
Abstract. This review is dedicated to the dynamics of the rattle-
back, a phenomenon with curious physical properties that is
studied in nonholonomic mechanics. All known analytical re-
sults are collected here, and some results of our numerical
simulation are presented. In particular, three-dimensional Poin-
careÂ maps associated with dynamical systems are systemati-
cally investigated for the first time. It is shown that the loss of
stability of periodic and quasiperiodic solutions, which gives rise
to strange attractors, is typical of the three-dimensional maps
related to rattleback dynamics. This explains some newly dis-
covered properties of the rattleback related to the transition
from regular to chaotic solutions at certain values of the physi-
cal parameters.

1. Introduction

First we are going to make some physical and historical
comments about the rattleback, describe its basic physical
properties, and mention investigations on the subject that
have already been made. For a preview of what the rattleback
is, we recommend an interesting paper by J Walker [1].

The unusual properties of the rattleback's behavior are as
follows. When placed on a horizontal surface and spun in a
certain direction about the vertical axis, it spins freely; if,
however, it is made to rotate in the opposite direction, it soon

stops rotating, begins to oscillate about the horizontal axis,
and finally, spontaneously reverses its rotation about the
vertical axis. Some rattlebacks can reverse direction of
rotation many times, no matter what direction they were
spun in initially.

In J Walker's paper, some other physics experiments
involving rattlebacks are also described, and some rattleback
models are presented. One of the models is shown in Fig. 1. It
can be seen that rattlebacks have some dynamical asymmetry
at the point of contact of the body with the plane.

A simple model of the rattleback (also described by
J Walker) can be made by fixing a small rod to half of an
egg, so that the rod makes a nonzero angle with the egg's axis
of symmetry (Fig. 2). The motions that can be observed look
very strange: press down on one end of the rod, and the egg,
unexpectedly, will not wobble about the horizontal axis but
will begin to spin slowly about the vertical axis; if we then
press down on the other end of the rod, the egg will reverse the
direction of spinning.

Here we are not going to delve deeply into the history of
the subject, nor will we give an extensive narrative of the
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Figure 1. Two rattleback models from J Walker's paper [1].



rattleback's many other physical properties. For details see
the references in Ref. [2]. Amazing features of the rattleback's
dynamics were observed and described on an elementary
physical level by G T Walker in 1895. We should also
mention contributions by G Herglotz (1941) and C Magnus
(1974), who mainly dealt with stability issues. Hereafter, we
will reference Astapov [3], Karapetyan [4, 5], and Markeev
[6], whose results are closely related to ours.Wewill alsomake
reference to the numerical analysis performed by Lindberg
and Longman [7] (a brief discussion of this work can be found
in Section 5). Among other investigators of the problem, it is
worth mentioning Kane and Levinson [9] and Pascal [10].

The rattleback is also called the Celt (Celt Stone).
G T Walker noted that such unusual stones had been found
by archaeologists in studying ancient Celtic features. Origin-
ally, the hatchet-shaped stones that exhibit the above-
described unusual behavior after being set in motion on the
surface of a table were named Celts.

There are several dynamical models for the rattleback. To
perform a general analysis, one should consider the rattleback
to be a heavy rigid body moving on a horizontal plane and
subject to either dry (Coulomb) friction or viscous friction
(proportional to the velocity). In this general statement, the
problem is very complex and, therefore, a detailed qualitative
analysis is impossible. At present, within the framework of
this general approach, only a few series of numerical
simulations have been performed.

A less realistic but more simple and demonstrative model
for the rattleback can be based on nonholonomic mechanics
(this will be referred to later as the nonholonomic model).
Nonholonomic dynamical systems are situated in between the
standard Lagrangian (and Hamiltonian) systems and the
general dissipative systems. As a rule, in nonholonomic
systems, an energy integral exists; thus they are conservative
systems and, therefore, `close' to Hamiltonian systems. On
the other hand, nonholonomic systems lack an invariant
measure [11] and, in this sense, they resemble dissipative
systems (according to the Liouville theorem, any Hamilto-
nian system possesses a standard invariant measure).

A more detailed discussion of various forms of equations
of nonholonomic mechanics is presented in Refs [2, 8, 12]. In
this paper, however, we are not going to use these forms of
equations but we will derive the equations of motion for the
rattleback from the fundamental principles of dynamics (a
balance of linear and angular momenta and some kine-
matics). Any nonholonomic system has at least one uninte-
grable constraint, and in our case this constraint implies that
the point of contact of the body with the plane has zero
velocity. Therefore, this nonholonomic model differs radi-
cally from theHamiltonianmodel (with an absolutely smooth

plane) and, at the same time, does not incorporate any sliding
friction. Obviously, under the no-slip condition, the work
done by the friction forces is zero and, therefore, the energy is
conserved.

The nonholonomic model we develop adequately accom-
modates the main features of the rattleback's motion. Since
there is no sliding and the energy is conserved, all the
phenomena (wobbles, spin reversals) take longer time
intervals than in actual practice. For an elementary descrip-
tion of the motion, however, this model has frequently been
used [3 ± 6, 8 ± 10, 12].

2. Nonholonomic model. Equations of motion

As a model for the rattleback we consider here a heavy rigid
body that rolls without slipping on a horizontal plane. The
absence of sliding can be treated as a nonholonomic
constraint placed on our system. This constraint simply
means that the velocity of the point of contact is zero, that is,

v� x� r � 0 ; �1�

where r is the position vector of the point of contact, Q, with
respect to the center ofmass,G; and v andxare the velocity of
the center of mass and the angular velocity of the body
(Fig. 3). In what follows, all vectors are assumed to refer to
a body-fixed coordinate frame.

Using the balance of linear momentum and the balance of
angular momentum relative to the point G (see Fig. 3), we get
(with respect to the body-fixed frame) the following equations

d

dt
�mv� � mv� xÿmgcc �N ;

�2�
d

dt
�Ix� � Ix� x� r�N :

Here,N is the normal force acting on the body at the point of
contact Q, cc is a unit vector pointing vertically upwards, m is
themass of the body, g is the acceleration due to gravity, and I
is the inertia tensor referenced to the center of mass.

Using the constraint equation (1) and the first equation of
(2), we eliminate v and N from (2) and, thus, obtain

� _Ix� �mr� � _x� r� �mr� �x� _r�
� Ix� x�m�x; r�x� r�mgr� cc :

Figure 2. Another rattleback model from J Walker's paper [1].
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Figure 3. Rigid body on a plane.
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The angular momentum of the body relative to the point of
contact Q is

M � Ix�mr� �x� r� : �3�

Then, using the equations governing the behavior of the unit
vector cc in the body-fixed frame, we represent the equations
of motion in the form [8]

_M �M� x�m_r� �x� r� �mgr� cc ;
_cc � cc � x :

�
�4�

Herex should be expressed as a function ofMwith the use of
(3).

Equations (4) are similar to the Euler ± Poisson equations
[13] governing the motion of a heavy rigid body fixed at one
point. For equations (4), there exist two conserved quantities
(first integrals):

H � 1

2
�M;x� ÿmg�r; cc� ; �cc; cc� � 1 : �5�

The first one is the total energy of the system; the geometrical
meaning of the second one is obvious. The vector cc is related
to r by a Gaussian mapping

cc � ÿ gradF �r���gradF �r��� ; �6�

where F �r� � 0 is the equation of the body's surface referring
to a body-fixed frame.

Unlike the Euler ± Poisson equations, an integral of areas
and an invariant measure do not exist for equation (4) in the
general case. This results in dynamical effects not typical for
Hamiltonian systems [14].

3. Models for the body surface:
a paraboloid and an ellipsoid

As an idealization, it is customary to assume that the surface
of a rattleback is the surface of either an elliptic paraboloid or
a three-axial ellipsoid.

The paraboloid model (the simpler one) is suitable for
representation of the body's oscillations and rotation near the
vertical (the point of contact coinciding with the paraboloid's
vertex). This model, however, fails to describe the rolling
motion of the body and its overturn. The equation of the
body's surface and theGaussian projection (6) are specified as
follows:

F �r� � 1

2

�
r 21
a1
� r 22
a2

�
ÿ �r3 � h� � 0 ;

r1 � ÿa1 g1
g3
; r2 � ÿa2 g2

g3
; �7�

r3 � ÿh� a1g21 � a2g23
2g23

;

where a1 and a2 are the principal radii of curvature at the
paraboloid's vertex and h is the height of the center of mass
situated at the axis of the paraboloid.

To study global effects (not only motions close to the
rotation about the vertical), we consider the body to be a
three-axial ellipsoid. The body's surface and the Gaussian

projection are given by the equations

F �r� � r 21
b 2
1

� r 22
b 2
2

� r 23
b 2
3

ÿ 1 � 0 ;
�8�

ri � b 2
i gi�����������������������������������������

b 2
1 g

2
1 � b 2

2 g
2
2 � b 2

3 g
2
3

q ;

where b1, b2, and b3 are the principal semiaxes of the ellipsoid.
The principal radii of curvature, say, at the point r1 � r2 � 0,
r3 � b3, are a1 � b 2

1 =b3, a2 � b 2
2 =b3.

Suppose that the center of mass is in both cases at the
point r1 � r2 � r3 � 0, and the principal axis of inertia OX3

coincides with the principal geometric axis e3.A distinguishing
feature of rattlebacks is that the other two principal axes of
inertia are rotated by an angle d 6� 0 relative to the other two
principal geometric axes. With respect to the principal
geometric axes (not to the principal axes of inertia), the
tensor of inertia has the form

I �
I1 cos

2 d� I2 sin
2 d �I1 ÿ I2� cos d sin d 0

�I1 ÿ I2� cos d sin d I1 sin
2 d� I2 cos

2 d 0

0 0 I3

0@ 1A ; �9�

where I1, I2, and I3 are the principal moments of inertia at the
center of mass.

4. Andoyaer ±Deprit variables
and three-dimensional PoincareÂ maps

In terms of the Euler angles, equations (4) describe the
behavior of the nutation angle y �cos y � g3� and of the
angle of proper rotation j �tanj � g1=g2�. These equations
are exactly what we mainly deal with in the rest of the paper.
We will keep in mind that, as soon as equations (4) are solved,
the precession angle c and the motion of the point of contact
can be obtained in quadratures [8, 13].

The Andoyaer ±Deprit variables �L;G;H; l; g� are most
convenient for a numerical analysis of the problem, and are
used here instead of the Euler angles and the variables �M; cc�.
The physical meaning of the Andoyaer ±Deprit variables is
discussed, for example, in Ref. [13]. Here we give only the
explicit conversion formulae

M1 �
�����������������
G 2 ÿ L2
p

sin l ; M2 �
�����������������
G 2 ÿ L2
p

cos l ; M3 � L ;

g1 �
 
H

G

���������������������
1ÿ

�
L

G

�2
s

� L

G

����������������������
1ÿ

�
H

G

�2
s

cos g

!
sin l

�
����������������������
1ÿ

�
H

G

�2
s

sin g cos l ;

g2 �
 
H

G

���������������������
1ÿ

�
L

G

�2
s

� L

G

����������������������
1ÿ

�
H

G

�2
s

cos g

!
cos l

ÿ
����������������������
1ÿ

�
H

G

�2
s

sin g sin l ;

g3 �
�
H

G

��
L

G

�
ÿ

���������������������
1ÿ

�
L

G

�2
s ����������������������

1ÿ
�
H

G

�2
s

cos g : �10�

Once the two integrals ofmotion (5) are known, equations
(4) specify a four-dimensional phase flow. We fix a three-
dimensional hyperplane that intersects this flow and thereby
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obtain a three-dimensional PoincareÂ map. It should be noted
that, for the variables L, G, H, l, and g in (10), the equation
�cc; cc � � 1 holds identically; therefore, given this integral,
equations (10) specify a one-to-one transformation. Let the
plane that intersects the four-dimensional level surface of
energy H�L;G;H; l; g� � E be g � g0 � const and let
�l;L=G;H=G� be coordinates on this plane.

It should be emphasized that the classic Euler ± PoincareÂ
equations additionally have the integral of areas H � const.
That is why the study of the behavior of solutions to these
equations (as well as of any Hamiltonian system with two
degrees of freedom) reduces to the analysis of a measure-
preserving two-dimensional map.

In studying the rattleback dynamics, we face a muchmore
complex situation, where the mapping is three-dimensional
and does not generally preserve the measure. This complexity
explains why the description of rattleback dynamics is not a
trivial problem. Because of the absence of an invariant
measure, our dynamical system is similar to a dissipative
one, with complex attracting sets (strange attractors) appear-
ing in the phase space. These sets are discussed below. The
well-known Smale ±Williams map serves as an example of a
simple three-dimensional map with a chaotic attractor.

Thus, the analysis of the phase flow of equations (4) on an
energy level reduces to the analysis of the mapping

xn�1 � F�xn� ; xn �
�
l;
L

G
;
H

G

�
: �11�

Since 0 < l4 2p, ÿG4L4G, and ÿG4H4G, the
map (11) is defined on some compact set.

The fixed points of the mapping (11) correspond to
periodic solutions to (4), the invariant curves of this mapping
represent two-dimensional tori, and the two-dimensional
invariant manifolds correspond to three-dimensional mani-
folds. Hereafter, we will use this terminology for both the flow
and the mapping, hoping that no ambiguity will occur.

Comment. In view of (10), on any level surface
H=G � const, the points with coordinates l and l� 2p must
be identified, and the straight line L=G � 1 is to be shrunk
into a single point. Thus, the phase space of the mapping (11)
is homeomorphic to S 2 � I, where I is the segment �ÿ1; 1�.

It is interesting to note that in our recently published book
[8] (see also [15, 16]) a hierarchy of integrability was described
for problems of nonholonomic dynamics. In this hierarchy,
the rattleback dynamics is an extreme: the system is totally
unintegrable, i.e., it has no additional tensor invariants. The
opposite extreme is total integrability. In this case, the phase
portrait of the mapping (11) is a family of invariant curves,
and this map can thus be used to discover new integrable
cases. A new integrable system found using this approach is
described in Ref. [17] (see also [8]).

In Refs [15, 16, 18], we considered some systems with a
limited set of tensor invariants Ð only one integral of motion
or invariant measure. The most interesting one is the Jacobi
nonholonomic problem [18] of the inertial rolling of a
homogeneous solid sphere, whose center of mass moves over
a three-axial ellipsoid. In this problem both an additional
integral ofmotion and an invariantmeasure exist (hence there
are no asymptotic solutions). However, this problem is not
completely integrable except for the case of an ellipsoid of
revolution first noticed by E Routh (see [16]). The phase
portrait of the three-dimensional PoincareÂ map (11) is
foliated into invariant surfaces, on which chaotic motion

can be observed. This corresponds to the absence of another
additional integral of motion necessary for complete integr-
ability.

There are more examples of systems with a similar
behavior of solutions, e.g., a dynamically asymmetric plate
that rolls over a sphere and the rolling motion of an
unbalanced Chaplygin's ball over a plane [16]. S A Chaplygin
proved that the problem of rolling motion of a dynamically
asymmetric, balanced ball over a horizontal plane without
slipping is integrable (here, dynamically asymmetric means
that the moments of inertia are arbitrary, and balanced
implies that the center of mass coincides with the geometric
center). In this problem, two integrals of motion and an
invariant measure exist. In Ref. [15], we showed that if the
center ofmass does not coincidewith the geometric center, the
system lacks one integral and the invariant measure.

5. Symmetries of the flow and of the map

System (4) has some symmetry properties. We will consider
them together with the corresponding symmetry properties of
the mapping (11).

5.1 Reversibility
System (4) is invariant with respect to the change of variables
(involution)

cc ! cc ; x! ÿx ; t! ÿt : �12�
For the above-specified section g0 � 0, this change of
variables corresponds to the involution

l 0 � pÿ l ;

�
L

G

�0
� ÿL

G
;

�
H

G

�0
� ÿH

G
; F 0 � F ÿ1 ;

where F ÿ1 denotes the inverse of (11).
The following implications of the reversibility can be

noted:
1. In the neighborhood of the fixed points of the involution

(near the equilibrium x� 0), the KAM theory applies [19]. A
nonlinear analysis of the system's behavior in the vicinity of
the stable equilibrium states was performed by A P Markeev
[6] and will be discussed below.

2. The fixed points of the mapping F [i.e., the periodic
solutions of (4)] that are not fixed points of the involution (12)
appear in pairs. Their multiplicators are equal in magnitude and
opposite in sign. The same is true in the case of any attractor.
Thus, if the system (4) has an attracting set to which the
solutions converge as t! �1, then it also has an attracting
set for t! ÿ1.

If the body has additional symmetry properties (geo-
metric, dynamical), then other involutions may exist for the
system (4).

5.2 Symmetry with respect to rotations of the axes
Suppose that the axis of symmetry e3 coincides with a
principal axis of inertia (the other two axes of symmetry
may be rotated by an angle d relative to the other two axes of
inertia); then equations (4) remain unchanged as the axes e1
and e2 are rotated by p about the axis e3, that is, they are
invariant relative to the transformation

o1 ! ÿo1 ; o2 ! ÿo2 ; o3 ! o3 ; �13�
g1 ! ÿg1 ; g2 ! ÿg2 ; g3 ! g3 :
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For the map xn�1 � F�xn�, the symmetry

l 0 � lÿ p ;
�
L

G

�0
� L

G
;

�
H

G

�0
� H

G
;

corresponds to this rotation.
Hence, the map F is symmetric about the plane l � p, and

all the fixed points that do not lie on this plane appear in pairs.

5.3 Symmetry about a plane
Suppose that, for example, the axis of symmetry e3 coincides
with a principal axis of inertia; then equations (4) are
invariant with respect to the reflection about the plane e1e2
and the subsequent change of time, that is,

o1 ! o1 ; o2 ! o2 ; o3 ! ÿo3 ;

g1 ! g1 ; g2 ! g2 ; g3 ! ÿg3 ; t! ÿt :

The three-dimensional map is invariant with respect to the
involution F :

l 0 � l ;

�
L

G

�0
� ÿ

�
L

G

�
;

�
H

G

�0
� H

G
; F 0 � F ÿ1:

�14�

Let us prove the following simple statement: suppose
that (14) holds true; then, for the fixed points of the map F ,
one eigenvalue equals 1 and the product of the other two is
also 1.

Let us denote the matrix of the linear transformation (14)
by s � diag �1;ÿ1; 1� and the linearizationmatrix forF in the
neighborhood of a fixed point byA. Then it follows from (14)
that

A � sAÿ1s ;

and detA � detAÿ1 � 1, a � TrA � TrAÿ1. The character-
istic polynomial of A reads

l3 ÿ al2 � alÿ 1 � �lÿ 1��l2 � �1ÿ a�l� 1� :

The fact that one of the eigenvalues equals unity indicates
that the fixed points on the plane L � 0 are degenerate (see
Figs 10 and 11). If the other two multiplicators have zero
imaginary parts, then closed invariant curves exist near these
points.

Similarly, we can discuss the case where all the principal
axes of inertia coincide with axes of symmetry (see below). In
this case, we have two additional planes of symmetry, and
invariant curves exist in the vicinity of rotations about the
vertical; these rotations are invariant when reflected in the
planes containing the axis of rotation.

6. Known results in the dynamics
of the rattleback

6.1 Stability of stationary rotation
Here we give an explicit form for the characteristic
polynomial of system (4) linearized in the vicinity of a
uniform rotation of the paraboloid about the vertical axis.
This motion corresponds to a stationary solution
x� �0; 0;o0�, cc � �0; 0; 1� of equation (4). The polynomial

reads [3, 5]

w�l� � l2�k0l 4 � k1l
3 � k2l

2 � k3l� k4� ;
k0 � �I1 �mh2��I2 �mh2� ;
k1 � o0mh�a1 ÿ a2�I12 ; k3 � o3

0mh�a1 ÿ a2�I12 ;
k2 � o2

0

ÿ�I3 ÿ I2��I3 ÿ I1� �mh
ÿ�I3 ÿ I11��a2 ÿ h�

� �I3 ÿ I22��a1 ÿ h���m2h2�a1 ÿ h��a2 ÿ h��
�mg

ÿ�I22 �mh2��a2 ÿ h� � �I11 �mh2��a1 ÿ h�� ;
k4 � o 4

0

ÿ�I3 ÿ I2��I3 ÿ I1� �mh
ÿ�I3 ÿ I11��a2 ÿ h�

� �I3 ÿ I22��a1 ÿ h���m2h2�a1 ÿ h��a2 ÿ h��
� o2

0mg
ÿ�I3 ÿ I11��a2 ÿ h� � �I3 ÿ I22��a1 ÿ h�

� 2mh�a1 ÿ h��a2 ÿ h���m2g2�a1 ÿ h��a2 ÿ h� ; �15�

where Ii j are the components of the matrix (9). The linear
stability of the rotation depends on the real parts of the roots
of (15). For each value of the energy, there exist two
rotational motions with frequencies o0 and ÿo0.

Using the Routh ±Hurwitz theorem, one can obtain the
following conditions under which the rotation is stable.

Statement [3, 5]. The rotational motion of a paraboloid
about the vertical is stable if

�1�� �I1 � I2 � I3��a1 � a2 ÿ 2h�ÿ
ÿmh

ÿ
4h2 ÿ 3h�a1 � a2� � 2a1a2

� � FGD > 0 ;

�2�� o0 < ÿo� ; where o2
� � Fÿ1GD mg�a1 ÿ h��a2 ÿ h� ;

here FGD is a `geometrodynamical' function.
Let E� be the energy value corresponding to o�.
This Lemma clearly shows that for d 6� 0 the stability of

the rotation depends on its direction (clockwise or counter-
clockwise). This fact discriminates nonholonomic systems from
Hamiltonian systems.

In addition, for the rotational motion to be stable the
distribution of mass within the body must satisfy the
condition FGD > 0, and the angular velocity must be
sufficiently large. There exist bodies whose rotational
motions in both directions are unstable.

In Fig. 4, graphs of the real parts of the eigenvalues are
shown. In diagram (a), the `geometrodynamical' condition
�1�� is satisfied, while in diagram (b), condition �1�� is not
satisfied.

These graphs indicate that, at energy values E for which
o0 < o�, an unstable rotation about the vertical axis always
exists, and the solutions tend to this motion as t! ÿ1. A
typical phase portrait of the PoincareÂ map for a paraboloid
(E > E�) is shown in Fig. 5. All trajectories wind onto the
stable, steady rotational motion for t! �1 and on the
unstable rotation for t! ÿ1. Simulations have shown that
there are no other attractors in the phase space.

6.2 Hopf bifurcation. Birth of a cycle
In Ref. [5], it was shown that in the vicinity of the critical
frequency, as the stability is lost �o0 > ÿo�, o0 � ÿo��, the
Andronov ±Hopf theorem on the birth of a cycle can be
applied. In the vicinity of the rotation about a vertical axis, a
stable limiting cycle arises. This cycle corresponds to a
periodic solution of (4).

Figure 4a indicates that, for o0 < o�, o0 � o� and with
the direction of time reversed, the theorem on the birth of a
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cycle applies again. This is called a reverse Hopf bifurcation
[the same result follows from the reversibility of (11)].

The results of simulations presented in Fig. 6 clearly show
that, for t! �1, in addition to the (stable) Karapetyan
cycle, two other stable cycles appear (these two cycles persist
as well when the physical parameters are slightly disturbed).
The appearance of these additional cycles can hardly be
predicted analytically. According to the reversibility prop-
erty, near an unstable rotation about the vertical axis, similar
unstable limiting cycles appear (the solutions are attracted by
these cycles as t! ÿ1). There are no other attractors
�t! �1� in the phase space.

6.3 Nonlinear oscillations in the neighborhood
of equilibrium
Some features of the rattleback's behavior were explained by
A P Markeev. He studied small nonlinear oscillations in the
neighborhood of equilibrium, i.e., ato0 � 0 (this solution is a
fixed point of involution). The characteristic polynomial (15)
becomes biquadratic in this case and, for a1 > h and a2 > h, it
has two pairs of purely imaginary roots.

In Ref. [6], a normal form of equations (4) near the
equilibrium was obtained up to third-order terms. It is as
follows:

_r1 � ÿaO 2
1 r1r3 ; _r2 � aO 2

2 r2r3 ; �16�
B _r3 � a�O 4

1 r
2
1 ÿ O 4

2 r
2
2� ; _s1 � O1 ; _s2 � O2 ;

where r1, r2, and r3 are certain polar coordinates, si are the
angular coordinates; O1 and O2 are the frequencies of the
normal oscillations; and a;B � const.

The equations for the unknowns r1, r2, and r3 form a
closed integrable system. Equations (16) have the following
integrals:

O 2
1 r

2
1 � O 2

2 r
2
2 � Br23 � const ; ra

1 r2 � const ; a � O 2
2

O 2
1

:

Using these quantities, a qualitative analysis of motion can be
performed.

Comment. Explicit expressions for the coordinates ri; si
and the frequencies Oi as functions of the phase variables and
the first integrals of (4) can be found by solving the eigenvalue
problem. These formulas are complex and can be found in
Ref. [6].

The solutions to the equations in the normal form (16) are
orbits on three-dimensional, invariant tori.

In addition, the normal form of the system (16) has a
three-dimensional surface filled with doubly asymptotic
trajectories. Physically, this means that the body rotating
initially in one direction arrives for t! �1 at the rotation in
the reverse direction. Thus, in the vicinity of the equilibrium
considered, the system (16) exhibits an almost Hamiltonian
behavior [and, therefore, so does the system (4)].

Due to reversibility, the KAM theorem applies in the
neighborhood of the equilibrium [19]; as an unperturbed
system, one can take the normal form (16), and as a small
parameter, the deviation of the energy from its minimum
value Emin � mgh.

Thus, when the energy is small, three-dimensional Kolmo-
gorov tori exist for the complete system (4). In Fig. 9, three-
dimensional cross sections of such tori, embedded into four-
dimensional space, are illustrated.

The above considerations based on the KAM theory
extend the results obtained by A P Markeev [6]. His results
are of an asymptotic nature and remain valid only in finite
time intervals.

6.4 Nonexistence of an invariant measure
This result is also a basis for understanding rattleback
dynamics. It is valid for d 6� 0 and reflects the qualitative
difference between the behavior of nonholonomic systems
and that of Hamiltonian systems (according to the Liouville
theorem, aHamiltonian system has an invariant measure). As
mentioned above, in this sense, nonholonomic systems are
more similar to dissipative systems because in the phase space
of a nonholonomic system attractors may occur.

Now we give a more rigorous formulation of the result
[11].

Consider a paraboloid for which I1 6� I2, d 6� 0 (as is the
case for rattlebacks). In the vicinity of a rotation about the
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Figure 4. The real parts of the characteristic exponents for rotational motion about the vertical axis for different relations between the principal moments

of inertia: (a) I1 � 5, I2 � 6, I3 � 7, and condition �1�� is fulfilled; (b) I1 � 4, I2 � 5, I3 � 6, and condition �1�� is not fulfilled (m � 1, g � 100, a1 � 9,

a2 � 4, h � 1, d � 0:2).
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vertical axiso � o0, g3 � 1,o0 6� 0, an invariant measure with
analytic density does not exist.

Comment.Assume that d � 0. This is true for paraboloids
and ellipsoids (in particular, homogeneous) whose geome-
trical axes coincide with dynamical axes. It can be shown by
direct calculation that, near the rotation about a vertical axis,
up to terms of arbitrarily high order, nothing prevents the
existence of an invariant measure with analytic density.
Unfortunately, this measure has been obtained explicitly
only in a few special cases. The form of this measure in the
general case and the presence of other obstructions to its
existence still calling for further investigation.

6.5 Numerical simulations by Lindberg and Longman
In addition to the analytical results discussed above, there are
publications concerning computer simulations of the rattle-
back. Of special mention is a paper by Lindberg and
Longman [7]. Their main result is as follows: suppose a
paraboloid has been spun about the vertical in one direc-
tion; after a time, it passes the stage of wobbling and then
starts rotating about the vertical again but in the reverse
direction. For the values of the physical parameters used in
Ref. [7], the condition �2�� of the stability of rotation about
the vertical axis is not satisfied. More detailed investigations
show that, for these values, a regular attractor (limiting cycle)
occurs in the phase space. It should also be noted that the
results presented in Ref. [7] are not completely verifiable. A
more comprehensive discussion of these results can be found
in Ref. [8].

7. Global dynamics of the rattleback.
The strange attractor

Now we will describe the overall dynamics of the PoincareÂ
map depending on the energy E. For E > E�, the motion of
the body approaches asymptotically a steady rotation, and
for E9E�, the Karapetyan cycle. At the same time, for small
energies E0Emin, the system exhibits Hamiltonian proper-
ties, exactly as Markeev predicted. It will be shown below
that, for energies in the range �Emin;E��; the behavior of the
system is chaotic: either intermittency phenomena can be
observed or a strange attractor appears.

Next, we present the results of numerical simulations of
the above-described three-dimensional map for various
values of the energy. Two models, an ellipsoid and a
paraboloid, are considered. The ellipsoid model is more
complex because it admits overturns of the body.

For the simulations, we set the following dimensions
(both for ellipsoid and paraboloid)

I1 � 5 ; I2 � 6 ; I3 � 7 ; m � 1 ; g � 100 ; �17�

for the paraboloid (7) we assume a1 � 9, a2 � 4, h � 1 and for
the ellipsoid, b1 � 3, b2 � 2, b3 � 1. In both cases, the
principal radii of curvature at the point r1 � r2 � 0, r3 � 1
are equal; the stability is described by Fig. 4a, the critical
value of the energy E� is 1300, and the frequency of rotation
about the vertical is o� � �18:516 . . . Here, lengths are
measured in centimeters, masses in kilograms, and times
in 10ÿ1=2 s.

7.1 Paraboloid model (d � 0.2)
A preliminary numerical analysis shows that the whole set of
feasible energies �Emin;1�, where Emin � mgh � 100, can be

divided into five regions within which the dynamics is similar
for various E.

I. E > E�. In the phase space, only rotation about the
vertical in one direction is possible. This rotation is asympto-
tically stable (the map has a regular attractor; Fig. 5). Because
of the reversibility, as t! ÿ1, the solutions tend to a steady
rotation in the reverse direction. Note that the absolute values
of the multiplicators of this stable rotation are less than unity,
one of them being real and the other two forming a conjugate
pair.Most likely, there is also an unstable limiting cycle on the
one-dimensional separatrix originating from the unstable
steady rotation. This cycle is a fixed point of the mapping
(see Fig. 5).

II. E1 < E < E�, 933 < E1 < 941. As the energy becomes
less than E�, the Andronov ±Hopf bifurcation occurs (see
Section 6). In the vicinity of the steady rotation about the
vertical, which now becomes unstable, a limiting cycle forms
(Fig. 6). Near the rotation in the reverse direction a reverse
bifurcation occurs, and a limiting cycle also forms; it attracts
solutions as t! ÿ1.

Moreover, a surprising feature takes place: two more
limiting cycles, other than the Karapetyan cycle, form (see
Fig. 6). This fact does not seem to be predictable analytically.
A pair of similar cycles (stable as t! ÿ1) form near the
unstable steady rotations. These cycles persist under a small
perturbation of the parameters (17).

Here all trajectories unwind from the three unstable
limiting cycles and wind onto the three stable ones. Two of
them are direct extensions of the Karapetyan cycle to the
given energy. The other four were found numerically by us. In
the phase space, there are also unstable fixed points represent-
ing rotations about the vertical.
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Figure 5. The case of E � 2000, d � 0:005, g0 � 0:5p. Behavior for large
values of energy E > E� is illustrated: all trajectories unwind from the

unstable rotation about the vertical (as t!1) and wind onto the stable

rotation. (We assume here d � 0:005 to increase the time spent near the

rotations about the vertical; this does not correspond to the value

indicated in the text.)
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III. E2 < E < E1, 560.7 < E2 < 561.9. As the energy
passes through E1, one of the Karapetyan cycles ceases to be
stable, while the other two remain stable (Fig. 7). In the phase
space, the regular attractors (t! �1), which are two stable
and two unstable limiting cycles, persist. The phase portrait
also contains four unstable fixed points; two of them
represent rotations about the vertical, and the other two are
unstable Karapetyan cycles.

IV. E3 < E < E2 ÿ e1, e1 being a small positive quantity.
Formation of a strange attractor. Here, the two remaining
limiting cycles become unstable, and an attracting set of a

complex structure occurs (Fig. 8). Computations show that
the maximal Lyapunov exponent for the trajectories of this
set is positive. This set can thus be referred to as a strange
attractor. The fact that such an attractor occurs in rattleback
dynamics is unexpected and all the more remarkable because
the initial system (4) is conservative. The physics behind the
emergence of a strange attractor is that some limiting cycles
cease to be stable; at the corresponding energy levels, the
rattleback's behavior becomes globally chaotic. Note that, in
the preceding regimes, some chaotic-oscillation stages were
also observed; these oscillations, however, finally arrived at a
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Figure 6. The case of E � 12959 1300 � E�, d � 0:2, g � 0:5p. An outline of the phase portrait for an energy reduced to below E�: all trajectories issue
from the three unstable cycles (stable as t!1) located at the lower right in diagram (a) and then wind onto the three stable cycles at the upper left in the

figure (one of the cycles is the Karapetyan cycle). Diagram (b) illustrates the upper left part of diagram (a) on an enlarged scale.
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regular periodic regime. As the energy is further decreased,
other intricate, intermittent chaotic regimes occur. These
regimes can hardly be studied even numerically.

V. Emin < E < Emin � e2, e2 being a small positive number.
By this, we mean the neighborhood of the equilibrium state
where small oscillations take place (theMarkeev case; Fig. 9).
As mentioned above, for small e2, three-dimensional, invar-
iant Kolmogorov tori trapping other trajectories of the
system are present here.

For Emin � e2 4E4E3, the behavior of the system has
not yet been studied. A more detailed computer-aided
analysis should focus on the behavior of the separatrices of
fixed points and limiting cycles. The values of E3 and e2 for
which the strange attractor occurs should be estimated more
accurately, and the attractor itself should get a more rigorous
mathematical treatment.

7.2 Ellipsoid model
Here wewill discuss some geometrical and dynamical features
that distinguish the ellipsoid from the paraboloid.

I. The axes of symmetry coincide with the principal axes of
inertia. Strictly speaking, this is not the case for rattlebacks.
Below, we will consider slight perturbations of this config-
uration. Equations (4) are invariant under reflections about
three mutually orthogonal planes. Hence, the periodic
solutions (the fixed points of the mapping) lying in the planes
(a) L � 0, (b) l � 0, and (c) l � p=2; 3p=2 are degenerate.
They form curves in three-dimensional space, surrounded
with invariant curves that correspond to two-dimensional tori
of the phase flow (Fig. 10). Diffusion between these tori seems
to be possible; however, its mechanism has not yet been
studied. The curve that consists of fixed points represents
oscillations of the ellipsoid about its principal axes (about
horizontal axes in a fixed frame of reference). In this case, the
absolute values of the multiplicators of rotations about the
vertical axis equal unity.

II. The principal axes of inertia are rotated by an angle d

about the axis of symmetry e3. The periodic solutions in the
plane L � 0 remain degenerate. The magnitudes of the
multiplicators of the feasible rotations are no longer equal
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to unity. For E > E�, one of rotations about e3 becomes
stable. The birth of two attracting sets (for t! ÿ1 and
t! �1) is illustrated in Fig. 11. These sets are of the strange-
attractor (or possibly quasi-attractor) type because their
Lyapunov exponents are positive. Unlike the paraboloid
case, not all trajectories converge to these attractors. There
exists a region containing the above-described degenerate
periodic solutions and two-dimensional invariant tori enclos-
ing these solutions.

III. Arbitrary configuration of the axes. Let the dynamical
axes e1 and e2 be rotated by an angle d relative to the axis l3,
and let the axis e3 make an angle zwith the corresponding axis
of symmetry.

In this case, no geometric symmetries are present, and the
fixed points that form the curve in Fig. 10b cease to be
degenerate and become isolated. The results of simulations
are as follows. In the phase space, consider a representative
point that moves along a trajectory that has started near the
elliptical fixed point of the unperturbed system (which

corresponds to the coincidence of the geometrical and
dynamical axes). Over a long time interval, this point
remains close to the curve that is filled with degenerate fixed
points in the unperturbed case (Fig. 12). It is easy to show that
exponentially small effects come into play here; these effects
are behind the existence of an almost invariant manifold
containing perturbed trajectories. Note that the hyperbolic
case is better explored, i.e., the case where a hyperbolic
manifold exists in the unperturbed problem (e.g., a set
consisting of points of the hyperbolic type), in contrast to
the elliptic case shown in Fig. 10c. In accordance with the
Hirsch ± Pugh ± Shub theorem, this hyperbolic manifold
persists when the system is perturbed; however, the fixed
points on this manifold either become isolated or even
completely disappear.

In this case, the birth of strange attractors is also typical,
and the global dynamics of the system is even less completely
understood. It should be noted that, up to now, three-
dimensional maps as such (both with and without an
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invariant measure) have been investigated very little. The
nonholonomic problems considered in this paper can serve as
a testing area for new mathematical methods.

After this paper was submitted, the authors learned of an
interesting work by H Broer, C SimoÂ , and R Vitolo called
``Bifurcations and strong attractors in the Lorentz-84 climate
model with seasoned forcing'' [20]. The paper deals with a
nonautonomous model of the long-term climatic change in
the atmosphere, suggested by Lorentz in 1984. The equations
of this model are

_x � ÿaxÿ y 2 ÿ z 2 � aF
ÿ
1� e cos �ot�� ;

_y � ÿy� xyÿ bxy� G
ÿ
1� e cos �ot�� ;

_z � ÿz� bxy� xz ;

8<: �18�

a; b; e;o � const ;

where F and G are periodic functions with period T � 2p=o.
The analysis of the equations reduces to the analysis of a
three-dimensional mapping. Strange attractors were found
for this system [20], and related scenarios of transitions to
these attractors (destruction of invariant cycles) were dis-
cussed.

8. Conclusion

In this paper, some new properties of the rattleback's
behavior discovered by numerical simulation are presented.
These properties are closely related to the chaotic behavior of
the system and the formation of strange attractors of three-
dimensional maps. However, we have discussed here only a
few aspects of the global dynamics of the rattleback. The
global dynamics should be further explored in two aspects:
general mathematical methods should be used more exten-
sively (for example, to provide a more rigorous proof of the
existence of strange attractors) and a physically more realistic
model of the rattleback should be developed (it would he
desirable to include the effects of dry and viscous friction,
etc.).

The authors are grateful to V VKozlov, A VKarapetyan,
and D V Treshchev for their valuable comments.
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