
dk

�1
ÿ1

doFi j�k;o� exp �ikr� iot� ;

where

Ei j�k; t� � E�k; t�
�
di j ÿ ki kj

k2

�
;

�86�
Fi j�k;o� � F�k;o�

�
di j ÿ ki kj

k2

�
:

In this case, one obtains

Bi j�0; t� � dÿ 1

d

�
E�k; t�di j dk ; �87�

where d is the space dimension, and the fourth-order tensor
q2Bi j�0; t�=qrk qrl is represented as

ÿ q2Bi j�0; t�
qrk qrl

� D�t�
d�d� 2�

��d� 1�dkl di j ÿ dki dl j ÿ dk j dl i
�
:

�88�

Coefficient D�t� in Eqn (88) is defined as follows

D�t� �
�
k2E�k; t� dk � ÿ 1

dÿ 1



u�r; t� t�Du�r; t�� ;

and the quantity

D�0� � ÿ 1

dÿ 1



u�r; t�Du�r; t��

is related to the vortical structure of the random divergence-
free field u�r; t�.

Characteristic curves r�t� and V�t� for Eqn (85), in
accordance with equations (4), satisfy the system of equations

d

dt
r�t� � V�t� ; r�0� � r0 ;

�89�
d

dt
V�t� � ÿl�V�t� ÿ u

ÿ
r�t�; t�� ; V�0� � V0�r0� ;

and describe particle dynamics.
For inertialess particles l!1, and, as follows from

Eqn (89), the equality

V�r; t� � u�r; t� �90�

is attained. Therefore, in this limiting case, the dispersion of
the random field V�r; t� and its time correlation radius tV are
related to the dispersion of the random field u�r; t� and
correlation time t0 by explicit equalities

s 2
V � s 2

u ; tV � t0 : �91�

4.2.1 Particularities of low-inertia particle diffusion (Lagran-
gian description). To begin with, it should be noted that the
approximation of the delta-correlated random field u�r; t� is
inapplicable to the description of the diffusion of low-inertia
particles. The same is true of the Fokker ± Planck equation for
the joint probability density of the particle's position and
speed [73].

Indeed, let us introduce the indicator function for the
solution of Eqn (89):

f�t; r;V� � d
ÿ
r�t� ÿ r

�
d
ÿ
V�t� ÿ V

�
;

which is described by the Liouville equation�
q
qt
� V

q
qr
ÿ l

q
qV

V

�
f�t; r;V� � ÿlu�r; t� q

qV
f�t; r;V� ;

�92�
f�0; r;V� � d�rÿ r0� d

ÿ
Vÿ V0�r0�

�
:
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The average value of the indicator function f�r;V; t�, taken
over the ensemble of realizations of the random field u�r; t�,
describes the joint simultaneous probability density of the
particle's position and speed:

P�t; r;V��
f�t; r;V�� � 
dÿr�t� ÿ r
�
d
ÿ
V�t� ÿ V

��
u
:

Assuming delta-correlation of random field u�r; t� (37),
averaging Eqn (92) over the ensemble of realizations of the
random field u�r; t�, and taking into consideration the
Furutsu ±Novikov formula (39), the expression for varia-
tional derivative

d
dul�r 0; tÿ 0� f�t; r;V� � ÿld�rÿ r 0� q

qVl
f�t; r;V� ;

and equality (38) leads to the Fokker ± Planck equation�
q
qt
� V

q
qr
ÿ l

q
qV

V

�
P�t; r;V� � l2D0

q2

qV 2
P�t; r;V� ;

�93�
P�0; r;V� � d�rÿ r0� d

ÿ
Vÿ V0�r0�

�
;

where the diffusion coefficient takes the form

D0 � 1

d

�1
0



u�r; t� t�u�r; t�� dt � 1

d
t0


u2�r; t�� :

Here, as before, d is the space dimension, t0 is the time
correlation radius of the random field u�r; t�, and
s 2
u �



u2�r; t�� is its dispersion.

One usability condition for the approximation of the
delta-correlated in time random field u�r; t� can be written in
the form

lt0 5 1 : �94�

It follows from Eqn (93) that functions r�t� and V�t� are
Gaussian random processes; the system of equations for their
moment functions is produced in the usual way:

d

dt



ri�t�rj�t�

� � 2


ri�t�Vj�t�

�
;

�
d

dt
� l
�


ri�t�Vj�t�
� � 
Vi�t�Vj�t�

�
; �95�

�
d

dt
� 2l

�

Vi�t�Vj�t�

� � 2l2D0di j :

As appears from the system of equations (95), the stationary
values of all simultaneous correlations for lt4 1 and t=t0 4 1
are described by the expressions


Vi�t�Vj�t�
� � lD0di j ;



ri�t�Vj�t�

� � D0di j ;

ri�t�rj�t�

� � 2tD0di j :

In particular, dispersion of the process V 2�t� and spatial
diffusion coefficient

D � 1

2

d

dt



r 2�t��

are described by the equalities

s2V �


V 2�t�� � l

�1
0



u�r; t� t�u�r; t�� dt � lt0s 2

u ;

�96�
D � 1

2

d

dt



r 2�t�� � dD0 �

�1
0



u�r; t� t�u�r; t�� dt � t0s 2

u :

By analogy, it is easy to derive an expression for the time
correlation radius tV of a random process V�t� for the delta-
correlated in time field u�r; t� by considering the time
correlation



Vi�r; t� t�Vj�r; t�

�
. Specifically, one obtains [73]

tV � 1

l
: �97�

Comparison of equalities (91) with equalities (96) and (97)
shows that they are incompatible; in other words, equality
(90) is satisfied when not only conditions lt4 1 and t=t0 4 1
but also the condition

lt0 4 1 �98�

are fulfilled, at variance with the condition (94) of validity of
the approximation of the delta-correlated in time random
field u�r; t�. As regards the spatial diffusion coefficient D in
Eqn (96), this quantity, as appears from Eqn (89), is given by

D � 1

2

d

dt



r 2�t�� � �1

0



V�r; t� t�V�r; t�� dt � tVs 2

V

� t0s 2
u �

�1
0



u�r; t� t�u�r; t�� dt ;

both in the delta-correlated approximation and in the
approximation of the inertialess tracer field; moreover, it
shows no dependence whatever on the parameter l (provided,
of course, that lt4 1).

Therefore, the approximation of the delta-correlated in
time random field u�r; t� in the case of a dynamical system (89)
incorrectly describes statistics of the particle velocity and its
correlation with the particle position upon passage to the
inertialess particle approximation. At the same time, this
approximation does not contradict the spatial diffusion of
particles. It is worthwhile to note that distinguishing the
spatial description of the particle's diffusion from its
spatial ± temporal description constitutes the so-called Kra-
mers problem (see, for instance, the review [74]).

4.2.2 Diffusion of a low-inertia tracer in the Eulerian descrip-
tion. Given a random field V�r; t� is Gaussian, statistically
homogeneous, spatially isotropic, and steady in time, with a
zero mean value and the correlation tensor


Vi�r; t�Vj�r 0; t 0�
� � B

�V�
i j �rÿ r 0; tÿ t 0� ;

the one-point probability density P�t; r; n� for the solution of
dynamic equation (84) in both the approximation of the
delta-correlated in time field V�r; t� and in the diffusion
approximation is described by Eqn (52):�

q
qt
ÿD0

q2

qr 2

�
P�t; r; n� � D �V�

q2

qn 2
n 2P�t; r; n� ;

�99�
P�0; r; n� � d

ÿ
n0�r� ÿ n

�
;
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where the diffusion coefficients have the forms

D0 � 1

d

�1
0



V�r; t� t�V�r; t�� dt � 1

d
tV


V 2�r; t�� ;

D �V� �
�1
0

�
qV�r; t� t�

qr
qV�r; t�

qr

�
dt � tdivV

��
qV�r; t�

qr

�2�
;

�100�

describe spatial dispersion of the number density n�r; t� of
particles, and the characteristic times tV and tdivV of cluster
formation give time correlation radii for random fields
V�r; t� and qV�r; t�=qr, while d stands for the space
dimension.

Thus, the problem is reduced to the evaluation of
diffusion coefficients (100) using the stochastic equation
(85) Ð that is, to computing time correlation radii tV and
tdivV of random fields V�r; t� and qV�r; t�=qr, their spatial
correlation scales, and dispersions [50].

We assume that the random velocity field dispersion
s 2
u �



u2�r; t�� in a hydrodynamic flow is sufficiently small

and determines the main small parameter of the problem. For
a large l-parameter value (low inertia of the particles), it is
possible to linearize equation (85) with respect to the function
V�r; t� � u�r; t� and pass to a simpler vector equation�

q
qt
� u�r; t� q

qr

�
V�r; t�

� ÿ
�
V�r; t� q

qr

�
u�r; t� ÿ l

�
V�r; t� ÿ u�r; t�� : �101�

In what follows, we shall calculate the statistical char-
acteristics of the fieldV�r; t� in the first nonvanishing order of
smallness in the parameter s 2

u . It is noteworthy that statistics
of the field V�r; t� described by stochastic equations (85) and
(101) is notGaussian in the general case. However, it is easy to
see that the highest field cumulants divV�r; t� are of a higher
order of smallness than the second cumulant. It means that
the approximation of the Gaussian field V�r; t� can really be
used to derive equation (99).

The above example of particle diffusion indicates that the
approximation of the delta-correlated in time random field
u�r; t� is incorrect in the case of a low-inertia tracer. It is
therefore necessary to do calculations using an arbitrary value
of the parameter lt0. This can be made in the diffusion
approximation.

Random field u�r; t� correlates with the function V�r; t�,
which is the functional of the field u�r; t�. Correlation splitting
for the Gaussian field u�r; t� is based on the Furutsu ±
Novikov formula (36) containing variational derivatives.
Equations for the respective mean values in the diffusion
approximation are written down exactly. The corresponding
simplification of the problem is introduced at the level of the
functional dependence of the problem's solution on fluctuat-
ing parameters (see, for instance, Ref. [36]); it is assumed that
the influence of the field u�r; t� is insignificant on time scales of
order t0.

In the diffusion approximation, the equation

�
q
qt
� l
�

dVi�r; t�
dul�r 0; t 0� � 0

holds for variational derivatives, with the initial condition at
t � t 0:

dVi�r; t�
dul�r 0; t 0�

����
t� t 0�0

� ÿ
�
d�rÿ r 0� qVi�r; t 0�

qrl

� di l
qd�rÿ r 0�

qrk
Vk�r; t 0�

�
� d�rÿ r 0� ldi l ;

which ensues from equation (101). The solution of this
equation takes the form

dVi�r; t�
dul�r 0; t 0� � exp

�ÿl�tÿ t 0��(ÿ�d�rÿ r 0� qVi�r; t 0�
qrl

� qd�rÿ r 0�
qrk

di lVk�r; t 0�
�
� d�rÿ r 0� ldi l

)
:

The field V�r; t� itself has the structure
V�r; t� � exp

�ÿl�tÿ t 0��V�r; t 0�
in the diffusion approximation, therefore one obtains

V�r; t 0� � exp
�
l�tÿ t 0��V�r; t� :

Hence, the final expression for the variational derivative in
the diffusion approximation assumes the form

dVi�r; t�
dul�r 0; t 0� � ÿ

�
d�rÿ r 0� qVi�r; t�

qrl
� di l

qd�rÿ r 0�
qrm

Vm�r; t�
�

� d�rÿ r 0� l exp �ÿl�tÿ t 0�� di l : �102�

Formulas (36) and (102) are sufficient for all necessary
calculations that were made in the work [50] containing
coefficients (100):

D0 � 1

d
tV


V 2�r; t�� � 1

d
t0Bi i�0; 0� � dÿ 1

d
t0

�
E�k; 0� dk ;

�103�

D �V� � tdivV

��
qV�r; t�

qr

�2�
� 4

l
d 2 ÿ 1

d�d� 2� D1D2�l� ;

where

D1 �
�1
0

D�t� dt �
�1
0

dt
�
dk k2E�k; t� ;

D2�l� �
�1
0

exp �ÿlt�D�t� dt

�
�1
0

dt exp �ÿlt�
�
dk k2E�k; t� :

Specifically, in the three-dimensional case for low-inertia
particles when lt0 4 1, we arrive at

D0 � 1

3
tV


V 2�r; t�� � 1

3
t0Bi i�0; 0� � 2

3
t0

�
E�k; 0� dk ;

�104�

D �V� � tdivV

��
qV�r; t�

qr

�2�
� 8

15

t0
l2


u�r; t�Du�r; t��2 :
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In the two-dimensional case for lt0 4 1, we find

D0 � 1

2
tV


V 2�r; t�� � 1

2
t0Bi i�0; 0� � t0

�
E�k; 0� dk ;

�105�

D �V� � tdivV

��
qV�r; t�

qr

�2�
� 3

2

t0
l2


u�r; t�Du�r; t��2 :

Thus, D �V� � s 4
u because the eddy component of the field

u�r; t� first of all generates the eddy component of the field
V�r; t� by a direct linear mechanism without advection;
thereafter, the eddy component of the field V�r; t� gives rise
to the divergent component of the field V�r; t� through the
advection mechanism.

Evidently, an applicability condition for the above
expressions can be written in the form

s 2
u t

2
0

l 20
5 1 ;

where l0 is the spatial correlation scale of the random field
u�r; t�.

Let us now discuss a two-dimensional hydrodynamic flow
taking into account rotation, which is described by the
equation�

q
qt
� V�r; t� q

qr

�
Vi�r; t�

� ÿl�Vi�r; t� ÿ ui�r; t�
�� 2OGim Vm�r; t� ;

where the matrix

G � 0 1
ÿ1 0





 



 ; G 2 � ÿE ;

and E is the identity matrix. This equation can be written as�
q
qt
� V�r; t� q

qr

�
V�r; t� � ÿL�V�r; t� ÿU�r; t�� ; �106�

where the matrix L � lEÿ 2OG� �, and the random velocity
field U�r; t� has the form

U�r; t� � lLÿ1 u�r; t� ; Lÿ1 � lE� 2OG

l2 � 4O2
: �107�

In the case of fl orOg ! 1, an approximate expression is
obtained in the form

V�r; t� � U�r; t� : �108�
It should be noted that the introduction of a new vector
W�r; t� � GV�r; t� leads to the quantity

x�r; t� � qWi�r; t�
qri

� qW�r; t�
qr

� qV2�r; t�
qr1

ÿ qV1�r; t�
qr2

that describes the eddy component of the velocity fieldV�r; t�.
Equation (106) differs from equation (85) by the tensor

character of the parameter L. Moreover, the field U�r; t� in
Eqn (106) is a divergent one, and for the divergence-free field
u�r; t� the quantity

divU�r; t� � qU�r; t�
qr

� l
q
qrk

Lÿ1km um�r; t�

� 2lO

l2 � 4O2
Gkm

qum�r; t�
qrk

is related to the eddy component of the field u�r; t�.

Let us assume, as before, that dispersion s 2
u � hu2�r; t�i is

small and Eqn (106) can be linearized with respect to flow
(108) for large parameters fl; Og. In this case, the coefficient
D0 of spatial diffusion in Eqn (100) shows no dependence on
the parameter l and is described by the formula [50]

D0 � 1

2
tV


V 2�r; t�� � 1

2

�1
0

Bi i�0; t� cos �2Ot� dt

� p
2

�
F�k; 2O� dk ; �109�

where F�k;o� is the space ± time spectral function (86) of the
field u�r; t�. The following expression can be obtained for the
diffusion coefficient D �V� [50]:

D �V� � 4l2O2

�l2 � 4O2�2
�1
0

exp �ÿlt� cos �2Ot�D�t� dt : �110�

If fl;Ogt0 4 1, then one finds

D �V� � 4l3O2D�0�
�l2 � 4O2�3 �

4O2D�0�
l3

; if l4O ;

l3D�0�
16O 4

; if l5O ;

8>><>>: �111�

where, as before, the notation is used:

D�0� �
�
k2E�k; 0� dk � ÿ
u�r; t�Du�r; t�� :

Thus, conditions fl;Ogt0 4 1 being fulfilled, the process
of generating the divergent part of the field V�r; t� in the
problem under consideration is described by a linear equation
without regard for advective terms. If, in addition, l4O, it is
necessary to take into account the correction terms (105) of
order s 4

u , which in certain cases can be comparedwith those in
formula (111); hence the expression

D �V� � 3

2

t0
l2


u�r; t�Du�r; t��2 ÿ 4O2

l3


u�r; t�Du�r; t��

� ÿ 4O2

l3


u�r; t�Du�r; t���1ÿ 3lt0

2O2



u�r; t�Du�r; t���: �112�

In the foregoing, we have described a method to derive
expressions for diffusion coefficients that characterize cluster-
ing of the number density of small-inertia particles in
hydrodynamic flows under different asymptotic regimes. A
study of these coefficients (hence, the phenomenon of
clustering itself) for concrete geophysical and astrophysical
problemswas beyond the scope of the present work. These are
totally independent problems that can be solved using the
above-given expressions.

5. Conclusions

To conclude, the following remarks are in order:
� Statistical characteristics for the solution to the problem

of diffusion of particles and conservative passive tracer
density field in random divergent velocity fields may have
little in common with the behavior of concrete realizations.
The traditional approach to such problems, based on the
moment function description, is of small informational value.
What is necessary for their solution is a statistical description
in terms of the probability density (at least one-point or
simultaneous).
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� However, problems pertaining to diffusion of particles
and passive tracer concentration fields in random divergent
velocity fields contain statistically coherent physical phenom-
ena that occur with probability unity (clustering of particles
and the conservative tracer field in a divergent velocity field).
This means that a given phenomenon occurs in almost all
random velocity field realizations.
� Coherent phenomena themselves are largely indepen-

dent of the specific model of fluctuating parameters of a
dynamical system. In the simplest case, their time-dependent
dynamics can be described in terms of simultaneous and one-
point probability distributions by the methods of statistical
topography. Of course, concrete parameters characterizing
this phenomenon (like typical times of the formation of
cluster structures and their spatial characteristic scales) may
show strong dependence on the type of the models.
� Clustering of low-inertia particles and their concentra-

tion field may also occur in random divergence-free velocity
fields. Their statistical description is impossible, in principle,
with the aid of the approximation of the delta-correlated in
time velocity field of a fluctuating flow (e.g., the Fokker ±
Planck equation for the diffusion of low-inertia particles). It is
therefore necessary to take into consideration the finiteness of
its time correlation radius.

This work was supported by the Russian Foundation for
Basic Research (projects Nos 01-05-64042 and 02-05-64375)
and State Contract No. 40.020.1.1.1177.
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