
Abstract. Several physical effects and methodological issues
relating to the ground state of an oscillator are considered.
Even in the simplest case of an ideal lossless harmonic oscilla-
tor, its ground state exhibits properties that are unusual from
the classical point of view. In particular, the mean value of the
product of two non-negative observables, kinetic and potential
energies, is negative in the ground state. It is shown that semi-
classical and rigorous quantum approaches yield substantially
different results for the ground state energy fluctuations of an
oscillator with finite losses. The dependence of zero-point fluc-
tuations on the boundary conditions is considered. Using this
dependence, it is possible to transmit information without emit-
ting electromagnetic quanta. Fluctuations of electromagnetic
pressure of zero-point oscillations are analyzed, and the corre-
sponding mechanical friction is considered. This friction can be
viewed as the most fundamental mechanism limiting the quality
factor of mechanical oscillators. Observation of these effects
exceeds the possibilities of contemporary experimental physics
but almost undoubtedly will be possible in the near future.

1. Introduction

These methodological notes are concerned with several
physical effects and methodological issues pertaining to the
ground state of a harmonic oscillator. Despite the fact that
this topic is not new, it still attracts considerable interest and
even raises debate. In particular, with the aid of the ground
state, which can be regarded as the most `quantum' of all
oscillator states, it is possible to clearly demonstrate the
hazard of applying semiclassical analysis techniques to
quantum systems.

The terms `zero-point oscillations' and `zero-point fluc-
tuations' are quite often used synonymously in the literature.
It is obvious, however, that the zero-point oscillations of an
isolated harmonic oscillator are not the same as the zero-point
fluctuations of, for instance, a thermostat kept at zero
temperature. The former possess some regularity. They can
be interpreted as harmonic oscillations with a given frequency
and a given amplitude, but with an unknown phase, which is
constant in time. The latter are a stochastic process char-
acterized by a spectral density that is continuous in frequency.

The sections of this paper are arranged in order of
increasing complexity of the systems under review. The
ground state of a one-dimensional harmonic oscillator is
considered in Section 2. Despite its extreme simplicity, even
this object can exhibit unusual and, from a classical view-
point, paradoxical properties.

The ground-state energy fluctuations for an oscillator
with a finite Q factor are considered in Section 3. This
example shows clearly that uncritical recourse to semiclassi-
cal calculation techniques in problems involving the ground
state may lead to qualitatively incorrect results. Also
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discussed in Section 3 is the problem of the exact form of the
noise spectral density for dissipative elements, which has
recently been the subject of some controversy in the literature.

Section 4 is concerned with the dependence of zero-point
oscillations in electromagnetic resonators on boundary
conditions. In principle, by taking advantage of this depen-
dence, it is possible to transfer information without the
emission of photons. The term `fluctuations of zero-point
oscillations' applies to precisely this class of phenomena.

Section 5 is devoted to the fluctuations of zero-point
oscillation pressure force and their attendant mechanical
friction, which can be viewed as the most basic mechanism
of Q-factor limitation in mechanical oscillators.

The Appendices primarily detail the most cumbersome
calculations, which are of interest only from the standpoint of
the calculation techniques involved. The sole exception is
Appendix 7.1, which outlines the derivation of the formula
for the noise of a dissipative element from the most general
considerations, without invoking any assumptions of its
internal arrangement.

The following notation and normalization are employed
in this paper. To unify the form of the formulas for oscillators
of a different nature, in lieu of mass m and rigidity K,
inductance L and capacitance C, etc. it is expedient to use
the eigenfrequency o0 and the wave impedance r0, which are
equal to

o0 �
�����
K

m

r
; r0 �

��������
Km
p

; �1:1�

for a mechanical oscillator and to

o0 � 1�������
LC
p ; r0 �

�����
L

C

r
; �1:2�

for an LC circuit.
Time-dependent variables and their spectra are denoted

by the same letters: for instance, q�t� is a coordinate and q�o�
is its spectrum. This should not give rise to confusion, since
the argument is always specified explicitly.

Advantage is taken of the same spectral density normal-
ization as in the book in Ref. [1]. Under this normalization,
the spectral density of some random process is

S�o� �
�1
ÿ1

B�t� exp �ÿiot� dt ; �1:3�

where B�t� is the correlation function of this process. This
definition 1 gives a spectral density value two times lower than
that commonly encountered in radiophysics. In particular,
the spectral density of random voltage across the resistorR in
this case is

S�o� � �hoR coth
�ho
kT

; �1:4�

where k is the Boltzmann constant and T is the temperature
(the Callen ±Welton formula [2]).

2. Ground state of an oscillator

The presence of some finite energy in the ground state of finite
systems follows directly from the very foundations of
quantum theory. Indeed, the absence of this energy would
imply the exact definition of both the momentum of an object

(equal to zero) and its coordinate (corresponding to the point
ofminimal potential energy). Clearly, this is impossible on the
strength of the uncertainty relation. It is also evident that for
any finite system there is bound to exist a quantum state j0i
(at least one) corresponding to a minimum of the functional
of the total energy of the system.

It is well known that the uncertainty relation allows us to
estimate, to within a numerical factor, the ground-state
energy of any finite quantum system (for instance, an atom).
Furthermore, for a harmonic oscillator it is possible to find
the exact energy value of the ground state with the use of the
uncertainty relation owing to the simple symmetric structure
of its Hamiltonian [3]. Indeed, the average energy of a
harmonic oscillator is

hEi � o0

2

�h p 2i
r0
� r0hq 2i

�

� o0

2

�h pi2 � �Dp�2
r0

� r0
�hqi2 � �Dq�2�� ; �2:1�

where q and p are the coordinate and momentum of the
oscillator. For the energy to be minimal it is evidently
necessary that the average values of coordinate and momen-
tum, hqi and hpi, be equal to zero. In this case, the energy will
be determined only by the uncertainties of these quantities Dq
and Dp. Meanwhile, their possible values are limited by the
Heisenberg inequality

DqDp5
�h

2
: �2:2�

Consequently,

hEi5 o0

2

�
�h 2

4r0�Dq�2
� r0�Dq�2

�
: �2:3�

For the right-hand side of inequality (2.3), the minimum is
attained for Dq � q0=

���
2
p

, where q0 �
����������
�h=r0

p
is the so-called

amplitude of zero-point oscillations, and is equal to �ho0=2, as
expected.

By solving the corresponding variational problem one can
also easily show that the wave function that corresponds to
the minimum in inequality (2.2) is Gaussian in the coordinate
representation. Hence there follows an explicit expression for
the wave function of the oscillator in the ground state:

hqj0i � 1

� ���pp q0�1=2
exp

�
ÿ q 2

2q 2
0

�
: �2:4�

The wave function in the momentum representation,
obtained from the wave function (2.4) by the Fourier
transform, is also Gaussian:

hpj0i � 1��������
2p�h
p

�1
ÿ1
hqj0i exp

�
ÿ ipx

�h

�
dq

� 1

� ���pp r0q0�1=2
exp

�
ÿ p 2

2�r0q0�2
�
: �2:5�

This is also true of any linear combinations of coordinate and
momentum of the form

q�y� � q cos y� p

r0
sin y ; �2:6�

1 Relation (1.3) is generally referred to as theWiener ±Khintchin theorem.
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where y is an arbitrary phase angle. Indeed, the observable
q�y� is obtained from q as a result of the free evolution of the
oscillator for a time t � y=o0; meanwhile, the ground state, as
a state with a given energy, is stationary and its form is
therefore invariable in the course of free evolution.

Hence there arises a temptation to ascribe to the ground
state a combined probability distribution for the coordinate
and the momentum

W�q; p� � 1

p�h
exp

�
ÿ q 2 � �p=r0�2

q 2
0

�
; �2:7�

themore so as this is precisely the form of theWigner function
[4] for the ground state, which is quite often used with the
purpose of clearly illustrating different quantum states as a
`substitute' for the combined probability distribution for the
coordinate and the momentum. The fallacy in this approach
is evident if only because of the following fact: to the classical
two-dimensional probability distribution (2.7) there corre-
sponds an exponential probability distribution for the
oscillator energy

W�E� � 1

�ho0=2
exp

�
ÿ E

�ho0=2

�
: �2:8�

The average energy value for this distribution is �ho0=2, which
is correct, but the variance is ��ho0=2�2, which is wrong, since
the ground state is a state with a given energy.

While the total energy in the ground state is precisely
specified, its components Ð the kinetic Ek and potential Ep
energies individuallyÐ have nonzero variances in the ground
state equal to

�DEk�2 � �DEp�2 � 2

�
�ho0

4

�2

: �2:9�

This implies that their standard deviations DEk and DEp
exceed their average values �ho0=4, which is in itself quite
unusual for suchlike immanently nonnegative observables.

For the total energy of the ground state to have zero
variance in this case, the potential and kinetic energies should
be fully anticorrelated: their correlation coefficient should be
equal to the minimal possible value ÿ1. A direct calculation
shows that this is indeed the case.

Vorontsov and Rembovsky [5] noted that so strong an
anticorrelation along with the high variance values (2.9) leads
to a result paradoxical from the classical viewpoint: the cross-
average value of the two nonnegative observables Ð the
kinetic and potential oscillator energies Ð is negative in the
ground state:

hL2i � 1

2
hÊkÊp � ÊpÊki � ÿ

�
�ho0

4

�2

: �2:10�

A note is appropriate at this point. If the coordinate and
momentum of an oscillator are measured simultaneously and
then squared to yield the calculated potential and kinetic
energies, both resultant values will naturally prove to be
positive. However, this measurement would fail to disprove
formula (2.10), since the coordinate and momentum opera-
tors are noncommutative and therefore cannot be measured
simultaneously with sufficient accuracy. Meanwhile, as
indicated by Vorontsov and Rembovsky [5], the L̂2 operator
itself cannot be represented as a square of some Hermitian

operator to which there corresponds some observable that
allows an exact measurement to yield, on being squared, the
calculated value of L2.

To verify formula (2.10) requires employing a measure-
ment that yields information on the observable L2 and in
doing so yields no information on the observables that do not
commute with it. Measurements of this kind are referred to as
quantum nondemolition [6]. A condition sufficient for the
realization of this procedure is the proportionality of the
meter ± object (oscillator) interaction Hamiltonian to the
operator of the observable to be measured ( L̂2 in this case).

3. Ground-state energy fluctuations
in an oscillator with a finite Q factor

3.1 Semiclassical (incorrect!) calculation
When the oscillatorQ factor is finite, the energy of its ground
state is no longer an exactly specified value and fluctuates in
time. These fluctuations in the quantum case, when the
thermostat temperature T is close to zero, and in the classical
case, when kT4 �ho0, are essentially different in nature.

Meanwhile, a simple semiclassical analysis technique is
quite often employed in radiophysics and optics. It involves
the solution of a classical problem while the `quantumness' is
introduced by invoking the fluctuation-dissipative Callen ±
Welton theorem in lieu of the classical Nyquist formula to
specify the noise spectral density. When kT5 �ho0, this
technique may lead to qualitatively incorrect results.

Let there be a harmonic oscillator with a finite Q factor
(for specificity, we shall consider an ordinary LC circuit). We
calculate the spectral density of energy fluctuations in this
circuit at absolute zero temperature.

We first consider the semiclassical calculation technique.
The equation of motion for the charge on the capacitor of the
LC circuit is of the form

�q�t� � 2g _q�t� � o2
0q�t� �

o0

r0
U�t� ; �3:1�

where U�t� is the noise produced by the loss resistance R and

g � o0R

2r0
�3:2�

is the damping constant. The noise U�t� spectral density is
derived from formula (1.4) for T � 0:

S0�o� � �hjojR : �3:3�

The solution of Eqn (3.1) can be represented as

q�t� � o0

r0

�1
ÿ1

U�o� exp �iot�
L�o�

do
2p

; �3:4�

where

U�o� �
�1
ÿ1

U�t� exp �ÿiot� dt �3:5�

is the spectrum of the random process U�t� and
L�o� � ÿo2 � 2igo� o2

0 : �3:6�
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Accordingly, the LC-circuit energy is

E�t� � r0
2o0

ÿ
_q 2�t� � o2

0q
2�t��

� o0

2r0

�1
ÿ1

o2
0 ÿ oo 0

L�o�L�o 0� U�o�U�o
0�

� exp �i�o� o 0�t� do do 0

�2p�2 : �3:7�

The average value of this quantity is calculated with the aid of
the equality


U�o�U�o 0�� � 2pd�o� o 0�SFDT�o� : �3:8�

The average value is

hEi � �hg
�1
ÿ1

joj�o2
0 � o2���L�o���2 do

2p
: �3:9�

Moving ahead, we note that this is precisely the value of
average energy given by rigorous quantum calculations. At
the same time, it is not quite consistent with what is intuitively
expected: the value of hEi in formula (3.9) is not equal to
�ho0=2; moreover, the integral which appears in this formula
diverges logarithmically at high frequencies. This problem
will be treated in greater detail in Section 3.3.

To determine the spectral density of energy fluctuations,
we first find the correlation function for these fluctuations,

BE�t� �

E�0�E�t��ÿ hEi2

�
�
o0

2r0

�2 �1
ÿ1

�o2
0 ÿ oo 0��o2

0 ÿ o1o 01�
L�o�L�o 0�L�o1�L�o 01�

� 
U�o�U�o 0�U�o1�U�o 01�
�
exp

�
i�o1 � o 01�t

�
� do do 0 do1 do 01

�2p�4 ÿ hEi2 : �3:10�

Taking into account that the random process U�t� is normal,
the forth-order cross average involved in this formula can be
expressed in terms of second-order moments:


U�o�U�o 0�U�o1�U�o 01�
�

� �2p�2d�o� o 0� d�o1 � o 01�S0�o�S0�o1�
� �2p�2ÿd�o� o1� d�o 0 � o 01�
� d�o� o 01� d�o 0 � o1�

�
S0�o�S0�o 0� : �3:11�

It then follows that

BE�t� � 2��hg�2
�1
ÿ1

joo 0j�o2
0 ÿ oo 0�2��L�o���2��L�o0���2

� exp
�
i�o1 � o 0�t� do do 0

�2p�2 : �3:12�

The spectral fluctuation density is now easily determined with
the aid of formula (1.3):

SE�O� � 2��hg�2
�1
ÿ1

��o�Oÿ o����o2
0 ÿ o�Oÿ o��2��L�o���2��L�Oÿ o���2 do

2p
:

�3:13�

This expression is significantly simplified when the
observation frequency O is low in comparison with the
circuit eigenfrequency o0. In this case, the integrand has two
narrow peaks for o values close to o0, which allows us to
rewrite the last formula as

SE�O� � ��hgo0�2
2p

�1
ÿ1

dn�
n 2 � g 2

���nÿ O�2 � g 2
�

� ��ho0�2g
O 2 � �2g�2 : �3:14�

We have obtained fluctuations whose main energy is
concentrated near the zero frequency. The correlation time
of these fluctuations is equal to the circuit relaxation time
t � � 1=2g and their full swing (the square root of the
variance) is equal to the energy of zero-point oscillations:

DE �
������������������������������1
ÿ1

SE�O� dO
s

� �ho0

2
: �3:15�

Let us recall that the calculation technique employed in this
Section is inappropriate and the results arrived at are wrong.
They are merely intended to serve as an illustration of the
incorrectness of the semiclassical approach.

3.2 Quantum calculation
For linear quantum systems, the equations of motion for
linear observables (coordinates, momenta, and their linear
combinations) in the Heisenberg picture are known to be of
precisely the same form as the corresponding classical
equations of motion. That is why the operator of charge on
the LC-circuit capacitor obeys the equation

�̂q�t� � 2g _̂q�t� � o2
0q̂�t� �

o0

r0
Û�t� ; �3:16�

which does not differ in form from the classical Eqn (3.1). In
the quantum case, however, account should be taken of not
only the correlation properties of the random process U�t�,
but its operator properties as well, namely, the autocommu-
tator �Û�t�; Û�t 0�� and its action on the ground state Û�t�j0i.
As shown in Appendix 7.1, in the quantum case the
fluctuation electromotive force can be represented as

Û�t� �
�1
0

������������
2�hoR
p ÿ

â�o� exp �ÿiot� � â y�o� exp �iot�� do
2p

;

�3:17�

where â�o� and â y�o� are the annihilation and creation
operators, which satisfy the relations�

â�o�; â y�o 0�� � 2pd�oÿ o 0� �3:18�

and

â�o�j0i � 0 : �3:19�

The solution of Eqn (3.16) is of the form

q̂�t� � o0

r0

�1
0

������������
2�hoR
p

�
�
â�o� exp �ÿiot�

L��o� � â y�o� exp �iot�
L�o�

�
do
2p

; �3:20�
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and the LC-circuit energy is

Ê�t� � r0
2o0

ÿ
_̂q2�t� � o2

0q̂
2�t�� � 2�hg

�1
0

���������
oo 0
p

�
� �o2

0 ÿ oo 0�
L��o�L��o 0� â�o�â�o

0� exp �ÿi�o� o 0�t�
� �o

2
0 � oo 0�

L��o�L�o 0� â
y�o�â�o 0� exp �i�oÿ o 0�t�� do do 0

�2p�2 � h:c:;

�3:21�

where h.c. denotes a term which is a Hermitian conjugate to
the previous one.

The average value and the spectral fluctuation density for
observables of the (3.21) type are calculated in Appendix 7.2.
From formulas (7.35) and (7.41) obtained in that Appendix it
follows that the average value of energy in the circuit is

hEi � 2�hg
�1
0

o�o2
0 � o2���L�o���2 do

2p
; �3:22�

and the spectral density of energy fluctuations is

SE�O� � �2�hg�2
� jOj
0

o
ÿjOj ÿ o

��
o2

0 ÿ o
ÿjOj ÿ o

��2��L�o���2��LÿjOj ÿ o
���2 do

2p
:

�3:23�

By comparing these formulas with formulas (3.9) and (3.13)
obtained in Section 3.1, one can readily see that the
expressions for the spectral densities are qualitatively differ-
ent, whereas the expressions for the average values coincide,
being different only in notation. The functions (3.13) and
(3.23) for an oscillator with a quality factor Q � 10 are
plotted in Fig. 1.

The difference is most striking at low frequencies,O5o0.
For this frequency range, it is easy to derive an explicit

expression for SE�O�. Since the range of integration in
formula (3.23) limits the values of the integration variable o
to the low-frequency range, 04o4O5o0, it can be
assumed that L�o� � o2

0, and

SE�O� �
�
2�hg
o2

0

�2 � jOj
0

o
ÿjOj ÿ o

� do
2p

� 2�h 2g 2jOj3
3o 4

0

� �h 2jOj3
6Q2o2

0

; �3:24�

where Q � o0=2g is the circuit Q-factor. For O ' g, this
quantity is approximately Q 6 times smaller than that
obtained by the semiclassical calculation.

The reason for the disparity becomes evident when
attention is given to the only difference in formulas (3.13)
and (3.23) Ð the limits of integration. In formula (3.13), the
main contribution to the integral for O5o0 is made by the
values of frequency o close to the eigenfrequency o0. The
energy fluctuations in this case are produced primarily due to
the beats of oscillations with frequencies close to o0, on the
down-conversion principle: O � oÿ o 0. This mechanism
does take place for thermal oscillations, when the thermostat
temperature T4 �ho0=k.

Meanwhile, the near-resonant frequencies in the quantum
case in the integrand in formula (3.23) are cut off by the limits
of integration. As a result, the energy fluctuations in the
purely quantum case, when the thermostat temperature is
equal to zero, are produced only due to the beats of low-
frequency oscillations o5o0, which are remote from the
resonance and are therefore many times weaker, on the
principle of frequency up-conversion: O � o� o 0. This
accounts for the sharp decrease in spectral density at low
frequencies.

This behavior of the spectral density at low frequencies
can also be compared to the behavior of energy in an
isolated oscillator. The energy of zero-point oscillations in
an isolated oscillator is an exactly specified quantity equal
to �ho0=2; the low-frequency fluctuations of zero-point
oscillation energy are nonzero, but are small and rapidly
tend to zero with an increasing Q factor. On the other hand,
in the classical treatment the uncertainty in equilibrium
oscillator energy is equal to the average energy, which is in
complete agreement with formula (3.15) obtained by the
semiclassical technique.

3.3 Average energy of zero-point oscillations
in an oscillator with a finite Q factor
As already noted, the average energy value in an oscillator
with dissipation is not equal to �ho0=2 and, what is more,
diverges. If we limit the integration in formula (3.22) by some
cutoff frequencyomax, we obtain the function E�omax� plotted
in Fig. 2. One can see that this function exhibits an `almost'
correct behavior, acquiring a value close to �ho0=2 as its
argument changes between o0 ÿ g and o0 � g. But then, for
omax 4o0, it crosses the �ho0=2 line to logarithmically tend to
infinity.

To eliminate this divergence and restore the average
energy to the `correct' value �ho0=2, Klimontovich [7 ± 9]
proposed that formula (1.4) should be modified by putting
into it the spectral fluctuation density

S�o� � �ho0R coth
�ho0

2kT
: �3:25�
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E�O
�=

�h
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Figure 1. Spectral densities of energy fluctuations in an LC-circuit with a

quality factor Q � 10 obtained by semiclassical (upper curve) and

rigorous quantum (lower curve) calculations.
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However, formula (3.25) evidently violates the inequality
(7.17) at high frequencies. Moreover, as fairly noted by
Tatarski|̄ [10], the noise spectral density of a thermostat
should not depend on any specific parameters of the system
to which the thermostat is connected (see also the discussion
in Ref. [11]).

To elucidate the reasons for the (apparent) disagreement
of formula (3.22) with the statement that the energy of an
oscillator (oscillation mode) in the ground state is exactly
equal to �ho0=2, we will enlarge on the notion of an oscillation
mode.

In the rigorous mathematical sense, by modes are meant
the eigen-solutions of the system of equations of motion for a
given object. Therefore, a mode is a part of the compound
system which (i) is one-dimensional, i.e., is characterized by a
second-order equation of motion, and (ii) is totally indepen-
dent of the remaining system. In this sense, the oscillator with
the dissipation considered above is not a mode, since it is
coupled to a thermostat. In this case we will resort to the term
degree of freedom, using it in reference to a part of the
compound system which can also be described by a second-
order equation of motion, but which is conceivably coupled
to the remaining system2.

In this notation, the eigen-solutions for a closed electro-
magnetic resonator with perfectly reflecting mirrors are
modes as well as degrees of freedom for the electromagnetic
field inside it. Meanwhile, if the walls are made partly
absorbent or transparent, these former modes become
coupled to phonons in the resonator walls and/or to the
electromagnetic degrees of freedom of the external space. The
notion of degree of freedom applies to them as before, but the
truemodes of this system now penetrate into the walls and the
external space.

From this viewpoint it comes as no surprise that the
energy of an oscillator with a finite Q factor differs from

�ho0=2 and even diverges. This oscillator is the seat of
localization for a part of the energy of all modes of the
coupled `oscillator� thermostat' system. For those modes
whose frequency is close to the partial oscillator frequencyo0,
the bulk of their energy concentrates in the oscillator, while
for the remaining modes it concentrates in the thermostat.
Nevertheless, the `tails' of high-frequency modes (with
frequencies o4o0) prove to be sufficient to ensure the
divergence of oscillator energy. Appendix 7.3 is concerned
withtheproblemoftheeigenmodesofthe`oscillator� thermo-
stat' system for a simple thermostat model (a long twin-wire
line) and gives the derivation of the expression for the average
energy in the oscillator, which coincides with formula (3.22).

4. Dependence of zero-point oscillations
on the boundary conditions

4.1 Simple example
Apart from the uncertainty of zero-point oscillation energy
due to a linear coupling of the oscillator to the external world
(the thermostat), which was considered in the previous
section, there also exists another, nonlinear mechanism as a
manifestation of this uncertainty. It stems from the fact that
the energy of zero-point oscillations depends on the eigen-
frequency of the oscillator, and this eigenfrequency is some-
what dependent on external conditions [12]. For instance, the
frequency in a microwave cavity depends on its geometric
parameters, which are the coordinates of some mechanical
oscillators (the elastic modes of cavity walls). As a conse-
quence, they always have their immanent uncertainties, both
thermal and fundamentally quantum. This has the effect that
the frequency of the resonator also becomes uncertain as does
the energy of its zero-point oscillations. We emphasize that
this effect can take place even in conservative systems Ð they
need only consist of several nonlinearly coupled degrees of
freedom.

Consider a simple example of a system of this sort. Let
there be an LC circuit (Fig. 3) whose inductance and
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Figure 2. Average energy of zero-point oscillations in an oscillator with a

finite Q factor as a function of the cutoff frequency of integration (the

quality factor Q � 10).

2 The author does not want to delve into a terminological debate as towhat

is a mode and what is a degree of freedom; at the same time two somehow

different terms are required here. It is therefore suggested that we consider

the above definitions as being `locally' adopted for this section.
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Figure 3. Electromagnetic resonator parametrically coupled to a mechan-

ical oscillator.
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capacitance depend on the coordinate x of a mechanical
oscillator:

L � L0

1ÿ x=d
; C � C0

1ÿ x=d
; �4:1�

where d is the coupling parameter. The eigenfrequency of this
oscillator om is assumed to be low in comparison with the
LC-circuit frequency.

In this case, the eigenfrequency, and hence the ground-
state energy of the LC circuit, will also depend on x:

E e
0 �

�hoe

2

�
1ÿ x

d

�
; �4:2�

where oe � 1=
�����������
L0C0

p
. If the mechanical oscillator is in the

ground state, the uncertainty of its x coordinate is equal to������������������
�h=2mom

p
. In this case, the uncertainty of the ground-state

energy of the LC circuit is

DE0 � �hoe

2d

��������������
�h

2mom

s
: �4:3�

At the same time, for a complete coupled system there is
bound to exist a state with a minimal energy, and the total
energy in this state should be exactly specified. The LC-circuit
and mechanical oscillator energies should therefore be antic-
orrelated in this state, and the uncertainty of mechanical
oscillator energy should also be defined by formula (4.3).

Appendix 7.4 solves the problem of states with a given
energy of the system involved. From the results obtained in
this Appendix it follows that the minimal energy is 3; 4

E00 � �hoe

2
� �hom

2
ÿmo2

mX
2
0

2
; �4:4�

and the state with the minimal energy is of the form

jC00i � D̂�X0�j0mij0ei ; �4:5�

where j0ei and j0mi are the ground states of the LC circuit and
the mechanical oscillator, respectively, D̂ is the x-coordinate
displacement operator [see formula (7.62)], and

X0 � �hoe

2mo2
md

�4:6�

is the shift of the equilibrium position of the mechanical
oscillator under the attractive force induced by the zero-point
oscillations in the LC circuit.

It is easily shown that the average energy values of the
LC circuit and the mechanical oscillator in the state (4.5) are

hE e
0 i � hC00j�hoe

�
n̂e � 1

2

��
1ÿ x̂

d

�
jC00i

� �hoe

2

�
1ÿ X0

d

�
; �4:7�

hE m
0 i � hC00j

�
p̂ 2

2m
�mo2

mx̂
2

2

�
jC00i � �hom

2
�mo2

mX
2
0

2
;

�4:8�

while the uncertainties of these energies coincide and are given
by formula (4.3), in agreement with our preliminary con-
siderations.

4.2 Information transfer by means of modulation
of zero-point oscillation energy density
Taking advantage of the dependence of zero-point oscillation
energy density on the boundary conditions it is possible, at
least in principle, to transfer information without the
emission of electromagnetic quanta. The principle of the
operation of this communication channel consists in the
modulation of the boundary condition at one end of the
transmission line and the measurement of its attendant
variations of zero-point electromagnetic energy at the other
end of the same line [12].

Let us imagine that a capacitorCwith a plate separation d
is connected to a transmission line of length l � vt with a
wave impedance r and a velocity of signal propagation v
(Fig. 4). It is significant that the transmission band of the line
should not be bounded below, i.e., that it may be, for instance,
a coaxial cable or a twisted pair, but not a hollow waveguide.

The zero-point oscillations of the eigenmodes of the
system produce the attractive force between the capacitor
plates. The structure of these modes essentially depends on
the form of the boundary condition at the distant (with
respect to the capacitor) end of the line, and therefore by
manipulating this boundary condition it is possible to
modulate the attractive force.

When the distant end of the line is closed, the lowest
eigenmode of the system corresponds to the LC circuit made
up of the capacitor C and the distributed line inductance rt.
The capacitor harbors a substantial part of the energy of this
mode (about half the energy when the line is not too long).
Meanwhile, the `semiconcentrated' mode of this sort is
missing when the line end is open. It would therefore appear
reasonable that the attractive force would be strongest for a
closed end and weakest for an open end.

Let us assume that the distant line end is connected to a
variable resistance R, which, in particular, can be equal to
zero or infinity. The fluctuation voltage across this resistance
is [see expression (7.24)]

Û�t� �
�1
0

������������
2�hoR
p

â�o� exp �ÿiot� do
2p
� h:c: �4:9�

Then, the fluctuation charge on the capacitor is

q̂�t� � C

�1
0

������������
2�hoR
p

â�o� exp �ÿiot�
z�o�

do
2p
� h:c: ; �4:10�

where

z�o� � cosotÿ ot0 sinotÿ i
R

r
�sinot� ot0 cosot�

�4:11�

3We do not consider the obviously unrealistic case wherein the last term in

formula (4.4) exceeds the previous one and the capacitor plates `collapse'

under the attractive force produced by zero-point oscillations.
4 An unfortunate misprint was made in Ref. [12]: the last term in the

formula for the minimal energy appeared with a `�' sign instead of a `ÿ'
sign.

C
R

l

Figure 4. Information transfer scheme without the emission of photons.
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and t0 � rC. Accordingly, the average attractive force
between the capacitor plates is

F �R� �


0jq̂ 2�t�j0�
2Cd

� �hRC

d

�1
0

o��z�o���2 do
2p

: �4:12�

This integral diverges logarithmically aso!1, for the same
reasons as the average energy of zero-point oscillations in the
LC circuit (see Section 3.3). However, it is evident that the
model of a concentrated oscillator and a one-dimensional line
employed ceases to be true at sufficiently high frequencies, if
for no other reason than that the metal it is made of ceases to
be a good reflector. At the same time, we are concerned not
with the magnitude of the force F, but with its dependence on
the boundary conditions at the distant line end (of the
magnitude R), i.e., with the difference F �R� ÿ F �R!1�.
And this quantity proves to be finite.

The numerically calculated difference between the attrac-
tive forces for R � 0 and R!1 is plotted in Fig. 5. One can
see that its maximum value is attained for a capacitor
capacitance C � Copt � 2:4t=r and the magnitude of force
modulation in this case is approximately 0:07�h=td. In
addition, the function F �R� ÿ F �R!1� is plotted in Fig. 6
for C � Copt.

This force is quite weak: for instance, for a velocity v equal
to the velocity of light, d � 10ÿ4 cm, and l � 102 cm it is equal
to 2� 10ÿ16 dyn. The ratio between this force and the Casimir
force (5.1) per area d 2 for the same plate separation d is
� 1:7d=l5 1. Nevertheless, the fact that the force (4.12) can
be `colored', i.e., can be transformed from a constant force to
a force varying according to a given (for instance, harmonic)
law by periodic modulation of resistanceR, makes the task of
its experimental detection not absolutely hopeless. The
2� 10ÿ16 dyn value corresponds, for instance, to the
standard quantum limit [13] for the resonance force acting

on a mechanical oscillator with a mass of 10ÿ3 g and an
eigenfrequency of 1 sÿ1 for a measurement time of 5 s. The
same `coloring' may enable us to single out the force (4.12)
against the background of constant forces of another origin,
for instance those caused by dissipation in the transmission
line.

5. Fluctuations and friction produced
by zero-point oscillations

5.1 Fluctuations and friction in free space
One of the best known manifestations of zero-point electro-
magnetic oscillations is the Casimir force [14]. Predicted more
than half a century ago and discovered experimentally a few
years later [15], it emerges for the same reason as the effects
considered in the previous sectionÐdue to the dependence of
the energy density of zero-point oscillations on the boundary
conditions. In particular, the energy density between two
metal plates of area A spaced at a distance d is lower than in
free space due to low-frequency components with wave-
lengths l � d. As a result there occurs an attractive force
between the plates equal to

F � p2�hc
240d 4

A : �5:1�

This force can be regarded as the difference of the ponder-
omotive pressure forces of electromagnetic zero-point oscilla-
tions, which act on either plate from both sides and are much
greater in magnitude than F but nearly cancel each other.

About 10 years ago G Barton noted that this compensa-
tion takes place only for the average values of pressure forces,
while the fluctuation components of the pressure forces of
zero-point oscillations, which act on the reflecting surface
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Figure 5.Attractive force between the plates of a capacitor connected to a

transmission line as a function of capacitor capacitance.
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from both sides, are independent and therefore do not cancel
out. In Refs [16, 17] he solved the problem of the pressure
p̂�t; r� which electromagnetic zero-point oscillations exert on
an infinite perfectly reflecting surface and showed that the
pressure fluctuations are described by the spatio-temporal
correlation function of the form

B�tÿ t 0; rÿ r 0� � 1

2



p̂�t; r� p̂�t 0; r 0� � p̂�t 0; r 0� p̂�t; r��

�
�1
ÿ1

G�O;K� cos �O�tÿ t 0� ÿ K�rÿ r 0�� dO d2K

�2p�3 ; �5:2�

where r and r 0 are two-dimensional radius vectors on the
surface, K is a two-dimensional wave vector, and

G�O;K� �
�h 2

60p2c 4
�O2 ÿ c 2K 2�5=2 ; jOj5 cK ;

0 ; jOj < cK

8<: �5:3�

is the spatio-temporal spectral density.
We consider a perfectly conducting thin plate with a

dimension much greater than c=O, where O is the observa-
tion frequency. In this case it is possible to neglect the
diffraction effects at the plate edges. Braginsky and Khalili
[18] showed that each side of this plate will experience a
random pressure force with a spectral density

S�O� � �h2jOj5
120p4c 4

A ; �5:4�

where A is the plate area. This fluctuation force transfers the
energy of electromagnetic zero-point oscillations to the
mechanical degrees of freedom. Clearly, there is bound to
exist a reverse energy flux as well, otherwise it would be
possible to accrue energy from zero-point oscillations. In
other words, mechanical friction should be introduced into
the motion of the surface plate. The underlying physical
mechanism of this friction is evident: the parametric excita-
tion of electromagnetic oscillations by the oscillations of the
plate surface.While the frequency doubles in the excitation of
mechanical oscillations by the electromagnetic ones (because
the ponderomotive pressure force is proportional to the field
intensity squared), in the inverse parametric process it, on the
contrary, is halved. In both cases, the electromagnetic wave
with a frequency o proves to be coupled to mechanical
oscillations with a 2o frequency.

In accordance with the fluctuation-dissipative theorem, a
friction

H�O� � S�O�
�hjOj �

�hO 4A
120c 4

�5:5�

corresponds to the spectral density (5.4).
It is significant that the magnitude of H�O� is propor-

tional toO 4 and hence the friction force is proportional to the
fifth derivative of the coordinate with respect to time.
Consequently, the occurrence of this friction against `free
space' does not contradict the relativity principle, because for
a constant velocity of motion the friction force is equal to
zero.

This friction is quite small in magnitude. To show this, we
estimate theQ factor of the lowest mode of elastic oscillations
corresponding to this friction for a plate of thickness a. The
frequency of this mode is Om � pv=a, where v is the sound

velocity, and the Q factor is

Qm � mOm

2H�Om� �
60prc 4a 4

�hv 3
; �5:6�

where r is the plate material density. For parameter values
typical of a solid,Q factors of 1037ÿ1038 are obtained even for
micrometer-thick plates. This effect can scarcely be detected
employing currently available experimental techniques.

5.2 Fluctuations and friction under resonance conditions
As noted by Braginskii and Khalili [18], the fluctuation
pressure force of zero-point oscillations and its attendant
friction become much stronger under resonance conditions,
for instance in an LC circuit weakly coupled to the
surrounding electromagnetic vacuum.

The attractive force between the capacitor plates can be
calculated using formula (3.20). It is equal to

F̂�t� � q̂ 2�t�
2Cd

� 2�hgo2
0

d

�1
0

���������
oo 0
p �

â�o�â�o 0� exp �ÿi�o� o 0�t�
L��o�L��o 0�

� â y�o�â�o 0� exp �i�oÿ o 0�t�
L��o�L�o 0�

�
do do 0

�2p�2 � h:c: ; �5:7�

where d is the width of the capacitor gap.
In accordance with formula (7.35), the average value of

attractive force is

hF i � 2�hgo2
0

d

�1
0

o��L�o���2 do
2p

� �ho0

4d

Qe�����������������
4Q2

e ÿ 1
p �

1� 2

p
arctan

Qe�2Q2
e ÿ 1������������������

4Q2
e ÿ 1

p �
; �5:8�

where Qe is the Q factor of the circuit. For large Qe this
quantity tends rapidly to �ho0=4d.

As follows from formula (7.41), the spectral density of the
fluctuations of attractive force is

SF�O� �
�
2�hgo2

0

d

�2 � jOj
0

o
ÿjOj ÿ o

���L�o���2��LÿjOj ÿ o
���2 do

2p
: �5:9�

This formula can be simplified if the observation frequency is
close to twice the resonance frequency, O � 2�o0 � D�,
jDj5o0, and the Q factor of the circuit is large, g5o0. In
this case,

SF�O� �
�

�ho0

4d

�2 g
D2 � g 2

: �5:10�

To find the friction introduced by zero-point oscillations,
it is certainly possible to take advantage of the fluctuation-
dissipative theorem. However, for methodological considera-
tions there is good reason to derive it directly, whichwill allow
one to ascertain the validity of formula (7.27) in this specific
case.

Let us assume that one of the capacitor plates is mobile
and its displacement is specified by the x-coordinate, so that
the total capacitor gap is d� x. In this case, the equation of
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motion for the charge on the capacitor capacitance takes on
the form

�̂q�t� � 2g _̂q�t� �
�
1� x̂�t�

d

�
o2

0 q̂�t�

� o0

r0

�1
0

������������
2�hoR
p ÿ

â�o� exp �ÿiot� � â y�o� exp �iot�� do
2p

�5:11�
(the values of parameters o0 and r0 correspond to the initial
value of the capacitor gap, for x � 0).

Since we are concerned with only that part of the solution
which is linear in x (for small x values), the solution will be
sought by the method of sequential approximations. To the
zero approximation q̂0 (for x � 0) there corresponds formula
(3.20). Its substitution into formula (5.11) yields the first-
approximation equation:

�̂q1�t� � 2g _̂q1�t� � o2
0q̂1�t� � ÿ

x̂�t�
d

o2
0 q̂0�t� :

The part of attractive force proportional to x is

F̂1�t� � ÿo0r0
2d

�
q̂0�t� q̂1�t� � q̂1�t� q̂0�t�

�
: �5:13�

We solve Eqn (5.12), substitute its solution q̂1�t� into formula
(5.13), and average the resultant expression over the ground
state of electromagnetic degrees of freedom (because our
concern now is only with the regular part of the force) to
represent it in the form


0
��F̂1�t�

��0� � �1
ÿ1

w�O�x̂�O� exp �iot� dO
2p

; �5:14�

where x̂�O� is the spectrum of x̂�t�, and

w�O� � 2�hgo 4
0

d 2

�1
0

o��L�o���2
�

1

L�Oÿ o� �
1

L�O� o�
�

do
2p

�5:15�
is the generalized susceptibility associated with the dynamic
action of zero-point oscillations. By making a change in the
integration variable, the imaginary part of this expression can
be brought into the form

Im w�O� � ÿ 2�hg 2o4
0

d 2

� jOj
0

o
ÿjOj ÿ o

���L�o���2��LÿjOj ÿ o
���2 do

2p
: �5:16�

By comparing this formula with the formula for the spectral
density of force fluctuations (5.9) it is easy to verify that the
fluctuation-dissipative theorem is valid in this case:

SF�O� � �h
��Im w�O��� : �5:17�

We estimate the feasibility of experimentally recording the
friction considered above. From the structure of formula
(5.16) it follows that the friction factor has a sharp peak near
the 2o0 frequency. When the circuit Q factor Qe is high
enough and the observation frequency O is close to 2o0, the
friction is��w�O��� � �ho0Qe

8d 2
: �5:18�

Let us imagine that the mobile capacitor plate of mass m is a
part of a mechanical oscillator with a frequency om (Fig. 7).

Then, the friction discussed above will limit the Q factor of
this oscillator by a value

Qm � mo2
m

2
��w�O��� � 16momd

2

�hQe
�5:19�

(this formula is valid for Qm 4Qe).
Let, for instance, a dielectric plate of thickness d whose

frequency of lowest-mode transverse mechanical oscillations
pv=d is equal to 2o0 be placed between the oscillator plates
(see Fig. 7). In this case, formula (5.19) is rearranged to give

Qm � 4p2YV
�ho0Qe

; �5:20�

where Y is the Young modulus of the plate material and V is
the plate volume. If d � 10ÿ4 cm, V � 10ÿ7 cm3, and
o0 � 1010 sÿ1, then

QmQe � 1024 : �5:21�

It is worth noting that Q factors of the order of 1011 have
already been attained for electromagnetic resonators of the
microwave range [19] and those exceeding 108 for mechanical
resonators [20].

6. Conclusions

These methodological notes have by no means touched upon
all the effects caused by zero-point oscillations. The effects
related to the Casimir force were considered in detail in review
Ref. [21]. Also given therein is an extensive bibliography on
this topic.

Among the effects caused by the energy fluctuations of
zero-point oscillations, additionalmention can bemade of the
fluctuations and friction introduced by the electromagnetic
vacuum into charged particle motion, which were considered
by Braginski|̄, Khalili, and Sazhin [22]. They pointed out an
intriguing circumstance: to detect this friction requires
expending energy of the order of �h=t, where t is the
measurement time, which will be radiated into the vacuum
in the form of one or several photons with a frequency of the
order of tÿ1.

As regards the experimental observation of the effects
discussed above, for the majority of them it should be
remarked that such experiments nowadays are hardly
feasible or are too expensive. However, they cannot be
treated as hopelessly difficult, either, and in view of the

dC L

Figure 7. Possible scheme for the observation of friction introduced by

zero-point electromagnetic oscillations.

302 F Ya Khalili Physics ±Uspekhi 46 (3)



rapid progress of experimental physics seen during the last
few decades (see, for instance, a review Ref. [23]) their
implementation will most likely become possible in the
foreseeable future.

The author expresses his appreciation to V B Braginski|̄
and S P Vyatchanin for helpful discussions on this paper.

7. Appendices

7.1 Operator properties of thermostat noise
7.1.1 Arbitrary linear two-pole system.A thermostat, irrespec-
tive of how complex its internal structure is, is a linear two-
pole system (as is, for instance, an ordinary resistor) from the
viewpoint of an `external interface'. This system is character-
ized by a linear relation between an external action q�t� and
the response to it Û�t�:

Û�t� � Û�t� �
� t

ÿ1
w�t; t 0�q�t 0� dt 0 ; �7:1�

where w�t; t 0� is the generalized susceptibility function and
Û�t� is the value of Û�t� in the absence of external action, i.e.,
the intrinsic fluctuations of the system.

On the other hand, the system under our consideration
can be characterized by a Hamiltonian of the form

Ĥ � Ĥ0 ÿ q�t�Û ; �7:2�

where Ĥ0 is the unperturbed Hamiltonian. Proceeding from
this Hamiltonian, the solution of the equation of motion for
the Û�t� operator in the Heisenberg picture of evolution can
be represented as a perturbation theory series:

Û�t� � Û�t� ÿ 1

i�h

� t

ÿ1
dt 0

�
Û�t�; Û�t 0�� q�t 0�

� 1

�i�h�2
� t

ÿ1
dt 0
� t 0

ÿ1
dt 00
��
Û�t�; Û�t 0��; Û�t 00��q�t 0�q�t 00� � . . .

�7:3�
A comparison of formulas (7.3) and (7.1) shows readily that
the Û�t� operator should be secondary autocommutative:��

Û�t�; Û�t 0��; Û�t 00�� � 0 8 t; t 0; t 00 ; �7:4�

thereby terminating the perturbation theory series with the
second term. It also follows from formulas (7.3) and (7.1) that
the generalized susceptibility is expressed in terms of the
autocommutator of Û�t� [1]:

w�t; t 0� �
i

�h

�
Û�t� ; Û�t 0�� ; t5 t 0 ;

0 ; t < t 0 �due to the causality

principle� :

8>><>>:
�7:5�

This equality can also be written as�
Û�t�; Û�t 0�� � ÿi�hw�t; t 0� ; t5 t 0 ;

i�hw�t 0; t� ; t4 t 0 ;

�
�7:6�

or �
Û�t�; Û�t 0�� � i�h

ÿ
w�t 0; t� ÿ w�t; t 0�� : �7:7�

7.1.2 Stationary linear two-pole system. In the subsequent
discussion we restrict our consideration to those systems
which are stationary as regards both dynamic properties and
noise, i.e., those whose generalized susceptibility w�t; t 0� as
well as correlation function for the noise Û�t�,

B�t; t 0� � 1

2



Û�t�Û�t 0� � Û�t 0�Û�t�� ; �7:8�

depend explicitly only on the difference between the points in
time involved, t and t 0. It is evident that a thermostat satisfies
this requirement.

For stationary systems it would be reasonable to take
advantage of the spectral representation, wherein

w�t; t 0� �
�1
ÿ1

w�o� exp �io�tÿ t 0�� do
2p

; �7:9�

B�t; t 0� �
�1
ÿ1

S�o� exp �io�tÿ t 0�� do
2p

; �7:10�

where S�o� is the spectral density of the noise Û�t�. Formula
(7.1) in the spectral representation takes the form

Û�o� � Û�o� � w�o�q�o� : �7:11�

Below we will also need the expressions for the autocommu-
tator of the Û�o� operator,�

Û y�o�; Û�o 0��
�
�1
ÿ1

�
Û�t�; Û�t 0�� exp �i�otÿ o 0t 0��dtdt 0

� 2pi�h
ÿ
w�o� ÿ w�ÿo�� d�oÿ o 0�

� ÿ4p Im w�o� d�oÿ o 0� ; �7:12�

as well as for the autocorrelator of this operator,

1

2



Û y�o�Û�o 0� � Û�o 0�Û y�o��
�
�1
ÿ1

B�t; t 0� exp �i�otÿ o 0t 0��dtdt 0
� 2pS�o� d�oÿ o 0� : �7:13�

Let us consider an operator of the form

Q̂ �
�1
ÿ1

Q�o�Û�o� do
2p

; �7:14�

where Q�o� is some function. We calculate the average value
of the operator Q̂yQ̂:

hQ̂yQ̂i �
�1
ÿ1

Q ��o�Q�o 0�
Û y�o�Û�o 0�� do do 0

�2p�2

� 1

2

�1
ÿ1

Q ��o�Q�o 0�
Û y�o�Û�o 0�
� Û�o 0�Û y�o�� do do 0

�2p�2

� 1

2

�1
ÿ1

Q ��o�Q�o 0��Û y�o�; Û�o 0�� do do 0

�2p�2

�
�1
ÿ1

��Q�o���2ÿS�o� ÿ �h Im w�o�� do
2p

: �7:15�
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The Q̂yQ̂ operator is a positive semidefinite, and therefore
its average value cannot be lower than zero. Hence it follows,
in view of the arbitrariness of the Q�o� function, that the
inequality

S�o�5 �h Im w�o� �7:16�

should be fulfilled for arbitrary values of o.
It is easily seen that this inequality can be strengthened: its

left-hand side is a symmetric function of frequency and its
right-hand side an antisymmetric one, whence it follows that
it may be rewritten as

S�o�5 �h
��Im w�o��� �7:17�

(this formula is a special case of the relations obtained in
Ref. [13] for arbitrary quantum 2N-pole systems).

Formula (7.17) bears strong resemblance to the fluctua-
tion-dissipative theorem. Themain difference is that the latter
implies a state of thermal equilibrium for the system involved.
As for relation (7.17), it was obtained under much more
general assumptions and is valid for any quantum state of the
system. The `price' to be paid for this generality is that this
relation is in the form of an inequality.

7.1.3 Thermostat in the ground state.We now assume that the
system under discussion is in the ground state, i.e., its energy is
as low as permitted by the uncertainty relation. In this case,
the fluctuations at its `external interface' are also minimal,
and therefore inequality (7.16) transforms into an equality
either for positive or for negative values of frequency o,
depending on the sign of the imaginary part of w�o�. The sign
of the imaginary part of w�o� in its turn is determined from the
condition that the system under consideration should intro-
duce positive dissipation.

We complement the thermostat Hamiltonian (7.2) with
the Hamiltonian of the probing oscillator connected to it, for
which q is a generalized coordinate:

Ĥ � Ĥ0 ÿ q̂�t� Û � Ĥosc : �7:18�

In this case, the equation of motion for the q̂�t� operator is of
the form

�̂q�t� � o2
0q̂�t� �

o0

r0
Û�t� : �7:19�

We go over to the spectral representation and combine the
last equation with relation (7.11) to obtain�

ÿo2 ÿ o0

r0
w�o� � o2

0

�
q̂�o� � o0

r0
Û�o� : �7:20�

The imaginary part of w�o�, which is proportional to io,
describes energy dissipation [because the expression ioq�o�
crosses over into _q�t� in the temporal representation]. The
reason why a dissipative term appears in the equation of
motion for a purely Hamiltonian `oscillator� thermostat'
system has been repeatedly discussed in the literature (see,
for instance, Ref. [10] or the book in Ref. [24]), and this
subject therefore will not be discussed here.

In order for the dissipation to be positive, the imaginary
part of w�o� should be nonpositive foro5 0 and nonnegative
for o4 0. Hence it follows, when the thermostat is in the

ground state, that

S�o� ÿ �h Im w�o� � 2�h
��Im w�o��� ; o5 0 ;

0 ; o4 0 :

�
�7:21�

We revert to formula (7.15) and put Q�o� � d�oÿ o1�
into it, where o1 is some arbitrary negative frequency. From
relation (7.21) it follows that in this case

h0jQ̂yQ̂ j0i � 0 ; �7:22�

i.e., Q̂j0i is a vector of zero length. In other words, for any
o < 0 we have

Û�o�j0i � 0 : �7:23�

Hence it follows, in view of formula (7.12), that the noise Û�t�
can be represented as

Û�t� �
�1
0

������������������
2�h
��w�o���q ÿ

â�o� exp �ÿiot�

� â y�o� exp �iot�� do
2p

; �7:24�

where a�o� and a y�o� are some operators for which�
â�o�; â y�o 0�� � 2pd�oÿ o 0� �7:25�

and

â�o�j0i � 0 : �7:26�

As is readily shown, the spectral density of this noise is

S�o� � �h
��Im w�o��� : �7:27�

One can easily see that the algebraic properties of the
operators a�o� and a y�o� coincide precisely with those of the
operators of annihilation and creation of quanta. A thermo-
stat (for any internal structure) can therefore be treated as an
infinite set of harmonic oscillators, for which the â�o� and
â y�o� operators introduced by formula (7.24) are the
annihilation and creation operators.

7.2 Calculation of average values and fluctuation spectral
densities for quantities like energy or power
In this appendix we calculate the average value and spectral
density of fluctuations in the ground state for an operator of
the form

Q̂�t� �
�1
0

�
Q1�o;o 0�â�o�â�o 0� exp

�ÿi�o� o 0�t�
�Q2�o;o 0�â y�o�â�o 0� exp

�
i�o 0 ÿ o�t�

�Q �2 �o;o 0�â�o�â y�o 0� exp
�
i�oÿ o 0�t�

�Q �1 �o;o 0�â y�o�â y�o 0� exp
�
i�o� o 0�t�� do

2p
; �7:28�

where Q1; 2�o;o 0� are some functions.
This operator is assumed to be Hermitian:

Q̂y�t� � Q̂�t� : �7:29�
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Hence, it follows that�1
0

�
Q2�o;o 0�â y�o�â�o 0� exp

�
i�o 0 ÿ o�t�

�Q �2 �o;o 0�â�o�â y�o 0� exp
�
i�oÿ o 0�t�� do

2p

�
�1
0

�
Q �2 �o;o 0�â y�o 0�â�o� exp

�
i�oÿ o 0�t�

�Q2�o;o 0�â�o 0�â y�o� exp
�
i�o 0 ÿ o�t�� do

2p
: �7:30�

This formula is simplified with the aid of the commutator
(7.25) to eventually give a condition on the Q2 function:�1

0

Q2�o;o� do
2p
�
�1
0

Q �2 �o;o�
do
2p

: �7:31�

From the form of formula (7.28) it also follows that theQ1

function can be considered to be symmetric regarding the
permutation of its arguments:

Q1�o;o 0� � Q1�o 0;o� ; �7:32�

since the integral containing the antisymmetric part is
identically equal to zero.

The Q̂�t� operator action on the ground state gives

Q̂�t�j0i �
�1
0

�
Q �1 �o;o 0�â y�o�â y�o 0� exp

�
i�o� o 0�t�

�Q �2 �o;o 0�â�o�â y�o 0� exp
�
i�o 0 ÿ o�t�� do do 0

�2p�2 j0i :

�7:33�

With the aid of the commutator (7.25) and an obvious
equality â�o�j0i � 0 this formula is rearranged to give

Q̂�t�j0i �
��1

0

Q �1 �o;o 0�â y�o�â y�o 0�

� exp
�
i�o� o 0�t� do do 0

�2p�2

�
�1
0

Q �2 �o;o�
do
2p

�
j0i : �7:34�

Hence, the average value of Q is

hQ̂i � 
0��Q̂�t���0� � �1
0

Q2�o;o� do
2p

: �7:35�

To calculate the fluctuation spectral density forQ, we first
determine its nonsymmetrized correlation function

B 0�t� � h0jÿQ̂�0� ÿ hQ̂i�ÿQ̂�t� ÿ hQ̂i�j0i : �7:36�

We use formula (7.33) once again to obtain

B 0�t� �
�1
0

Q1�o;o 0�Q �1 �o1;o 01�

� 
0��â�o�â�o 0�â y�o1�â y�o 01�
��0�

� exp
�
i�o1 � o 01�t

� do do 0 do1 do 01
�2p�4 : �7:37�

The matrix element entering into this formula is calculated by
way of the systematic carry-over of the â operators to the right
and the a y operators to the left, as well as bymaking use of the
conditions that â�o�j0i � 0 and h0jâ y�o� � 0:


0
��â�o�â�o 0�â y�o1�â y�o 01�

��0�
� �2p�2ÿd�oÿ o1�d�o 0 ÿ o 01� � d�o 0 ÿ o�d�oÿ o 01�

�
:

�7:38�

Consequently,

B 0�t� � 2

�1
0

��Q1�o;o 0�
��2 exp �i�o� o 0�t� do do 0

�2p�2 : �7:39�

The correlation function itself is obtained by way of the
symmetrization of B 0�t�:

B�t� � 1

2

n
h0jÿQ̂�0� ÿ hQ̂i�ÿQ̂�t� ÿ hQ̂i�j0i

� h0jÿQ̂�t� ÿ hQ̂i�ÿQ̂�0� ÿ hQ̂i�j0io
� 2

�1
0

��Q1�o;o 0�
��2 cos �o� o 0�t do do 0

�2p�2 : �7:40�

The spectral fluctuation density is derived fromhere by taking
advantage of the Wiener ±Khintchin theorem (1.3):

S�O� �
�1
0

��Q1�o;o 0�
��2ÿd�o� o 0 ÿ O�

� d�o� o 0 � O��do do 0

2p

�
� jOj
0

��Q1

ÿ
o; jOj ÿ o

���2 do
2p

: �7:41�

7.3 Oscillation modes for the `oscillator� thermostat'
type system
It is known from radiophysics that a semi-infinite twin-wire
line is in principle undistinguishable from an ordinary resistor
if measurements are conducted only at its end. We therefore
take it as a thermostat model. We first consider a line of finite
length l and then go over to the limiting case l!1.

The combined equations of motion for an LC circuit
connected to a line with a wave impedanceR and a velocity of
signal propagation v is of the form

qÛ�t; x�
qt

� ÿRv qÎ�t; x�
qx

; �7:42a�

qÎ�t; x�
qt

� ÿ v
R

qÛ�t; x�
qx

; �7:42b�

�̂q�t� � o2
0q̂�t� �

o0

r0
Û�t; 0� ; �7:42c�

_̂q�t� � ÿÎ�t; 0� ; �7:42d�

where U�x; t� and I�x; t� respectively are the voltage and
current in the line and q�t� is the charge on the circuit
capacity.

These equations should be complemented with the
boundary condition at the distant (from the LC circuit) line
end. The specific form of this boundary condition is of no
significance. It will be assumed, for instance, that the distant
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end of the line is open:

Î�l; t� � 0 : �7:42e�

We will seek the solution of these equations in the form

Û�t; x� �
X
n

Un�x�ân exp �ÿiont� � h:c: ; �7:43a�

Î�t; x� �
X
n

In�x�ân exp �ÿiont� � h:c: ; �7:43b�

q̂�t� �
X
n

qnân exp �ÿiont� � h:c: ; �7:43c�

where on are the eigenfrequencies of the modes of the system,
ân are the annihilation operators for these modes, and the
summation is performed over all modes.

Substitution of these expressions into Eqns (7.42) gives:

ionUn�x� � Rv
qIn�x�
qx

; �7:44a�

ionIn�x� � v

R

qUn�x�
qx

; �7:44b�

�o2
0 ÿ o2

n�qn �
o0

r0
Ûn�0� ; �7:44c�

ionqn � In�0� ; �7:44d�

In�l� � 0 : �7:44e�

From these formulas it follows that

Un�x� � An cos
on

v
�xÿ l� ; �7:45a�

In�x� � iAn

R
sin

on

v
�xÿ l� ; �7:45b�

qn � ÿAn

R
sinont ; �7:45c�

where t � l=v and the eigenfrequencies on are determined
from the equation

tanont � ÿ 2gon

o2
0 ÿ o2

n

; �7:46�

g � o0R

2r0
: �7:47�

The amplitudes An should be determined from the
condition that the total energy in each mode in the ground
state is equal to �hon=2. This energy can be represented as the
following sum:

En � E LCn � E linen ; �7:48�

where

E line
n � 1

2v

� l

0

�jUnj2
R
� RjInj2

�
dx � t

2R
jAnj2 �7:49�

is the part of the energy residing in the line and

E LC
n � r0

2o0
�o2

n � o2
0�jqnj2 �

g�o2
n � o2

0�
R
��L�on�

��2 jAnj2 �7:50�

is the part of the energy residing in the LC circuit.
Consequently,

jAnj2 � �honR

t� 2g�o2
n � o2

0�=
��L�on�

��2 : �7:51�

We now can calculate the total energy in the LC circuit:

ELC �
X
n

E LC
n � �hg

X
n

on�o2
n � o2

0�
t
��L�on�

��2 � 2g�o2
n � o0�

: �7:52�

Even from this expression one can clearly see that the
logarithmic divergence at high frequencies does take place,
and the underlying reason is indeed the energy of zero-
point oscillations of the high-frequency modes of the
system.

We now pass over to the limiting case of an infinite line.
Eqn (7.46) is rewritten as

on � pn
t
ÿ 1

t
arctan

2gon

o2
0 ÿ o2

n

: �7:53�

Hence it is possible to calculate the mode density:

D�o� �
�
don

dn

�ÿ1
� t

p

�
1� 1

t
d

do
arctan

2go
o2

0 ÿ o2

�

� t
��L�o���2 � 2g�o2

0 � o2
n�

p
��L�o���2 : �7:54�

We replace the summation in the last formula with integra-
tion according to the ruleX

n

!
�1
0

doD�o� ; �7:55�

to derive the equation which exactly coincides with formula
(3.22).

7.4 Eigenstates of an LC circuit parametrically coupled
to a mechanical oscillator
The Hamiltonian of the system schematized in Fig. 3 is

Ĥ � �hoe

�
n̂e � 1

2

��
1ÿ x̂

d

�
� p̂ 2

2m
�mo2

mx̂
2

2
; �7:56�

where n̂e is the quantum number operator of the LC circuit,
p is the momentum of the mechanical oscillator, and m is its
mass. We determine the eigenvalues E and eigenstates jci for
this Hamiltonian:

ĤjCi � EjCi : �7:57�

The eigenstates are sought in the form

jCi � ��c�ne��jnei ; �7:58�

where jnei are the states with a given number of quanta ne
for the LC circuit and jc�ne�i is the wave function of the
mechanical oscillator (which depends on ne as a para-
meter). We substitute jCi into Eqn (7.57) to obtain the
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equation for jc�ne�i:�
ÿ�hoe

�
ne � 1

2

�
x̂

d
� p̂ 2

2m
�mo2

mx̂
2

2

�
jc�ne�i

�
�
E ÿ �hoe

�
ne � 1

2

��
jc�ne�i : �7:59�

It can also be written as

D̂�Xne�
�
p̂ 2

2m
�mo2

mx̂
2

2
ÿmo2

mX
2
ne

2

�
D̂ y�Xne�jc�ne�i

�
�
E ÿ �hoe

�
ne � 1

2

��
jc�ne�i ; �7:60�

where

Xne �
�hoe

mo2
md

�
ne � 1

2

�
�7:61�

is the magnitude of displacement of the equilibrium of the
mechanical oscillator by action of the attractive force caused
by the LC circuit and

D̂�x� � exp

�
ÿ ip̂x

�h

�
�7:62�

is the unitary displacement operator, whose main property is
expressed by the formula

D̂ y�x�x̂D̂�x� � x̂� x : �7:63�

The eigen-solutions of Eqn (7.60) are the eigenstates of the
mechanical oscillator jnmi modified by the action of the
displacement operator:

jcnm
�ne�i � D̂�Xne�jnmi : �7:64�

Consequently, the energy eigenvalues for the total system are

Enenm � �hoe

�
ne � 1

2

�
� �hom

�
nm � 1

2

�
ÿmo2

mX
2
ne

2
; �7:65�

and the eigenstates are

jCnenmi � D̂�Xne�jnmijnei : �7:66�
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