МЕТОДИЧЕСКИЕ ЗАМЕТКИ

Нелинейные эффекты и доменная неустойчивость в оксидной керамике

В.Ф. Хирный, А.А. Козловский

Рассмотрены нелинейные эффекты в зависимости тока от напряжения и доменная неустойчивость в объемных керамических (гранулированных) образцах при больших плотностях электрического тока и температурах, начиная от комнатной и заканчивая предплавильной.

PACS numbers: 72.15.-v, 74.25.-q, 74.72.-h

Содержание

- 1. Введение (679).
- Эффекты нелинейности в электрической проводимости объемных твердых тел (679).
- Способы получения отрицательной дифференциальной проводимости (680).
- Условия, необходимые для изучения ВАХ с отрицательной дифференциальной проводимостью (681).
- Нелинейные эффекты в электрической проводимости ВТСП-керамики (681).

5.1. Температурно-концентрационная неустойчивость появления температурно-электрического домена. 5.2. Влияние внешних условий на свойства ТЭД. 5.3. Пространственная динамика ТЭД и результаты теоретической модели. 5.4. Влияние температурно-электрического домена на нелинейность ВАХ.

6. Заключение (685).

Список литературы (685).

1. Введение

Нелинейные эффекты в электрической проводимости σ и доменная неустойчивость в объемных образцах исследовались в основном в полупроводниках [1, 2] и металлах [3, 4]. Изучение появления доменов в гранулированных образцах, характеризуемых туннельной проводимостью [5, 6], началось лишь после обнаружения высокотемпературной сверхпроводимости (ВТСП) [7]. В дальнейшем исследования [8–10] доменной неустойчивости в оксидных керамиках включали не только обнаружение особенностей в поведении подвижных носителей заряда, в их генерации и в уменьшении их числа, но и выяснение

В.Ф. Хирный, А.А. Козловский. Институт монокристаллов НАН Украины,

61001 Харьков, просп. Ленина 60, Украина Тел. (+380-572) 30-83-11. Факс (+380-572) 32-02-73 E-mail: khirnyi@isc.kharkov.com

Статья поступила 3 июня 2002 г., после доработки 18 сентября 2002 г. причин изменения проводимости после протекания электрического тока I [11–20]. В работе рассмотрены также необычные свойства нелинейной зависимости σ от тока I в керамических ВТСП-образцах, которые находятся в нормальном состоянии.

2. Эффекты нелинейности в электрической проводимости объемных твердых тел

Нелинейность вольт-амперных характеристик (BAX) в однородном объемном проводнике проявляется тогда, когда функция распределения носителей заряда по энергии под воздействием сильного электрического поля Е отклоняется от равновесной [1]. Однородное распределение поля Е в проводнике становится неустойчивым, и появляется температурно-электрический домен (ТЭД) подвижная локальная область, в которой увеличиваются Е, диссипация энергии JE и температура Т. Здесь J – плотность тока. При этом на ВАХ появляется нелинейный участок с отрицательной дифференциальной проводимостью (ОДП) $\sigma = dJ/dE < 0$. Выражение для плотности электрического тока Ј в случае "одномерного" проводника с униполярной проводимостью в изотропной проводящей среде, когда векторы Ј и Е коллинеарны, имеет вид [2]:

$$\mathbf{J} = en\mu\mathbf{E} = \frac{e^2n\tau_{\rm e}}{m} \mathbf{E}.$$
 (1)

Здесь *е* — величина заряда; μ и *m* — соответственно подвижность и масса носителей заряда; τ_e — изотропное время релаксации носителей. Условие $\sigma < 0$ выполняется, если с возрастанием *E* уменьшаются дрейфовая скорость носителей заряда или их концентрация *n*, либо и то, и другое вместе. В этом случае ОДП появляется за счет нарушения равновесия в системе носителей заряда без разогревания решетки джоулевым теплом. Но разогревание решетки влияет на вид ВАХ и условия появления ТЭД [3, 4]. С изменением температуры решетки изменяется частота электрон-фононных столкновений. Этим устанавливается связь между τ_e и *E* [3, 4].

b.e. Ani fibili, A.A. Rostoberri

$$C_v \frac{\partial T}{\partial t} + \frac{\partial q}{\partial x} = JE - Q(T), \qquad (2)$$

где C_v — удельная теплоемкость образца, t — время, q — плотность потока тепла, Q(T) = Q/d — поток тепла в направлении нормали к поверхности образца, отнесенный к его толщине d; Q — поток на единицу площади поверхности. При выполнении условия электронейтральности div $\mathbf{J} = 0$ после подстановки значений J и q в (2) из уравнений переноса [21] получаем [3]:

$$C_v \frac{\partial T}{\partial t} + JT \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{\alpha}{\sigma} \frac{\partial T}{\partial x} \right) - k \frac{\partial^2 T}{\partial x^2} = \sigma(T) E^2 - Q(T),$$
(3)

где $\alpha = S_{\rm d}\sigma(T)$; $S_{\rm d}$ — дифференциальная термоэлектродвижущая сила; k — коэффициент теплопроводности.

В режиме заданного тока

$$\frac{U}{\int \mathrm{d}x [\sigma(T)]^{-1}} = J = \mathrm{const}$$

ТЭД неустойчив, тогда как в режиме заданного напряжения

$$J\int \mathrm{d}x\big[\sigma(T)\big]^{-1} = U = \mathrm{const}$$

ТЭД устойчив [1]. В последнем случае уравнение (3) имеет однородное решение для T = const по всему образцу вида

$$E^2 = \frac{Q(T)}{\sigma(T)} \,. \tag{4}$$

Условие (4) определяет связь между E и T и τ_e и E. Следовательно [3],

$$\mathbf{J} = \sigma \big[T(E) \big] \mathbf{E} \tag{5}$$

И

$$\frac{\mathrm{d}J}{\mathrm{d}E} = \frac{(Q\sigma)'_T}{(Q/\sigma)'_T \sigma} \,. \tag{6}$$

Для нормальных металлов $\sigma(Q/\sigma)'_T > 0$ и dJ/dE < 0, если $(Q\sigma)'_T < 0$ [3]. Это возможно лишь тогда, когда зависящая от T часть проводимости $\sigma(T)$, обусловленная электрон-фононным взаимодействием, не больше проводимости σ_0 , не зависящей от T [3]. Рассмотренный механизм нелинейности применим для достаточно чистых, массивных и совершенных металлических образцов, находящихся при $T < 0,1 \Theta_D$ (где Θ_D — температура Дебая). Появление ОДП обусловлено уменьшением σ с ростом E из-за электрон-фононного взаимодействия [3, 4].

Таким образом, механизмы возникновения ОДП и ТЭД подразделяются на концентрационный, рекомбинационный, температурный и др., или состоящие из их комбинаций [1-4].

3. Способы получения отрицательной дифференциальной проводимости

Существует несколько методов получения ОДП в твердых телах. Наиболее часто встречается температурноэлектрический режим появления неустойчивости [1–4], для реализации которого и будут рассмотрены методы получения ОДП в металлах при помощи постоянного тока [3]. Из анализа выражения (6) следует, что имеется участок, где $(Q\sigma)'_T < 0$ (рис. 1, взятый из работы [4]). При увеличении тока образец, который до этого находился при температуре T_1 , разогревается до $T = T_3$, минуя область dJ/dE < 0, если используется схема измерения ВАХ в режиме заданного тока (горизонтальная линия). При этом образец может даже перегореть.

Рис. 1. Функция $Q(T)\sigma(T)$.

При работе в режиме заданного на образце напряжения [3] необходимо рассматривать величину падения напряжения U_h в разогретой области, размером L_h и электрическим сопротивлением R_h , отдельно от остальной, холодной части образца с U_c , L_c и R_c , соответственно. В начальный момент возрастания тока от нуля флуктуации температуры малы, $\delta T \ll T_0$, и $R_c \ll R_h$. Падение напряжения на горячей части образца равно [3]

$$U_{\rm h} = E_{\rm h} L_{\rm h} \cong U \frac{R_{\rm h}}{R_{\rm c}}$$

а на холодной —

$$U_{\rm c} = U \bigg(1 - \frac{R_{\rm h}}{R_{\rm c}} \bigg) \cong U.$$

Ток І практически линейно зависит от U, и

$$U = \sigma_{\rm c} E_{\rm c} \cong U \frac{\sigma_{\rm c}}{L_{\rm c}} \,.$$

Отсюда следует, что условие теплового баланса

$$U^2 \frac{\sigma_{\rm c}^2}{L_{\rm c}^2} = Q_{\rm h} \sigma_{\rm h} \cong \text{const}$$
⁽⁷⁾

остается таким же, как и при использовании режима с источником тока, когда $J \cong \text{const.}$ До тех пор, пока $R_h \ll R_c$, будет происходить рост температуры так же, как и в режиме заданного тока. При дальнейшем возрастании тока и более интенсивном разогревании образца может наступить такой момент, когда соотношение $R_h \ll R_c$ нарушится и окажется, что $R_h \gg R_c$. Напряжение на горячей части образца возрастет и в идеальном (предельном) случае может стать практически равным падению напряжения на всем образце, т.е. $U_h \cong U$, и в нем образуется ТЭД. Значение величины падения напряжения на холодной части образца

$$U_{\rm c} \cong U \frac{\sigma_{\rm h}}{\sigma_{\rm c}}$$

получается как следствие условия электронейтральности

$$J_{\rm c} \cong J_{\rm h} = U \, rac{\sigma_{
m h}}{L_{
m h}} \; .$$

При сохранении по-прежнему обязательного условия $(Q\sigma)' < 0$ в нагретой области и во всем образце ток уменьшится. Рост температуры поэтому прекратится при достижении такого значения величины Q/σ , при котором выполнится условие теплового баланса, аналогичное (7) с заменой σ_c на σ_h , а L_c на L_h [3], т.е.

$$\frac{U_{\rm h}^2}{L_{\rm h}^2} = \frac{Q}{\sigma} \; ,$$

так как диссипация мощности происходит в горячей области образца.

Для стабильной работы схемы на постоянном токе необходимо, чтобы мощность U^2/R_i , рассеиваемая на внешнем сопротивлении R_i , была больше мощности U^2/R , рассеиваемой на отрицательном сопротивлении образца R, что выполняется, когда $R_i < |R|$. Этот критерий стабильности был получен на основе концепции нагрузочной линии [3, 22].

4. Условия, необходимые для изучения ВАХ с отрицательной дифференциальной проводимостью

Чтобы обнаружить ТЭД, необходимо создать нужные условия для его наблюдения, а именно, подобрать такой режим теплоотвода, чтобы облегчить выполнение неравенства

$$\frac{\mathrm{d}(Q/\sigma)}{\mathrm{d}T} < 0$$

Существует несколько методов отбора тепла от объекта исследования [3]: за счет излучения, конвективного (свободного или принудительного) теплообмена с окружающей газовой средой и в результате теплопроводности вдоль подводящих проводов.

Использование для наблюдения ТЭД теплоотвода за счет излучения, при котором величина плотности потока тепла через единицу поверхности

$$q(T) \propto T^4$$
,

неэффективно по сравнению со свободным конвективным теплообменом, при котором мощность теплоотвода

$$W(T) \propto d^{3\eta - 2} (T - T_0)^{1 + \eta}$$

где $\eta = 0,125-0,133$, а T_0 — температура среды [23]. Определяя величину тока I^* , при котором возникает домен, из уравнения

$$(j^*)^2 \frac{\mathrm{d}\rho}{\mathrm{d}T} = \frac{\mathrm{d}W(T)}{\mathrm{d}T}$$

авторы работы [23] получили соотношение между I^* , толщиной образца d и температурой окружающей среды T_0 в виде

$$I^* \propto d^{1+1,5\eta} (T-T_0)^{0,5(1+\eta)}$$
 .

Результаты расчета [23] хорошо совпали как качественно, так и количественно с полученной экспериментально зависимостью I^* от d.

Теплоотвод по медным проводам $q(T) \propto (T^2 - T_0^2)$ также не может конкурировать при высоких температурах с конвективным теплоотводом при помощи окружающего образец газа [23].

5. Нелинейные эффекты в электрической проводимости ВТСП-керамики

В работах [5, 6] сообщалось об обнаружении ТЭД в ВТСП-керамиках Y₁Ba₂Cu₃O_{7-x}, Ho₁Ba₂Cu₃O_{7-x} ($T_c \cong 96,6$ K), Er₁Ba₂Cu₃O_{7-x} ($T_c \cong 66$ K) и La_{1,6}Sr_{0,4}CuO₄ ($T_c \cong 37$ K) с кристаллической структурой, характеризуемой ромбической сингонией, где T_c — критическая температура.

Образцы с размерами 3 × 3 × 40 мм³ изготавливались при помощи горячего прессования порошка. Во время проведения опытов они обычно находились на воздухе и по ним протекал электрический ток. С достижением плотности тока $J \cong 10^6$ A м⁻² и $T \cong 400$ °C появлялся ТЭД в виде светящейся полоски, ток уменьшался, и понижалась температура удаленных от ТЭД участков образца. Исследовались свойства ТЭД с температурой $T_{\rm d} \cong 1000~{\rm K}$, определяемой тепловизором. В режиме постоянного тока ТЭД двигался к отрицательному полюсу источника электродвижущей силы (эдс) со скоростью $v \cong 10^{-1}$ м ч⁻¹. Скорость зависела от структуры образцов, уменьшалась при улучшении условий теплоотвода и увеличивалась в направлении повышения Т под влиянием градиента температуры. Направление движения ТЭД изменялось на обратное при смене полярности на подводящих ток проводах. В то же время наблюдался "пиннинг" ТЭД около токовых контактов, на неоднородностях образцов и в местах локального теплоотвода. С помощью внешнего градиента температуры "пиннинг" можно было преодолеть.

При формировании ТЭД из-за потери кислорода в его местонахождении образовывалась тетрагональная фаза, и увеличивалось локальное значение электрического сопротивления *R*. Из данных рентгеновской дифракции следовало, что тетрагональная фаза в центре домена, где $T_d \cong 779$ °C, переходила в орторомбическую на его краях, где $T \cong 200$ °C. После многократного прохождения ТЭД по образцу процентное содержание в нем тетрагональной фазы повышалось, содержание кислорода и T_c уменьшались.

Обнаруженное явление может происходить из-за нелинейной зависимости R(T) в области образца, где $T \cong 400 \,^{\circ}\text{C}$ [8]. Для объяснения перемещения ТЭД предлагалась модель, в которой он являлся как бы "кислородным насосом", забирающим ионы кислорода из расположенных рядом областей керамики и выбрасывающим их в своей центральной части. Из-за влияния внешнего электрического поля концентрация ионов кислорода по обе стороны ТЭД различна, в результате чего он перемещается в область с меньшей концентрацией.

Передвижение ТЭД вдоль керамических ВТСПобразцов представляло собой модифицированный процесс бестигельной зонной плавки. С целью ее реализации были изучены свойства как ТЭД, так и керамических образцов, по которым перемещались ТЭД [8–10].

5.1. Температурно-концентрационная неустойчивость появления температурно-электрического домена

Для проведения исследований [8–10] керамику YBa₂Cu₃O_{7-x} изготавливали [24] в виде дисков диаметром 0,1 м по методу горячего прессования порошка (\cong 97 % мол. YBa₂Cu₃O_{7-x}) при 600–750 °C. Диски разрезали на бруски. Их длину изменяли от 0,03 до 0,1 м, а сечение от 1 × 3 мм² до 6 × 6 мм².

Было изучено более 50 образцов, которые имели или ромбическую, или тетрагональную кристаллические решетки. Фазу, которая кристаллизуется в ромбической сингонии, получали выдерживанием образцов 1-2 ч при 900–930 °C с последующим охлаждением в печи со скоростью 50 °C ч⁻¹ до 350 °C, далее произвольно. Тетрагональная фаза образовывалась после того, как керамику выдерживали при 900–930 °C, извлекали из печи и охлаждали на металлических или керамических подставках со скоростью 20-50 °C мин⁻¹ [24].

Электрическая проводимость иттриевой керамики существенно зависит от концентрации дырок — носителей электрического заряда в образцах [25]:

$$\sigma_{\rm p} = n_{\rm p} q_{\rm p} \mu_{\rm p} \,, \tag{8}$$

где n_p , q_p и μ_p — соответственно, концентрация, заряд и подвижность дырок. В области температур от комнатной до $\cong 350 \,^{\circ}$ С значение $\sigma_p(T)$ линейно уменьшается. С дальнейшим увеличением температуры наблюдается резкое возрастание R [6] с 400 $^{\circ}$ С до $\cong 675 \,^{\circ}$ С в результате объемной десорбции кислорода из керамики [25]. Процесс десорбции кислорода при нагревании и адсорбции при охлаждении можно записать в виде [25]

$$O_0 + 2h \rightleftharpoons V_0 + \frac{1}{2}O_2 , \qquad (9)$$

где O_0 — нейтрально занимаемое положение кислорода O(1), h — дырка, V_0 — вакансия, O_2 — молекула кислорода.

Согласно уравнению (9) диффузия одного атома кислорода происходит через позиции O(5) путем обмена атома с вакансией. Потеря кислорода керамикой при ее нагревании в отмеченном выше интервале температур вызывает уменьшение концентрации дырок n_p и проводимости σ_p , т.е. появление ОДП на ВАХ. ТЭД в иттриевой керамике появляется в результате развития температурно-концентрационной неустойчивости в однородном распределении поля *E*. Исчезновение ТЭД при обдуве образцов воздухом и при их нахождении в холодных парах жидкого азота подтверждает основную роль конвективного отбора тепла через теплообмен с окружающей газовой средой, необходимого для выполнения условия d($Q\sigma$)/ dT < 0.

5.2. Влияние внешних условий на свойства ТЭД

Согласно [5, 6], окружающая ТЭД атмосфера влияла на его свойства. В обогащенной кислородом среде скорость ТЭД увеличивалась по сравнению с его скоростью в случае, когда образец находился на воздухе. В среде с малым содержанием кислорода — в гелиевой и азотной — наблюдалось сужение ТЭД, скорость его движения заметно уменьшалась, и образец быстро перегорал. В вакууме ТЭД образовывался в виде узкой светящейся полоски, в месте расположения которой образец сразу же разлагался.

Температура домена T_d возрастала при увеличении U(уменьшении I) на падающем участке ВАХ [8–10]. Величину T_d можно было регулировать в пределах от $\cong 400 \,^{\circ}$ С до $\cong 1000 \,^{\circ}$ С. С увеличением T_d ширина ТЭД увеличивалась, а скорость v уменьшалась. На рисунке 2 приведены кривые температура — время перемещения ТЭД вдоль образца x [8]. Стрелкой указано направление движения ТЭД. Образец располагался горизонтально. На вертикально расположенных образцах величина vвозрастала при движении ТЭД вверх и уменьшалась при движении вниз. Было достигнуто минимальное значение $v \cong 0,1 \, {\rm M} \, {\rm y}^{-1}$.

Рис. 2. Изменение температуры в зависимости от времени при движении ТЭД вдоль иттриевого образца. Кривые *1*, *2* и *3* получены при следующих напряжениях на образце: $U_1 = 2,5$ B; $U_2 = 2,7$ B и $U_3 = 3,0$ B, соответственно.

Изменение скорости движения ТЭД происходило изза того, что на ТЭД действуют три силы, заставляющие его стационарно перемещаться по образцу: диффузная F_D , дрейфовая $F_q = -\text{grad } \mu_p$ [22], из-за которой носители положительного заряда (дырки) дрейфуют к отрицательному полюсу источника напряжения, и тепловая $F_T = T \operatorname{grad} (1/T)$ [22], появляющаяся из-за того, что в неравномерно нагретом проводнике может течь ток и при E = 0. Соотношения между величинами этих сил проанализированы в работе [8].

В работе [1] предсказывалось, что магнитное поле влияет на свойства ТЭД в полупроводниках. Согласно работе [8], поперечное магнитное поле $H \cong 1$ Тл не влияет на скорость движения ТЭД, тогда как продольное — влияет. Движение ТЭД ускорялось, когда южный магнитный полюс совпадал по направлению с тем контактом образца, который был подсоединен к положительному полюсу источника эдс, и замедлялось, если этот край образца совпадал по направлению с северным полюсом. Магнитное поле с индукцией $\cong 1$ Тл останавливало ТЭД. Поле было создано при помощи сверхпроводящего соленоида с теплым отверстием.

5.3. Пространственная динамика ТЭД и результаты теоретической модели

Хотя есть много общего в поведении ТЭД в металлах и керамике, имеются и различия. Так, следующие свойства ТЭД в керамике аналогичны свойствам, предсказываемым в [4] для ТЭД, которые находятся в металлических проводниках:

1. При первоначальной запитке образца током зависимость T от E(4) определяется из условия баланса тепла [4]:

$$JE = d_{\rm g}^{-1}q(T), \qquad J = \sigma(T)E, \tag{10}$$

где *d*_g — геометрический фактор.

2. ТЭД прекращал движение, встречаясь с неоднородностями.

3. Скорость перемещения ТЭД практически не менялась при изменении площади поперечного сечения образцов от 3 мм² до 36 мм².

4. Можно вызвать появление ТЭД путем изменения геометрического фактора.

Наблюдаются следующие отличительные особенности свойств ТЭД в керамике по сравнению со свойствами ТЭД в металлах:

1. ТЭД появляется в металлах из-за того, что *R* увеличивается с ростом поля *E* благодаря электронфононному взаимодействию, а в керамике — из-за уменьшения концентрации подвижных носителей заряда, т.е. дырок.

2. В керамике ТЭД всегда перемещался только со стороны положительного электрода источника эдс к отрицательному. В металлах изменение полярности тока меняло скорость движения ТЭД [23], но не направление.

3. Предсказываемая в работе [4] скорость перемещения ТЭД в металлах

$$v \propto \alpha(T_{\rm d}) [q(T_{\rm d})\sigma(T_{\rm d})]^{0.5} C_V^{-1}(T_{\rm d}) d_{\rm g}^{-1} \cong 1-0.1 \text{ mm c}^{-1}$$

тогда как в иттриевой керамике $v \cong 10^{-2}~{\rm MM}~{\rm c}^{-1}.$

В работе [8] для описания поведения ТЭД в керамике уравнения Максвелла и уравнение непрерывности заряда сводились к одному уравнению:

$$\dot{E} = DE_{xx} + \mu(E) E\left(E_x - \frac{4\pi e}{\varepsilon}N\right) + \frac{c}{\varepsilon} \operatorname{rot} \mathbf{H} - \int \mathrm{d}x \, \dot{E}(x) \,,$$
(11)

которое приводит к описанию процесса движения волны переключения напряжения поля E(x). Чтобы учесть градиент температуры, появляющийся из-за конвективного теплопереноса, уравнение (11) дополнялось уравнением теплопроводности [26]:

$$\frac{\partial T}{\partial t} = D_t T_{xx} + \mu \big[T(E) \big] E^2 - \beta \nabla T - \alpha_T (T - T^*) \,, \qquad (12)$$

где E — первая производная E по времени t, D — коэффициент диффузии носителей заряда, E_{xx} — вторая производная E по x, μ — подвижность электрических зарядов, E_x — первая производная E по x, ε — диэлектрическая проницаемость, D_t — коэффициент термодиффузии, T_{xx} — вторая производная от T по x, β — конвективная постоянная, α_T — коэффициент теплоотдачи, T^* — температура окружающей среды, N — суммарное число носителей заряда. Модель воспроизводит все особенности поведения ТЭД.

В качестве примера, иллюстрирующего это утверждение, на рис. 3 показан процесс формирования ТЭД и

Рис. 3. Результаты численного моделирования движения ТЭД (в относительных единицах).

даны результаты численного моделирования движения ТЭД, выполненного в относительных единицах.

Как видно на рис. За, зависимость T(x) совпадает с приведенной на рис. 2. Кроме вида функции T(x) на рис. За показаны зависимости *n* и *E* от *x*. Отметим также хорошее совпадение с экспериментом [8] зависимости изменения мощности тепловыделения *P* от времени (верхняя кривая), ее уменьшение и выход на постоянное значение в стационарном режиме (рис. 3б). На рисунке 3б приведены также графики сохранения суммарного заряда *N* в системе и падения напряжения *U* со временем.

На рисунке 3в дан фазовый портрет системы уравнений (11) и (12) в осях (E, E_x) с хорошо выраженным стационарным аттрактором (штриховая линия). На вставке тот же аттрактор показан в виде ВАХ исследуемой системы. А на рисунке 3г приведена зависимость скорости изменения U для всех точек ТЭД как функция времени и положения его на образце. Образец располагался горизонтально, и конвективный вклад в движение ТЭД не сказывался, т.е. $\beta = 0$. Подобные результаты были получены и при учете вклада конвективного теплообмена — для $\beta > 0$ и $\beta < 0$ [8].

5.4. Влияние температурно-электрического домена на нелинейность ВАХ

После многократного прохождения ТЭД вдоль образца, вид его ВАХ изменялся (рис. 4) в отличие от случая полупроводников и металлов, для которых такого изменения не наблюдалось. По аналогии с работами [11-20], в которых были обнаружены изменения в катионном и анионном составах образцов после протекания по ним электрического тока, предполагалось [8-10], что появление ТЭД сопровождается электрохимическими реакциями и перемещениями ионов. Для выяснения причин изменения вида ВАХ были выполнены электрические, рентгеновские и магнитные измерения, проведены исследования на электронном микроскопе, а также определены химический состав образцов и отклонения от стехиометрии по кислороду [8-10].

Так, было установлено, что после перемещения ТЭД с локальной температурой $T_{\rm d} \leq 900$ °C вдоль образца наблюдалась небольшая потеря кислорода образцами,

Рис. 4. Изменение вида ВАХ иттриевого образца после многократной "обработки" его при помощи ТЭД. Цифры у кривых указывают число передвижений ТЭД.

из-за которой увеличивался объем элементарной ячейки кристаллической решетки и происходило ее искажение. Уменьшение содержания кислорода определяли при помощи иодометрического титрования.

Электронно-микроскопические исследования поперечного и продольного сечений областей остановок ТЭД на сканирующем электронном микроскопе JSM-820 с системой рентгеновского микроанализа Link AN 10.000 показали существенное уплотнение керамики без изменения ее катионного состава.

Наряду с этими измерениями для $T_d \cong 1000$ °С (предплавильные температуры) проводились измерения химического состава вдоль образца, разделенного на куски длиной 5 мм. Полученные результаты проиллюстрированы графиками изменения содержания ионов Y, Cu и Ba вдоль образца (рис. 5). Горизонтальная стрелка указывает направление движения ТЭД, который перемещался четыре раза в одну и ту же сторону, вертикальная место остановки домена. Зарождение ТЭД в одном и том же месте производилось с помощью маленькой нагревательной печки. На рисунке 5 видна картина, подобная той, которая получается при зонной плавке. На вставке приведены данные по химическому составу исходного образца [9, 10].

Изучение деградации образцов после передвижения по ним ТЭД производили при помощи измерения комплексной магнитной восприимчивости $\chi_{ac} = \chi' + i\chi''$, где χ' — реальная часть, а χ'' — мнимая часть. Было установлено, что величина сигнала $\chi'(T)$ уменьшалась по модулю, отображая уменьшение содержания сверхпроводящей фазы в образце (см. также [5, 6]). В зависимости от значения T_d и от количества циклов проведения обработки, объем сверхпроводящей фазы, которая оставалась, изменялся от 80 % до 5 %. На рисунке 6 показано изменение вида $\chi'(T)$ и $\chi''(T)$ после того, как образец был обработан ТЭД с $T_d = 950 \pm 50$ °C. Видно,

Рис. 5. Изменение содержания Y, Ва и Си вдоль образца, которое произошло после "обработки" его с помощью ТЭД, имеющего температуру $T_d = 950$ °C.

Рис. 6. Изменение зависимостей $\chi'(T)$ и $\chi''(T)$, которое произошло после "обработки" образца с помощью ТЭД. Кривые *I* получены до обработки, кривые 2 — после.

что кривые $\chi'(T)$ ведут себя аналогично кривым, измеренным на образцах с уменьшенным кислородным индексом [8, 9]. Их сверхпроводящие свойства восстанавливались после отжига в атмосфере кислорода. Если обработка производилась в атмосфере кислорода, то отжиг не был необходим [27]. Более того, у образцов с тетрагональной кристаллической структурой наблюдалось [9, 10] частичное восстановление сверхпроводящих свойств после обработки их при помощи ТЭД.

6. Заключение

Таким образом, исследование нелинейных эффектов в гранулированных веществах (оксидной керамике) привело к выявлению новых закономерностей в явлении доменной неустойчивости в объемных образцах. Обнаружено, что в результате температурно-концентрационной неустойчивости электрического поля при больших плотностях тока появляется стационарно перемещающийся вдоль образца со стороны положительного электрода температурно-электрический домен. Для объяснения его свойств использовалась модель [8], в которой рассматривался процесс формирования и движения волны переключения напряженности электрического поля в однородной среде, поскольку проведенное исследование [8-10] показало, что для ТЭД гранулированная среда является однородной. На скорость движения ТЭД влияют лишь неоднородности больших размеров с

повышенным теплоотводом [26], на которых он "пиннингуется". Появление ТЭД не зависит от типа кристаллической решетки керамических образцов. Обработка при помощи ТЭД образцов с гексагональной решеткой способствовала частичному восстановлению у них сверхпроводящих свойств.

После кратковременного протекания тока большой плотности через локально разогретую до $T \cong 1000$ °C область (местонахождение ТЭД) наблюдалось изменение стехиометрии образцов, которое напоминало изменение в составе образцов при зонной плавке.

Список литературы

- 1. Волков А Ф, Коган Ш М УФН 96 633 (1968)
- Бонч-Бруевич В Л, Звягин И П, Миронов А Г Доменная электрическая неустойчивость в полупроводниках (М.: Наука, 1972)
- Цзян Ю Н, Дисс. ... д-ра физ.-мат. наук (Харьков: ФТИНТ, 1983)
- Кадигробов А М, Слуцкин А А, Кривошей И В ЖЭТФ 87 1314 (1984)
- 5. Осипьян Ю А и др. *Письма в ЖЭТФ* **47** 257 (1988)
- Бобров В С и др., в сб. Физико-химия и технология ВТСПматериалов (Под ред. Н П Лякишева) (М.: Наука, 1989) с. 117
 В. С. М.: И. К.А. Z. Р. В. С. (1990)
- 7. Bednorz J G, Müller K A Z. Phys. B 64 189 (1986)
- Хирный В Ф и др. Сверхпроводимость: Физ., хим., техн. 7 575 (1994)
- 9. Seminozhenko V P et al. Functional Mater. 1 19 (1994)
- Хирный В Ф и др. Физ. хим. обработ. матер. (5) 66 (1995)
 Rajan R G, Parameswaran P, Jambunathan J B Bull. Electrochem. 5 761 (1989)
- 12. Панасюк Б А и др., в сб. *Тезисы докладов II Всесоюз. по ВТСП* (*Киев, 25–29 сент. 1989*) (Киев, 1989) с. 13
- 13. Прохоров А М и др. Письма в ЖЭТФ 51 132 (1990)
- Сумароков В Н и др. Сверхпроводимость: Физ., хим., техн. 3 2081 (1990)
- Нефедов В И и др. Сверхпроводимость: Физ., хим., техн. 4 987 (1991)
- 16. Nefedov V I et al. Mod. Phys. Lett. B 5 1019 (1991)
- Нефедов В И, Вальковский М Д, Соколов А Н Сверхпроводимость: Физ., хим., техн. 5 1081 (1992)
- Митин А В, Алексеевский Н Е, Хлыбов Е П Сверхпроводимость: Физ., хим., техн. 5 290 (1992)
- 19. Mitin A V, Alekseevskii N E, Khlybov E P Physica C 199 351 (1992)
- 20. Jia Y Q, Liu X W, Jin M Z Phys. Lett. A 155 214 (1991)
- Займан Дж Электроны и фононы: Теория явлений переноса в твердых телах (М.: ИЛ, 1962)
- 22. Ridley B K Proc. Phys. Soc. London 82 954 (1963)
- 23. Абрамов Г И и др. Письма в ЖЭТФ 37 453 (1983)
- 24. Kotok L A et al. Bull. Mater. Sci. 14 167 (1991)
- 25. Lagraff J R, Han P D, Payne D A Physica C 169 355 (1990)
- 26. Гуревич А Вл, Минц Р Г УФН **142** 61 (1984)
- 27. Khirnyi V F, Chykanova I N Functional Mater. 3 225 (1996)

Nonlinear effects and domain instability in oxide ceramics

V.F. Khirnyĭ, A.A. Kozlovskiĭ

Institute for Single Crystals, The National Academy of Sciences of Ukraine, prosp. Lenina 60, 61001 Khar'kov, Ukraine Tel. (+ 380-572) 30-83 11 Fax (+ 380-572) 32-02 73 E-mail: khirnyi@isc.kharkov.com

Nonlinear current-voltage characteristics and domain instabilities are discussed for bulk (granulated) ceramic samples at high electric current densities in the room to premelting temperature range.

PACS numbers: 72.15.-v, 74.25.-q, 74.72.-h

Bibliography - 27 references