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Abstract. Experimental results on, and theoretical fundamen-
tals of, the electronic Raman scattering in high-temperature
superconductors are discussed. The effects of temperature, im-
purity scattering, and resonance conditions on electronic Raman
spectra in the superconducting state are analyzed. The primary
objective of the review is to establish how different peculiarities
of the inelastic light scattering spectra are related to fundamen-
tal properties of the fundamental superconducting state, such as
the superconducting gap and the symmetry of pairing.

1. Introduction

At the end of 1986, Bednorz and Miiller discovered super-
conductivity in the complex oxide La—Ba—Cu—-O [1], and
the exceptionally high temperature of the superconducting
transition was the reason the new class of substances became
known as high-temperature superconductors (HTSC’s). This
discovery, for which the two researchers were awarded the
Nobel prize in 1987, set the task of establishing the
mechanism of high-temperature superconductivity, which
stimulated unprecedentedly high scientific activity and thus
facilitated the development of many areas of physics. One
such area was inelastic light scattering which is often called
‘Raman scattering’, but in Russian science literature known
as ‘combinational scattering of light’. The interest in Raman
scattering is large because this phenomenon may be used to
facilitate establishing the nature of high-temperature super-
conductivity, since it provides information about the symme-
try of the superconducting order parameter.
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The order parameter is a very convenient characteristic
for describing the ordered states that emerge as a result of
various phase transitions. The superconducting order para-
meter was introduced by Ginzburg and Landau in their
phenomenological description of superconductivity [2]. It is
a complex-valued function of coordinates, ¥(r), acting as a
certain effective wave function that can be normalized so that
|¥(r)* is the density of the superconducting electrons. The
relationship between the Ginzburg—Landau theory and the
microscopic theory of Bardeen, Cooper, and Schrieffer (the
BCS theory) was established by Gor’kov [3], and the order
parameter ¥(r) was identified as the wave function of the
ensemble of Cooper pairs, since it proved to be proportional
to the energy gap 4(r) in the spectrum of paired current
carriers. The concept of electron pairing in the superconduct-
ing state [4, 5] remains valid for HTSC’s. Indeed, the existence
of Cooper pairs was convincingly demonstrated in early
experiments on quantum flux quantization in a ring from
polycrystalline YBa>CuzO7_, (Y123) [6]. It is this pairing that
leads to a specific response in the inelastic scattering of light
by electrons [7], whose presence, combined with the possibi-
lity of probing the different regions of the Fermi surface
within the given method, makes it possible to study the
symmetry of the order parameter and to draw certain
conclusions about the type of pairing [§].

A necessary condition for superconductivity is the
emergence of off-diagonal long-range order [9]. Long-range
order in a superconductor is caused by the anomalous
nonvanishing average amplitude of a pair, and this anom-
alous average is simply the order parameter defined in the
Ginzburg—Landau formalism [10]. In the momentum repre-
sentation this order corresponds to the nonzero average
(cxre—ky) = —(cpy¢y,) o< P(k), where the wave function of
the electron pair depends on the wave vector and is related
to the gap function by the formula ¥ (k) = 4, /2Ey, where Ej,
is the quasiparticle energy. The emergence of long-range
order is accompanied by a lowering of symmetry, and, as in
any second-order phase transition, the symmetries of the
normal and superconducting states are interrelated, since



374 O V Misochko

Physics— Uspekhi 46 (4)

the symmetry breaking in a superconducting transition is
continuous [11]. Here the order parameter is simply the
measure of symmetry breaking in the superconducting
(ordered) state. The symmetry of the superconducting state
must be the subgroup of the full symmetry group describing
the normal state. This full symmetry group contains the
symmetry groups of the crystal lattice, spin rotations, time
reversal, and gauge. A transition to the superconducting state
is always associated with a breakdown in gauge invariance
[12]. If, in addition, we have a breakdown of one or more
symmetries, a nontrivial order parameter is realized, and the
gap function may have zeros in some regions of the reciprocal
space [13]. A preliminary understanding of the symmetry of
the HTSC order parameter can be gained from the group-
theoretical approach. Since the crystal structures of all
HTSC’s have an inversion center, parity is a well-defined
quantum number. This makes it possible to define the order
parameter (the gap function) as a spin-triplet or spin-singlet
state. Since the Josephson effect between superconductors of
different parities disappears and the existing experimental
data irrevocably prove that there is tunneling between
HTSC’s and classic elemental superconductors (such as Nb
and Pb) [14, 15], we can limit ourselves to considering only
singlet superconductivity. The next step requires examining
the symmetry of the crystal lattice, since, according to
Landau’s theory, the order parameter must transform by
one of the irreducible representations of the symmetry group
of the high-temperature phase [10, 16]. Since HTSC’s crystal-
lize in orthorhombic or tetragonal structures [17], one is
forced to consider the D,;, and Dy, groups (because super-
conductivity is realized in two-dimensional CuO, planes,
often the two-dimensional subgroups C,, and C,, are
considered instead of three-dimensional groups D;, and
Dyy;). Table 1 lists the symmetries of the states that may be
responsible for pairing in HTSC’s [15].

The symmetry of the gap function can be determined
through experiments even without knowing the microscopic
mechanism of pairing, and recently many methods that make
it possible to determine this symmetry have been realized [19].
The first group of such methods, which includes various
interference measurements of the Josephson current, is

Table 1. Symmetry of the states of the tetragonal and orthorhombic
groups.

Wave function  Irreducible Basis function ~ Zeros
representation
Point group Dy,
s Ajg 1, x> +y?, 22 no zeros
Asg xy(x? — %) lines
de Big X2 —y? lines
dy, Bae Xy lines
ero Eq(1, 0) Xz lines
el Eq(1, 1) (x+y)z lines
el Eq(1, 1) (x+iy)z lines
Point group Dy,
s A, 1, x2, )2, 2% no zeros
dyy Big xy lines
d,. Boe Xz lines
d,. B3, yz lines

related to measuring the phase [15]. The second group is
based on studying the thermodynamic properties. The third
(and last) group incorporates spectroscopic measurements
that probe the gap in the spectrum of the superconducting
quasiparticles. The study of excitations of the superconduct-
ing state requires high resolution both in energy and in
quasimomentum. In principle, neutron spectroscopy [20]
satisfies both requirements, but several factors, such as
available dimensions of single crystals and indirect, i.e.,
through the electron spin, interaction, limit the possibilities
of neutron studies of the dynamics of the carriers. Angle-
resolved photoemission is free of these limitations and,
therefore, is used to establish the shape of the Fermi surface
and to find the dependence of the superconducting gap 4 on
the wave vector k [21, 22]. Despite the high resolution in the
quasimomentum Kk, the energy resolution of photoemission is
clearly insufficient for the detailed study of the superconduct-
ing gap. In tunnel spectroscopy, which measures the one-
particle density of states with a high resolution in energy,
there is practically no resolution in quasimomentum, i.e., the
situation is opposite to that in photoemission spectroscopy
[23]. The common limitations of both tunneling and photo-
emission are the small depth of probing and, as a result, an
exceptionally high sensitivity to the properties of the surface
and an absence of sensitivity to coherence factors (both
methods react to any gap in the density of states). The
probing depth is much larger in optical experiments, since,
due to the low carrier concentration, the light penetrates the
HTSC to a depth of about 100 nm. Other decisive advantages
of inelastic light scattering are the possibility of probing
certain parts of the Fermi surface (by using scattering in
different polarizations) and the sensitivity to correlated
(coherent) behavior of electrons [24, 25].

The goal of the present review is to analyze the experi-
mental data on Raman scattering of light by electrons, or
electronic Raman scattering (ERS), in the superconducting
state of HTSC’s and to find the relationship between the ERS
spectrum characteristics and the symmetry of pairing. For a
fuller understanding of the physics of Raman scattering in
HTSC, the reader should turn to the reviews in Refs [24 —28],
which examine the various excitations (phonons, electrons,
and spin fluctuations) and present the various theoretical
models used in describing the process of inelastic light
scattering [29, 30]. The outline is as follows. Section 2 gives a
brief history of using ERS in superconductor studies. Section
3 describes the fundamentals of ERS in the normal and
superconducting states, while Section 4 provides the relevant
information about the experiments. The experimental data on
the ERS in different polarizations for crystals with different
numbers of cuprate planes and with different levels of doping
and disorder are presented in Section 5 which also contains a
discussion concerning the data. The section is divided into
subsections, each of which systematizes the studies depending
on the variable quantity. Section 6 is a discussion of the
possible symmetry of the order parameter in HTSC with
allowance for the limitations imposed in experiments on the
ERS. The last section formulates the main conclusions and
problems for the future.

2. Historical survey

The understanding that the Raman scattering spectrum of the
superconducting state differs from that of the normal state
came fairly early [31]. Nevertheless, the first experimental
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attempts to record this difference were unsuccessful [31, 32].
About a decade had to pass before it was understood what
superconductivity brings into the spectrum of inelastic light
scattering. This was achieved by Abrikosov and Fal’kovskii
in their seminal paper [7], where they showed that a new
scattering channel related to the breaking of Cooper pairs
opens in the superconducting state. As a result of this channel
a new peak at the frequency Q = 24 emerges in the ERS
spectrum, while scattering at frequencies Q < 24 is absent for
a superconductor with an isotropic gap of the s-type even if
such scattering exists in the normal state. The theoretical
work that followed took into account the effects of Coulomb
interaction and the anisotropy of the Fermi surface [33].
Although the problem had theoretically been solved and
the possibility of measuring the superconducting gap with
ERS had been proved, the realization of this possibility
required additional 20 years, despite the fact that such
attempts were made by the leading scientists [34]. The first
experiment in which a modification of the ERS spectrum in
the superconducting state was observed was carried out
with 2H — NbzSe [35]. This was followed by observations of
the superconducting gap in NbsSn and V3Si[36—38] and by a
generalization of the theory to the case of superconductors
with a small coherence length [39]. The discovery of high-T,
superconductivity was followed by a report about observing
the redistribution of the electron continuum in the super-
conducting state in the system Y — Ba—Cu—O [40], which was
soon corroborated in an independent experiment [41]. The
discovery of new superconducting compounds stimulated the
development of the theory, and Abrikosov and Fal’kovskii
analyzed the scattering for anisotropic superconductors with
a small coherence length by studying, in contrast to Klein and
Dierker [39], a number of limiting cases [42]. In these
experiments new results followed the discovery of new
superconductors; the superconducting gap was discovered in
the ERS spectra of Bi»Sr.CaCu»Os. . (Bi2212) single crystals
with two cuprate planes [43] and of Tl,,BayCa,1Cu, 05,4 1)
single crystals with one, two, and three CuO- planes [44 —46],
so that by now we have studies of practically all classes of
HTSC’s.

The polarization features of ERS in the superconducting
state, which proved to be extremely informative, had already
been studied in the first experiments involving the Y123 and
Bi2212 single crystals [47—49]. At the present time we know of
detailed polarization investigations of the single crystals
La; ,Sr,Cu,O4 (La214) [50-52], YBa>CusOsg (Y124) [53,
54], HgBa,CaCus0g,, (Hgl223) [55—57], the electron-type
superconductor Nd;_,Ce,Cu,O4 [58, 59], the fullerene
Rb3Cg [60], and the intermetallic compound MgB; [61, 62].
The key work in the theoretical understanding of these
polarization features is, apparently, that of Devereaux et al.
[8], where it was found that the ERS not only makes it possible
to measure the superconducting gap magnitude but also
provides information about the symmetry of the gap.

3. Theoretical fundamentals of inelastic light
scattering in a normal metal
and in a superconductor

The Bloch theorem says that each elementary excitation of a
medium with translational symmetry can be characterized
by a wave vector k and is represented by a plane wave with
the following spatial dependence of the wave function:
Y (r) = exp(ikr)uy (r) [63]. Optical processes in metals and

k/k]:

24{

k/kr

Figure 1. (a) The Feynman diagram of the Raman scattering process. The
wave lines represent the photons, while the solid and the dashed lines
represent the excitation of the medium. (b) An illustration of the
restriction on the phase volume accessible for scattering in a pure metal;
(c) the lifting of this restriction for a superconductor.

superconductors are accompanied by creation or annihila-
tion of such excitations, and Raman scattering can generally
be defined as the interaction of light with the crystal, in
which the radiation of frequency w; is transformed into
radiation of a new frequency ws due to excitation/deexcita-
tion of the medium at a characteristic frequency @, which is
schematically shown in Fig. 1. The energy and momentum
conservation laws determine two scattering channels, the
Stokes and the anti-Stokes, which differ in the direction of
energy transfer, from the electromagnetic field to the
medium and vice versa (usually ERS spectroscopy is
limited to Stokes scattering). These kinematic selection
rules caused by the homogeneity of the time and the
translational invariance of the medium must be supplemen-
ted, for a complete description of the process, with
symmetry restrictions. In view of the fact that a photon is
an odd-parity excitation of the electromagnetic field and
that two photons participate in each elementary act, only
even-parity excitations of the medium are studied in the
Raman scattering. The fact that a relationship between w;
and w, emerges can easily be explained by the theory on the
assumption that the optical polarizability « is a function of
the generalized coordinate of the excitation, Q, in which the
linear relationship between the light field and the medium
changes the frequency of the optical field [64].

In the experiment the crystal is irradiated by light from a
laser, and the scattered light filtered by a spectrometer is
recorded by an optical detector. The detector registers the
photons, and the dependence of the number of photons on
their frequency I(Q = w; — ;) is the Raman scattering
spectrum. This spectrum is phenomenologically related to
the polarizability o of the crystal and, quantum-mechanically,
to the matrix element of the transition responsible for the
creation (annihilation) of the excitation. For a metal, the
differential scattering cross-section which makes it possible to
describe the process without knowing the detailed properties
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of the intermediate states, has the form
d’e B r(%
dodQ

W,
—'(Q.q),

[l —exp(—Q/T)] ws (3-1)

where ry = ¢ /4negmc? is the Thomson radius of the electron,
O is the solid angle, and Q = w; — wy is the Raman scattering
frequency.

In a normal metal, the light scattering is possible on
intraband and interband electron excitations, i.e., light
scatters on fluctuations of the effective density [33, 65]. The
interband contribution is resonant, and allowing for it
requires the use of second-order perturbation theory. The
intraband contribution is not resonant, and so the use of first-
order perturbation theory is sufficient [64]. However, in a
pure metal these low-energy excitations are inaccessible for
ERS, since for any initial state there is no final state for which
the energy and quasimomentum conservation laws hold
simultaneously in an elementary scattering act, as illustrated
by Fig. 1b. Indeed, for a Fermi liquid with an excitation
spectrum of the E = vg-q type, there can be no energy
transfer in the limit of vanishing wave vectors, ¢ — 0. The
reason is the restriction on the phase volume accessible for
scattering, with the restriction lifted in the ‘dirty’ limit.
Moreover, the finite thickness of the skin layer and the
nonparabolic nature of the electron bands also lead to
scattering in the normal metallic state [7, 66]; these mechan-
isms, however, do not explain the scattering in the broad
energy range typical of HTSC’s. Note that the change in the
kinematic selection rules for a metal is caused by the fact that
these rules hold only for transparent media with ideal
translation symmetry and with elementary excitations that
have an infinite lifetime. In HTSC’s, phonons and impurities
caused by the nonstoichiometry and other factors that break
the translational symmetry of the crystal lead to a smearing of
the wave vector k for which scattering is allowed [25]. A
decrease in the lifetime of quasiparticles in HTSC’s [67] can
also lead to a broad electron continuum with a high intensity
in ERS spectra, which may be due to spin and charge
correlations [68, 69] and/or a large value of the electron—
phonon interaction [70, 71]. In addition, electron scattering in
the metallic state of HTSC’s can be explained by impurity
scattering [72] and the scattering of quasiparticles of a
marginal Fermi liquid [73].

The ERS intensity [ is proportional to the square of the
transition matrix element y which under certain simplifying
assumptions can be reduced to the convolution of the
curvature of the conduction band and the unit polarization
vectors of the exciting and scattered light:

Tk = hzz

This formula is derived in the k- p approximation of
perturbation theory, which is also known as the effective
mass approximation, since the second derivative of the
electron excitation energy wit respect to the wave vector is
the inverse mass of the electron in the crystal. With respect to
ERS, the effective mass approximation which can be used
only for the nonresonant case and for electrons near the
energy extremum in the band, has a transparent physical
meaning: the heavy charge carriers have weaker fluctuations
and contribute less, since the modulations of the dielectric
function are insignificant. Although the applicability of this

ae,,

* k,0ky ak,; (3.2)

approximation is dubious [25, 68, 72], it is widely used in the
description of ERS both in calculations that use the
diagrammatic technique [7, 38] and in solving kinetic
equations [30].

By examining the symmetry properties of the ERS matrix
element it is possible to connect the scattering polarizations
under investigation with the various projections of the
effective mass tensor on the Fermi surface. Expanding the
matrix element in a set of orthonormal functions (usually the
harmonics of the Fermi surface are chosen as such a set), we
can determine what components of the effective mass tensor
contribute to a specific polarization. In most theoretical
models used to describe ERS, tetragonal symmetry is
predominant. This simplification is justified by the fact that
superconductivity is realized in CuO, layers with an almost
perfectly square lattice for which the crystallographic
orthorhombic distortions are small, although the real
symmetry of HTSC is usually lower than tetragonal [17]. In
this case, for a cylindrical Fermi surface parallel to the ¢ axis
with an azimuthal angle ¢, the expansion of the ERS matrix
element in the Fermi-surface harmonics leads to irreducible
representations of Ajg, Azg, Big, and B, symmetries, which
transform as cos4¢, cos2¢, sin2¢, and sin4¢p. Table 2
reflects the relationship between the main polarizations
used in the experiments and the components of the inverse
mass tensor. This table suggests that in the event of crossed
polarizations e; L e;, the not fully symmetrical compo-
nents of the inverse mass tensor are measured. Here the
B -symmetry excitations are measured in the x’y’-po-
larization in which the parts of the Fermi surface that are
probed are those that are close to the principal axes of the
Brillouin zone, while for the Bog-symmetry excitations
measured in the xy-polarization, the regions of the Fermi
surface along the diagonals contribute the most. What is
measured in the in-plane polarized spectra (e;||e;) is the fully
symmetrical A ;-component of the inverse mass tensor with a
mandatory admixture of the not fully symmetrical B-repre-
sentations, which is determined by the orientation of the
electric field. Antisymmetric excitations of the A,,-symmetry
are not, in principle, Raman-active, but they may contribute
in the case of resonance scattering, which contribution can
be isolated by using circularly polarized light [68]. For the
three-dimensional case we must add the irreducible repre-
sentations of the Eg-symmetry, which are measured in the
xz- and yz-polarizations. In addition, the increase in the
number of dimensions leads to the emergence of an

Table 2. Relationship between the basic polarizations and the components
of the inverse mass tensor.

Irreducible B, By, Al
representation
of group Dy

14,1
Schematic XOJ’ x'x’"—xy
representation
of polarization | © < o /;’

o

Harmonics of
the Fermi

surface

L.
N
7
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Table 3. Pairing symmetries and the shape of the gap function in the reciprocal space for states that are candidates for the dominant contribution to

pairing.

Irreducible representation Al Aug An Bl By,
Basis function Constant X2+ y? xy(x? = »?) X2 —y? Xy
Designation S s* g dp_pe dyy

7
N/

Schematic representation
of A(k) in the Brillouin zone

additional A g-component in the tensor, which is measured
in the zz-polarization.

In the superconducting state, the description of ERS is
much simpler, since superconductivity allows for energy
transfer without momentum transfer. The reason is that the
ground state of a superconductor consists of Cooper pairs [7],
and a photon can destroy a pair whose total quasimomentum
is zero. The energy Ex needed to destroy the pair may be
written, according to the BCS theory, as Ex = 2(Aﬁ + sﬁ)l/z,
where ¢ is the quasiparticle energy measured from the Fermi
level [5]. Hence, even if the momentum transfer is zero, there
can be finite-energy excitations in the superconductor (see
Fig. 1¢c). In the case of an isotropic (s) gap, the transition to
the superconducting state manifests itself as complete
suppression of scattering in the low-energy part of the ERS
spectrum, in which event there is no signal at frequencies
Q < 24 and the signal is singular at a frequency equal to twice
the superconducting gap [7]. Thus, in a certain sense the ERS
spectrum reflects the density of states of the superconductor
with the doubled frequency scale.

ERS for a superconductor with a small coherence length
(the typical case for HTSC’s) was calculated by Klein and
Dierker [39] who found that

21N el i)
;2 FRe< EAREN >
Q@ — 44 )

Q
Here N is the density of states at the Fermi level, y is the
scattering matrix element, 4 is the superconducting gap, and
the angular brackets stand for averages over the Fermi
surface. To allow for screening, we write the ERS intensity
as a sum of two contributions:

- (vo5g))

where @ is Tsuneto’s complex-valued function [74] respon-
sible for the singularity in ERS at the frequency equal to 24,
with

(3.3)

(3.4)

4|4
Q\/ Q@ — 4

Note that because of the full symmetry of Tsuneto’s function,
the second term on the right-hand side of equation (3.4),
which is responsible for screening, leads to the disappearance
of superconducting response for fully symmetrical scattering.

Selecting certain polarizations of the exciting and scat-
tered photons e; and e, one can, as in the normal state, probe

0(2,k) o Ng (3.5)

separate parts of the Fermi surface and determine the
superconducting gap on these parts. Obviously, the ERS
spectrum will be different for pairing of different symmetry,
since the density of the electronic states of a superconductor
depends on the symmetry of the superconducting gap.
Furthermore, depending on the pairing symmetry, the super-
conducting gap varies differently over the Fermi surface,
which can be explained by the difference in phase factors
(Table 3). For instance, in the case of d-pairing the gap
depends on the wave vector according to the law
Aq(k) = Ag(cosk, — cos k,) and is an alternating function of
the wave vector, with zeros on the diagonals of the tetragonal
Brillouin zone. For s-pairing, which may be isotropic,
As(k) = 4y, or anisotropic, A5(k) = 4¢(cosky + cosk,), the
zeros of the superconducting gap manifest themselves only in
the latter case. However, for anisotropic s*-pairing, the gap
vanishes not on the diagonals of the square, k, = £k, but on
the lines k = n/8 £ k,, which is necessary for conservation of
the rotational symmetry C4. Obviously, the largest optical
response is observed when the symmetry of the gap and the
symmetry of the ERS matrix element coincide. Note that the
above formulas suggest that the ERS method is not phase-
sensitive. In view of the fact that the formulas for the intensity
contain the matrix element squared, inelastic scattering
provides information only about the absolute value of the
superconducting gap and not about the phase [75]. Never-
theless, since different polarizations of ERS probe different
parts of the Fermi surface, we can partially reconstruct the
angular dependence of the order parameter by comparing the
spectra of different polarizations [8].

4. Experimental details

All the measurements described in the present review were
done using single crystals. A detailed description of the
experimental setup and the conditions under which the
measurements were made can be found in Ref. [76]. The
scattering configuration which from now on will be called the
scattering polarization, will be presented in Porto’s notation:
ki(ejes) ks. Since the main geometry used to study ERS in
HTSC’s is that of quasibackscattering, the unit wave vectors
of the exciting (k;) and scattered (k) light are always
antiparallel and point in the directions perpendicular to the
plane that contains the polarization vectors. This makes it
possible to use the abbreviated notation in which only the
polarization vectors e; and e are specified. Actually, the
angles of incidence (with respect to the normal to the
sample’s surface) of exciting light used in the experiments
are fairly large, so as to prevent the mirror-reflected light from
penetrating in the spectrometer, but since the dielectric
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constant of HTSC is large, the exciting light enters the sample
at a small angle.

To compare the ERS in HTSC crystals of different crystal
symmetries in a meaningful manner, it is better to obtain and
analyze the experimental data in a coordinate system
specified by the orientation of the Cu—O bonds of the
cuprate plane [24]. In such a coordinate system (and using
the irreducible representations of the tetragonal symmetry
group Dy;), the Big-spectra yield information about the
superconducting gap along the principal axes of the Brillouin
zone, while the spectra of Bsg-symmetry, along the diagonals
of the zone. The spectra acquired with parallel in-plane
polarizations always contain, in addition to the fully symme-
trical component, an admixture of the B-components
depending on how the electric vector of the photon is
directed with respect to the crystallographic directions (Big
for the principal directions and B, for the directions that
form an angle of 45° with the Cu—O bonds). Hence, isolating
the in-plane Ag,-component of scattering requires carrying
out measurements in two polarizations. For out-of-plane
spectra in which one of the polarization vectors is perpendi-
cular to the basal plane, each spectrum contains scattering of
only one symmetry. Thus, the zz-spectra contain only the
Ajg-component, while the zx- (zy)-spectra represent the
Eg-symmetry excitation.

Even light from a laser of moderate power may signifi-
cantly change the temperature of the sample, especially in the
superconducting state [44, 77, 78]. Hence overheating must be
minimized by measuring the actual temperature from the
ratio of the Stokes and anti-Stokes scattering components.
The spectra measured at a temperature 7 are given either in
the form I(Q,T), where the intensity / is the number of
detected photons at the frequency ws = w; — , or in the form
of ERS susceptibility:

I(Q,7T)
1 —exp(—hQ/kgT)

1 (2, T) (4.1)

Obviously, for low-temperature spectra I(Q, T — 0) and
%" (Q, T — 0) are practically indistinguishable.

Since the scattering cross-section for HTSC’s is much
smaller than the scattering cross-section for dielectric oxide
phases, even a small number of such phases may considerably
distort the ERS spectrum. Hence special attention should be
paid to the quality of the samples and the absence of a layer of
adsorbate on the sample surface at low temperatures.

5. Experimental results and discussion

The Raman scattering spectrum of any HTSC consists of an
intense electron continuum on which there are narrow
phonon lines. The main contribution to the scattering is
provided by the electron component which dominates in the
spectrum up to energies higher than 1 eV [79—81], while the
phonon component contains a sizable part of the spectral
weight only at low frequencies. Superconductivity consider-
ably modifies the ERS spectrum at frequencies not exceeding
800 cm™!, a fact illustrated by Fig. 2 which shows the spectra
of three different symmetries for the Bi2212 single crystal in
the normal and superconducting states. Comparison of these
two states shows that superconductivity leads to suppression
of scattering (in fact, incomplete suppression) at low
frequencies and a peak Q. at high frequencies. The other
characteristic energies in the spectrum are the points where
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Figure 2. ERS spectra of different symmetries for the normal (7= 100 K,
dashed curves) and superconducting (7 = 10 K, solid curves) states
produced in excitation with 2 =488 nm in an optimally doped
(T, =91 K) single crystal Bi2212. The arrows in the Big-symmetry
spectrum mark the characteristic frequencies Q;, Q,, and Q.. (see
explanation in the main text).

the normal and superconducting spectra intersect, Q; and 5.
The first point, Q;, determines the region Q < Q;, where the
scattering in the superconducting state decreases. The second
point determines the region where the scattering increases,
Q) < Q < Q, and divides the region that is not modified by
superconductivity, Q > ;. Since most theoretical models do
not account for scattering in the normal state and since the
superconductivity-induced changes in the electron continuum
are moderate, often the analysis of the ratio of the ERS
susceptibilities in the superconducting and normal states,
1Y /yr, proves to be informative. (Figure 3 shows the
behavior of the ratio for three different symmetries.) The
general interpretation of the ratio y//y» is not really very
complicated. At high frequencies 2 > @, the scattering
spectra in the normal and superconducting states coincide
and the susceptibility ratio is equal to unity. As the frequency
decreases, we land in the range of energies close to 24, in
which the scattering in the superconducting state consider-
ably exceeds the scattering in the normal state. Accordingly,
the susceptibility ratio 7 /y exceeds unity for frequencies
Q) < Q< Q,. At lower frequencies, Q < Q;, the spectra of
the superconductor become less intense than the spectra in the
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Figure 3. Ratio of ERS susceptibilities, y7/yn, in the normal and super-
conducting states for different scattering symmetries (indicated in the
figure) in Bi2212.

absence of superconductivity, since the states with such
energies are pushed out into the region of higher energies
when the superconducting gap opens. Here
dy?/dQ > dy/dQ, and yl/y. decreases at lower frequen-
cies. However, starting at a certain frequency Qu,, the
susceptibility ratio again begins to increase, which is an
indication that the slope of the superconducting spectrum
has become smaller than that of the normal spectrum,
dy?/dQ < dy)/dQ. As we will see shortly, in some cases the
analysis of y” /" provides additional information about the
features of ERS in HTSC’s [76].

Since the phase diagram of HTSC’s is fairly complicated,
we will examine the experimental results for each region of
this diagram separately. Moreover, since crystal anisotropy is
the cause of the strong anisotropy of the normal and
superconducting dynamics of the carriers in the basal plane
and perpendicular to that plane, the spectra of the in-plane
and out-of-plane configurations of scattering will also be
examined separately. We will also separate the effect of the
resonant and temperature conditions and the effects caused
by impurities.

5.1 Electronic Raman spectra at optimal doping

Analysis of the data in Fig. 2 shows that ERS in HTSC’s has
features that set it apart from ERS in the classic super-
conductors studied earlier [35—38]. First, complete suppres-
sion of scattering at low frequencies has never been observed
for studied polarizations. Second, for spectra of different
symmetries the peaks in ERS in the superconducting state are
at different frequencies. Third, the low-frequency parts of the
spectrum and the static limits of the ERS susceptibility are
also polarization-dependent. All these differences are mani-
festations of the modified pairing mechanism and a more
complicated structure of the order parameter, compared to
classic superconductors. The first difference suggests the
presence of zeros (nodal structure), and the second and third
suggest that the order parameter is highly anisotropic.
Although there is still no agreement as to what peak is
related to the superconducting gap (some researchers prefer
the Big-symmetry peak [8], others the A, peak [75]), it must
be noted that the superconducting gap determined from the

arrangement of the ERS peaks is usually much larger than the
BCS gap of the weak-coupling model. Indeed, if we associate
the superconducting gap with the position of the peak in the
low-temperature ERS spectrum, then in Bi2212 at optimal
doping we have 24 /T, = 8.0 for the B|, channel of scattering,
approximately 5.5 for the A g channel, and about 6 for the B,
channel, while the gap’s anisotropy is determined from the
ratios Big/By, ~ 1.2 and Big/A|, ~ 1.35. Such degrees of
anisotropy are observed for doping levels that do not deviate
significantly from those for optimal doping for Y123, Lal24,
TI12201, and Hgl1223 [44, 47, 50, 55].

Figure 2 shows that the superconductivity-induced
changes for the A -symmetry spectrum are, at least, no
smaller than those for Bj,, while the theory [see equations
(3.3) and (3.5)] predicts total screening for the fully symme-
trical response [33, 39]. Despite the numerous attempts [82—
84] to explain the existence of strong scattering for fully
symmetrical superconducting spectra, not a single one of
such explanations can be called generally accepted [85], and
this feature of the polarization dependence has yet be
clarified. Nevertheless, it must be noted that the intensity of
the superconducting peak usually correlates with the intensity
of the normal continuum: the stronger the normal scattering,
the higher the superconducting peaks. This is clearly seen in
the behavior of the susceptibility ratio y”/y» depicted in
Fig. 3, where the relative intensity of the peaks varies under
symmetry variations much weaker than the variations of the
susceptibilities themselves.

Such HTSC’s as Bi2212 and R123 (R stands for a rare-
earth element) have an orthorhombic structure which is
described by the point group D»;. For Bi2212, an incommen-
surate modulation along the direction 4 in BiO layers leads to
a difference in the lattice constants a and b. For R123, a lattice
distortion is caused by one-dimensional CuO chains which
contribute substantially to ERS, so that the yy-polarization
spectrum is much stronger than that of the xx-polarization
[87—91]. An important difference between these two orthor-
hombic structures is that the direction of the nonequivalent a
and b axes coincides with the direction of the Cu—O bonds in
R123 but not in Bi2212. This has serious consequences for the
symmetry of the order parameter in both HTSC’s and can be
the reason for the difference in the low-frequency parts of the
spectrum [72, 90]. Studies of nontwinned single crystals Y123
[91] and Bi2212 [92] have shown that there is no x—y
anisotropy of the gap for the real part of the gap but that
there could be such an anisotropy for the imaginary part.
Indeed, comparison of the Ajg(xx)- and A4(yy)-spectra
shows that the low-temperature fully symmetrical ERS
peaks are located at the same frequency in both polariza-
tions, although their intensities are different.

Note that the ERS polarization dependences differ
significantly for the electron-type superconductor
Nd;_,Ce,Cuy 04 [58, 59] and for the recently discovered
intermetallic superconductor MgB, [61, 62] with a critical
temperature of 39 K. For Nd, ,Ce,Cu,0y4, in the first
studies the gap’s anisotropy determined from the ratio
Biy/B2; = 1.0 proved to be within 4.1 <24/T. <4.9,
which suggested that the pairing symmetry in the given
compound belonged to the s-type. However, one of the
main features that distinguishes electron-type HTSC’s from
hole-type HTSC’s is the exceptionally narrow interval of
allowed doping levels within which superconductivity is
possible (e.g., for the material in question this interval is
0.10 < x < 0.14 [86], while for the hole-type La214 it is
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0.05 < x < 0.3 [51, 52]). Later we will see that for doping
levels far from the value that ensures maximum transition
temperatures, the ERS anisotropy may become much
smaller. Indeed, recent studies conducted by Blumberg et
al. [59] support the idea that there is polarization anisotropy
of scattering in Nd,_,Ce,Cu,0O4. What is interesting is that
the ratio Big/B>g obtained in this study is smaller than unity:
Big/By; = 0.75 and 3.3 <24/T. <4.4. To make these
results agree with the data on hole-type superconductors, in
which Big /By, > 1, Blumberget al. [59] proposed a hypothesis
about a nonmonotonic superconducting gap of the d-type.
Note that such a superconducting gap was proposed earlier
in Refs [93, 94] to explain the resonance dependence of ERS.
As for MgB», the ERS superconducting spectra recorded for
polycrystals in crossed and parallel polarizations suggest
that the superconducting gap has two components,
Amin = 22 cm™! and Ay. ~ 50 cm™!, but the two peaks are
observed in both crossed and parallel polarizations [61].
Studies conducted with single crystals revealed a small
polarization anisotropy for the high-energy peak, while no
low-energy peak was recorded [62].

Low-temperature ERS spectra with doping close to the
value that ensures a maximum transition temperature 7. are
now the most thoroughly studied spectra. They are rather
similar in the polarization anisotropy of the peaks, irrespec-
tive of the type of compound and the number of cuprate planes
[24, 95]. Indeed, for La214 with a single cuprate plane and
T. =37 K, the gap anisotropy Bjg/Aj; ~ 1.6 and the ratio
24/ T, is equal to 8.1 and 5.1 for the By and A, channels of
scattering [50, 52], while for Hg1223 with three CuO» planes
and T, = 134 K, the gap anisotropy Big/Ajg ~ 1.5 and the
ratio 24/ T, is equal to 9.3 and 6.4 for the same symmetries
[55]. The discrepancy in polarization anisotropy for different
HTSC’s with roughly the same doping levels does not exceed
the variance of the results obtained by different groups of
researchers studying the same compound. On the basis of this
similarity of spectra it is only natural to assume that the
cuprate planes, common for all HTSC’s, provide the main
contribution to low-temperature scattering. And although the
question of the origin of the strong, nearly frequency-
independent scattering in the normal metallic state remains
unresolved, notwithstanding the multitude of hypotheses
concerning the origin, the very fact that the intensities of the
superconductivity-induced peaks are proportional to the
intensities of the normal continuum suggests that the latter
are generated by the same states that participate in super-
conductivity and belong to the CuO; planes.

Analysis of low-temperature ERS spectra suggests that
the superconducting gap of the CuO; plane is anisotropic at
optimal doping and has zeros on the Fermi surface. Here the
superconducting gap is largest along the directions of the
Cu—O bonds and smallest along the Cu—Cu directions. The
polarization dependence and the cubic increase of intensity at
frequencies lower than Q. were explained for Bi2212 on the
assumption that the gap has d,._.-symmetry [8]. However,
such symmetry was questioned in research containing
indications that ERS does not ‘detect’ the phase of the order
parameter and, as a result, cannot distinguish between a d-
gap and an anisotropic s*-gap [75, 90, 96]. Nevertheless, today
most of the researchers agree that at optimal doping the main
contribution to pairing occurs in the d channel [24].

5.1.1 By -symmetry scattering. An interesting feature of low-
temperature ERS spectra is the dependence of the scattering

intensity at frequencies lower than the maximum of the
electron peak, Qu.x [8]. Figure 2 shows that for Bi2212 the
intensity increases with frequency according to the cubic law
I o< Q* for the Bjg-symmetry spectra, while for the spectra of
other symmetries intensity increases linearly with frequency,
I < Q. It was the cubic dependence that suggested that the
d-symmetry channel is the dominating component of pairing
in HTSC’s. The origin of the cubic dependence can easily be
understood by examining equation (3.4) for d,»_.-symmetry
pairing. Indeed, since the matrix elements of the A;,- and
B,g-symmetries are finite near the zeros of the d,»_»-gap, the
density of states, which is proportional to the energy,
determines the low-frequency response of the given scatter-
ing channels. However, both 4(k) and 7 (k) vanish at the
same point of the Fermi surface, which leads to a cubic
dependence in which the matrix elements contribute Q> and
the density of states Q. Thus, the k-dependence of the gap and
the ERS matrix element may help in determining the
positions of the zeros of the order parameter.

Note, however, that not all HTSC’s exhibit such a cubic
dependence for the low-frequency part of the By -spectrum.
The absence of such a dependence has been reliably estab-
lished for the system Y123 [72, 75] in which, in addition to
conducting CuO; planes, there are conducting CuO chains.
Figure 4 shows the Big-spectra of optimally doped single
crystals Nd123 and Bi2212, which demonstrate a remarkable
difference in the low-frequency responses. While for Bi2212
the characteristic feature of its spectrum is its convexity at low
frequencies, which is indicative of a nonlinear dependence, for
Nd123 the low-frequency part of the spectrum is linear in
frequency [75, 90, 97, 98]. This difference becomes even more
evident when the spectra are represented on the log—1log scale
(Fig. 4b). Comparison of the slopes of the low-frequency
parts suggests that the exponent for Bi2212 is approximately
three times larger than that for Nd123. The spectral region in
which a deviation from the cubic dependence is observed
yields another characteristic frequency Q* which for Bi2212
does not exceed 0.24 at a given excitation energy.

The difference in the low-frequency regions of the
Big-spectra for Bi2212 and R123 is probably caused by the
difference in the nature of the orthorhombic distortions. As
noted earlier, in Bi2212 these distortions do not lead to a loss
of the symmetry plane ¢, and, as a result, the d,_.- and
s-components of the order parameter belonging to different
irreducible representations (B, and A,) of the orthorhombic
group cannot mix and the zeros of the ERS matrix element
remain on the diagonals of the Brillouin zone. In RI123
crystals, the orthorhombic distortions introduced by the
CuO chain lead to a loss of the above-mentioned planes. In
this case, the d- and s-components mix, since they belong to
the same fully symmetrical representation of the group C»,,
and the zeros of the ERS matrix element are displaced from
the diagonals of the Brillouin zone. As a result, within the
region of the order-parameter zeros, the Bj,-symmetry matrix
element is nonzero and the intensity of low-energy scattering
is determined by the density of states [72].

Much more troubling is the fact that the tetragonal
superconductors T12201 [44] and Hgl223 [55] exhibit an
absence of the cubic component. In the case of T12201 this
can be explained by the fact that the tetragonality of the given
crystals was not specifically checked and weak orthorhombic
distortions could have led to a loss of the cubic dependence.
For Hg1223 with the doping level close to optimal, the low-
frequency Big-symmetry response was strictly linear in an
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Figure 4. Bg-symmetry ERS spectra at 7= 5 K for optimally doped
Nd123 (open circles) and Bi2212 (full circles) on the ordinary (a) and log—
log (b) scales. The results of fitting by a linear function extrapolated to zero
frequencies is represented by straight dashed lines, and Q" is the crossover
frequency (see explanation in the main text).

extremely broad frequency range, but a small cubic compo-
nent was discovered in underdoped crystals [56].

In any case, only Bi2212 crystals exhibit an almost purely
cubic contribution. This may be caused partially by the fact
that crystals of the given system easily split in the direction
perpendicular to the ¢ axis and that the quality of their surface
is practically ideal for optical experiments. Moreover, it must
be noted that along with orthorhombic distortions, impurities
[76] and temperature [99] may greatly affect the low-energy
part of the ERS spectrum.

5.1.2 Effect of impurities on light scattering in the super-
conducting state. For classic superconductors, the effect of
impurities on superconductivity has been established fairly
thoroughly. Magnetic impurities lead to depairing and
strongly suppress 7., while nonmagnetic impurities have
only a small effect on the critical temperature and lead only
to a more isotropic gap. For HTSC’s, nonmagnetic impurities
suppress 7. no less effectively than magnetic impurities [100],
which may serve as an indirect indication of the unconven-
tional symmetry of the order parameter.

Nonmagnetic impurities in d-type superconductors lead
to a finite density of states at the Fermi level [101]. This leads
to important consequences which make it possible to
distinguish between d- and s*-type pairing. Impurities in the
d-superconductor leave the superconducting state gapless,
while in the anisotropic s*-superconductor a gap opens over
the entire Fermi surface, with the gap magnitude increasing
with impurity concentration [102, 103]. Impurities in d-type
superconductors may also lead to localization [104], i.e.,
quasiparticles with energies below the mobility threshold
may be strongly localized. Here the size of the mobility
threshold may constitute a considerable fraction of 4,
provided that scattering is in the unitary limit. One of the
consequences of localization is the universal saturation of
conductivity, in which case conductivity is independent of the
impurity concentration. Saturation of this type is observed
directly in the IR spectra [105], and the temperature
dependence of microwave conductivity and thermal conduc-
tivity is an indirect indication of the existence of universal
saturation [106]. Universal saturation which is the conse-
quence of the balance between the finite density of states at
the Fermi level and the modified quasiparticle lifetime, can
occur only if the order parameter has zeros.

As noted earlier, the ERS is not a phase-sensitive method,
with the result that in a conventional experiment it cannot
unambiguously distinguish between d- and s*-types of pairing
[75]. Nevertheless, the method is sensitive to the presence of
zeros of the order parameter and its anisotropy. These
characteristics, when combined with the variable impurity
concentration, may assist in determining the pairing symme-
try in HTSC’s [107, 108]. Theoretical studies of super-
conductors of d-type and anisotropic s*-type have
revealed a difference that should manifest itself in
changes that occur in the anisotropy of the ERS peaks
and in the low-energy scattering in different polarizations.
It was found that impurities in d-type superconductors do
not affect the anisotropy of the ERS peaks of different
symmetries but that they do modify the low-frequency
part of the Bjg-spectrum so that the spectral weight is shifted
to higher frequencies. Impurities in anisotropic s*-super-
conductors decrease the polarization anisotropy of the gap in
such a way that the ERS peaks of different symmetries emerge
at the same frequency. Here the spectral weight at low
frequencies increases and, beginning at a certain impurity
concentration, a threshold (the absence of scattering) emerges
in the low-frequency part of the spectrum. Furthermore, it
was found that, in addition to providing the possibility of
distinguishing between d- and s*-gaps, the effect of impurities
on ERS makes it possible to determine the fraction of s-type
pairing for a mixed order parameter with preferable d-type
pairing [109]. This unique capability of ERS is also caused
by the symmetry aspects of the scattering. As noted earlier,
Big-symmetry scattering probes the principal axes of the
Brillouin zone, where the d-gap reaches its maximum values,
and does not ‘see’ the diagonals, on which the zeros of the
order parameter are located. As a result, for this polarization
the slope

dy"(2)

dQ Q—0
of the ERS susceptibility in the superconducting state is
proportional to the impurity concentration ;. The situation

is just the opposite for By,- and Ajg-symmetry scattering
which probes the region of zeros of the order parameter. In

S =



382 O V Misochko

Physics— Uspekhi 46 (4)

this case the slope S is independent of the impurity concentra-
tion in the superconducting state, i.e., universality is present.
In the case of an anisotropic s*-gap, universality must
be observed both for By, and Ajg-scattering and for
Big-scattering. The reason is that the zeros are in the positions
nn/8 and contribute to the scattering of all symmetries.
However, in the case where the zeros are slightly shifted from
the diagonals (e.g., due to an admixture of the s-component of
pairing), B,-symmetry scattering begins to ‘see’ the region of
zeros, and this ability to ‘see’ depends on how far away from
the diagonals the zeros are. Hence for the mixed order
parameter Ay = Ag[cos(2¢) + o], the static limit of the ratio
of ERS susceptibilities in the superconducting and normal
states, y. /., for Big-scattering makes it possible, in principle,
to determine o [109].

Experimental verification of the above theories has been
conducted for Bi2212, with iron being the impurity, which for
the given compound is a substitute for copper in the CuO,
plane [76, 110, 111]. The behavior of the susceptibility ratio
12 /yr for spectra of Bjg- and Ajg-symmetries in Bi2212
crystals with different iron contents is shown in Fig. 5. If we
compare the patterns, we see that the presence of impurities
leads to the disappearance of the fully symmetrical 24 peak,
while the effect of impurities on the superconducting peak of
Big-symmetry is not expressed so vividly. Despite the fact that
the increase in impurity concentration changes 7, by 30%,
the changes in the positions of the ERS peaks of A, and
Big-symmetries occur consistently (Fig. 6). As a result, the
polarization anisotropy of the ERS peaks is independent of
the impurity concentration, i.e., Qp,, / Qa,, remains equal to
1.35. Moreover, not a single polarization studied so far has
revealed any gap in the low-frequency part of the spectrum.
These facts suggest that there is d-symmetry pairing. Deve-
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Figure 5. Ratio !/ for different iron-impurity concentrations in Bi2212
for two different symmetries.
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Figure 6. Critical temperature 7. (a), polarization anisotropy ratio
QBM/QA,S (Qmax 1s denoted by open circles and Q; by full circles) (b), and
the ratio Ss/ Sy, of the static limits of susceptibility (A, is denoted by open
circles and By, by full circles) (c), as functions of the impurity concentra-
tion in Bi2212.

reaux [112], who assumed that the different oxygen contents
in the crystals under investigation can be reduced to different
concentrations of impurities (defects), arrived at a similar
conclusion while analyzing the B,g-spectra of Bi2212 crystals
with three different doping levels. Since a change in the
impurity concentration, which violates the charge balance in
the system, leads to a change in the doping level, the overall
ERS intensity varies depending on the extent of substitution.
These changes make comparison of the low-frequency parts
of the spectrum more difficult. However, if we normalize the
frequency scale and the relative intensities, comparative
analysis of Big-spectra shows that with increasing impurity
concentration the spectral weight at low frequencies most
likely increases (Fig. 7). It is very difficult to say anything
more certain here, since in the given spectral region the
phonon scattering provides a contribution that is difficult to
account for. Nevertheless, all the data suggest that there is d-
symmetry pairing. However, the crossover frequency Q" at
which the linear dependence is transformed into the cubic
dependence, decreases with increasing intensity of impurity
scattering, which contradicts the theoretical prediction,
namely, an expected increase in the given characteristic
frequency for a d-symmetry superconductor [108]. The
possible reasons for this discrepancy between theory and
experiment are that the impurity has spin and that the doping
level changes under substitution (these facts were not taken
into account by the theory).
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Figure 7. Comparison of the low-frequency part of the B, spectra of
Bi2212 with different impurity concentrations: (a) ordinary case and (b)
normalized case.

Studying the ratio y” /" of susceptibilities in the super-
conducting and normal states for different doping levels also
makes it possible to do a more thorough analysis of the low-
frequency part of the spectrum, 0 < Q < ©;. The measure-
ment of static limits shown in Fig. 6¢c indicates that
universality, within experimental error, is observed not only
for fully symmetrical scattering, but also for Big-symmetry
scattering. This suggests that the zeros of the superconducting
gap either are shifted from their positions on the diagonals of
the Brillouin zone or manifest themselves within an extended
region near the diagonals. In the first case we can speak of a
multicomponent structure of the order parameter (d +s) in
Bi2212 and of a nonzero integral of the order parameter over
the Fermi surface. In the second case, the integral over the
Fermi surface is equal to zero, which means there is pure
d-pairing [113, 114].

5.1.3 Temperature dependence in the superconducting state.
Since the ERS makes it possible to carry out measurements of
the superconducting gap, it would be interesting to study the
temperature dependence of this important quantity for
HTSC’s. For classic superconductors and the intermetallic
superconductor MgB,, the changes in the positions of the
superconductivity-induced peaks agree with the BCS depen-
dence of the superconducting gap [37, 62]. However, the first
researchers who investigated Y123 [47] and Bi2212 [49, 115]
crystals discovered a sizable departure of the temperature
dependence of the ERS peaks from that predicted by the BCS
theory, and later detailed studies of La214, Bi2212, and
Hg1223 corroborated this anomaly [50, 55, 99].

To demonstrate the anomalous temperature dependence
of the ERS peaks, we briefly discuss the result of low-
temperature studies of the optimally doped single crystal
Bi2212 [94, 99]. Since, for such crystals, the resonance
profiles of the B -symmetry phonon and electron scattering
differ [117—-119], the spectrum excited by the light from a
He—Ne laser (A= 633 nm) contains only the electron
component of scattering. Such spectra make it possible to
study the temperature dependence of the electron continuum
without removing the phonons, i.e., without distorting the
electron peaks. Figure 8 which shows several Bjg-spectra
measured at different temperatures, illustrates the tempera-
ture dependence of scattering. The cubic-law increase and the
superconductivity-induced peak, both very evident at low
temperatures, become less and less pronounced as we
approach T.. A comparison of the spectra shows that the
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Figure 8. Temperature dependence y”(Q2,7T) for Big-symmetry in opti-
mally doped Bi2212 excited by light with 4 = 633 nm at temperatures
below T, (from top downward: T = 10, 40, 60, 80, and 90 K). The inset
shows the region of the 24 peak at temperatures above 7. (from top
downward: 7' = 295, 130, and 100 K).

positions of the 24 peaks in the superconducting state are
almost independent of temperature. The accuracy in deter-
mining the maximum for broad and asymmetric peaks is not
very high. However, one more indication of the absence of a
strong temperature dependence is that the position of the
point Q;, where the normal and superconducting spectra
intersect, varies by no more than 10% as the temperature
drops from 90 K to 10 K. To illustrate the temperature
dependence of the gap, Fig. 9a shows the normalized
temperature dependence of the frequencies Q; and Qpax,
which suggests that there is a departure from the BCS
dependence (the dashed curve) at temperatures close to T..
The frequencies Q; and Q,,,,x indicate that the peak caused by
the breaking of Cooper pairs emerges in a superconducting
transition at a nonzero frequency that does not differ too
strongly from the frequency realized at the lowest tempera-
ture that can be reached in the experiment. At the same time,
the intensity of the peak increases significantly as the
temperature decreases (Fig. 9b).

Phononless spectra also make it possibly to follow the
variations of the integrated scattering intensity with tempera-
ture. This intensity begins to change when the crystal under-
goes a transition to the superconducting state and increases
almost linearly in the superconducting state. Such behavior
follows from the fact that as the temperature decreases the
integrated scattering intensity between Q; and , increases
more rapidly than the integrated scattering intensity between
0 and Q; decreases (Fig. 9b). Changes in the integrated
intensity in the normal state are insignificant, although
theoretically for ERS there are no special grounds for
introducing a sum rule and postulating the temperature-
independent nature of ERS [65, 120]. Nevertheless, the
breakdown of the ‘sum rule’ in the superconducting state
attests to the fact that the ERS is sensitive to the coherence
factors of the superconducting state and not only to the
modification of the electronic states near the Fermi level. In



384 O V Misochko

Physics— Uspekhi 46 (4)

A/AO \\

L, rel. units

0.5

Q*, em™!

400

200

0 0.5 1.0

T/T.
Figure 9. Temperature curves for the parameters of Bi,-symmetry spectra.
(a) Normalized frequencies Qnax (open circles) and @, (full triangles) and
the BCS dependence of the superconducting gap (dashed curve).
(b) Normalized integrated intensity (open circles) and the dependence of
the order parameter of the two-fluid model (dashed curve). (c) The
crossover frequency Q*.

a superconductor, the electron continuum existing in the
normal state not only is redistributed from low frequencies
to higher frequencies but also gets stronger, with the greatest
perceptible change occurring in the frequency range corre-
sponding to the response of the superconducting condensate.
This last factor stems from the phase coherence of the
condensate and differs substantially from the behavior of
the response to the emergence of a pseudogap which is also
recorded in ERS mainly for lightly doped HTSC’s. When the
pseudogap emerges, at a temperature 7 > T, there occurs a
loss in spectral weight at some frequencies caused by the
disappearance of a fraction of the Fermi surface. Since the
pseudogap state is not coherent, one observes only a decrease
in the scattering intensity without any compensation at other

frequencies. Comparing the ERS for the superconducting and
pseudogap states shows that the method is sensitive to the
coherence of the investigated state. This dependence on the
coherence factors sets ERS spectroscopy apart from angle-
resolved photoemission and tunnel and infrared spectro-
scopies which measure any gap in the excitation spectrum.
In the photoemission and tunnel spectroscopies, this is
because the one-particle density of states is measured, while
in the infrared spectroscopy this is due to symmetry
limitations, since this method involves measuring correlation
functions of the current—current type, which are odd
functions.

An interesting aspect concerning the studies of the
temperature dependence of ERS is the possibility of follow-
ing the temperature evolution of the crossover frequency Q*
at which the linear dependence transforms into the cubic
dependence in the low-frequency part (2 < Qnax) of the
Big-spectrum. Figure 9c¢ shows the dependence of Q* on the
reduced temperature. We see that near 7, in the low-
frequency part of the spectrum the linear dependence is
predominant. This could imply that the zeros of the order
parameter on the Fermi surface are of an extended nature, at
least at temperatures close to 7.. Thus, the superconducting
gap in HTSC’s demonstrates a temperature behavior that
differs from that of the BCS gap. In view of the fact that in
the self-consistent equation for the energy gap the tempera-
ture and wave-vector dependences factorize, the anisotropy
of the BCS gap does not depend on temperature and the
BCS gap evolves with temperature without changing its
shape in k-space. Interestingly, the anisotropy of the gap in
the intermetallic compound MgB, is also temperature-
dependent [62].

Summarizing Section 5.1.3, we can say that the tempera-
ture dependence of ERS in the superconducting state suggests
that (1) the gap determined from the position of the 24 peak
and/or points where the normal and superconducting spectra
intersect differs substantially from the BCS temperature
dependence in the weak-coupling limit, (2) superconductivity
leads to violation of the optical ‘sum rule’, and (3) the cubic
component of the Bjg-spectrum begins to dominate at
temperatures much lower than the superconducting transi-
tion temperature.

5.1.4 Resonance properties. Despite the importance of estab-
lishing the resonance properties of ERS, there are very few
works describing investigations in which the frequency of the
exciting light is varied [94, 115—119, 121]. Researchers have
established without a doubt that ERS in the normal state of
HTSC’s is of a resonant nature, since for all polarization the
scattering intensity depends on the wavelength of the exciting
light and usually increases with the light’s frequency. The
importance of the resonance stems from the fact that the
scattering proceeds through real electronic states, with the
result that the band structure must be taken into account [120,
122]. The intensity of the ERS peaks in the superconducting
state also demonstrates its resonant nature which in many
respects is similar to the resonance in the normal state. An
interesting feature of the resonant behavior of superconduct-
ing peaks is the change in the spectral shape of the super-
conductivity-induced peaks, which manifests itself most
vividly at frequencies Q@ < Q.x, and in the very position of
the peak at Qu.x [55, 94, 121]. At high excitation energies the
low-frequency part of the scattering is characterized by large
values of dy”/dQ, and the peaks are shifted into the high-
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Figure 10. ERS spectra of Aj,- and Bjg-symmetries obtained through
excitation by light of different wavelengths (4 = 458 nm and 633 nm) for
the normal (7= 100 K, open circles) and superconducting (7" = 10 K, full
circles) states in optimally doped (7, = 91 K) Bi2212. The vertical dashed
lines help in visualizing the shift in the peak positions.

frequency range. To demonstrate these features, we examine
the A - and Big-spectra of the Bi2212 crystal at two different
frequencies of exciting light (Fig. 10). By comparing the
spectra we see that the positions of the ERS peaks and the
low-frequency parts of the spectra in the superconducting
state depend on the wavelength of the exciting light. The
dependence 4(4) can be understood if we assume that the
ERS matrix element depends on the wavelength of the
exciting light, which is possible when the electron spectrum
has a Van Hove singularity [94]. An alternative explanation is
the dependence of the superconducting gap not only on the
direction (angular dependence) in k-space but also on the
magnitude of the wave vector [119]. The latter becomes
possible since, for HTSC the region in the k-space in which
the superconducting gap exists is large compared to the range
of wave vectors accessible to ERS, i.e., the effect is caused by
the smallness of the coherence length in HTSC’s.

Owing to the fact that excitation of the ERS with light of
A = 600 nm makes it possible to avoid phonon excitation in
the x’y’-polarization spectra, a two-mode structure of the
electron Bjg-symmetry peak was discovered for optimally
doped Bi2212 single crystals [94]. Here one of the peak’s
components appears at a temperature somewhat above the
superconducting transition temperature. A very similar
temperature anomaly of the Bi,-peak was observed earlier
for the lightly doped case and was associated with the
existence of local pairs at temperatures 7' < T*, where T* is
the temperature at which the pseudogap opens[118]. The two-
mode structure of the peak in the case of optimal doping also
suggests that there are electron pairs above T¢, which can be
understood by using the ideas [123] that were proposed prior
to the BCS ideology and are now being developed within the
model of bipolaron superconductivity [124]. Based on
observations of the two-mode structure of the peak and the
peak’s temperature dependence, there was an attempt to

describe superconductivity as the Bose condensation of
quasiparticles [125] in the presence of a Van Hove singularity
[94]. Here the researchers associated the emergence of the first
peak above T, with pair formation caused by the conversion
of fermions into bosons for states near the singularity. These
local electron pairs, responsible for the first peak, do not
exhibit phase coherence which is realized only below 7. and
leads to the emergence of the second peak caused by the
appearance of off-diagonal long-range order (the coherence
of the condensate). As the temperature decreases and the
density of the superconducting condensate increases, the
second peak begins to dominate and finally absorbs the first
peak [94].

5.2 Light scattering

with out-of-plane zz- and zx-polarizations

One of the features of HTSC’s is the different nature of carrier
motion in directions parallel and perpendicular to the CuO;
planes. The very first investigations showed that in the
metallic state the conductivity varies linearly with tempera-
ture for carriers that move parallel to the cuprate planes,
while the conductivity along the ¢ axis exhibits semiconductor
behavior [126, 127]. The results of numerous experiments
suggest that the mean free path of the carriers along the ¢ axis
is comparable to the lattice constant, i.e., normal transport is
incoherent [127]. The reason is that one property inherent in
all HTSC’s is the fairly large crystalline anisotropy ¢/a (equal
to 7.6 for TI2212, 5.7 for Bi2212, and 3.0 for Y123). In the
reciprocal space this anisotropy leads to an oblate Brillouin
zone, which nevertheless possesses all the symmetry proper-
ties of the unit cell of a square or rectangular CuO- lattice.
The results of band structure calculations suggest that all the
energy bands relevant to the problem are related primarily to
CuO; planes without substantial dispersion along the ¢ axis
[128 —131]. Thus, band structure calculations and measure-
ments of transport properties [127, 131—133] show that the
effective carrier mass along the ¢ axis is much larger than the
in-plane mass, so that one could expect the ERS intensity in
the zz-polarization to be negligible. However, experiments
have shown that this is far from the case, even for super-
conductors with the greatest anisotropy, T12212 and Bi2212
[92, 121, 133, 134, 136]. The intensity of the electron
component of the zz-spectrum is comparable to the intensity
of in-plane polarizations [137, 138], which suggests a
departure from the effective mass approximation and,
apparently, indicates the need to account for resonance
factors. The intensity of off-diagonal spectra is much lower,
but nevertheless for some HTSC’s these spectra have been
recorded [139, 140].

As a result of transition to the superconducting state the
out-of-plane electron continua become redistributed [98, 110,
121]. This is illustrated by Figs 11 and 12 which show the data
for optimally doped Nd123 (7,=95K) and Y123
(T, = 92 K). The nature of the redistribution of the out-of-
plane continua is qualitatively similar to the nature of the
redistribution of in-plane polarization continua: suppression
of scattering at low frequencies and the emergence of a
broad peak caused by the breaking of Cooper pairs at
high frequencies [98]. The very fact that the position of the
E.-component of the superconducting gap differs from the
positions of the Aj,-, Big-, and Bog-components observed in
in-plane polarizations is natural and suggests that the super-
conducting order parameter in HTSC’s is three-dimensional.
However, it occurs that for the fully symmetrical components
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Figure 11. Ratio of ERS susceptibilities, y” /x5, for Nd123 obtained in the
x'x'-polarization (A g+ Bog-symmetry, open circles) and in the zz-polar-

ization (A g-symmetry, full circles).

of the ERS the positions of the 24 peak for the in-plane and
out-of-plane polarizations also differ (see Fig. 11). Finding
the positions of the 24 peak in the zz-polarization is
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Figure 12. (a) ERS susceptibility in the zx-polarization for the normal
(T =100 K, dashed curve) and superconducting (7 = 10 K, solid curve)
states for the optimally doped (7. = 92 K) single crystal Y123, and (b) the
ratio xY /xn.

complicated by the presence of strong phonon scattering
which dominates in the spectrum. However, analysis of the
%2 /yr ratios for the in-plane and out-of-plane polarizations
(shown in Fig. 11) suggests that Quax(22) > Qmax(xx). Such
behavior of the out-of-plane and in-plane electron continua in
the superconducting state was also observed in optimally
doped Bi2212 and Y123 [98, 133, 135]. The problem of the
difference between out-of-plane and in-plane superconduct-
ing ERS spectra has yet to be resolved. This difference
probably stems from the difference in the coherence lengths
of the superconducting condensate and is related to the
difference in lifetimes of the Cooper pairs for these two
crystallographic directions. Such an assumption is corrobo-
rated by the fact that the 24 peak in the zz-polarization is
broader than the 24 peak in the in-plane polarization,
conclusive evidence of which is provided by the coincidence
of the frequencies at which the normal and superconducting
spectra intersect in the low-frequency region, Q;(s) = Q;(n).
An alternative explanation can be found in Ref. [133].
Noticing that two quasiparticles emerge in the final state of
the Raman process, Kuli¢ [133] assumed that in out-of-plane
scattering these quasiparticles are created on different planes,
while in in-plane scattering the quasiparticles are created on
the same plane. Since these quasiparticles continue to
interact, the interaction is responsible for renormalization of
the gap. However, gap anisotropy is also observed in HTSC’s
with a single cuprate plane, which partially leaves Kuli¢’s
model [133] without experimental support. In addition, in one
of the experiments the gap along the ¢ axis was smaller than
the in-plane gap, which was explained by the theory [135,
141].

5.3 Light scattering in HTSC’s with different doping
levels

ERS spectra of different symmetries differ even in the normal
state. This anisotropy of the normal state was discovered in
experiments practically at the same time as the discovery of
the anisotropy of the superconducting state [142, 143], but has
not received much attention from theoreticians who so far
have mainly focused on phenomena below T.. ERS in the
normal state has been studied for Y123, La214, Bi2212, and
TI2212 [144—151]. Analysis has shown that for optimally
doped HTSC crystals the intensity of the electron excitations
of Ajg- and Big-symmetries in the normal state are compar-
able in value to and exceed the intensity of Bsg-symmetry
excitations. This fact is illustrated by Fig. 13 which depicts the
spectra of the main symmetries for optimally doped La214 at
room temperature. In lightly doped superconductors, the
intensity of normal Bj,-symmetry excitations drops and
becomes lower than that of Bog-symmetry excitations. In
heavily doped HTSC’s, the ERS appears to be fairly
isotropic. This dependence of intensity on the doping level
for different scattering channels is shown in Fig. 14 using the
example of Lal24 [52]. The similarity of behavior of the
scattering intensity of different symmetries depending on the
doping level in such systems as La214, Y123, Bi2212, and
TI2212 serves as yet additional confirmation of the fact that
scattering is due to the carriers of the CuO- planes and reflects
the symmetry properties of these planes [24].

Changes in the doping level modify the ERS spectra in the
superconducting state in a complicated way. For instance,
when doping is light, the superconductivity-induced 24 peak
of Big-symmetry gradually disappears [151] as the decrease in
carrier concentration weakens the scattering in the normal
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Figure 13. ERS spectra of different symmetries for the normal state
(T =295 K) of the optimally doped (7. = 34 K) La214 single crystal:
1— Ajg (xx),2—Big, 3— Ajg (z2), and 4 — Bog.
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Figure 14. ERS intensity (measured at 800 cm ") of different symmetries in
the normal state of La214 as a function of the doping level: (a) fully
symmetrical components and (b) not fully symmetrical components.

state, while when doping is heavy, the frequencies of the ERS
peaks of all symmetries practically coincide [146]. Doping
leads to many complications, each of which may modify the
ERS. Here are only some of these complications. First,
oxygen vacancies and the substitution of metal ions may
lead to a random potential capable of strongly scattering the
electrons. Second, electron correlations are extremely sensi-
tive to carrier concentration. Third, a decrease in carrier
concentration in lightly doped samples leads to strong
antiferromagnetic correlations. Up to now most of these
complications have not received the proper attention of
theoreticians studying the inelastic scattering of light in
HTSC’s.

As the carrier concentration becomes higher than the
optimal value, the positions of the peaks of all symmetries
are shifted to lower frequencies, with the shift of the Bg-peak
being the largest. This nonuniformity in the shift leads to a
situation in which the peaks in the overdoped case appear
practically at the same frequency, i.e., polarization anisotropy
observed at optimal doping disappears [24]. The ratio 24/ T,
for all symmetries is roughly equal to 6. Kendziora et al. [148]
were the first to observe this in Bi2212, and this served as a
basis for suggesting that s-symmetry pairing in overdoped
HTSC’s is predominant. However, here the low-frequency
responses in the spectra remain polarization-dependent, and
the cubic component is present in Bjg-symmetry spectra.
Since low-frequency responses are less sensitive to the details
of the band structure than the positions of the peaks, some
researchers believe that d-symmetry is conserved at high
doping levels, too [147, 149].

In lightly doped superconductors, superconductivity-
induced changes are not detected in ERS spectra of Ajg- and
Bi,-symmetries, and the only electron scattering channel
which responds to superconductivity is still Bog-symmetry
scattering [24, 151]. Here the ratio 24/ T, remains practically
unchanged and equal to 6.0. If we assume that the peaks of
Aig- and Bjg-symmetries stay at the same frequencies as in
optimally doped crystals, this means that polarization
anisotropy is much stronger in lightly doped HTSC’s. This
assumption is justified by the fact that up to now there have
been no experimental indications that peaks of the A,- and
Big-symmetries become less pronounced as the carrier
concentration decreases. Rather, an analysis of the experi-
mental data suggests that starting from a certain critical
concentration (whose value has yet to be established) the
peaks begin to fade away, staying approximately at the same
frequencies as in optimally doped crystals. The upper limit of
polarization anisotropy in underdoped crystals is specified by
the value of the pseudogap and cannot exceed 4. A more
realistic estimate, however, yields Qg /QBzg ~ 2, which
nevertheless is much higher than in optimally and heavily
doped HTSC’s. The study of gap excitations in underdoped
superconductors is complicated by the fact that a pseudogap
emerges in them at temperatures 7* much higher than T,
with the pseudogap manifesting itself as suppression of
scattering in the frequency range extending from zero to
700—800 cm~!. This situation is illustrated by Fig. 15,
which depicts two spectra for Y123 at temperatures below
T.. Since the strongest suppression of scattering is observed
in xy-polarization spectra, we can assume that the pseudogap
is preferably Bag-symmetric, thus contradicting the interpre-
tation of photoemission data, which assigns to the pseudogap
the same symmetry as that of the superconducting gap [24].
However, this contradiction can be resolved if we take into
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Figure 15. Manifestation of the pseudogap in B,-symmetry spectra of
lightly doped Y123 (7, = 57 K). The solid curve corresponds to the
spectrum at 7= 60 K, the dashed curve corresponds to the spectrum at
T =200 K, and the hatched region shows the loss of spectral weight.

account that as the carriers are expelled from the system the
shape of the Fermi surface changes. Figure 16 shows the two
gaps for the two limiting cases of doping. In lightly doped
HTSC’s, the amplitude of the d-type pseudogap exceeds that
of the superconducting gap of the same symmetry. Hence the
superconducting gap is well-defined only near those sections
of the Fermi surface that are probed by the Bsg-symmetry
channel. The reason is that the pseudogap and the super-
conducting gap differ in shape (but not in symmetry!). As the
number of carriers increases, the area of the Fermi surface
and the superconducting gap increase, which leads to a
situation in which the different scattering channels ‘see’ the
superconducting gap in different sections of the Fermi
surface.

By now the absence of phase coherence in pseudogap
formation has firmly been established by the ERS methods
[24, 147, 153], thus setting the pseudogap well apart from the
superconducting gap for which phase coherence, ensured by
the specific character of BCS pairing, follows from many
experiments, including those involving inelastic light scatter-
ing. Nevertheless, we can hope that the presence of a
pseudogap will help to explain a number of anomalies in
ERS in the superconducting state, especially the temperature
dependence of the positions of ERS peaks. There is no
generally accepted explanation of pseudogap formation,

A2

pseudo

Figure 16. Schematic representation of the pseudogap Apeudo and the
superconducting gap 4 for lightly (a) and optimally (b) doped super-
conductors. The hatched area corresponds to the pseudogap and the
dashed curve represents the superconducting gap.

although some possible mechanisms are discussed in
Refs [152—154].

Since at all doping levels the ratio 24/T, is no smaller
than 6, we can assume that irrespective of the doping level
high-T, superconductivity is realized in the strong-coupling
limit. Interestingly, the only scattering channel in which the
position of the ERS peak ‘tracks’ the superconducting
transition temperature is Bog-symmetry scattering. In the
other two symmetries, A, and By, there is no proportion-
ality between the position of the low-temperature ERS peak
and T.

5.4 Van Hove singularity and inelastic light scattering

The singularity in the density of electronic states near the
Fermi level has attracted much attention as a possible reason
for the high transition temperature and the remarkable
properties of the normal state of HTSC’s [155]. Experimental
photoemission data have presented a direct proof of the
existence of an extended Van Hove singularity in some
regions of the Brillouin zone [22]. In these regions, the
dispersion law for the carriers is highly anisotropic and can
be represented in the form of a saddle elongated along the y
axis:

1 /k?> k2
w0 -3 (8- .,

The typical value of E, is about 200—-250 cm~! and, since
inelastic light scattering is the indirect interaction of light and
low-energy crystal excitations, it is sensitive to the details of
the band structure and may manifest itself in ERS spectra.
Indeed, the experimental data on ERS for compounds
YBa;Cusz0;_, with different values of x, YBa,CusOg,
BizerCaCu208+x, BizerCu06+x, and leBaQCuOMX indi-
cate that the fully symmetrical spectra of these compounds
contain a broad line at Q ~ 200 cm~!' whose intensity
increases with decreasing temperature [25, 116]. These lines
are absent in the Bj,- and Bog-spectra of superconducting
crystals and in all symmetries of scattering in nonsupercon-
ducting crystals. This body of experimental data makes it
possible to tentatively assign the given line to the extended
Van Hove singularity. A possible scattering mechanism for
this case is the excitation of electron—hole pairs with a large
quasimomentum, whose production is due to the fact that
near the singularity the carriers move more slowly and their
damping is much smaller than in the case far from the
singularity [156, 157]. As noted in Section 3, examining the
scattering in the broad frequency range characteristic of
HTSC’s requires employing different mechanisms of momen-
tum relaxation. These mechanisms may manifest themselves
in two interdependent ways. First, momentum relaxation
leads to a finite damping of the excitations with exceptionally
small momentum ¢ =~ 1/4, i.e., to their finite spectral density
within a frequency range whose width is of the order 1/z,,
where 1, is the characteristic relaxation time. Second, the
finite value of 7, allows the appearance in Raman scattering of
excitations with high values of momentum, ¢ > 1/4. Itis only
natural to assume that 7, < 1/Ey, i.e., . <3 x 107! 5. The
corresponding mean free path /= vgt, &~ 1.5 nm, and, in
view of the uncertainty of the wave vector, the possible
momentum transfer to the electron subsystem is determined
by the mean free path rather than by the light penetration
depth, i.e., ¢; &~ 1/ > gs5. The mechanism allows scattering
within the range of frequencies of the order vgg;, which may
be much larger than E;. In the given process, an electron
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excited by light creates an electron—hole pair with momen-
tum q, due to the interaction with other electrons. Since the
momentum of the scattered photon practically coincides with
that of the exciting photon, to balance the momentum of the
electron—hole pair a momentum —q must be transferred to
the crystal because of phonon excitation and/or scattering by
an impurity. Hence the given process is determined by both
electron—electron interaction and the quasimomentum
relaxation rate. The corresponding intensity /() is propor-
tional to V2t~!, where V is the matrix element of carrier
interaction, T = min{tj, Te_pn }, With 7._pn and 7; the relaxa-
tion times determined by the electron—phonon interaction
and the impurity scattering, respectively. This intensity can be
estimated as

0
1(Q) < V217! J v(e)v(e + Q) de,
—Ey

where ¢ < 0 (occupied states), and ¢ + Q > 0 (vacant states).
For Q < E,, the small phase volume of possible excitations
leads to a small scattering intensity. For Q > E, the density
of states decreases, which leads to a decrease in the scattering
intensity. This implies that the intensity has a maximum at a
frequency Q determined by the singularity energy Ey. When
pairs with a finite momentum are generated, the carriers are
redistributed in k-space, and the presence of a Van Hove
singularity assists redistribution. To experimentally verify the
above mechanism of the manifestation of a Van Hove
singularity in ERS spectra, one must first prove the electron
nature of the peak that emerges at 200 cm™!. Although many
properties of the peak point to this [25, 116, 151, 157], the
proximity of the peak’s energy to the characteristic phonon
energies requires the possibility of such a peak emerging
because of disorder-induced scattering by IR phonons to be
excluded. To do this we must identify the phonon mode that
could manifest itself in Raman scattering spectra, perform an
isotopic substitution of the atom dominating in the normal
vector of the phonon, and observe the respective isotopic shift
of the frequency of this mode.

Note that the effect of a Van Hove singularity on
inelastic light scattering is not only a direct manifestation
in the spectra. The presence of a singularity modifies the
screening, violates the requirements of the Migdal theorem,
and, as a result, requires a thorough review of the simplified
theories of inelastic scattering, which do not allow for
peculiarities of the electron spectrum [25]. The effect of a
Van Hove singularity on the ERS matrix element was
studied by Sherman [157] and Branch and Carbotte [158].
They found that although the anisotropy of the ERS matrix
element is larger than the anisotropy of the Fermi surface, it
is still much smaller than the anisotropy of the effective mass
tensor. From this it follows that the contribution of states
near the maxima and minima of the superconducting gap in
a superconductor with a d-type gap is determined by a large
number of harmonics of the Brillouin zone. The anisotropy
of the ERS matrix element may play a substantial role in
fully symmetrical scattering. Since the expansion of the fully
symmetrical matrix element contains a large number of
Fermi-surface harmonics ¢, (k), it may occur that the
fundamental harmonic (L = 0) is screened by the Coulomb
interaction, but the higher-order harmonics (L =2, 4, 6, ...)
are not, and it is these higher harmonics that are responsible
for the anomalous intensity of the fully symmetrical
component [158.]

6. Symmetry of the order parameter, pairing,
and possible superconductivity mechanisms

Thus, by studying the polarization, temperature, and reso-
nance dependences of ERS in the superconducting state and
the role that doping and impurities play in the emergence of
superconductivity-induced changes, it is possible to deter-
mine the most probable symmetry of the order parameter.
When doping is optimal, the superconducting gap is aniso-
tropic and has zeros on the Fermi surface. Here it is almost
common knowledge that the Biz-component of the symmetry
of the order parameter dominates. Nevertheless, the zeros of
the order parameter are either shifted from the positions on
the diagonals of the Brillouin zone or exist within a finite
region near the diagonals. Such a topology of the zeros may
indicated that there is an admixture of the Aj,-component,
which may appear because of orthorhombic distortions that
transform the Big- and Aj,-components into the same
irreducible representation A, of group D,;. This is possible
in the compound Y123 in which the transition to the
orthorhombic system is accompanied by the loss of such
symmetry elements as the axis C4 and the mirror plane o,. In
Bi2212 the nature of the orthorhombic distortions is such that
the mirror planes remain as symmetry elements, so that the
Big- and Ajg,-components belong to different irreducible
representations. However, in both cases the integral of the
order parameter over the Fermi surface is likely to be
nonzero. This points to a multicomponent (most likely
d + s) order parameter when the doping of HTSC is optimal
since, on the basis of general symmetry considerations, in the
case of orthorhombic lattice it is impossible to avoid mixing
of the s- and d-components of the order parameter [159, 160].
One cannot exclude the possibility that the pairing symmetry
is more exotic; this possibility was studied in detail by Krantz
[90]. It must be noted, however, that pure g-pairing cannot
produce the maxima in the order parameter along the
principal axes of the Brillouin zone, while mixed states of
the g + id type lead to spontaneous breaking of time-reversal
symmetry, which has not yet been irrevocably proved by
experiments [161].

The anisotropy of the order parameter decreases as
doping grows, but the zeros do not disappear for the highest
carrier concentrations realized so far. This is implied by the
absence of scattering thresholds and is probably due to the
fact that pairing symmetry remains unchanged irrespective of
the doping level.

As the carrier concentration decreases, two of the three
ERS components cease to respond to the transition to the
superconducting state. The polarization that signalizes the
phase transition is the one that probes the Brillouin-zone
diagonals and B,g-symmetry excitations. Here for the given
polarization the ratio 24/T; ~ 6.0, as for optimal and heavy
doping.

Observation of the preferential d-symmetry of the order
parameter at optimal doping agrees with the results
obtained by other spectroscopic and phase-sensitive meth-
ods [15, 21, 22]. However, as the doping level changes, there
still exist unexplained differences in the behavior of the
superconducting gap observed through different experimen-
tal methods [24]. The problem of how universal and stable
the d,._.-symmetry is has yet to find its solution. On the
basis of the existing experimental ERS data we can assume
that the contribution of the d-channel of pairing decreases
when the carrier concentration deviates from the optimal
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value. Speaking in favor of this assumption is the large
number of theoretical papers that point out that the stability
of the d,._,.-symmetry order parameter depends on the
details of the band structure and the pairing potential [162,
163]. In the presence of two pairing channels, the pairing
symmetry depends on electron band filling and the band
parameters. Here the d-symmetry is predominant at half-
band filling, while s-symmetry is more stable in cases of light
and heavy doping [163 —166].

The fact that d-symmetry pairing is predominant is
frequently considered as an indication that phonons do not
provide the main contribution to the formation of the
superconducting state. Indeed, d-symmetry pairing was
introduced in order to explain high-T, superconductivity
that occurs via the exchange of antiferromagnetic spin
fluctuations [167, 168]. How phonons and electron —phonon
interaction contribute to the formation of a high T, is not
obvious and is still a topic of discussion [132, 169]. However,
in recent years a large number of theoretical papers that point
to the importance of electron—phonon interaction in realiz-
ing high transition temperatures, even for the d-pairing case,
has appeared [163]. There is also a large body of experimental
evidence, partially obtained by the Raman scattering, of the
reaction of the HTSC lattice to the transition to the super-
conducting state [170, 171]. Here it will suffice to remind that
the electron continuum whose redistribution determines the
pairing symmetry, emerges largely because of strong elec-
tron—phonon interaction [70]. The last, but not least in
significance, example of the importance of the electron—
phonon interaction in the formation of a high superconduct-
ing-transition temperature is the recent discovery of super-
conductivity in the intermetallic compound MgB, with
T. =39 K [172].

7. Conclusions

The detailed experimental investigations of the superconduct-
ing state in various classes of HTSC’s show that the ERS is an
indispensable, and often unique, method for establishing the
anisotropy and symmetry of the order parameter. The power
of this method stems from the capability of ERS to probe
various regions of the Fermi surface by simply varying the
polarizations of the exciting and scattered light, which makes
it possible to monitor the changes in the order parameter in
different areas of the momentum space and to compensate for
the absence of true resolution in the wave vector. Although
the resolution in k in ERS cannot be compared to that
achieved by photoemission, it nevertheless is better than the
resolutions inherent in many methods that measure various
correlation functions averaged over the entire Fermi surface
(infrared and tunnel spectroscopies, calorimetry, etc.). More-
over, the ERS is sensitive to coherence factors, while other
spectroscopic methods usually respond to any gap in the
density of states.

The methods of inelastic light scattering have reliably
established that the superconducting gap in HTSC’s is
anisotropic and has zeros in separate regions of the Fermi
surface. Anisotropy decreases as the doping increases, but the
zeros do not disappear at the highest carrier concentrations
realized so far. The bismuth, yttrium —barium, mercury, and
lanthanum systems belong to the most thoroughly studied
group of superconductors. Most ERS experiments attest to
the preferential nature of d-symmetry pairing (at least at
optimal doping), although the admixture of the s-component

may be substantial, especially for compounds of the yttrium —
barium group. Among the unresolved problems that
require the combined effort of experimenters and theore-
ticians are those of resonance properties, the contribution
of Ase-symmetry scattering, and inclusion of the coherence
properties of the initial state into the theoretical description of
the process.
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they provided. I am especially grateful to E Ya Sherman
for the many years of collaboration that determined the
content of this review, and to E G Maksimov for fruitful
discussions. This work was made possible by the financial
support of the Russian Foundation for Basic Research
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