
Abstract. The behavior of a charged particle in the field of a
monochromatic electromagnetic wave is considered. The mo-
tion of a particle is determined not only by the wave field but
also by the initial conditions. The trajectories of particles are
calculated both by using the exact solution and by employing
perturbation theory in the parameter g � eE=�mcx�, the ratio
of the energy the field transfers to a particle over a wavelength,
to the particle's rest energy. Two kinds of electromagnetic
waves, those with coordinate independent amplitudes (uniform
waves) and those with coordinate dependent amplitudes (non-
uniform waves) are treated. The motion of particles that either
are at rest or move with prescribed velocity at the initial time, is
investigated. It is shown that a charged particle performs not
only an oscillatory motion but also a systematic drift in the field
of a wave. In a non-uniform wave, accelerating ponderomotive
forces also act on a particle.

1. Introduction

The interaction of electromagnetic fields of various kinds
with charged particles lies at the heart of many physical
phenomena. The motion of particles in static fields is fairly
well studied and is discussed in virtually every electrody-
namics textbook. Problems of motion of particles in alternat-
ing fields, on the other hand, are much less addressed in the
literatureÐ even though these problems are of no less interest
from both theoretical and applied points of view. Of
particular interest are the problem of a charged particle
moving in the field of an electromagnetic wave and the
applications of this problem in the physics of accelerators,

the theory of free electron lasers, and a number of other
domains.

The problem of a motion of electron in the field of a plane
electromagnetic field has an analytical solution. In 1935
D M Volkov obtained a rigorous solution of the Dirac
equation for a motion of electron in the field of a plane
electromagnetic wave [1]. The classic analogue of this solution
is given in Field Theory by L D Landau and E M Lifshitz [2].
At the same time some aspects of charged particle behavior in
an electromagnetic wave field are insufficiently covered in the
literature. Besides, the solutions of Refs [1, 2] do not apply to
the case of a motion of charged particle in a non-uniform
wave (for example, a waveguide eigenmode or a wave
produced by two plane waves traveling at an angle to each
other). The reason is that the equation of motion of a particle
in a wave field is nonlinear. Therefore if the external field
acting on the particle is the sum of several plane waves, the
solution of the equation of motion can not be presented as a
sum of solutions obtained for each wave separately. In this
case approximate methods such as perturbation theory are
fully justifiably used. Note here that perturbation theory may
even prove useful for the case of a single particle in the field of
a single plane wave.

Some qualitative aspects of particle motion in the field of a
wave are fairly well known [2]. For example, in the field of a
circularly polarized wave a particle moves along the circum-
ference of a circle in the plane perpendicular to the wave
propagation direction. In a uniform, linearly polarized wave
field a charge moves along a figure eight curve. The figure
eight has its longitudinal axis directed along the wave's
electric field strength, and its transverse axis along its
propagation direction. The particle oscillates at a wave
frequency o in the direction of the electric field, and at a
twice this frequency, 2o, in the propagation direction.

This behavior can be understood based on simple
qualitative considerations. Consider a plane electromagnetic
wave whose electric fieldE andmagnetic fieldH are described
by the respective expressions

E � E0 exp
�
i�krÿ ot�� ; H � H0 exp

�
i�krÿ ot�� ; �1�
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where E0 and H0 are the electric and magnetic field
amplitudes, k the wave vector, and o the wave frequency.
E, H, and k form a right-hand triple of vectors in this wave.
Consider a charged particle in the field of this plane wave.
Denote its charge by e. The equation of motion of such a
particle has the form

dp

dt
� eE� e

c
�vH� ; �2�

where

p � mv���������������������
1ÿ �v=c�2

q � mvg �3�

m is the particle's rest mass, v is its velocity, and g �
�1ÿ �v=c�2�ÿ1=2 is the reduced energy.

Let us introduce a Cartesian coordinate systemwith the x,
y, and z axes along the electric field E, the magnetic field H,
and the wave vector k, respectively. In this system the
equation of motion can be written for three components
separately as follows:

dpx
dt
� eEx ÿ e

c
vzHy ;

dpy
dt
� 0 ;

dpz
dt
� e

c
vxHy : �4�

From these equations it can be seen, in particular, that the
projection of the particle momentum onto the magnetic
field vector is a constant quantity. Suppose at the initial
time the particle is at rest at the origin of the coordinate
system. From Eqns (4) it follows that the trajectory of the
particle lies in a plane containing the vectors E and k.
Consider first the equation for the projection of the
momentum onto the electric field vector. The right-hand
side of this equation oscillates at the wave frequency o.
Hence so does the quantity px. If, as we have assumed, the
charge was initially at rest, then its velocity will also
oscillate with the frequency o.

Now consider the equation for pz. Its right-hand side is the
product of two functions oscillating at the wave frequency
and thus contains a periodic function oscillating at 2o. Hence
the component pz also contains a term oscillating at 2o. It is
easily seen that in this case the particle follows a figure-eight-
like curve in the xz plane.

A point to bear in mind is that solutions to the equations
for px, py, and pz may also contain constant Ð time-
independentÐ terms corresponding to the particle's systema-
tic motion (drift) in the field of a plane electromagnetic wave.
The solutions given in Ref. [2] (see problems to Section 48) are
obtained for the reference frame in which the particle is on the
average at rest. This eliminates, in a sense, the question of
particle drift because the parameters of the drift become
parameters that determine the motion of the reference
frame. In some cases, however, the motion of a particle in
the laboratory frame is of interest. In these cases drift motion
parameters enter explicitly into the expression for the particle
trajectory. Below, it is the laboratory frame in which the
motion of a particle under the influence of the wave field will
be considered. Clearly, the trajectory of a particle in a wave
field is determined by the initial conditions, i.e., by the
position and velocity of the particle and by the phase of the
wave at the particle's initial position. For example, for a
particle injected into a wave field, the coordinates of the point
of injection, the initial particle velocity, and the initial phase
of the wave at the point of injection must be specified.We will

consider this problem for various initial conditions in what
follows.

As shown in Ref. [4], where motion in an alternating
electric field alone is considered, a particle, while oscillating,
also performs a drift motion whose velocity and direction
depend on the initial conditions. The study of Ref. [4]
neglected the effect of the wave's magnetic field, which is
valid if the particle velocity is small compared to the speed of
light. Below we consider special features of motion in an
electromagnetic wave taking into account the magnetic field.
In this case it will be shown that a systematic drift in the
direction of the electric field is maintained, that the particle
also performs a systematic drift in the direction of the wave,
and that the drift in the electric field direction is qualitatively
different from that along the wave direction.

The field of a plane electromagnetic wave has the property
of being the same at any point on the plane normal to the
wave vector. Therefore such a wave is sometimes called a
plane uniform electromagnetic wave. The value of the field in
such a wave is determined only by the phase j � kzÿ ot
(recall that we are considering a z-propagating wave) and
does not depend on the transverse coordinates x and y. In the
case where the field depends on x and y, additional systematic
forces acting on the particle appear. These will also be
considered in a number of simple examples below.

2. The exact solution

Consider a particle of charge e in an external field described
by a vector potential A. Let p0m be an arbitrary four-
dimensional vector,

p0m � � p00; p0x; p0y; p0z� :

The components of this vector satisfy the relation

p 2
00 ÿ p 2

0x ÿ p 2
0y ÿ p 2

0z � m 2c 2 :

Clearly, in this case the components of the vector p0m can be
considered as those of the four-dimensional momentum of a
particle of mass m. The zeroth component is then propor-
tional to the energy of the particle. It is sometimes said that
the vector p0m is specified on the mass surface. The solution of
Eqn (2) is expressed in terms of the components of the vectors
p0m and A as follows:

pm � p0m ÿ e

c
Am � km

�
e

c

pA

kp
ÿ e 2

c 2
A2

2kp

�
; �5�

where km is a four-dimensional vector �o=c; kx; ky; kz�, and
Am � �A0;Ax;Ay;Az�. It is assumed that the components Am

of the vector potential A depend on the argument

j � kmxm � k0x0 ÿ kxxÿ kyyÿ kzz :

This argument determines the phase of the plane wave. The
phase maintains a constant value in the plane normal to the
wave vector k � �kx; ky; kz�. The expressions for pA and kp
are the scalar products of four-dimensional vectors:

pA � p0A0 ÿ pxAx ÿ pyAy ÿ pzAz ;

kp � k0 p0 ÿ kx px ÿ ky py ÿ kz pz :

It is in this form that the solution was given in Ref. [3].
Formula (5) gives the kinetic momentum of the particle in the
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field Am. The components of the vector p0m can be considered
as certain constants which can be chosen in such a way as to
satisfy the initial conditions. At the same time the vector p0m
determines the value of the momentum pm at the moments in
time when Am � 0.

Expressions for the solution (5) simplify in the case when
thewave travels along the axis z and the vector potentialA has
one nonzero component, Ax. The wave then has its electric
field vector directed along x, and its magnetic field vector
along y, and the solution (5) becomes

px � p0x ÿ e

c
Ax ; �6�

py � p0y ; �7�

pz � p0z � kz

�
ÿ e

c

cp0xAx

o� p00 ÿ p0z� �
e 2

c 2
cA2

x

2o� p00 ÿ p0z�
�
; �8�

p0 � p00 � k0

�
ÿ e

c

cp0xAx

o� p00 ÿ p0z� ÿ
e 2

c 2
cA2

x

2o� p00 ÿ p0z�
�
: �9�

Inspecting the solutions for p0 and pz we see that the
difference between the values of p0 and pz is a constant,

p0 ÿ pz � p00 ÿ p0z � const : �10�

Formulas (6) ± (10) permit qualitative conclusions about
the behavior of a charged particle in the field of a plane
electromagnetic wave. Let us specify the vector potential to be
of the form

A � A0 cosc ; �11�

where

c � o
c
zÿ ot� j ;

and the vector A has only an x component. The average
values of both the electric and magnetic fields are zero.

Let us see what form the solutions (6) ± (10) take if the
initial value of the momentum is zero. Let the particle be at
rest at the origin at the initial time instance t � 0. For this
case, as Eqn (6) suggests, it is expedient to write

p0x � e

c
Ax�x � 0; t � 0� � e

c
A0 cosj : �12�

The expression for px then takes the form

px � e

c
A0�cosjÿ cosc� : �13�

From this formula it is seen that a particle in the field of an
electromagnetic wave performs a systematic drift in the
direction of the electromagnetic field (the x axis) and that
the average value of the particle momentum along x is

h pxi � e

c
A0 cosj : �14�

Depending on the initial phase j, the particle drifts either
in the positive or negative x direction. For j � p=2� np, no
drift is present, and the particle oscillates about its initial
position. If the initial value of px is different from zero, the
average value of h pxi is the sum of this initial value plus the
quantity (14).

The fact that the time average of the field is zero and yet
the particle performs a systematic drift in such a field is not

obvious. Some authors maintain that a particle in such a field
oscillates around a fixed point.

As already noted, the projection py of the particle
momentum onto the wave magnetic field does not change in
time.

Let us now consider the expression (8) for the component
of momentum along the wave vector of the wave. Turning to
the formula (8), we note that the denominators of the
fractions occurring in this formula contain the factor
� p0 ÿ pz�. From Eqn (10) it follows that this quantity is
invariant and that for the initial conditions chosen
p0 ÿ pz � mc. We can therefore rewrite the expression for pz
as

pz � p0z � kz

�
ÿ ep0xAx�c�

omc
� e 2A2

x�c�
2omc 2

�
: �15�

From the requirement that the component pz vanish at the
initial time, and making use of Eqn (11), the constant p0z is

p0z � 1

2

e 2A2
0 cos

2 j
mc 3

: �16�

Taking into account this equality, the formula for pz becomes

pz � 1

2

e 2A2
0 cos

2 j
mc 3

�
�
ÿ e 2A0 cosjAx�c�

mc 3
� e 2A2

x�c�
2mc 3

�
:

�17�

The first term in the expression for pz does not depend on
time. The terms in parentheses do depend on time, and the
average value of the first term in parentheses is zero. Taking
the average, we obtain the average value of the z-component
of the particle momentum,

h pzi � e 2A2
0

4mc 3
�cos 2j� 2� : �18�

As can be seen from this formula, the particle performs a
systematic drift along the direction of the wave. The average
value of themomentum of the drifting particle depends on the
initial phase j.

Thus, a particle in the field of an electromagnetic wave
drifts in two directions: along the electric field (the x axis) and
along the wave vector (the z axis). Note that the drift along x
may occur in both the positive and negative directions
depending on the initial phase, whereas the drift along z is
always in the same direction as the wave vector (i.e., in the
direction of propagation of the wave). The sign of the drift
velocity along the z axis is always the same, though its
magnitude depends on the initial phase. The drift velocity
along the x axis depends linearly on the wave amplitude, and
that along z is proportional to the amplitude squared.

Consider now the formula (9) for the energy of a particle
in the field of the wave. Recall that p0 �W=c, whereW is the
particle energy. From Eqn (10) the value of p0 for a particle in
a wave differs from the z-component of momentum, pz, by a
constant quantity. From Eqns (8) and (9) it can be seen that
either of the quantities p0 and pz is the sum of three terms, the
first of which is a constant, the second of which is propor-
tional to Ax, and the third of which is proportional to A2

x.
Because the vector potential Ax oscillates at a frequency o,
the term proportional to A2

x oscillates at 2o. But it must be
kept in mind that the argument of the function Ax in
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Eqns (6) ± (9) is the parameter

c � o
c
zÿ ot� j ;

where z is in turn a function of time, z � z�t�. Thus
c � o

c
z�t� ÿ ot� j ;

where z�t� determines the position of the particle at time t.
Let us consider the simplest special case in which the

particle moves at constant velocity v along the z axis. If the
velocity v is close to the speed of light c, it may be assumed
that the wave field has little effect on this velocity. Then,
crudely, we can consider that the velocity of the particle in the
wave is also close to v, and that

z�t� � vt ; c � o
c
vtÿ ot� j � ot

�
v

c
ÿ 1

�
� j :

From this relation it can be seen that even though the field
oscillates at a frequency o, the field acting on the particle
oscillates at the frequency

o 0 � o�1ÿ b� � o
2g 2

;

where b � v=c, and g � �1ÿ b2�ÿ1=2. Therefore in our case
(with a particle traveling in the direction of the wave) the field
acting on the particle changesmuchmore slowly than the field
at a fixed point in space. Hence, if the temporal period of the
field is T � 2p=o, then the alternating force the wave exerts
on the particle has a period of the order of magnitude
T 0 � 4pg 2=o. If the particle velocity is at an angle y to the
wave propagation direction, then the period of the alternating
force is of the order of

T 0 � 2p
o�1ÿ b cos y� :

Returning to Eqns (8) and (9) for pz and p0, we note that
the momentum and energy of a particle in a wave do not
change monotonically but rather oscillate around certain
values obtained by averaging pz and p0 over time. Over the
time interval T 0 the particle energy increases and over the
next interval of the same order of magnitude it decreases. The
values of pz and p0 around which the oscillations occur
depend on the wave phase j. Recall that, in Eqn (11), j is
the phase of the wave at z � 0, t � 0.

The fact that the particle energy does not increase
monotonically but rather increases and decreases alternately
does not mean that the particle cannot be accelerated in the
field of the wave. For this to occur it is necessary to choose a
suitable period of time during which the wave transfers its
energy to the particle.

Note that the exact solution we have examined Ð one for
determining the behavior of a particle in a plane wave fieldÐ
was obtained by neglecting the radiation the particle emits. In
reality, though, because the particle moves non-uniformly in
the wave field, it becomes a source of radiation, which can be
interpreted as being scattered by the particle. Let us discuss
some of the properties of radiation emitted by a charged
particle in the field of a plane electromagnetic wave. The field
of radiation depends on how the particle moves along its
trajectory. Reference [2] presents a parametric equation of the
trajectory in the frame of reference where the particle is on

average at rest. In this frame the particle performs a periodic
motion along a closed figure eight curve. The curve is in the
plane in which the electric field vector and the wave vector lie.
The trajectory is symmetric, its axis of symmetry being
parallel to the electric field.

From the results mentioned above one can draw conclu-
sions about the trajectory of the particle in the laboratory
frame. Let the coordinate frame, in which the particle is on
average at rest, move with velocity v relative to the laboratory
frame. Suppose that an observer in the laboratory frame
measures the particle's period of rotation using his clock and
finds it to be T. In the laboratory frame the particle's
trajectory is no longer closed but is a certain spatially
periodic curve. The equation of motion of the particle in the
laboratory frame has the form r � r�t�, where the function
r�t� satisfies

r�t� T � � r�t� � vT : �19�

This implies that the velocity of the particle in the laboratory
frame is a periodic function of time with a period T :

v�t� T � � dr�t� T �
dt

� v�t� : �20�

The last two properties of the particle trajectory reveal some
characteristic features of the radiation from a charged particle
moving in a plane wave field.

If the trajectory of a charged particle is specified by the
relation r � r�t�, then radiation at frequencyo is described by
the Fourier component Ao�r� of the vector potential A

Ao�r� � q

2pc
exp �ikr�

r

�1
ÿ1

v�t� exp�i�otÿ k r�t��	 dt ; �21�
where

v�t� � dr�t�
dt

; k � o
c
n ; n � r

jrj ; �22�

n is the unit vector in the direction from the region of particle
motion to the point of observation r. It is assumed that the
observer is far enough from the former region.

Let us subdivide the interval of integration into segments
of length T. Then the integral over t can be represented as the
sum of integrals:�1

ÿ1
. . . dt �

X
n

� �n�1�T
nT

. . . dt ; �23�

where n runs over all integers.
Consider one term in this sum,

In �
� �n�1�T
nT

v�t� exp�i�otÿ k r�t��	 dt :
By Eqns (19) and (20),

r�t� nT � � r�t� � nvT ; v�t� nT � � v�t� : �24�

Therefore by a simple change of variables the selected integral
can be reduced to

In � exp
�
in�oÿ kv�t� �T

0

v�t� exp�i�otÿ k r�t��	 dt :
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Hence the integral in Eqn (21) can written in the form�1
ÿ1

v�t� exp�i�otÿ k r�t��	 dt
�
X
n

exp
�
in�oÿ kv�T � � T

0

v�t� exp�i�otÿ k r�t��	 dt :
�25�

The sum of exponentials occurring in front of the integral
on the right-hand side of this equation can be expressed in
terms of delta function as follows:X

n

exp
�
in�oÿ kv�T � �X

s

d
��oÿ kv�Tÿ 2ps

�
; �26�

where s is any integer.
Finally, the vector potential A for radiation from a

particle in the field of an electromagnetic wave can be written

Ao�r� � q

2pc
exp �ikr�

r

X
s

d
��oÿ kv�Tÿ 2ps

�
�
�T
0

v�t� exp�i�otÿ k r�t��	 dt �27�

implying that the particle emits only waves for which the
arguments of the delta functions vanish, i.e.,

�oÿ kv�Tÿ 2ps � 0 : �28�

Using Eqn (22) this can be rewritten

o � �2p=T �s
1ÿ �v=c� cos y ; �29�

where y is the angle between the velocity of particle
displacement v and the direction of the radiation n.

Equation (29) is a typical formula for the frequency of
radiation emitted by amoving oscillator whose period isT but
which is not harmonic. Therefore in the numerator of this
formula, all themultiple frequencies can also occur alongwith
the fundamental one 2p=T. The denominator yields the
Doppler shift in the frequency. The intensity of the radiation
depends on the value of the integral over the period which
enters the expression (27).

In our discussion, neither this secondary radiation nor its
feedback effect on particle motion has been considered. These
questions have been analyzed both in classical and quantum
theories elsewhere [3].

3. Approximate methods

In many cases the motion of a particle in the field of a wave is
conveniently described by perturbation theory, by expanding
the unknown quantities in powers of a small parameter. This
may even prove convenient when an exact solution is
available Ð for example, for the case of particle motion in
the field of a plane wave. If, however, a particle moves in a
field composed of several plane waves Ð for example, in the
field of a spatially non-uniform wave Ð for such a case
perturbation theory yields a rather accurate picture of the
motion.

The examples below illustrate the perturbation theory
approach. Let us first rewrite Eqn (2) Ð the equation of
motion for a particle in a wave field Ð in a more convenient
form. As it stands, Eqn (2) is inconvenient in that its left-hand

side contains the particle momentum p, whereas the right-
hand side contains its velocity v. We can rewrite this equation
is such a way that either side will contain only v. For this let us
use the equality obtained by multiplying both sides of Eqn (2)
by the particle velocity v:

v
dp

dt
� eEv � mc 2

dg
dt
: �30�

Taking into account Eqn (30), the left-hand side of Eqn (3)
can be written in the from

dp

dt
� m

dgv
dt
� m

�
g
dv

dt
� e

mc 2
v�Ev�

�
; �31�

which, when substituted into Eqn (2), shows that the motion
of the particle in a prescribed electromagnetic field is
described by the equation

db

dt
� e

mcg

�
E� � bH� ÿ b�bE�	 ; �32�

where b � v=c and g � �1ÿ �v=c�2�ÿ1=2 are the reduced
velocity and reduced energy of the particle (in units of c and
mc 2, respectively).

The vector equation (32) is equivalent to the following
three equations for the three projections of the vector b :

dbx
dt
� e

mcg

�
Ex � byHz ÿ bzHy ÿ bx�bxEx � byEy � bzEz�

	
;

�33�
dby
dt
� e

mcg

�
Ey � bzHx ÿ bxHz ÿ by�bxEx � byEy � bzEz�

	
;

�34�
dbz
dt
� e

mcg

�
Ez � bxHy ÿ byHx ÿ bz�bxEx � byEy � bzEz�

	
:

�35�

Note that Eqns (2), (3), and (30) ± (35) govern the motion
of a charged particle in an arbitrary electromagnetic field.
Below we will apply them to the case in which the field acting
on the charge is that of an electromagnetic wave.

The system of equations (33) ± (35) can be solved by the
method of successive approximations. Let b0 be the relative
velocity of the particle at the initial time. For nonrelativistic
particles b0 is much less than unity, while for relativistic
particles it is close to unity. Inmost practical cases the velocity
a particle acquires in a wave field is much less than the speed
of light. The relative magnitude of this velocity is of the order
of

Z � v�
c
� b� �

eE

mco
:

For the electron Z ' El� 10ÿ4 Oe cm. It can be seen that
over a wide range of field strengths E and wavelengths l, the
parameter Z is much less than unity. Using Z as a small
parameter, we represent the velocities and displacements of
particles in series form as

bx � b �0�x � b �1�x � . . . ; by � b �0�y � b �1�y � . . . ;

bz � b �0�z � b �1�z � . . . ;

x � x �0� � x �1� � . . . ; y � y �0� � y �1� � . . . ;

z � z �0� � z �1� � . . . ;
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where x �0�, y �0�, z �0� and b �0�x , b �0�y , b �0�z are the coordinates
and velocities at the initial time.

The small parameter Z has a simple physical meaning.
Indeed, we may write this parameter in the form
Z � eEl=�2pmc 2�. The expression in the numerator is of the
order of the energy which the particle gains over the
wavelength l. The denominator contains the rest energy of
the particle. Hence, the small value of Z suggests that the
energy gain over the wavelength is small compared to the
particle's rest energy.

4. Motion in a plane wave

Let us consider the motion of a charged particle in the field of
a plane, monochromatic electromagnetic wave traveling in
the direction of the z axis. As before, we will assume that the
electric field, the magnetic field, and the wave vector of the
electromagnetic wave are along the x, y, and z axes, respec-
tively. Suppose that at the initial time t � 0 the particle is at
the point x � y � z � 0 and has a zero velocity. In the present
case g � 1. The fields in the uniform plane wave are given by
the expressions

Ex � E sin �otÿ kz� j� ; Hy � H sin �otÿ kz� j� ; �36�

where j is the phase of the field at the initial time.
Let us substitute the expression for Ex into the right-hand

side of Eqn (33). Under the conditions of the problem we find
that in the first approximation the motion along the x axis is
described by the equation

db �1�x

dt
� e

mc
Ex : �37�

The solution of this equation has the form

b �1�x � ÿ
�

eE

mco

�
cos �otÿ kz� j� � C ; �38�

where the constant C is determined from the initial condi-
tions. Taking into account the initial conditions, we obtain

b �1�x � ÿ
�

eE

mco

��
cos �otÿ kz� j� ÿ cosj

�
: �39�

It can be seen that the second term in square brackets does
not depend on time. This indicates that the particle not only
oscillates at the frequency of the field but also performs a
systematic directed motion (or drifts) along the vector of the
wave's electric field. In the general case the velocity of the drift
depends on the phase of the field at the initial time. If the drift
velocity is denoted by vxd, it follows from Eqn (39) that

bxd �
�

eE

mco

�
cosj : �40�

It can be seen that systematic motion is absent only for
cosj � 0, i.e., only for the specific values of the initial phase.
For all other values of j the drift velocity is different from
zero, and a particle which was initially at rest travels in a
systematic manner parallel to the electric field. Clearly,
depending on the initial phase j, the particle drifts either in
the positive or in the negative x direction. If in the field of the
wave there is a source continuously generating charged

particles and if all values of the initial phase can occur with
equal probability, then the j-averaged drift velocity is zero,
and there are two groups of particles drifting in opposite
directions.

To describe themotion of the particle relative the z axis we
substitute the velocity (39) into the second term on the right-
hand side of Eqn (35). The remaining terms on the right are
either zero or give higher-order contributions:

dbz
dt
� e

mc

�
ÿ 1

o

�
eE

mc

��
cos �otÿ kz� j� ÿ cosj

��
� E sin �otÿ kz� j� : �41�

Here we have used the fact that E � H in a plane wave.
Integrating and taking into account the initial conditions we
obtain a relation for the particle velocity along the z axis:

bz �
1

4

�
eE

moc

�2�
cos 2�otÿ kz� j�

ÿ 4 cosj cos �otÿ kz� j� � 2� cos 2j
�
: �42�

From this equation it follows that, analogous to the
motion along the x axis, the particle performs a systematic
motion along the z axis. Averaging Eqn (42) over the period
of the wave yields the particle drift velocity,

bzd �
1

4

�
eE

moc

�2

�2� cos 2j� : �43�

The drift velocity is a second-order quantity and ranges
from

bzd �
1

4

�
eE

mco

�2

for particles that appeared in the wave at phases j �
�p=2� � pn, to

bzd �
3

4

�
eE

mco

�2

for particles that appeared at phasesj � �pn. But, unlike the
motion along x, the second-order drift velocity has the same
sign for all particles, i.e., whatever the initial phase, the
particles move in the same Ð wave propagation Ð direction.

Thus, if the initial velocity of the particle is zero, its
interaction with a plane electromagnetic wave causes it not
only to oscillate but also to execute a systematic drift along
the electric field in the wave direction. The magnitude of the
drift velocity in both directions depends on the initial phase.
The velocity in the direction of the magnetic field remains
zero.

Equations (40) and (43) give the same drift velocity values
as Eqns (14) and (18) obtained from the exact solution. Note,
however, that the perturbation theory formulas (40) and (43)
hold only for small corrections to the initial velocities.

The distribution of charged particle in the field of a wave
was investigated by numerically solving the equations of
motion [5]. The results of these calculations are shown in
Fig. 1. The calculations assumed that at the origin of the
coordinate system there is a source which emits particles with
negligibly small velocities. It may be said that particles

650 B M Bolotovski|̄, A V Serov Physics ±Uspekhi 46 (6)



emerging at the origin have zero velocity. The particles start
moving due to the force of the wave's electric field and, once
in motion, are also influenced by its magnetic field. The
motion of the particles is determined both by the magnitude
of the fields and by the initial phase, i.e., by the time at which
the particle was injected into the wave.

In carrying out the calculations, the length of the wave
period was subdivided into one hundred segments, and
successive particles were made to start their motion at these
one-hundredth-of-the-period intervals. The figures show the
distribution of the particles injected over seven periods. The
wave was assumed to travel in the z direction and the electric
field was directed along the x axis. The figures show the
spatial distribution of the particles, the abscissa and ordinate
units being x=l and z=l, where l is the wavelength of the
wave, in which the particle moves. The plots in the figure are
for different values of the parameter Z � eEl=�2pmc 2�. To
the values Z � 0:1, 1, and 2 there correspond Figs 1a, b, and c,
respectively.

The case Z � 0:1 can be calculated analytically using the
successive approximation method described above. The
figures show that as the parameter Z increases (the field
strength of the wave field increases), the drift in the direction
of the wave plays an increasingly important role. As seen in
Fig. 1a, for Z � 0:1 particles move mainly normal to the wave
direction (the scales of the x and z axes differ by a factor of 16
in Fig. 1a); in Fig. 1b, the drift along the z axis becomes
comparable with that along x; and in Fig. 1c the drift along z
is even more clearly evident.

Let us consider the effect of the initial velocity on particle
dynamics in the field of a plane electromagnetic wave.
Assume that at the initial time the particle has velocity
bx � b0x along the wave's electric field and velocity by � b0y
in the direction coinciding with that of the wave's magnetic
field. Under the assumed conditions, g � �1ÿ b 2

0x ÿ b 2
0y�ÿ1=2.

The equations describing the motion of the particle along all

three axes have the form

db �1�x

dt
� e

mgc

��1ÿ b 2
0x�Ex

	
; �44�

db �1�y

dt
� e

mgc

�ÿb0yb0xEx

	
; �45�

db �1�z

dt
� e

mgc

�
b0xHy

	
: �46�

Let us substitute the expression for Ex into the right-hand
sides of these equations.Upon integration, the following first-
order expression for the particle velocities is obtained for the
initial conditions adopted:

bx � b �0�x � b �1�x � b0x ÿ �1ÿ b 2
0x�
�

eE

mgco

�
� �cos �otÿ kz� j� ÿ cosj

�
; �47�

by � b �0�y � b �1�y � b0y � b0y b0x

�
eE

mgco

�
� �cos �otÿ kz� j� ÿ cosj

�
; �48�

bz � b �0�z � b �1�z � ÿb0x
�

eE

mgco

�
� �cos �otÿ kz� j� ÿ cosj

�
: �49�

Averaging Eqns (47) ± (49) over the field period yields
expressions for the particle drift velocities along the x, y, and
z axes:

bxd � �1ÿ b 2
0x�
�

eE

mgco

�
cosj ; �50�

byd � ÿb0yb0x
�

eE

mgco

�
cosj ; �51�

bzd � b0x

�
eE

mgco

�
cosj : �52�
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Figure 1. The arrangement of charged particles injected into a plane, linearly polarized electromagnetic wave. Particles start their motion with zero initial

velocities at the origin of the coordinate system. The interval between the times successive particles start moving is 0.01 times the wave period: (a) Z � 0:1;
(b) Z � 1; (c) Z � 2.
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These equations show that the initial velocity of the
particle considerably affects the character of its motion in a
plane electromagnetic wave. First, the change in the particle
velocity along the wave vector is a quantity of first Ð not
second Ð order in Z. Second, the velocity changes only with
wave frequency, and there are no terms with the double
frequency 2o Ð unlike a particle which is at rest initially.
And third, the velocity along the magnetic field Ð i.e., the
non-Lorentz-force direction Ð is found to be modulated.

In the discussion above two cases have been considered.
In the first, the particle was at rest at the initial time, while
in the second its initial velocity was perpendicular to the
wave direction. If the initial velocity is parallel to the wave
vector, it is expedient to transform to a reference frame in
which the particle is at rest. Then the field amplitudes and
the wave frequency will be Lorentz transformed, and the
problem will be reduced to one of a charge with zero initial
velocity.

Whereas the above approximate results for a particle in a
plane wave could be compared with an exact solution, for a
particle in the field of a standingwave no exact solution exists.
Below we treat this case using perturbation theory.

Suppose a standing wave is made up of two identical
counter-propagating waves. In the first wave the electric field
E �1� and the magnetic field H �1� are directed along the x and
y axes, respectively, and the wave travels in the positive z
direction. In the second wave E �2� and H �2� are also directed
along x and y, respectively, but the wave travels in the
negative z direction. The resulting field is a standing wave of
the form

Ex � E �1� � E �2� � E sin �otÿ kz� j�
� E sin �ot� kz� j� � 2E sin �ot� j� cos kz ;

�53�
Hy � H �1� �H �2� � H sin �otÿ kz� j�

ÿH sin �ot� kz� j� � ÿ2H cos �ot� j� sin kz :

For simplicity, we consider the case in which the phases of
the waves are the same at the origin (z � 0). Let us substitute
the expression for E into Eqn (37). As before, we seek the
solution satisfying the initial condition bx � 0 for t � 0. The
solution is

bx �
�
2eE

mco

��
cosjÿ cos �ot� j�� cos kz : �54�

From this solution it can be seen that, in a manner similar
to the traveling wave case, a particle in a standing wave field
performs a systematic drift motion in the electric field
x-direction. But, unlike a traveling wave, the drift velocity
depends not only on the phase of the wave but also on the
coordinate z. If the particle is initially at a distance l=4 from
the origin (i.e., in the node of the standing wave), its drift
velocity is zero. This is also the case for the particles at
distances equal to multiples of l=2.

To describe themotion of the particle relative to the axis z,
substitute the velocity (54) into the second term on the right-
hand side of Eqn (35), giving

dbz
dt
� e

mc
bxHy � ÿ 1

2o

�
2eE

mc

�2

� �cosj cos �ot� j� ÿ cos2 �ot� j�� sin 2kz : �55�

Averaging over time gives the time-average value of the
particle acceleration at the point z,�

dbz
dt

�
� 1

o

�
eE

mc

�2

sin 2kz : �56�

From this relation it can be seen that in a standing wave field
the particle is acted upon by a systematic force directed along
the z axis. If we present this force as the gradient of the
potential F,

hFzi � mc

�
dbz
dt

�
� ÿgradF ; �57�

the potential can be written

F � e 2E 2

mo2
cos2 kz : �58�

This force is directed toward lower amplitudes of the standing
wave's electric field. Thus, particles group together at the
nodes of the electric field Ð the behavior characteristic of
particles in a high-frequency electromagnetic field with
energy density non-uniform in space. The force that results
from motion in such a field is sometimes called the
Gaponov ±Miller force [6]. Below one more example of this
force Ð the situation of a non-uniform traveling wave Ð is
discussed.

5. Non-uniform electromagnetic waves

So far we have discussed the motion of particles in the field of
a plane, linearly polarized wave. The simplest non-uniform
waves form in space when the fields of two plane, linearly
polarized, identical-frequency waves, propagating at an angle
with each other, are added together.

Let us derive expressions for these electromagnetic fields.
Consider first waves with the electric field along the x axis and
the magnetic field and the wave vector in the yz plane.We will
assume that the propagation directions of both waves make
an angle awith the axis z (Fig. 2a). The fields of the first wave
are described by the equations

E �1�x � E sin �ot� jÿ yk sin aÿ zk cos a� ;
H �1�y � E cos a sin �ot� jÿ yk sin aÿ zk cos a� ; �59�
H �1�z � ÿE sin a sin �ot� jÿ yk sin aÿ zk cos a� ;

and those of the second, by the equations

E �2�x � E sin �ot� j� yk sin aÿ zk cos a� ;
H �2�y � E cos a sin �ot� j� yk sin aÿ zk cos a� ; �60�
H �2�z � E sin a sin �ot� j� yk sin aÿ zk cos a� :

The components of the fields Ey, Ez, and Hx are zero. The
combined field is given by the expressions

E �1�2�x � 2E cos �yk sin a� sin �ot� jÿ zk cos a� ;
H �1�2�y � 2E cos a cos �yk sin a� sin �ot� jÿ zk cos a� ; �61�
H �1�2�z � 2E sin a sin �yk sin a� cos �ot� jÿ zk cos a� :

Formulas (61) describe a wave traveling along the z axis.
For example, the expression for E

�1�2�
x contains a factor
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sin �ot� jÿ zk cos a� characteristic of a traveling wave. The
amplitude of this wave is 2E cos �yk sin a�, i.e., depends on the
coordinate y transverse to the direction of the wave. The same
may be said of the remaining wave components, described by
Eqns (61). The dependence on the coordinate ymeans that the
wave (61) is non-uniform.

Because the electric field is proportional to cos �yk sin a�,
it follows that at points satisfying the condition

yk sin a � p
�
1

2
� n

�
; �62�

where n � 0;�1;�2; . . . ; the electric field of the wave is zero.
The last relation is the equation of zero-electric-field planes.
These are parallel to the xz plane and are at distances

y � l
2 sin a

�
1

2
� n

�

from it. Let us denote by a the spacing between two
neighboring planes. Then sin a and cos a can be written in
the respective forms

sin a � l
2a

; cos a �
����������������������
1ÿ

�
l
2a

�2
s

;

which, when substituted into Eqns (61), give the final
expressions for the electromagnetic field:

Ex � 2E cos

�
py
a

�
sin �ot� jÿ zkz� ;

Hy � 2E

����������������������
1ÿ

�
l
2a

�2
s

cos

�
py
a

�
sin �ot� jÿ zkz� ; �63�

Hz � 2E

�
l
2a

�
sin

�
py
a

�
cos �ot� jÿ zkz� ;

Ey � Ez � Hx � 0 ;

where o � 2pc=l, l is the wavelength, kz � k cos a �
k�1ÿ �l=�2a��2�1=2, and k � 2p=l.

The expressions (63) describe a transverse electric wave
because its field has its longitudinal electric component Ez

equal to zero and because the magnetic field, along with a
transverse component, has a longitudinal component Hz.
Nowhere is the magnetic field of the wave zero. The wave
travels in the z direction with a phase velocity

vph � c

cos a
� c����������������������������

1ÿ ÿl=�2a��2q : �64�

As seen from Eqn (64), the phase velocity of the resulting
wave in the z direction exceeds the speed of light. The wave's
electric field has only one component, perpendicular to the
propagation direction, and the field distribution is non-
uniform along y and has a standing wave form. Between two
neighboring zero-electric-field planes, the field of interest is
identical to that of the TE wave in a plane waveguide.

A transverse magnetic wave is formed when two plane,
uniform electromagnetic waves traveling in free space have
their magnetic fields aligned in the same direction (Fig. 2b).

Suppose the fields of the waves are described by the
expressions

E �1�y � E cos a sin �ot� jÿ yk sin aÿ zk cos a� ;
E �1�z � ÿE sin a sin �ot� jÿ yk sin aÿ zk cos a� ; �65�
H �1�x � E sin �ot� jÿ yk sin aÿ zk cos a� ;
E �2�y � E cos a sin �ot� j� yk sin aÿ zk cos a� ;
E �2�z � E sin a sin �ot� j� yk sin aÿ zk cos a� ; �66�
H �2�x � E sin �ot� j� yk sin aÿ zk cos a� :

Then for the combined field we obtain

Ey � 2E

����������������������
1ÿ

�
l
2a

�2
s

cos

�
py
a

�
sin �ot� jÿ zkz� ;

Ez � 2E

�
l
2a

�
sin

�
py
a

�
cos �ot� jÿ zkz� ; �67�

Hx � 2E cos

�
py
a

�
sin �ot� jÿ zkz� ;

Ex � Hy � Hz � 0 :

From the last expressions it can be seen that the wave has,
along with a transverse electric field component, a lon-
gitudinal component Ez. The transverse-magnetic wave (67),
like the transverse-electric wave (63), is non-uniform in the
y direction but, unlike it, has zero-magnetic-field (not zero-
electric-field) planes. For both types of wave, the spacing
between zero-field planes is a, i.e., the spatial period of
transverse non-uniformity depends on the wavelength l and
on the direction of the plane uniform waves, i.e., on the
angle a.

6. Motion in a transverse-electric field

Let us discuss the special features of particle dynamics in a
non-homogeneous wave. For this purpose we will derive
relations for the motion of particles in a transverse-electric
wave whose fields are given by Eqns (63). It should be noted
that this wave is non-uniform along only one of the transverse

y
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a
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H2

k2H1

k1
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z
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k2E1
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Figure 2. The orientation of the wave vectors of two plane waves forming

one non-uniform wave. The wave vectors lie in the yz plane symmetrically

about the z axis. (a) the electric field is perpendicular to the yz plane; (b) the

magnetic field is perpendicular to the yz plane.
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directions, namely along the y axis, and is uniform along the
x axis.

We assume that the particle is at rest at the initial time.
Then g � 1, and in the first approximation the motion of the
particle along the x axis is described by the equation

db �1�x

dt
� e

mc
Ex : �68�

Upon integrating, taking into account the initial conditions,
we have

b �1�x � ÿ 2eE

mco
cos

�
py
a

��
cos �ot� jÿ kzz� ÿ cosj

�
: �69�

Substituting this into Eqns (34) and (35) we obtain equations
describing the motion along the wave non-uniformity
y-direction,

db �2�y

dt
� e

mc
�ÿbxHz� � l

2ao

�
2eE

mc

�2

cos

�
py
a

�
sin

�
py
a

�
� �cos �ot� jÿ kzz� ÿ cosj

�
cos �ot� jÿ kzz� ; �70�

and along the wave direction,

db �2�z

dt
� e

mc
�bxHy� � ÿ w

o

�
2eE

mc

�2

cos2
�
py
a

�
� �cos �ot� jÿ kzz� ÿ cosj

�
sin �ot� jÿ kzz� ; �71�

where

w �
����������������������
1ÿ

�
l
2a

�2
s

:

Because the left-hand sides of Eqns (70) and (71) contain
accelerations, their right-hand sides are proportional to the
corresponding forces. The equations suggest that the forces
acting on the particle along the y and z axes are significantly
different. The force along the direction of the wave, Eqn (71),
is periodic and its time average is zero. The force along y has a
constant term. Averaging Eqn (70) over time we obtain�

db �2�y

dt

�
� l

ao

�
eE

mc

�2

cos

�
py
a

�
sin

�
py
a

�
; �72�

fromwhich it follows that the particle is acted upon by a force
directed along y, and that the average value of this force
differs from zero.

As shown in Ref. [6], a particle in a non-uniform high-
frequency field

E�x; y; z� exp �iot�

experiences a force proportional to the gradient of the square
of the electrical field at the given point,

F � ÿ e 2

4mo2
grad

��E�x; y; z���2 : �73�

The force F, due to the non-uniform field, is sometimes called
the Gaponov ±Miller force or, because of its direction, the
gradient force. In our case the acceleration dby=dt is also
caused by a certain force Fy, whose average value is found

from Eqn (72) to be

Fy � mc

�
db �2�y

dt

�
� l

ao

�
e 2E 2

mc

�
cos

�
py
a

�
sin

�
py
a

�
� ÿ e 2

4mo2

qhE 2
x i

qy
: �74�

It is easily seen that the force Fy given by Eqn (74) is identical
to the gradient force given by Eqn (73).

Integrating Eqns (70) and (71) and taking into account the
initial conditions we obtain the expression for the particle
velocities along the y and z axes (recall that the electric field of
the wave is along x in our case):

b �2�y � l
2a

�
eE

mco

�2

cos

�
py
a

�
sin

�
py
a

�
� �2ot� sin 2�ot� jÿ kzz�

ÿ 4 cosj sin �ot� jÿ kzz� � sin 2j
�
; �75�

b �2�z � w
�

eE

mco

�2

cos2
�
py
a

��
cos 2�ot� jÿ kzz�

ÿ 4 cosj cos �ot� jÿ kzz� � 2� cos 2j
�
: �76�

Formula (75) for the y velocity of the particle contains a
term which varies linearly in time. This term describes the
acceleration the gradient force (74) imparts to the particle.
The values of the coordinate y occurring in the argument of
the sine and cosine in Eqns (75) and (76) should be considered
close to the initial value y0. In reality y varies as the particle
moves, and so does the value of gradient force. Therefore the
term linear in time in Eqn (75) is correct if the coordinate y of
the moving particle changes by a small amount compared to
a. Formula (75) suggests that motion along the y axis involves
a drift along with the acceleration. The drift velocity is

byd �
l
2a

�
eE

mco

�2

cos

�
py
a

�
sin

�
py
a

�
sin 2j : �77�

As seen from Eqn (76), drift also takes place along the
z axis, i.e., in the direction of the wave vector. FromEqns (75)
and (76) it can be seen that as a tends to infinity the particle's y
velocity tends to zero, and the z velocity tends to the particle
velocity in a uniform wave. Equations (75) and (76) also
indicate that in a non-uniform wave, drift velocity depends
not only on the initial phase of the wave but also on the initial
coordinates of the particles. In a manner similar to the
uniform wave case, particles drift both in positive and
negative y directions, whereas the drift along the z axis
occurs only in the positive direction, i.e., only in the wave
direction.

Note here that the motion in the wave direction is drift,
not a motion under the action of a certain averaged force. As
Eqn (71) follows from, the averaged force along the z axis is
zero to the second order. Recall that the particle was at rest at
the initial time.

Let us now show that in a transverse-electric wave (63) a
particle having a certain velocity at the initial time Ð with
components both in the wave non-uniformity y-direction and
along the electric field (the x axis)Ðwill experience a nonzero
average force in the direction of the wave vector.
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Suppose at the initial time the particle has a velocity
bx � b0x along the wave electric field, and also has a velocity
by � b0y whose direction coincides with the direction of the
wave magnetic field. Under these conditions g �
�1ÿ b 2

0x ÿ b 2
0y�ÿ1=2. The equations of first order in Z for the

motion of the particle are

db �1�x

dt
� e

mcg
fEx � b0yHz ÿ b 2

0xExg ; �78�

db �1�y

dt
� e

mcg
fÿb0xHz ÿ b0y b0xExg ; �79�

db �1�z

dt
� e

mcg
fb0xHyg : �80�

Substituting the expressions for the fields of the transverse-
electric wave, Eqn (63), into the right-hand sides of Eqns (78)
and (80), we obtain

db �1�x

dt
�
�
2eE

mcg

��
�1ÿ b 2

0x� cosOt sin �ot� jÿ kzz�

� b0y

�
l
2a

�
sinOt cos �ot� jÿ kzz�

�
; �81�

db �1�z

dt
� b0xw

�
2eE

mcg

�
cosOt sin �ot� jÿ kzz� ; �82�

where O � pcb0y=a, with y �0� � cb0yt. Upon integrating,
taking into account the initial conditions, we have

b �1�x � ÿ
�

2eE

mcgo

�
cosOt

�
cos �ot� jÿ kzz� ÿ cosj

�
� b 2

0x

�
2eE

mcgo

�
b0y

�
l
2a

�
� �cosOt �cos �ot� jÿ kzz� ÿ cosj

�
� sinOt sin �ot� jÿ kzz�

	
; �83�

b �1�z � ÿb0xw
�

2eE

mcgo

��
cosOt

�
cos �ot� jÿ kzz� ÿ cosj

�
� b0y

�
l
2a

�
sinOt

�
sin �ot� jÿ kzz� ÿ sinj

�	
: �84�

The equation of second order in Z for particle motion
along the wave vector has the form

db �2�z

dt
� e

mcg

�
b �1�x Hy ÿ b �1�z b0xEx

	
: �85�

Let us substitute Eqns (83), (84), and (63) into Eqn (85).
Averaging the result over the wave period yields the average
acceleration along the z axis. After the averaging procedure,
given that the electric field Ex and the magnetic field Hy are
proportional to sin �ot� jÿ kzz�, only terms proportional
to sin2 �ot� jÿ kzz� will give a nonzero contribution. Such
terms will result frommultiplying the expression forHy by the
last term of Eqn (83) and the expression forEx by the last term
of Eqn (84). Taking the average yields for the average
acceleration of the particle�

db �2�z

dt

�
� 2cpb0yb

2
0xw

a

�
eE

mcgo

�2

sin 2Ot : �86�

This equation shows that the ponderomotive force acting
along the wave vector is proportional to the initial velocity of
the particle in the direction of the wave field non-uniformity,
b0y, and to the square of the initial velocity in the electric field
direction, b0x. Therefore, in the case in which one of the
components of the initial velocity (either b0x or b0y) is zero,
the force is also zero in the second approximation. The
ponderomotive force acts against the wave propagation
direction when the particle moves towards the region of a
strong field, and along the propagation direction for motion
towards the weak field region. The force acts only in a non-
uniform wave because its magnitude is inversely proportional
to the distance a characterizing the spatial non-uniformity of
the wave. When a tends to infinity, the force tends to zero.

In the case in which the initial velocity of the particle along
the electric field is zero, the averaged force along the wave
direction still exists, but represents a higher (fourth) order
effect [7]. This force acts on the particle only if at the initial
time the particle has a velocity along the wave non-uniformity
direction (the y axis in our case).

The averaged ponderomotive force proportional to E 2

and acting in the direction of the wave results from the
intersection of waves with a more complex spatial distribu-
tion of electromagnetic fieldÐwaves that are non-uniform in
both transverse directions [8]. Also in waves of this type a
force acts only on particles that traverse the wave, i.e., those
with initial velocity perpendicular to the wave vector.

7. Conclusion

The fields E and H in the electromagnetic wave (1) are
periodic, alternating sign fields, with their average values
zero. One might expect that such fields should exert alternat-
ing-sign influence on a charged particle and that the resulting
displacement should also average to zero. This is not the case,
however. A particle in the field of a plane, uniform
electromagnetic wave performs a systematic drift in the
direction of the electric field as well as a drift in the wave
propagation direction. In the field of a non-uniform wave
additional forces appear which either push the particle out of
the strong field region (`gradient forces') or act in the
direction of the wave vector. These forces affect considerably
the trajectory of a particle in an electromagnetic wave.

Acknowledgements
The authors are grateful to A I Nikishov and V I Ritus for
their helpful suggestions and discussions.

References

1. Volkov D M Z. Phys. 94 250 (1935); Zh. Eksp. Teor. Fiz. 7 1286

(1937)

2. Landau, L D Lifshitz E M Teoriya Polya (Field Theory) (Moscow:

Nauka, 1973) [Translated into English: The Classical Theory of

Fields (Oxford: Pergamon Press, 1975)]

3. Ritus V I Tr. Fiz. Inst. Akad. Nauk SSSR 111 5 (1979)

4. Bolotovski|̄ B M, Serov A V Usp. Fiz. Nauk 164 545 (1994) [Phys.

Usp. 37 515 (1994)]

5. Serov A V Kratk. Soobshch. Fiz. (8) 26 (2002)

6. Gaponov A V, Miller M A Zh. Eksp. Teor. Fiz. 34 242 (1958) [Sov.

Phys. JETP 7 168 (1958)]

7. Serov A V Laser Phys. 7 1190 (1997); Kvantovaya Elektron. 25 197

(1998) [Quantum Electron. 28 189 (1998)]

8. Serov A V Zh. Eksp. Teor. Fiz. 119 27 (2001) [JETP 92 20 (2001)]

June, 2003 Special features of motion of particles in an electromagnetic wave 655

http://www.turpion.org/info/lnkpdf?tur_a=pu&tur_y=1994&tur_v=37&tur_n=5&tur_c=111
Administrator
Bolotovski|¯ B M, Serov A V Usp. Fiz. Nauk 164 545 (1994) [Phys

Administrator
Usp. 37 515 (1994)]

http://dx.doi.org/10.1070/qe1998v028n03ABEH001187
http://dx.doi.org/10.1070/qe1998v028n03ABEH001187
Administrator
Kvantovaya Elektron. 25 197

Administrator
(1998) [Quantum Electron. 28 189 (1998)

http://dx.doi.org/10.1134/1.1348458
OMIS
Serov A V Zh. Eksp. Teor. Fiz. 119 27 (2001) [JETP 92 20 (2001)]


	1. Introduction
	2. The exact solution
	3. Approximate methods
	4. Motion in a plane wave
	5. Non-uniform electromagnetic waves
	6. Motion in a transverse-electric field
	7. Conclusions
	 References

