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Abstract. Research on the production of cold antihydrogen
atoms, aimed at directly testing the CPT invariance and the
equivalence principle for antimatter, is reviewed. The properties
of cold positron and electron plasmas, in particular the pro-
cesses accompanying antiproton stopping, are discussed. Me-
chanisms for the formation of antihydrogen atoms are analyzed.
The most favorable conditions for the production and confine-
ment of cold antihydrogen atoms are appraised.
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1. Introduction

Antihydrogen H = pe' is the simplest atom of antimatter.
For the first time, 11 such atoms with an energy ~ 1 GeV
were produced in the antiproton storage ring LEAR at
CERN in the experiment [1] which lasted two months. The
purpose of the experiment [1] consisted exactly of the
production and the proof of the existence of antihydrogen in
nature. A beam of antiprotons collided with a xenon jet
having a density 3 x 10'3 atom cm™~2, which served as the
internal target. The collision of the antiproton with the xenon
nucleus resulted in the production of an electron —positron
pair, the positron being produced in one of the bound states in
the field of the antiproton — mainly in the 1S state. The cross
section of this process is extremely small: ~ 6 x 10733 cm?.
Nevertheless, the examination of three distinguishing features
of antihydrogen (the ability to penetrate magnetic fields,
which is a consequence of its electric neutrality, and the
annihilation of positrons and antiprotons in the material of
the detector) allowed for the reduction of the number of
events that can be attributed to background down to two out
of the eleven (with a confidence level of 95%). Subsequently,
30 atoms of antihydrogen were produced in a similar
experiment in the Fermilab (FNAL) [2].

Currently, experiments are aimed at the production and
study of antihydrogen atoms. The leader in this field is
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CERN, where the AD (antiproton decelerator) installation is
used for carrying out the experiments known as ATHENA
and ATRAP [3, 4]. The main object of these experiments
consists in direct verification of CPT invariance by comparing
the spectra of hydrogen and antihydrogen atoms [5]. Accord-
ing to the CPT theorem proved in Refs [6, 7] under the
assumptions of Lorentz invariance and the locality of
interactions, the properties of matter and antimatter must be
the same. In particular, the spectra of H and H must be
similar. In the Euclidean four-dimensional world, a body can
be continuously rotated in such a way that it will coincide with
a body produced from the original one by inversion
(reflection with respect to a point) of all its parts. In such a
world, hence, the PT transformation (the so-called ‘weak
reflection’) is an exact symmetry. In the Minkowski space,
such a continuous movement of the body is not possible,
because its world line cannot cross the light cone. For this
reason, the exact symmetry in the assumptions of Refs [6, 7] is
CPT rather than PT. The CPT violation would imply the
Lorentz invariance violation, and would suggest a change of
spacetime properties on a small scale [§—11]. In particular,
the detection of such a violation could help resolve the
problem of the absence of antimatter in the universe.

As of today, the most precise restriction on the degree of
this symmetry breaking:

0 _
|m(K ) ’(’)”(K )! < 107137 (1)

m(K")
has been derived from observations of oscillations in the
system of neutral kaons [12, 13], which result from CP
violation [14, 15]. Observe, however, that the result (1) is
only indirect [16], because it is achieved under a number of
additional assumptions: the validity of the superposition
principle for kaons, the phenomenological model of CP
violation, etc. This circumstance greatly increases the scien-
tific value of experiments with antihydrogen.

The authors of Refs [17, 18] proposed carrying out
experiments with fast (£~ 50 MeV) antihydrogen atoms
produced by recombination in the superimposed beams of
antiprotons and positrons. This technique had been earlier
developed by Parkhomchuk [19] who also measured Lamb’s
shift for states with the principal quantum number n = 2
(similar experiments with E ~ 30 keV are described in
Ref. [20]). The advantage of these experiments consists in
the relative simplicity of producing antihydrogen atoms, the
drawback being the short time the atom resides in the
analyzing spectroscopic device. In this respect, the
ATHENA and ATRAP experiments employ the opposite
approach: the measurement of energy of certain radiative
transitions in practically nonmoving antihydrogen atoms.
This task can be tentatively divided into several stages. The
first stage is associated with the development of techniques
and the construction of equipment for storage of slow
antiprotons and positrons. The second stage, which is
currently under way, deals with the study of the mechanisms
of recombination of positrons and antiprotons with the
purpose of finding the optimal conditions for producing
slow antihydrogen atoms. The third stage consists of the
development of methods for confinement of the cold
antihydrogen atoms. Finally, the last stage will be devoted
to the spectroscopic studies of atoms.

Detailed reviews of ideas and achievements in this field
can be found in Refs [21, 22]. A number of experiments

dealing with the proton stopping in a cloud of cold electrons
[23] and the stopping of antiprotons in a cloud of positrons
[24—26] have been carried out by now. It was found that
protons and antiprotons do not cool down to low tempera-
tures. Apart from that, it was not possible to observe an easily
detected production of antihydrogen atoms. These myster-
ious circumstances stimulated the writing of this paper, which
is mainly concerned with the detailed review of studies
pertaining to the second stage. A critical analysis of the
pertinent physical processes is necessary both for establish-
ing the reason for the absence of recombinations in the above-
mentioned experiments (at the time of publication of this
review the antihydrogen atoms have already been produced,
see Appendix at the end of this paper), and for planning the
studies at the third stage.

The AD installation (see the details in Refs [21, 22]) is the
storage ring of antiprotons which are generated in a target
bombarded by a beam of protons with a momentum of
26 GeV/c, coming from the proton synchrotron. The target
is irradiated approximately once per minute with bunches
containing ~ 5 x 1013 protons. Then a special pulse mag-
netic lens is used to form from the antiprotons born in the
target a secondary bunch of 5x 107 particles with a
momentum of 3.57 GeV/c¢, which enters the AD. The
antiprotons in AD are decelerated in three steps:

3.57—-2—-0.3—0.1GeV/c

using the technique of electron cooling. The exit beam of
antiprotons from the AD supplies about ~ 5 x 107 antipro-
tons per minute to the experimental zone, and has a
momentum spread of Ap/p ~0.001, energy 5.9 MeV
(momentum 0.1 GeV/c), and pulses of length 200 to 500 ns
at a repetition rate of several pulses per minute. After several
stages of electron cooling and passage through stopping foils
and gas layers, the antiproton energy is brought down to
~ 3 keV. Then, by opening and closing the input electrostatic
barrier (electrode A in Fig. 1), the antiprotons are captured in
the Penning trap [27, 28]. Thus, the motion of antiprotons
along the axis of the trap is blocked by applying a negative
electric potential to electrodes A and B, while electrode C is
grounded or carries a positive potential. In the transverse
direction, the particles are confined by the homogeneous
magnetic field

H~3T (2)
directed along the axis of the trap. The antiprotons captured

in the trap are further cooled by the electrons. The electrons
are cooled as a result of cyclotron radiation. By now such a
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Figure 1. Penning trap (section in the plane passing through the axis of
rotation).
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technique of capturing antiprotons is well developed [3, 4, 21,
22, 29]. Then, the potential on one of the stopping electrodes
is reversed for a short time. As a result, the light (and therefore
fast) electrons escape from the trap, while the antiprotons
remain.

The Penning—Malmberg trap is also used for capturing
and confining the charged particles [30]. It is a modification of
the Penning trap and differs from the latter in the shape of the
electrodes. The electrodes in this case are coaxial hollow
cylinders placed in the uniform magnetic field directed along
the axis (Fig. 2). There can be as many electrodes as necessary,
which allows the creation of the desired profile of the electric
potential along the axis. In particular, Fig. 3 shows the electric
potential in the nested Penning trap [4]. The positrons are
stored and confined in zone B, the antiprotons in zones A and
C. To accomplish antiproton—positron recombination, the
potentials in zones A and C are changed as shown by arrows
in the diagram.

z

Figure 3. Electric (negative) potential along the axis of the nested Penning
trap.

The possible use of the combined traps or the so-called
Paul - Penning trapsis also considered [28, 31]. In this case, an
alternating potential at a frequency of several megahertz is
applied, together with a constant potential, to the electrodes
of the Penning trap designed for the confinement of
antiprotons (Fig. 1). This idea consists in the use of the
Kapitza effect (see, for example, paragraph 30 in monograph
[32]) implying that in a rapidly oscillating field the particle
possesses additional potential energy which is proportional to
the square of the amplitude of the field. Since this potential
energy is inversely proportional to the square of the mass of
the particle, it is easy to choose such conditions under which it
will confine the positrons and has practically no effect on the
antiprotons. In this way, the Paul—Penning trap can be used
for confining antiprotons and positrons at the same time. The
obvious disadvantage of these traps lies in the fact that in the
course of oscillations the positrons develop high velocities
with respect to antiprotons, which hampers their mutual
recombination.

Various methods of electron and positron accumulation
in Penning traps have been developed by now [33—40]. As a

rule, their common feature is the utilization of radioisotopes
as the source of positrons and the use of solid-state (in
particular, single crystal) positron moderators serving as
either reflecting or transmitting media. In this way, it is
possible to produce positrons with an energy of ~ 1 ¢V,
whose number amounts to approximately 10~* (the modera-
tion efficiency) from the totality of positrons emitted by the
radioactive source. According to Mills and Gullikson [41], the
moderation efficiency increases tenfold when crystals of noble
gases are used as moderators.

The decelerated positrons are stored in the Penning trap.
In work [38] they were captured in the trap by the technique
proposed in Refs [34, 35], which somewhat resembles the
method of stochastic deceleration: the external oscillatory
LCR circuit coupled to the trap is tuned in resonance with one
of the periodical degrees of freedom of the magnetron drift
motion of positrons in the fields of the trap. The positron
energy attenuation achieved in this way is not strong, so it is
only possible to capture a small portion of the positrons
entering the trap.

In Refs [35, 36], the positrons loose their excess energy by
exciting the nitrogen molecules admitted into the trap. Such a
scheme, adopted in the ATHENA experiment [1], is char-
acterized by a high (~ 30%) capture probability of positrons.
In Ref. [37], the positron capture is performed with ions
rather than with neutral molecules, and the authors of
Ref. [40] propose using electrons for this purpose.

In Refs [42, 43] it was found that, along with the slow
positrons, the atoms of positronium in the ground state and in
the excited states escape from the moderators. This phenom-
enon was used by Estrada et al. [39] for realizing a new
efficient method of positron capture in the nested Penning
trap. According to the model adopted in Ref. [39], the atoms
of positronium reach zone B (Fig. 3) and are ionized there by
the strong electric field. With a large probability, the
positrons remain in the potential well of zone B, whereas the
electrons escape. As noted by Estrada et al. [39], this model
calls for comprehensive theoretical analysis.

As indicated above, the main experimental task today is
the detection of positron—antiproton recombination. At the
next stage it will be necessary to construct a system capable of
capturing and confining the produced atoms of antihydrogen.
Best suited for this purposed is presumably the loffe—
Pritchard trap [44]. A magnetic field H, whose magnitude
attains its minimum Hj in the middle (a maximum of the
magnetic field in the space outside of the conductors is not
possible, which follows from the Maxwell equations) is
created in such a trap. For atoms of antihydrogen, in which
the positron spin is directed against the magnetic field, this
point corresponds to the minimum of the potential energy
u= Mg(H — H)). Such atoms may be confined in the Toffe—
Pritchard trap as long as their kinetic energy is low enough:

e <umax ~ 1K, (3)

where for the magnetic field we substituted the typical value
(2) achieved in steady-state conditions. As far as the atoms
with the opposite orientation of spin are concerned, they are
not confined in the trap.

According to the estimates made in Refs [4, 45], for
spectroscopic measurements it suffices to have

Ny ~ 1000 (4)

antihydrogen atoms in the loffe—Pritchard trap. Especially
interesting is the measurement of frequency wy of the
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transition 2s — 1s. This forbidden transition possesses a
small natural width
A(Uo

— =100
(@]

which is determined by the time 7 = 1/Awy = 0.125 s of the
two-photon transition 2s — 1s. In these experiments, the
signal-to-noise ratio can be minimized, allowing one to
determine the position of the line center with an accuracy of
f~ 1073 of the line width. This implies that the study of the
transition 2s — 1s allows us to achieve an accuracy of

5(1)()

1 —18
010 ®

which is comparable to the value (1) obtained for kaons. The
measurement of wy will be tentatively based on the method of
the two-photon Doppler-free spectroscopy [46, 47]. A laser
beam of frequency o =~ wy/2 passes through the gas along the
x-axis in the forward direction (beam 1), and, bounced from
the mirror, goes back through the gas (beam 2). In the rest
frame of a certain antihydrogen atom moving along the x-axis
at velocity vy, the frequencies of beams 1 and 2 are equal,
respectively, to

o =w—kvy, 0;=w+ kv,

where k = 2nc/w is the wave vector. These two photons are
absorbed by the atom and transfer it from the 1s state into the
2s state. Then, under the external electric fields, an impurity
of a 2p state is induced in such an atom, which results in a fast
transition 2p — 1s, and the emitted quantum is detected. We
see that the velocity of the atom drops out from the condition
of resonance @ + wy = wy in the linear approximation with
respect to v/c. This implies that only the quadratic Doppler
effect remains, which gives the transition width

A(UD vT 2 12

Aop _ <7) — 10727, (6)
o 4

where vt = \/T/M is the thermal velocity of the atom, M is
its mass, c is the velocity of light, T = T/T,, with T being the
temperature of the gas, and Ty = 10 K [hereinafter we use the
Hartree atomic units (a.u.) 7 = m, = e = 1, unless indicated
otherwise]. By comparing Eqns (5) and (6) we see that in order
to achieve the ultimate accuracy (5), the antihydrogen atoms
must have a temperature of T~ 107> K, and taking into
account the above-mentioned factor f we get a less arduous
condition

T~10"%K. (7)

The methods for cooling atoms to the temperature (7) are
discussed by Walraven [44]. The ultimate temperature 7
achievable by laser cooling is determined by the atomic recoil
upon spontaneous emission of photons. For the transition
2p — 1s we get 7T} = 0.003 K, which is even lower than the
required temperature (7).

Laser cooling of hydrogen atoms to a temperature of
T =0.008 K in the Ioffe—Pritchard trap was first accom-
plished in Refs [48, 49] using a hydrogen laser operating on
the 2p — 1s transition. Doppler-free measurements of
2s — ls splitting in a hydrogen atom have also been done in

atomic beams [50, 51] and in the trap [52]. The resolution
achieved was dwg/wg ~ 3 x 10713 at an atomic temperature
of approximately 1 K, which agrees with the boundary
estimate (6).

After the production of antihydrogen atoms, the most
serious task will be their capture and confinement in the
Toffe—Pritchard trap. The real scheme of this procedure was
proposed by Walraven [44]: the overlap zone of the positron
and the antiproton clouds, where the recombination takes
place, must occur within a large Ioffe —Pritchard trap, near
the minimum of the magnetic field. As will be shown in
Sections 2—5, the recoil of antihydrogen atoms in the course
of recombination is not strong, and therefore ¢ ~ T, where T
is the temperature of the positron—antiproton plasma.
Consequently, according to Eqn (3), the condition of capture
and confinement of antihydrogen can be written in the form

T < thpax ~ 1 K. (8)

This condition becomes much less severe, viz.
T< 100K, 9)

if we recall that the antihydrogen atoms H,, are mainly born in
the excited states, n ~ 30 (see Sections 2—5), in which the
orbital magnetic moment is quite large:
. ~ Mgn? ~ 1000M3. For such atoms at . < 0 , we have
Umax ~ 1000 K, and therefore, according to condition (9),
they are not able to escape from the trap. At subsequent
transitions (which mainly belong to the cascade radiative
transitions), the condition p. < 0 is preserved with good
accuracy, which ensures confinement of the atoms suffering
deexcitation.

The main problem in this method of capture and
confinement is the cooling of such atoms. Laser cooling will
hardly be suitable (as a matter of fact, we believe that the same
applies to the cooling of ground-state atoms under conditions
of a real experiment with antihydrogen). According to simple
preliminary estimates, antihydrogen can be cooled by the
atoms of noble gases X = He, Ne, Ar, etc. Indeed, the
annihilation cross section of a slow positron and the
electrons of atom X is of the order of a; ~ 10722 cm? [53].
Here we have taken into account the motion of electrons in
the atom, and therefore for the relative velocity of electron
and positron we take v ~ 1 a.u. The p + p annihilation cross
section at f =v/c < 1is a3 ~ 0.5 x 10727 7% cm? [54—56],
where v is the relative velocity of colliding particles. With the
impact parameter p > 1, the trajectory in the system p + X is
practically rectilinear because of shielding of the nuclear field
by electrons. We are interested in the annihilation cross
section in the system p + X at low energies Mv* < 1, where
M is the proton mass. For p < 1, the antiproton approaching
the atom X to distance ~ 1 a.u. is accelerated to the kinetic
energy ~ 1 a.u. Hence we conclude that the annihilation cross
section in the system p + X is of order

03 ~ 03 (Mv2 =1)~ 107 cm?.

The annihilation cross section of particles in the system
H, + X is of the order of ¢, = 0| + 03 =~ 73, and is therefore
small compared with the elastic scattering cross section
6. ~ 10716 cm? of these particles. If the polarization attrac-
tion is taken into account, both the cross sections increase,
but their ratio remains more or less the same: ¢, /g, ~ 1073,
Hence we conclude that annihilation in the course of cooling
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can be neglected. The capture of protons in the reactions of
the type

p+X— (pXF) +e, (10)

characterized by the cross section o, can also be neglected
[57-59]:

o
—< <1073,
O¢

(11)

The reason is that the electrons remain in the bound state
at any distance R between the antiproton and the nucleus of
the noble gas atom. In particular, at R = 0 in the case where
X = He, Ne, Ar, Kr, Xe we get respectively the negative ions
H (0.75), F (3.4), CI" (3.6), Br (3.4), I (3), where in
parentheses we indicated the ionization potential I of the
outer electron (the electron affinity) in electron-volts, quoted
from handbook [60]. In Refs [57—-59], the capture cross
section . was calculated using the adiabatic perturbation
theory in the classical trajectory approximation for heavy
particles. It was also demonstrated that all these approxima-
tions are valid, while the approximations used by Briggs et al.
[61]1ead to a considerable overestimation of the cross sections
a.. Thus, the estimate (11) is good for X = Ne, Ar, Kr, Xe
owing to the large value of 1. For helium, the situation is more
complicated. Owing to the small values of 7 and the electron
excitation energies of the molecular ion (p H), the process (10)
follows a different mechanism characterized by the reaction

p+ He — (pHe)" — (pHe)" +e. (12)
As the antiproton approaches a helium atom, the outer
electron goes to the excited state (for R — oo, this state
transforms to p + He*). For a short time, the antiproton
turns out to be in the bound state. Then this state is stabilized
by the emission of the electron. By nature, the reaction (12) is
close to the dielectron recombination known in plasma
physics. In scientific literature it would have been referred to
as ‘capture by Feshbach resonances’. We are not aware of the
existence of calculations pertinent to this reaction. A rough
estimate for the cross section of reaction (12) gives

oe ~ 10717 cm? | (13)

which is an order of magnitude greater than the results
reported in Refs [S7—59]. The estimate (13) agrees with the
results of experiments performed by Kottmann [62] on the
‘muon bottle’ at low pressures p = 6 Torr in the mixtures
He + H».

On the strength of arguments developed above we may
conclude that neon is preferable to helium for cooling
antihydrogen.

According to the theorem proved by O’Neil [63], the cloud
of charged particles in the trap will be stable in the presence of
ideal axial symmetry. In the Ioffe —Pritchard trap [64], such a
symmetry is lacking, and therefore the problem of stability of
the antiproton—positron plasma in the inhomogeneous
magnetic field of such a trap calls for special investigation.
One might expect that any deviation from axial symmetry will
cause gradual drift spreading of plasma in the direction
transverse to the magnetic field. The first results of such an
analysis of plasma stability in the Ioffe —Pritchard trap are
encouraging: they indicate that plasma is stable owing to the
existence of stable trajectories of charged particles in the field
of this trap.

It would be natural to expect that the production of
antihydrogen will open new fields of research. In addition to
the validation of CPT invariance, we should mention
verification of the equivalence principle for antimatter [3, 4,
16, 21, 22]— which means answering the question of whether
antihydrogen falls with the same gravitational acceleration as
hydrogen. It should be emphasized that such experiments
cannot be staged with antiprotons because the forces caused
by accidental electric fields are much stronger than gravity
force. Gravitational experiments with antihydrogen have not
yet been worked out in detail; certain suggestions can be
found in Refs [65—68]. In particular, in Ref. [65] it was
proposed to measure the equilibrium density distribution of
atoms throughout the height of the trap, and use the
Boltzmann formula for calculating the acceleration of
gravity for antihydrogen.

It could be argued that since CPT invariance implies
symmetry between matter and antimatter, then it follows
that matter and antimatter will fall in the terrestrial field with
the same acceleration, namely there is no need to check the
equivalence principle. Such a statement, however, is not
correct. CPT invariance assumes that this transformation is
applied not to a particular object, but to the entire universe.
Feasibility of CPT invariance says that the acceleration of
gravity will be the same when antimatter falls on the anti-
Earth. Here, a certain reservation is due — the validity of this
last statement requires that the gravitational field described
by a tensor of second rank (spin two) was CPT invariant and
renormalizable. It is known, however, that this field defies
renormalization.

The fact that the CPT theorem is applied to the whole
universe can be illustrated with a simple example. Consider
a speck of dust floating in an isolated flask filled with gas.
For the sake of simplicity, we just want to check whether
this system features T invariance (also known as time
reversibility). The floating particle experiences the Stokes
viscous force which tends to stop the particle. The equation
of motion of the particle, which includes this force, is
expressly irreversible, which means that T invariance is
violated in this equation. In practice, this means that if at
some time (1 =0) we reverse the particle velocity, the
particle will not move with acceleration, as might be
deduced from the principle of time reversibility. Rather, it
will slow down again. The fault in this reasoning is as
follows: in order to check T invariance at t = 0, we should
also reverse the velocities of all molecules in the flask. Then
the particle will accelerate, i.e. T invariance demonstrates its
practicability. In real life, however, such an experiment
cannot be staged, because it is not possible to achieve
complete thermal and mechanical isolation of the flask.
Even a very weak external influence on the flask, taking into
consideration the Lyapunov instability of the trajectories of
the colliding particles, will lead to exponential growth of the
deflections from these trajectories. As a result, even if we
manage to reverse the velocities of all molecules in the flask,
a speck of dust will still be decelerated. Curiously enough,
these nontrivial circumstances are from the outset taken
into account by the Navier—Stokes equations which must
be used for solving the problem of the motion of the probe
particle. The contemporary views on the problem of
irreversibility in nature are presented in detail in book [69].

This brings us to the end of the introductory section, and
we embark on discussing the physics of production of cold
antihydrogen atoms.
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2. Radiative recombination. Standard theory

This section is in a certain sense auxiliary, and actually serves
as a prelude to Section 3. Here we try to highlight on a
qualitative level some features of the process of radiative
recombination in the absence of a magnetic field (H = 0).
This will help us to comprehend the rather complicated
physics of radiative recombination in a strong magnetic field.

Consider first the process of radiative recombination
(RR)

e++f)_’Hn/+Y (14)
with the formation of highly excited Rydberg states
n>1. (15)

Of special interest for the production of antihydrogen is the
case of low positron energy

<1, (16)

to which the Kramers approximation can be applied [70—72].
The slow positron is captured by an antiproton at the impact
parameters

2/3
~— 17
P~ (17)
and angular momenta
I~ <n, (18)

which are characteristic of the long-range Coulomb attrac-
tion between these particles. Then the positron follows the
near-parabolic trajectory, approaching the antiproton to the
distance

rm ~ n*3 (19)

and accelerating to the kinetic energy

e ~n Y3 (20)

Remaining within this region for the period of time

2
fy~——=—n~n
\f & ’
the positron experiences there the highest acceleration, emits
a photon with a frequency

L 11

R TR PR,

P
» =" (21)

and is captured in the highly elongated Keplerian elliptical
orbit with a bond energy

1
n = 2—1/12 5 (22)
a major semiaxis
R, =n, (23)

and an eccentricity e:

12
176%ﬁ~n72/3<1. (24)

According to the quantum-mechanical Fermi golden rule
[53, 73], the cross section of radiative recombination (14) into
the state (n/) is given by

4w

or(nl) = 32 (2l+ )a’ (25)
where the notation is introduced:
1
= 2I—+IZ |"ﬁ|2 ) (26)

re = (nimr|p) .

The total cross section of radiative recombination is defined
by the expressions

do’n?
O'R—ZO'R nl 3C3 JW Bdw, (27)
B=Y (20+1)d’ (28)
I
In devising formula (27), we used the summation rule
Zz[dnzjfda) (29)
which holds true in domain (15).
From Eqns (20), (21), and (15) we deduce
o < e . (30)

Together with constraint (15), this ensures the validity of
classical electrodynamics [74], according to which
161 dw
=|l— — 31

: J 3v/3 ¢30? S

[as a matter of fact, however, Eqn (30) follows from Eqn (15),

and so formula (15) represents actually the only assumption].

Comparing Eqns (27) and (31), we find the expression for a
square of the transition matrix element

4n

B= Doty (32)

which we shall need shortly.
Cross sections of radiative recombination into states (n/)
and n are

2rn(21+1)Q
or(n) = 55 (33)
3
ZO’R nl 4(,{)‘;B 161 . (34)
33v  3v3Aond?
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Here, the notation was introduced:

0= [¢()] +24°() = 02,

z=122n)*",
where ¢(z) is the Airy function defined as [74, 75]

o(z) = \/LEJ:O dtcos (zt—i—% t3> .

From formulas (25) and (33) for the cross sections we
conclude that in the Kramers approximation we have

(35)

, 217/3,11/3

v

d (36)

Within the positron plasma there is an electric field that
can ionize the emerging atoms. Because of shielding, the
component of the electric field £} parallel to the magnetic
field is small. The positrons are magnetized; they move along
the magnetic field lines, and their transverse motion is
hampered. Because of this, shielding in the crosswise direc-
tion is absent, and the transverse electric field is nonzero. Its
typical strength in the experiments is

v
E, ~30 —. (37)
cm
This field destroys the emerging atom if the inequality
E R, > !
1y 21’12

is satisfied, i.e., for

n > n. ~ 100. (38)
In the coordinate system comoving the atom, there is an
electric field
v v
EL~—H~3 —.
c cm
Since Ey < E |, the ionization caused by this field (Lorentz
ionization) is insignificant in the states with n < n. that are
stable with respect to E .
From Eqns (27), (32), and (38) we conclude that the total
cross section of radiative recombination is equal to

32nA

= > 39
3v3 202 (39)

OR

where

1
= _ ]
> n(l+n2e?)

n<ne

. 1
n; = min (nc; — .
\/_T')

For n> 1, formula (34) coincides with the quantum-
mechanical result [76]. At n = 1, from Eqn (34) we get

or(1) = Acv?, 4=193,

whereas the exact formula yields 4 = 15.4 [77, 53]. We see
thateven at n = 1 the expression (34) gives an adequate result.

As concerns the error in expression (39), it is logarithmic and
approximates 1/4.

The radiative recombination coefficient (in units of the
CGS electrostatic system) is written as

32v2m ocrezcz/l
3\/§ UTe ’

and for the Maxwellian positron distribution function at
plasma temperatures

(40)

o = (voR) =

T=10", 1072, 1eV

it gives respectively

=1x10"10 1x107" 1x107"2cm’s!.
In formula (40), & = €2 /(fic) ~ 1/137, re = €*/(mc?), mis
the electron mass, vy = v/ T/m, and A = ln(Eo/T)l/z.

3. Effects of a magnetic field
on radiative recombination

In the absence of a magnetic field (H = 0), the process of
radiative recombination is governed by two characteristic
scales: the Thomson radius Rt = €2 /éx, and the Bohr radius
ay = 12 /(mee?). The latter arises naturally in the considera-
tion of radiative recombination to the lower levels n ~ 1: such
transitions provide the main contribution to gr. A positron
following the trajectory with the impact parameter

p= (rmRT)l/2

nears the antiproton to the distance of closest approach, ry,,
after which it recedes to infinity with the probability close to
1. With some small probability Wy, radiative recombination
to levels n ~ 1 takes place on this trajectory, therefore

Fm ™~ Rn ~dy, OR NTtpzWR.

In the region r ~ ry ~ 1, the positron moves with a velocity
~ 1, with an acceleration ~ 1, and for a period of time 7y ~ 1,
and it produces radiation with an intensity [74]

where o = e?/(fic) ~ 1/137. Therefore, in accordance with
formula (34), one obtains

OR ~ oc3a0RT ~ 2

Transitions to the levels with n > 1 add to this formula an
extra factor A ~ 2—3.

In the presence of a magnetic field there is a third
characteristic scale, the Larmor radius, which describes the
cyclotron motion of the positron:

=5 500,
wH

(41)
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where wy = eH/(m.c) ~ 107> is the Larmor frequency.
Hereinafter we make numerical estimates for typical experi-
mental values defined by expression (2), and also for

T~10K, ne=ne~10%cm™. (42)
Under these conditions, the following relationships are
satisfied:

rg > ap, Rt > a,

and therefore only two limiting cases are possible:

apo < Rt <ry, (43)

ay L rg < RT . (44)
The results obtained in Section 2 relate to the case (43)
characteristic of conventional hot plasma. The magnetic
field in these conditions has very little effect on the process
of radiative recombination [78]. Condition (44), however,
holds true in the experiments with antihydrogen. Such a
plasma displays certain unusual features that distinguish it
sharply from hot plasma. We shall call such plasma the
‘supermagnetized plasma’ (SMP), since the term ‘magne-
tized plasma’ is already in use and refers to the case [79, 80]

%>17
Ve

rg > Rr, (45)

where ve = vee + Vi 1S the total collision frequency of
positrons in the processes e™ +e*, e™ + p. Observe that in
the experiments in question the plasma is considered as ideal:

1/3
2ne/

T

e

f= <, (46)

and therefore

Ve TH 3

(0] - Rt f <l ’
which means that condition (45) is fulfilled with certainty if
condition (44) is met.

At this point it is worth noting that, unlike our case, the
method of electron cooling of beams [81—83] deals with
nonideal plasma, which is due to the small typical values of
the temperature for the longitudinal motion of electrons.

The smallness of the Larmor radius (44) means that the
magnetic field considerably changes the pattern of binary
collisions in SMP. The particles move along the magnetic field
lines (z-axis) like strung beads. The characteristic length of
free motion of the particle (mean free path) approximates

1

A~ .
neR%

By virtue of Eqn (46), one finds

A |

Ry > b
which means that collisions are infrequent, and for the most
part the particles move freely.

Let us consider the collision of a positron with an
antiproton. Owing to its large mass, the latter may be
regarded as immobile and fixed at the origin. In the

cylindrical coordinates (z, r, ¢), the Lagrangian of a positron
moving in a homogeneous magnetic field H and an electric
field E of the antiproton with a charge zp = 1 assumes the
form

1 1 1 1 Z
Lo —— 724 - 2242 ,2:2, ° 2. 0 47
0= Sttt S ot + —"2+22,( )

where r=/x2+y%, and ¢ is the azimuth angle

(tangp = p/x).
According to Eqn (47), the canonical momentum is
conserved, viz.

Ly 1
L= _

_%_Ew,ir2+r2(]):const, (48)
along with the energy
1 1
E=5 "+ 3 p* +u(r,z) = const, (49)
where
/(L 1 "
u(r,z) =§<77§ (UHI‘) 7\/]‘27? (50)

is the effective potential energy, p, = 7, and p, = 2.
When ¢t — —oo, the trajectory of the positron colliding
with an antiproton is described by the equations

x=ro+rycos(wpt+ @),

(51)

y = —rg sin(wf + @) ,
z= ’UHI.

Calculating ¢ from Eqn (51), and comparing the result with
formula (48), we get the expression
1

L= 3 op(rg —r}) = const,
which relates the momentum L to the position ry of the center
of the initial positron orbit.

Formulas (49) and (50) describe the two-dimensional
motion of a positron in the (r,z) half-plane (r > 0,
—00 < z < 400). At large values of the parameter ry, namely

(52)

o> po. po =20 () ~ 2000, (53)
the positron executes oscillatory —translatory motions in the
Larmor orbit in the (r, z) plane (see Figs 4 and 5).

Observe that p, = (r%,RT)l/ 3, and therefore

g << pO < RT . (54)

In the conditions specified by Eqn (53), the positron drifts
in the crossed E and H fields with the velocity [naturally, this
follows from equations (48), (49)]

¢(E x H)
A

which leads to the displacement of the center of the Larmor
orbit by

(55)

or = 220 (56)

wHUHrO
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ulr)

Figure 4. Effective potential u(r, z) vs. r with fixed z. Curve / corresponds
to ro > pg, curve 2 to ry ~ pg.

8]

Figure 5. Positron trajectories in the field of an antiproton in super-
magnetized plasma. Curve / corresponds to ryp > py, curve 2to ry ~ pg.

where ¢ is the unit vector in the azimuthal direction. Notice
that at the distant collisions (53), with the accuracy [32]

Nexp(far—()), an~1, (57)
Po
the adiabatic invariant is conserved [32, 79]:
Iy= ﬁ ~ const . (58)
H

In the experiments in question [3, 4, 21], the magnetic field
within the confines of the positron cloud is highly homo-
geneous:

(59)

which is necessary for ensuring the stability of the positron
cloud, and therefore from Eqn (58) it follows that

v} = const. (60)
In the case of
Ty < Po (61)

the collision pattern is changed dramatically [84]: upon
reaching region ‘b’ (Fig. 5), the positron motion becomes
stochastic. At first, the positron moves in the region ‘a’,

executing Larmor motion. Getting into ‘box b’, the positron
all but completely ‘forgets’ through which entrance (‘a’ or ‘c’)
it had initially got there. It leaves ‘box b’ through ‘openings’
‘a’” or ‘¢’ with about equal probability 1/2. The adiabatic
invariant (58) is not conserved in this case, and therefore the
collision alters dramatically both the velocity v, and the
Larmor orbit radius ry:

Av, ~v ~v, Arg~ry. (62)

Here we have taken into account the energy conservation:

AW*) =0, v =4 + vﬁ . (63)
From the conservation of momentum (52) it follows that in
the case (61) one has
h
Arg ~ 2%, 64
! Po (69

I’()AI”() = I’HAFH,

The motion of the positron inside ‘box b’ is stochastic. To
get out of the box, according to relationships (64), the
positron must hit the area element

2
Se ~ pogArg ~rg

on the surface of ‘box b’, the area of which is

Spr(Z).

Accordingly, the positron performs inside ‘box b’ oscillations
whose number is of order

Sb (RT )2/3 N (z00)*"? (65)

after which it escapes either through exit ‘c’ or through
entrance ‘a’ with approximately the same probability
(= 1/2). The characteristic kinetic energy K, and velocity vy
of the positron inside ‘box b’ are respectively

Z Z
Ko ~ —0 , Uy~ 1—0/2 ~ (Zo(DH)]/3 . (66)
Po Po

The particle residence time in the box approximates

2
Po Zo/3
Ter~v— No~—5—, (67)
Vo i T

and the positron—antiproton recombination rate (the prob-
ability per unit time) is given by

/IG = Oeff He ™~ p% VT Ne WR . (68)
Here, o is the recombination rate constant, vt = +/7 is the
thermal velocity of the positrons, the quantity

Wr ~ ar (vo) Vo Mefr Te (69)
is the recombination probability of the positron captured in
‘box b’, negr ~ l/pg is the effective concentration of positrons
in the box, and gr(v9) is the radiative recombination cross
section at a positron velocity vy. According to formula (39),
one finds

or(vo) = or(vT)

Oem | —]CI\)
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From this and estimates (65)—(69), we conclude that

Oefr ~ 0 ~ VTOR(VT), (70)

where o, is defined by formula (40), and or(v) by formula
(39).

Thus we see that the positron confined in ‘box b” has many
opportunities (~ Ny) for radiative recombination. However,
the positron here moves at a high velocity, and therefore the
recombination cross section is small. As a result of the mutual
compensation of these effects, in plasma with the parameters
(44) we obtain

Oleff

—n~ 1. 1

- m
Obviously, in conventional hot plasma (43) we have

OLeff

—=1. 72

. (72)

In the general case, this ratio is a function of the dimensionless
parameter
ryg T /

= T\ = (z00m)*?

This parameter is composed of two characteristic scales
entering relations (43) and (44), which in turn characterize
the classical motion of the positron in ‘box b’.
So, in the general case one can write down the relationship
e _

(%)
=Fl = ).
Oy T]

According to formulas (71) and (72), it is readily shown that
F0)~1, F(co)=1

(74)

(to avoid a misunderstanding, please note that here we use the
values of the argument defined in formula (74): for example,
the zero argument corresponds to H = o). Dependence (74)
agrees with the results of the experiment [85] concerned with
the radiative recombination on bare ions in the systems of
cooling the ion beams by electrons (coolers) in a strong
magnetic field (it should be emphasized that the mechanism
of dielectronic recombination prevails for ions that have
electrons in their shells).

Forions C®" (zyp = 6) in the magnetic field H = 0.042 T,
from formula (73) we get 77 = 0.003 eV, which agrees with
Fig. 1b from Ref. [85]. From this figure it also follows that

F0)~2, Floo)=1. (75)

Thus, owing to the stochastic motion of a positron in the
collisions with an antiproton with impact parameters (61), the
recombination coefficient o.g in experiments on the produc-
tion of cold antihydrogen will be twice the value calculated by
formula (40).

Of considerable interest is the theoretical calculation of
the function F, which can be done by the Monte Carlo
method.

4. Stimulated radiative recombination

Stimulated radiative recombination (SRR) is discussed in
Refs [86—89], where it is proposed to raise the rate of radiative
recombination using the effect of stimulated radiation:

p+e’ + Niw — Hy+ (N+ 1) ho, (76)

which takes place when a positron recombines with an
antiproton in the field of a laser beam. In this section we
discuss the current status of research on SRR, and present the
details of the kinetics of this process. We also discuss the effect
of diffusion ionization of the emerging atoms with the laser
beam, which previously had been left out of the considera-
tion.

The probability of SRR on one antiproton per unit time
(the rate of SRR), according to the Fermi ‘golden rule’, is
defined (see Appendix I) as

Js(nl) = 23[“

—— d*n.f(v)(2+1). (77)
¢

Here, I is the intensity of the laser beam (the beam energy

transferred across the unit area per unit time), d2 is the dipole

moment squared of the positron transition as defined by

formula (26), v, p = m.v are the velocity and momentum of

the positron in the initial state, respectively, and

10 = e (37

is the Maxwellian distribution function of positrons over
velocities. In Eqns (77) and (78), we assume the feasibility of
the resonance condition (21), in which w this time is the laser
frequency.

The laser field leads not only to recombination, i.e. to the
production of antihydrogen atoms, but also to their destruc-
tion as a result of running the inverse process with respect to
Eqn (76), namely the ionization in the laser field (Fig. 6),
which occurs at the rate 4;(n/). According to the principle of
detailed balance, this ionization rate is linked with the above-
introduced rate as

/13 (l’ll)
Al(n/)

(78)

=nef(v)(21+1). (79)

Summation of the SRR rate constant (77) with respect to /
using formulas (28) and (32) gives us the total rate of
stimulated radiative recombination to the level of an anti-
hydrogen atom with the principal quantum number #:

is(n) = f"f;i;ﬂ) | (80)

The corresponding recombination cross sections of the
positron on the antiproton in the field of the laser beam are

/

lli (I’l)

Figure 6. Scheme of kinetics relevant to stimulated radiative recombina-
tion.
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given by the expressions

as(nl) :% , os(n) = %(:) .

(81)
The ratio of recombination cross sections for stimulated
radiative process (81) and conventional (spontaneous) radia-
tive process (33), (34) is called the laser-enhanced recombina-
tion gain [87]

I f(v)v
G=—2+1—. 82

23 (82)
In experiment [90] with an electron cooler using a carbon
dioxide laser, stimulated radiative recombination to the level
n = 12 of hydrogen atoms was studied, and the measured gain
amounted to

Gexpr = 4790 £ 2830. (83)
The electron energy comprised
g =233 meV =g, (84)
and the laser beam intensity equaled
w
I1=500 — =10"" au. (85)
cm

Function f(v) is related to the probability

dw =f(v)d*v, d’v=dv,dv,dv.

for the electron to have a velocity in the interval d3v. For the
rectangular distribution of the electron energy ¢ in the form

1 1 !
dW:A—gG)(N—E A8—8k>®<8k —E+§Aﬁ> dex, (86)

we ought to set

1

) = g (87)
in formula (82), after which it becomes
g Ic?
From formulas (84), (85) and (88) it follows that
A=2. (89)

Assuming &/Ae ~ 2 (this parameter was not introduced in
Ref. [90]), from Eqn (88) we get

GthOl‘ ~ 4 . (90)

In experiment [91], a dye laser was used for placing
electrons on the level n =2 of a hydrogen atom, and the
measured gain approximated

Gexpt ~ 607 (91)

normalized to the value of /=20 MW cm2, under the
assumption that the recombination cross section is directly

proportional to the laser intensity [as in formulas (81)]. The
temperatures of electron motions in the cooler in the
transverse and longitudinal directions with respect to the
magnetic field were equal to

T, =0.11eV, T;=045meV,

respectively. For such a two-temperature electron distribu-
tion

10 S
V) = X — —
2TCTJ_ 2TE’TH P 2TL 2TH

with 7} < T in Eqn (82) we should set
2

exp <_%> ~ 100,
L

which results in the theoretical value of the gain

f)v—

Gtheor ~ 1. (92)
It should be emphasized that in these two experiments the

condition (43) was satisfied, and therefore the effect of the

magnetic field on the recombination was negligible.

According to Wolf [89], the large disagreement between
the values (83), (90) and (91), (92) is rooted in the wrong
assumption that the stimulated radiative recombination takes
place from the states in the continuous spectrum of the
electrons (or, in our case, positrons).

In the steady-state plasma, the electron density near the
proton is higher than the mean density n.. The excess of
density comes from the electrons residing the highly excited
Rydberg states in the field of the proton. For example, in the
case of a plasma, in which the dominating process of
relaxation towards equilibrium state is the collisions, the
calculation done by Mansbach and Keck [92] using the
Monte Carlo method gave an additional factor related to
such an increase in the electron density:

Fyq~45. (93)
Multiplying the theoretical result (92) by this factor, we
reconcile theory (92) and experiment (91). However, as is
seen from results (83) and (90), theory still disagrees sharply
with the data obtained by Yousif et al. [90]. It is the authors’
opinion [59] that this can be explained by the fact that in the
experiments of Ref. [90] the laser field caused electron
diffusion over the Rydberg states, which alters the entire
pattern of radiative recombination. This stochastic diffusive
motion of the electron over the Rydberg levels occurs when
the laser intensity exceeds the threshold value [93]

2 x 1010
=

I>Iy, Ip W cem2. (94)

Forlevel n = 12, we have

Ip =50 W cem™2,

which is less than the laser intensity in the experiment of
Ref. [90] [formula (85)]. The characteristic time of the
diffusion ionization (~ 30 ns) of hydrogen atoms produced
in the states with n = 12 is greater than the length of laser
pulses (~ 0.1 ns) in the experiment [90]. Accordingly, the
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emerging atoms do not have time to be destroyed, but the flux
of atoms to the level n =12 is large because of the fast
diffusion of electrons from the continuum. Despite the high
observed value of the recombination gain (83), the use of a
pulsed laser for the production of antihydrogen atoms, as in
the experiments of Ref. [90], is not suitable because most of
the time the laser beam is turned off. If a cw laser is utilized
and the intensity of the laser beam is kept at the level (85), the
emerging atoms will be rapidly destroyed through the
mechanism of diffusion ionization. As the intensity goes
down to the threshold value Ip (and below), when the linear
theory of ionization holds, as described above, according to
Ref. [90] the gain falls to the value of G < 0.4 which is less
than unity, and hence the stimulated radiative recombination
becomes less efficient than the conventional spontaneous
recombination. The theory of stochastic ionization of atoms
in a laser field is far from completion [94—96]. Accordingly,
today we do not have even a qualitative understanding of the
processes associated with stimulated radiative recombination
to the Rydberg levels with high principal quantum numbers.
Further we will confine our discussion to the subcritical range
of laser intensities

I<lIp. (95)

First of all we need to study the evolution of atomic states
after laser-stimulated recombination into the initial excited
state (n/). The rate 4, of the radiative transition (see Fig. 6)

Hnl - Hn’l’ +v
into all possible states n'/’ is given by [71, 97]
4

Al = R

(96)

From Eqns (18) and (96) we conclude that the typical value of
/Ay for atoms produced in the states n ~ 12 is of order

dy ~5x 10° 571, (97)

By virtue of the selection rule for dipole radiation, namely
I'=1+1,
the main contribution to the radiative transition rate (96)
comes from transitions to the states
n'=Il'~Il<n.
The time 7es, within which the atom produced escapes

from the positron plasma with the radius typical of experi-
ments [3, 4]:

R~0.5cm, (98)
is approximately equal to
R
Tese = —~0.5x 1077 s, (99)
VA
and therefore
1
Jose = — ~2x 10° 57!, (100)

Tesc

Now we need to evaluate to what extent the orbital
quantum number of the hydrogen atoms produced in the

states n ~ 12 may change during the time of radiative

relaxation (99) as a result of Stark transitions
Hy+e" — Hy +e'. (101)

In plasma with parameters (42) and at n ~ 12, the rate of
Stark transitions is evaluated as [59, 98, 99]

3nPn, A* 2m 5
I'p=——14/—~1 - 102
D A T 0> s (102)
Here, the notation was introduced:
A=1In (}’D vl) ; /11 :lnn,
n
(103)

[ T
p = 747”%62 ~ 0.03 cm

is the Debye plasma radius, and

T = VT au. =10 cm s~

is the thermal velocity of positrons. The physical meaning of
I'p is that within the characteristic time 1/I'p any initial
distribution of atoms with respect to orbital momenta relaxes
to the equilibrium, or the so-called ‘statistical’, distribution
20 +1

Wall) ==~ .

(104)

From estimates (97), (100), (102) and the kinetic scheme
presented in Fig. 6 we conclude that the initial distribution
of atoms with respect to / remains practically unchanged and,
moreover, the radiative deexcitation is practically completed
over the time taken by the atoms produced to escape from the
plasma.

The flux of atoms from the plasma (the number of atoms
escaping the plasma per unit time) is defined as follows

T =g Ny
where Nj is the stationary number of antiprotons in the
plasma volume, and

As(nl) Ay (nl)

i = z,: Ay (nl) + 2i(nl) ~ "SRR

(105)

is the rate (the probability per unit time) of production of
atoms on one antiproton. In formula (105), we took into
account the probability

"

Ay
/L', —+ ).i

Ws =

of the atomic stabilization as a result of radiative de-
excitation. With the probability 1 — Ws, the emerging atom
is ionized in the laser field.
At low laser intensities, we have
li R ey s Ws=~1,
and therefore it follows from Eqn (105) that
)LSRR ~ j.s(n) . (106)

From this and relationship (80) we see that Asgr ~ 7. In the
transition range of intensities, when 4; ~ /., the recombina-
tion rate comes to saturation.
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From the above formulas for Z; and 4, it is easy to verify
that saturation occurs at I ~ Ip. Finally, when 7> Ip , we
have /; > 4,, and therefore formula (105), with due account
for relationship (79), reduces to the expression

8100 f(4) n,

—_— 107
/3 e3nd (107)

ASRR =
that is, as / — oo the recombination rate tends to a constant
(the saturation effect [89]). This, however, relates to the
supercritical region (94), in which, as indicated above, the
theoretical formulas linear with respect to laser intensity no
longer hold [this also applies to Eqn (107)], and for which
there is no reliable theory so far. It is clear, however, that
owing to the fast diffusion ionization the rate Agsgr in the
region (94) decreases with increasing laser intensity. At
I ~ Ip, the recombination rate Aggrg reaches its maximum.
However, as indicated earlier, the rate of stimulated
radiative recombination even with the most advantageous
stationary laser regime is less than the rate of spontaneous
radiative recombination discussed in Section 2.

The theory of stimulated radiative recombination pre-
sented above is far from completion. Additional research is
required here.

5. Three-particle recombination in
supermagnetized plasma

In supermagnetized plasma (SMP) with the parameters (44),
the magnetic field has a considerable effect on the process of
three-particle recombination (TPR) of antiprotons with
positrons [59, 98, 100, 101]. The physical cause of this effect
is that under conditions (44) the positron motion transverse to
the magnetic field is heavily suppressed, and therefore the
recombination on the antiprotons is suppressed.

The first and the fastest stage of the three-particle
recombination is the formation of the Thomson atom:

et +e"+p=Hr+e" (108)

with a positron binding energy I, ~ 7, and a radius of the
positron orbit ~ Rr. In reaction (108), we also showed the
inverse process, namely the ionization of the Thomson atom
by the positron. The direct and inverse processes are fast
compared with all the subsequent stages, and therefore a
quasi-stationary cloud gathers around each antiproton, with
a size ~ Rt and the number of positrons in it reaching

N* ~ gnR%ne .
If we take into account the electric field £, within the plasma,
the concept of the Thomson atom is preserved, although the
shape of the positron orbits becomes different. As demon-
strated in Ref. [98], this electric field does not affect the
resulting rate of the three-particle recombination. The reason
is that this rate is determined by the slowest processes that
take place at the levels n ~ 30 (see below). The effect of the
electric field £, on these processes is insignificant.

The second step in the three-particle recombination is a
further relaxation of the atom in the processes of the so-called
replacement collisions [100]:

(109)

et+H,—»e"+H,, n' <n. (110)

The number # here does not have the direct meaning of the
principal quantum number, because the positron orbits are

much distorted by the magnetic field, and they bear little
resemblance to Keplerian orbits. This number only serves to
denote the binding energy of the atom that is related to it by
formula (22). The number in question only acquires the
proper meaning of the principal quantum number at the
lower levels (n < 30), when the positron follows Keplerian
orbits slightly distorted by the magnetic field. At the upper H
levels, the positron moves along the magnetic field line like a
bead on a string, and resides in the bound state in the potential
well of the antiproton, defined by formula (50). We should
also add that the recombining positron spends most of the
time in the states n > 1, and therefore the analysis of the
recombination process can be performed by the methods of
classical mechanics.

In reaction (110), the incident positron knocks out the
positron that finds itself in the bound state characterized by
the minimal distance r to the antiproton [see formula (50)],
and lands in the new bound state where the distance to the
antiproton is less: r’ < r. In the course of the resulting
diffusive motion along the coordinate r, the positron comes
closer and closer to the antiproton. The characteristic value of
r varies according to the law

F= 7)»(;1\17', ;LGN ~ TCl’zl’leUT .

(111)

Hence we see that at low values of r this process slows down
and becomes inefficient. The reason is that, as r decreases, the
incident positron needs to ‘hit’ a circle of a smaller radius
(~ mr?), which is highly improbable. In this region, the main
mechanism of recombination (in this case, the decrease of r)
becomes the drift mechanism [98]. In the context of this
mechanism, the incident positrons fly past at considerable
distances r’ <rp and affect the bound positron with their
electric fields E ~ 1/r'2. For the duration of collision,
T ~r'/vr, the bound positron drifts with the velocity
defined by formula (55) and is shifted in a direction
transverse to the magnetic field to the distance defined by
formula (56) in which we need to make the replacements
ro — r', zo — 1. Since the displacement vectors or of a
positron are oriented at random and are small (6r < r), the
bound positron executes diffusive motion in the direction
transverse to the magnetic field with the diffusion coefficient

DL = L nccz/lé ’
2T H?

where

/1():111(]1()’\'2

is the Coulomb logarithm, and the parameter f is defined by
formula (46).

Observe that lateral diffusion of the positron occurs much
slower than the relaxation of its longitudinal (with respect to
the magnetic field) motion, and therefore practically all
positrons that diffuse towards the antiproton find themselves
near the bottom (at distance ~ T') of the potential well (50).
Consequently, we may assume that |z| < r, and the force of
attraction of the positron to the antiproton is directed
practically perpendicular to the magnetic field, and equals
F= —1/r2. Under the action of this force, the positron,
simultaneously with diffusion, drifts towards the antiproton
with the velocity

(112)

D
vp =b, F, bl:%. (113)
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Here b, is the transverse mobility. One may question the
applicability of Einstein’s relation (113) for the motion
transverse to the magnetic field. However, it can easily be
derived from the generalized Ohm law for plasma (see, for
example, Ref. [80]). Physically this means that the plasma
confined in the magnetic field does not reside in the state of
thermodynamic equilibrium. However, as a result of lateral
diffusion of its particles that stems from collisions, interac-
tions with the photons emitted by the thermostat, etc., the
plasma will eventually go into an equilibrium state in which
the particle density is distributed over the transverse direction
according to the Boltzmann formula, from which relation
(113) follows directly. In this way, the validity of relationship
(113) only requires the local equilibrium which is practically
always featured by the plasma. The easiest way to derive it is
to use the imaginary case of complete thermodynamic
equilibrium, which is rarely realized in experiments.

Formula (112) was first derived by Belyaev and Budker
[102]. It describes the lateral diffusion and the drift of the
probe particle in plasma. From the law of conservation of
momentum it follows that the diffusive flux for free electrons
(or positrons) is zero. In our case, however, owing to the
presence of the field of the antiproton, the positron momen-
tum is not conserved, and therefore there is a nonzero
diffusion flow of positrons towards the antiproton, which
determines their recombination rate.

Given the replacement and the drift mechanisms, the
distance between the antiproton and the positron captured
by its field changes from the initial values r ~ Rt to small
values of r according to the law [101]:

by

F=—AGNI'— — .

p (114)

Hence we get the following expression for the time of decrease
of r from r ~ Rt to the small values r < Rr:

JRT dr (115)
T = -—
") Brevtr + b /2
where § ~ 1. Integration gives the result
3
o ~Pe o106, (116)
by
b, \'/3 )
= ~ 10* a.u. 11
po= () ~ 10t (117)

Observe that the main contribution to t; comes from the
distances r ~ p.. The reason is that at such r the rate of
variation of this quantity, | 7|, is the lowest, and therefore the
motion across this range of r is the slowest stage that
determines the total recombination time. We shall call this
region the first (or the collision) limiting stage of the
recombination process.

There also is another limiting stage, which is even slower
— and thus the most important. It sets in upon reaching the
region of stochastic motion of the positron:

re~pg, 11~n|:w;{1/3~307 (118)
where the distance p,, is given by formula (53). At such values
of r, the typical size of the positron orbit, according to
Eqn (23), is R, ~ p, ~ r, and the Coulomb force F, ~ l/rz,
acting from the side of the antiproton on the positron, is of the

order of the Lorentz force F1. = vgH/c, where the characte-
ristic orbital velocity vy of the positron is defined by formula
(66). The meaning of the characteristic size p, is that for
r > po the Larmor motion dominates, F1. > F¢: the positron
executes fast transverse rotation in a small circle around the
magnetic force line, and slow oscillations in the longitudinal
direction in the potential well (50) created by the Coulomb
attraction to the antiproton. When r < p,, the Keplerian
motion dominates (F. > Fr): the positron follows the
Keplerian ellipse with the frequency wg ~ 1/n* ~ 1:

1
-3/2
WK NF"V Rn .

Under the action of the magnetic field this ellipse performs

slow Larmor precession — it rotates as a whole about the axis

parallel to H with an angular velocity [74]
1

These two types of trajectories, two types of motion (r > p,)

and (r < p,) are separated by the intermediate region r ~ p,

of stochastic motion, in which F, ~ F.

In the region r < p,, the drift approximation (55) becomes
invalid, and therefore the earlier discussed drift of positrons
to antiproton, described by formulas (112) and (113), at
r < po slows down, and for r < p, stops. In this region, a
third mechanism is ‘switched on” — the radiative transitions
of atoms H,, to the lower levels (n ~ 1).

When the atom reaches the states n ~ n; [see formula
(118)], the Stark transitions (101) and (102) whose character-
istic rate I'p ~ 10% s~! is high compared with the rates of
other processes, are first ‘switched on’. Stark’s ‘mixing’ of
states results in the statistical distribution (104) of atoms with
respect to the orbital states. Further relaxation of atoms takes
place as a result of radiative transitions to the lower (n ~ 1)
quantum states, which, according to Eqns (96) and (104),
come about with the rate

8Inn

/3

(c3ns)_1 .

Ly(n) => " Wa(l) iy(nl) = (120)
1

The characteristic time of this last radiative stage of atomic
relaxation is of the order of

~2x107%s. (121)

1
- Iy(m)

The total time of positron recombination (from the Thomson
atom, r ~ Rr, to the lower states n ~ 1) is defined as follows

TIR=T1 +T2 =~ 1T. (122)

In this way, the limiting stage of the process of complete
recombination (to the states n ~ 1) is the radiative transitions

n~30—n~1. (123)

The number of antihydrogen atoms that form per unit time on
one antiproton (the three-particle recombination rate) is
equal to

NT N4 ne
- o T3‘Ez'

)MTBR =

(124)

(O8]

TR T2

An unusual feature is the linear dependence of this rate on the
positron number density. The reason is that under typical
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experimental conditions (2) and (42), the processes that
proceed at the upper levels of antihydrogen atoms and
exhibit quadratic dependence on the density, are very fast.
While the overall recombination rate, as remarked above, is
limited by the most prolonged stage — the radiative
transitions, whose rates do not depend on the positron
density.

6. Comparison of the efficiency
of recombination mechanisms

In the previous sections we obtained the formulas for the
recombination rates characterizing the most important
mechanisms of production of antihydrogen atoms in cold
plasma: radiative (spontancous) Ag, stimulated radiative
Asrr, and, finally, three-particle Argr. In spite of the
approximate nature of some of these formulas, their accu-
racy is quite sufficient for analyzing and planning experi-
ments with antihydrogen atoms. In this section we shall
present simple practical formulas, which can be used for
calculating the rates of such processes.

The number of atoms J; produced in plasma per unit time
has been defined at the end of Section 4; this time, however,
/j; 1s the total recombination rate:

;LH = AR + AsBR + ATBR - (125)

According to formulas (39) and (40), and applying
coefficient 2 derived in Section 3, we have

n
IR=4x107 —= s,
VT
By this mechanism, the antihydrogen atoms are produced
mainly in the lower states (n ~ 1). Hereinafter we shall
sometimes use the reduced parameters

(126)

_ N T
= ==
" no T()7
_ H _
a=l r_R

Hy Ry
L ~ (127)
=L -1

Ly Ip
p=L

Py

where R and L are the radius and the length of the positron
cloud, 7 is the intensity of the carbon dioxide laser beam (in
the case of stimulated radiative recombination to levels
n =11 or 12), and P is the heat release power supplied to the
positron plasma by the decelerating antiprotons. Formulas
(127) involve the following parameters typical for experi-
ments dealing with the production of antihydrogen atoms:

np=10em™>, To,=10K,
I‘I():3T7 R():O.SCH’I7 L():l()CHI7
Ib=50Wecem™?2, Pp=3x10"""W.

(128)

Now let us discuss stimulated radiative recombination to
levels n = 12, effected using the cw CO; laser. According to
the analysis performed in Section 4, one has

n
ASRR ~ 2 X 1072 73 g(]) 8717

(129)

where g(I) = I/(1 +

~i|
~—

Here we have taken into account the additional factor 2
(see Section 3), and the coefficient from formula (93). It must
be kept in mind that where 7 > 1, as explained at the end of
Section 4, formula (129) gives an overestimate.

According to relationship (124), we have

(g) Sn 1 -1

P1C . —
TBR ~ 73 (14.0.01/n) °

(130)

where the superscript g indicates that we are dealing with
atoms in the ground state. The last term in Eqn (130) takes
into account the circumstance (discussed in Section 5) that for

1<0.0l (n<10°cm™)

the relation 7, > 77 is reversed (1, < 71), and therefore the
limiting stage of recombination is the collision stage corre-
sponding to the proton diffusion over the region r ~ p,.

During the characteristic time (121) of the radiative
transition (123), the excited atoms (in the states n ~ 30)
cover the distance / ~ 20 cm. Since / > R, it is the atoms of
antihydrogen in the state n ~ 30 that are escaping the plasma.
In this case, according to estimate (38), they are not destroyed
by the electric field. These atoms must be confined in the
Toffe—Pritchard trap and cooled, as discussed in the Intro-
duction. Accordingly, the estimate (130) is not relevant, and
the actual rate of the three-particle formation of atoms is
described by formula (124) in which we must replace Tg not
with 1,, but rather with 7, [see expression (116)]. In the end we
get

* ﬁ2 .
TR T R

/ITBRQ (131)

From comparison of the rates (126), (129), and (131) we
see that the three-particle recombination dominates at
T < 100 K.

7. Deceleration and stopping of antiprotons
in positron supermagnetized plasma

The nested Penning trap is currently utilized in the ATRAP
experiment (see Fig. 3). When the depth of the potential wells
A and C is decreased, the antiprotons penetrate into the
positron cloud and stop. The Penning—Malmberg trap is
used in the ATHENA experiment with the profile of the
potential along the axis shown in Fig. 7. Antiprotons
accumulate in zone A. When the depth ¢, — @y of the
potential well is reduced, the antiprotons roll down the
potential ‘hill’ B and get into the positron cloud C. After
each passage across the cloud they lose some of their energy,
and eventually come to a stop in the cloud. The height
¢@c — @p of the potential ‘hill’ in the experiments can be
varied.

Before embarking on analyzing the process of antiproton
stopping, let us note that the properties of the positron cloud
in many ways are similar to the properties of the conventional
quasi-neutral plasma, namely plasma where the positive and
negative charges balance out. The one-component (or
unipolar [103]) plasma is also known as the nonneutral
plasma [35, 36, 63, 104—106]. Such plasma is confined with
the external magnetic and electric fields. The total field in
plasma is the combination of the external and intrinsic fields.
The latter results from the redistribution of charges under the
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Figure 7. Potential profile along the axis of the trap in the ATHENA
experiment: g ~ —20 V, ¢ ~ —1 V (each of the two potentials can be
varied).

action of the external electric field. In a strong magnetic field,
the charges only move along the magnetic field lines. For this
reason, the longitudinal electric field in the plasma becomes
zero (E)| = 0). It is nonzero only at the end portions of the
plasma with thickness of the order of the Debye radius. If in
some region inside the one-component plasma the charge
distribution is disturbed, this gives rise to a nonzero electric
field (£} # 0), which causes the Landau-damped Langmuir
(plasma) oscillations with the conventional plasma frequency

41 nee?

wp, = oy
If a foreign charge is introduced into the one-component
plasma, then the plasma charges will redistribute themselves
along the magnetic field lines and cause the conventional
Debye shielding of the foreign charge. These properties show
similarity between the one-component and the quasi-neutral
plasmas.

In our case of a strong magnetic field, the transverse
motion of charges is hampered, and therefore the resulting
transverse electric field is, generally speaking, nonzero
(EL #0), which follows from the fact that plasma as a
whole is charged. In this respect, one-component plasma is
different from conventional plasma. There are numerous
other features that distinguish one-component supermagne-
tized plasma from conventional plasma — for example, in the
mechanisms of the lateral transfer of particles, momentum
and energy (see below).

The description of the process of deceleration and
stopping of antiprotons requires knowing the magnitude of
the force of friction F that acts on the antiprotons as they
travel in the positron plasma. For supermagnetized plasma
(44) this force has been calculated and discussed in a number
of papers [81—83, 107—110] in connection with the develop-
ment of methods of beam cooling by electrons [83]. Since
there are certain discrepancies in these papers both regarding
the expressions for the force of friction and their physical
interpretation, we shall reproduce the pertinent details of
these calculations and give certain explanations that allow
establishing the rigorous formulas.

The main assumptions made in calculations [81—83,
107—-110] will be easier to understand if we start with the
case of a zero magnetic field, H = 0. The electric potential of

an antiproton at rest (in this section r is the radius vector
measured from the antiproton) is defined as

1 r
p(r)=—= eXp<—,—> =@+ ¢ (132)
r '
Here
1 1 r
Po=—"5 P —;[I—CXP(—B)} (133)

are the potentials of the antiproton’s self-field and the
surrounding positron cloud, respectively. It should be noted
that by virtue of condition (46) one has

rp ~f*Rr > Rr, (134)
which supplements inequalities (44). In the ideal plasma
satisfying relation (46), fluctuations of the potential (132)
are small, because it is created by a large number of positrons

Np ~nery ~f 32 > 1. (135)
Naturally, the electric field strength
E, =-Vop, (136)

of the positron cloud at the location of the antiproton (r = 0)
is zero, and therefore there is no force acting upon it: F, = 0,
where

F. = —E;(0). (137)
When the antiproton starts moving with velocity u
(further on u < ¢), the positron cloud displaces slightly back
and becomes a ‘tail’ traveling together with the antiproton. In
this case E;(0) # 0, and therefore there appears a nonzero
force of friction F,, directed oppositely to u.
The total force of friction acting upon the antiproton

F=F.+F, (138)
consists of the two terms [111—113]: the collective force F,
discussed above, and the term F, that is due to binary
collisions of positrons with antiprotons. These collisions
occur at distances r <7 = ne_l/3, at which the collective
approximation (136) does not hold. In other words, the
fluctuations of positron potential ¢; become important:

1 1
Agy| ~ — F) ~— .
|Ae, | & > o(r) .

In the conventional plasma with parameters (43), the two
parts of F are comparable:

r 'p
Fp~1n<R—T), F‘C’\-‘ll'l<?)7
'D
F:Fp—i—chln R_T .

In the limiting case (44) that is the most important for us,
and when the antiproton moves along the magnetic field:

ul|H, u; =0, w=u,

(139)
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the collision term F}, vanishes, and friction is completely due
to the collective effects. This is because of the ‘freezing’ of the
transverse motion of the positron in the case (44) — that is,
the practically rigorous conservation of the adiabatic invar-
iants (58) and (60). Owing to this ‘freezing’, the motion is in
fact one-dimensional, and only the longitudinal part of the
positron energy g = vﬁ /2 can vary. Indeed, let us consider the
binary collision of a positron with an antiproton whose
velocity possesses the components

u:(uH7 llL)

in the reference system moving along the magnetic field H
(z-axis) with the velocity u). Axis x is directed along the vector
u; (Fig. 8). The equation of motion of the positron is written
down as

z

5= : (140)
[(xo — uLt)2 +33+ 22]3/2

where Xy, yo are the transverse coordinates of the positron,
which may be considered fixed because the Larmor radius is
small. At #; = 0, the right-hand side of equation (140) does
not depend on time, and therefore the total energy of the
positron is conserved. Hence, we conclude that its kinetic
energy after the collision is the same as before the collision,
the transfer of energy and momentum to the antiproton is
zero, and therefore the time-average force acting on the
antiproton from the side of the positrons also goes to zero.

In the general case, when u; ~ |u|, the collision and the
collective parts of the force of friction are comparable, and
the force of friction itself is given by [107, 108, 110]

F_—\/j_n”—cé“lz (141)
B kka) [ (ku)?
k= oo e |- ], .

where vr = /T, it = u/u, and A = In(rp/Ry) ~ 2.

In expression (142), integration is performed with respect
to the directions of the unit vector k = k/k.

In order to analyze deceleration of antiprotons in the
cloud of positrons in the conditions of experiments discussed

Figure 8. Geometry of the binary collision of the positron with an
antiproton. AB is the trajectory of the positron. The antiproton travels
along the x-axis.

in this review, it will suffice to consider the case
u< vT,
for which from Eqns (141) and (142) we get (h = H/H)

F=Fh+F,,
3

Y ki
F=— =
I b I 2V 2nn. A
22 A
Fo= -7 Ay (143)

Ut

Here, A, = In(v/u),and u; = u — h(hu) is the component of
the antiproton velocity perpendicular to the magnetic field.

According to expressions (143), deceleration of an
antiproton in plasma is described by the equation

Mﬂ?i“’;’“ ", (144)
dr v

where M is the proton mass. Hence it follows that the
stopping range of an antiproton in plasma equals

=3/2 =1/2

M3 T E;

L= 500 =P oy, (145)
2421 Ane n

Here, uy is the initial velocity of the antiproton, E5 = Muf) /2
is its initial energy, E5 = Ej/Ey, and Ey = 20 eV is the typical
initial energy of antiprotons injected into the positron
plasma. From equation (144) it also follows that the typical
deceleration time of the antiprotons is about 10 s [for the
temperature we took the estimates (233) and (241) obtained in
Section 14].

Later on, we shall use these results in the analysis of
specific experiments.

8. Longitudinal diffusion of stopped antiprotons.
Their confinement time in the positron cloud

As already said in Section 7, inside the positron cloud we have
Ej| = 0, namely, ¢ ~ const. Exceptions are the regions at the
ends of plasma of thickness ~ rp, where £ # 0.

Inside the plasma there is no force acting on the
antiproton, and it executes Brownian motion along the
magnetic field with the diffusion coefficient

Dy (146)

s
__ YU
2V2nne A
Formula (146) follows from the Einstein relation
Dy=HT

and expression (143) defining the longitudinal mobility of the
antiproton.

Let us calculate the confinement (residence) time of an
antiproton in plasma. Inside the plasma it stops with
approximately the same probability in any portion of the
trajectory:

1 | |<L
T z A

w(z,t=0)= L % (147)
0, |Z|>§,

where ¢ = 0is the time of stopping, and dW = w(z, ) dzis the
probability of occurrence of an antiproton on the interval
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(z,z 4+ dz) at some instant of time ¢. The probability density
w(z, t) obeys the equation

ow ®w
Reaching the ends of the plasma, where Ej # 0, the anti-
proton is ejected, which gives us the boundary condition

L
Nz=x+=, 1] =0.
w(z 7 )

Ejection of the negative antiproton from the positively
charged positron cloud may seem strange at first sight. The
reason becomes clear if we recall that the positron plasma is
confined by the external electric field. Figures 3 and 7 show
the profiles of the total electric potential along the axes of the
traps (the sum of the external potential and the self-potential
created by the plasma charges). At the ends of the positron
cloud these particles experience the force that returns them to
the cloud — otherwise the cloud would not be confined by the
trap. This means that the antiproton that gets into the end
region whose thickness is of the order of the Debye radius will
be ejected from the positron cloud (to regions A and C in
Fig. 3).

From Eqns (147)—(149) we get

(149)

4 &
W(Z, l) = Z Zexp(—DHanl) (/)n(Z) s
n=0

B » cos(K,z2)
¢,(z) = (=1) T )
_ n(2n+1)

K, 7

The probability of occurrence of an antiproton in plasma
at the instant of time 7 is defined as

1/2 p
n(e) :J w(z, 1) dz = exp (”>, (150)
—L)2 T
L2 o, L’
r:nzDH:2><10 7 S. (151)

From equation (150) we conclude that if the flux of

antiprotons into the positron plasma (i.e., the number of

antiprotons stopped in the plasma per unit time) is J5 (), then

the number of antiprotons Np(¢) of the plasma at the point in

time ¢ will be given by the equation
dNp |

F: —; Nf,"rjl’)(l).

(152)
9. Lateral diffusion of antiprotons.

Time of evolution of antiproton distribution

in plasma. Effects of drift rotation

of a positron cloud

The antiproton is a ‘probe’ particle in the positron cloud. The
radius of the Larmor orbit of an antiproton is small, viz.

'Hp ~5x107* cm <Ip,

and therefore its diffusion in the transverse direction is
described by the theory developed in paper [102] and formula

(112). In Section 7 it was demonstrated that the longitudinal
electric field £ in plasma is negligibly small, but there is the
radial field (£, # 0) created both by the positrons and by the
external electrodes of the confining trap. For the sake of
simplicity we consider the case

ne = const, (153)
for which
E, =2nner, (154)

where for the purposes of this section r is the distance to the
axis of the trap. As a result of the drift motion (55), the plasma
at distance r from the axis of the trap rotates with an angular
velocity

0— D _ 2T neC

r H

that is, like a solid. By the action of friction (143), the
antiproton tends to stop in the plasma, but the centrifugal
force

= const, (155)

f=MQ*,

acting upon the antiproton, causes the radial drift of the
latter. The evolution of the number density of antiprotons
n(r, t) is described by the equations

w_ 1o
ot ror VI

b o (156)
]—7fn—D¢ o

Equilibrium distribution of antiprotons ny(r) is derived from
the equation j = 0 and is given by

no(r) = n(0) exp ( — Mf;’ﬁz) .

(157)

Antiprotons drift in the radial direction with the velocity

D, M@
T

D
i‘:%f: r.

Hence it follows that the relaxation time of any initial
distribution to the equilibrium distribution (157) is equal to

T

om0

(158)

7

From comparison of the characteristic times of longitudinal
(151) and lateral (158) diffusion we conclude that the radial
drift of antiprotons stopped in the plasma can be neglected.

10. Processes accompanying the stopping
of antiprotons in the positron cloud.
Transverse and longitudinal heat transfer
in supermagnetized plasma

Let us consider for definiteness some typical experiments in
the framework of the ATHENA project [3]. Here, the
bunches of antiprotons with 10° particles in each are injected
into a positron cloud (see Fig. 7) with a repetition rate of
100 Hz.
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The typical initial kinetic energy of antiprotons entering
the positron plasma is equal to

Ey =e(pc — @) ~ 20 eV.
Having performed a few oscillations (see Fig. 7), all anti-

protons stop in the plasma. Thus, the flux of antiprotons into
the plasma is estimated as

Js=10"s"'=2x10"au., (159)
and the typical heat release power approximates
P=EJ;=3x100"W=15x10""" a.u. (160)

Distribution of the plasma temperature T(r,7) is
described by the equation

a_T—g , 6_T _A'_li , a_T _|_q_qc
or oz \Xl 3z ror Yoy nCp

Here, ¢, = 5/2is the heat capacity per positron, ¢(r, t) = P/V
is the specific heat release power, V = nR>L is the volume of
the positron plasma, and ¢, is the specific power of energy loss
by the plasma through the cyclotron radiation. Equation
(161) also includes the thermal diffusivities of the plasma:

(161)

% T3/
1=l ~3x 1075 — au.,
NeCp il

(162)

ny

X =
+ }’leCp

I

here x|, %, are the longitudinal and transverse plasma heat
conductivity coefficients. The first of these does not depend
on the magnetic field and coincides with the heat conductivity
coefficient of plasma in the absence of the magnetic field [79,
80, 113]. From Eqns (161) and (162) it follows that the
relaxation time of the temperature in the longitudinal
direction is of order

1? 4 L%n

T N4XH ~ 10 T5/2 S. (163)

The transverse heat transfer in supermagnetized plasma
(SMP) with parameters (44), (46) and (134) was calculated by
Dubin and O’Neil [104]. These calculations are rather
complicated, so we shall give a qualitative description of the
physical mechanism of transverse heat conduction in SMP
(see also Appendix IT).

Consider the collision of two positrons in SMP, which is
described by the equations

. . p
p1 = ou(py Xh)"'F’

) . p (164)
P = ou(p Xh)—ﬁ7

where p, and p, are the radius vectors of the positrons, and

p = p; — p,. After separation of the motion of the center of

mass R = (p, + p,)/2, we arrive at the set of equations

2p
_,;

p=ou(pxh)+=, R=owygRxh). (165)

In case (44) we have ry < Rr, and therefore from equations
(165) it follows that to a good accuracy we may consider the
motion of positrons as one-dimensional:

2z
257

Z=P1z = P2z>

p=0P+2),

(166)
Zp = const ,

where r = |p; | — p,, | = const is the impact parameter of the
collision, and zy = (p;, + p,.)/2. Integrating the first equa-
tion in (166) we get the conservation law for the longitudinal
part of the positron energy

1., 1
— z° 4+ —————==const.
4 12+ 22

Hence it follows that in collisions with the impact parameters

(167)

& =

(168)
el

the positrons exchange their kinetic energies like billiard balls

in head-on collisions:

(e1,62) = (8] = &2, &5 = 1),

where ¢, &, ¢{, ¢ are the initial and the final kinetic energies
of positrons in the laboratory system of coordinates. In
distant collisions r > 1/ NCIE however, the particle energies
do not change and one has

(e1,62) — (¢) = &1, & =¢&).

Hence we conclude that if the transverse heat transport is
governed by the binary collisions, then from inequality (168)
it follows that

%, ~nlRyur. (169)
Relation (169) does not agree with the experiments (see review
[105]): the observed values of transverse heat conductivity
prove to be much higher.

This contradiction is rooted in the wrong assumption
regarding the prevalence of binary collisions in heat trans-
port: in supermagnetized plasma the transverse transfer of
energy (heat conductivity) and momentum (viscosity) are
almost entirely determined by the collective effects. The two
colliding positrons carry their Debye clouds in their wake (see
Section 7). Their interaction extends to distances ~ rp and
lasts tp ~ rp /vt ~ 1/wy, where w, = \/4nnee?/m. is the
plasma frequency.

Now let the temperature change only along the transverse
coordinate x. The energy flux density through the plane x = 0
equals

q9=q+—q-, (170)
where ¢ is the energy flux density from the region x < 0 to
the region x > 0.

In due course the heat ¢_ is carried from top to bottom.
The above qualitative description implies that ¢, and ¢_ are
mainly determined by the interaction of the two plasma layers
located in the coordinate ranges

0 < x < rp (upper layer) ,
—rp < x < 0 (lower layer) .
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Let the temperatures of these layers be 7. and T_, respec-
tively, and the thermal positron velocities within these layers
be v, =+/Ty and v_ = /T_. Obviously, one finds

dr
AT=T, -T_~ . 171
+ b dx (171)
The number of positrons in each layer amounts to
Np = Srp ne, (172)

where S is the area of the surface x = 0 that separates these
layers. The positrons are magnetized and move in each layer
parallel to the plane x = 0 (along the magnetic field H).

Since we are currently talking about the contribution to
%, from the collective effects, we first need to group the
positrons into such collectives. Each collective is a Debye
cloud with a large number of positrons, which is defined by
formula (135). The size of such clouds is approximately equal
to rp, and therefore their concentration is of order

(173)

Each positron from the lower layer experiences per unit time a
certain number of interactions with the Debye clouds of the
upper layer:

Vi o~ vLTE (174)
Inside each cloud there is an electric field [see formulas (133)]
Ep ~1 /r]%. In the interaction with one cloud, the positron
from the lower layer receives energy

1
Ac~ Eprp ~— . (175)

'p

From this and Eqns (173) and (174) we get the relation

Sq_ ~viAeN, . (176)
Its physical meaning is that the power transported across the
surface x = 0 from above is used for changing the energy of
the particles in the lower layer.

From relations (170)—(176), taking also account of

dT
=—x
q L1 4x

we get estimates for the heat conductivity coefficient

%) ~nevt Rr, (177)
and for the thermal diffusivity defined in Eqn (162):
%L ~ T Ry ~ ver (178)

where v, = ne vt R> is the frequency of positron collisions.
Comparing the ‘collective’ (177) and the ‘one-particle’ (169)
results, we conclude that the former relates to the latter as
1
According to estimate (178), the characteristic time of
transverse relaxation of the temperature is of the order of
R? _, =
T~ 2% 1074 RV T s.
4y,

(179)

Estimates (163) and (179) allow us to infer that the heat
transfer in the positron cloud occurs practically instanta-
neously, and therefore the temperature at every point may be
considered the same after any external action on the cloud:

T(r,t) = T(1) . (180)

11. Perturbation of positron density distribution

In this section we shall estimate the perturbation of density of
the positron cloud, caused by the antiproton bunches stopped
in the cloud. Observe first of all that at temperatures of about
10 K the gas parameter amounts to

neR% ~ 1074,

being even smaller at higher temperatures. This means that
the approximation of binary collisions is valid with a good
margin. Let us consider an individual collision of positrons.

From the second equation in set (165) we see that the
motion of the center of mass of the pair of colliding positrons
does not change in the course of the collision, and it is not
affected by the interaction between the positrons. For this
reason, the usual Fick’s law for the transport of mass does not
work for plasma that only contains particles of the same kind.
Mass transport only takes place when the plasma does not
rotate as a solid [105]:

0Q
57507

thatis, we are dealing with differential rotation. From the first
equation in set (165) we see that the colliding positrons engage
in drift motion with velocity (55) in the azimuthal direction.
In the presence of differential rotation, the resulting viscous
friction gives rise to drift that leads to the mass transfer in the
radial direction: the radial density of positron flux is defined

as
o 0,0
=z ar\" "o )

where # is the viscosity coefficient of the positron plasma.
This coefficient is determined by the collective effects and is
evaluated in a way similar to the preceding section (see
Appendix IT):

(181)

(182)

_ Yoy 2
v_neme~,gL Vel'fy s (183)
where v is the kinematic viscosity.

The entry of the antiproton bunch into the positron cloud
first causes perturbation of the temperature field, which
results in a slight variation of the positron density. Then
there is a change in the electric field E,, and, in accordance
with formula (155), the differential rotation appears. All these
effects are described by a closed set of equations: Eqn (161)
for the temperature, for the positron number density we have

one 1 0

ot ror (rji) (184)

for the angular velocity of plasma drift [105] one obtains

¢ 3¢ 1@
Q(}’, l) = m a

(neT), (185)

MeNe WH T OF
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and the Poisson equation for the electric potential ¢(r,7) of
the cloud:

1o e __,
r or r@r T e

The first term on the right-hand side of equation (161)
can be dropped, since L > R. We shall demonstrate below
that the relaxation time of the temperature due to cyclotron
radiation is much larger than other characteristic times —
for example, the time specified in Eqn (179). Because of this,
in the description of processes that immediately follow the
entry of antiprotons into the positron plasma, we may also
drop the term with the cyclotron radiation in equation
(1e1).

The period of oscillations of the antiproton bunch
decelerating in the positron cloud (see Fig. 3 and Fig. 7)
measures approximately 5 microseconds. From comparison
of this time with the characteristic times of temperature
relaxation in Eqns (163) and (179) we conclude that for the
deceleration of a single bunch, which is common to both the
ATRAP experiment and the so-called ‘cold mixture proce-
dure’ in the latest version of the ATHENA experiment (see
Appendix at the end of this review), the quasi-stationary
approximation is suitable, according to which the left-hand
side of equation (161) may be considered equal to zero. In
the design regime of the ATHENA experiment [3] about
100 antiproton bunches per second are injected into the po-
sitron plasma (see the beginning of Section 10), and therefore
the quasi-stationary approximation holds even better.

From equation (161) it follows that after the time (179) of
entry of the first bunch of antiprotons into the plasma, the
temperature in the middle (r =0) of the positron cloud
increases relative to the temperature on the boundary of the
plasma (r = R) by the quantity

(186)

qR?

%L'

AT ~ (187)

The resulting pressure difference of the positron plasma,
which appears in the last term in formula (185), causes a
difference in angular velocities along the radius of the plasma

AT q

AQ ~ ~
mewp R?

. 188
Me WO % | (188)

The resulting differential rotation (181) gives rise to the
azimuthal viscous friction between the separate layers of
plasma rotating about the axis of the trap. Joint action of
these forces of friction and the magnetic field brings into
existence the radial drift of the positrons, which is described
by equations (182) and (184):
nAQ nq

Jir ~ ~

Me WH

(189)

(me o)y

A slight redistribution of the positron number density 7., in
accordance with Eqn (186), causes a change in the first term
on the right-hand side of equation (185). This redistribution
occurs over the time

s. (190)

Such a redistribution results in the establishment of a new
equilibrium in ‘solid-state’ plasma:

Q(r) = const. (191)

From Eqns (191), (185), and (186) we get the equation

4r cen, c d<r d

2Q = — —
H eHr dr

(ncT)> , (192)

ne dr

which we linearize by setting

Nne = ng + ny , T=Ty+T.
Assuming that
|| <ng, |Ti| < T,
where
QH
ny = — ,
0 2mce

we arrive at the equation for the perturbation An. = n; of the
positron number density:

Td/dmy 1 - g
r dr dr I l_cpToxL'

Equation (193) allows us to find the sought-for perturbation
of the number density of positrons:
PVT
—~5x107° 1/52 :
Ne AR 2LR

(193)

An, q

~

(194)

The values of the variables were defined by formulas (127).
The estimate (194) indicates that the perturbation of
positron density in the cloud is negligibly small.

12. Cooling of supermagnetized plasma
as a result of cyclotron radiation

A positron rotating in a magnetic field emits electromagnetic
cyclotron waves. The task now is to understand the extent of
the influence of the plasma environment of the positron on
the resulting radiation, which is the purpose of this section.
The Larmor frequencies of individual positrons are practi-
cally in resonance (the difference comes up when the
relativistic effects are taken into account [74]), and therefore
in collisionless plasma (45) the effect of shielding of cyclotron
radiation may appear to be important, and can considerably
reduce it [114].

In our case the positrons are nonrelativistic, and therefore
the main contribution to the radiation comes from the
‘simple’ cyclotron resonance n = 1 [79, 80, 113, 115, 116]. In
the range of frequencies @ nearest to this resonance, the
nonzero components ¢,g of the permittivity tensor are given
by

ey — 1 =gy — 1 =gy, = —lgy

_ 9 @ — Oy
- 20(w — on) <\/§vT|K2|)’ (199)

e, =1.
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Here, K is the propagation vector of the electromagnetic wave
traveling in the plasma. Function Fin Eqn (195) describes the
Doppler frequency shift of the cyclotron waves emitted by
positrons moving along the magnetic field lines (z-axis) with
the Maxwellian distribution with respect to v:

-5

From formulas (195) and (196) we conclude that the width
of the cyclotron resonance is of the order of

e dz

o0 (196)

VTWH

| = on| ~vTK ~ ——=, (197)
where we have used the relation
K2 (198)
c ¢
From expression (1995) it is clear that
2 —
NeMeC™ € 7
o — 1]~ —~ 0.0l ——. 199
[€xx | H® up I:Izﬁ (199)

Hence it follows that to a good accuracy

Eop N 51[‘37

which means that the cyclotron waves travel almost like
electromagnetic waves in a vacuum. This serves to confirm
relation (198), which indicates that the wavelength in the
plasma is 2 = 0.3 cm. Since

VES ne—1/3 7
the approximation of the continuous medium, used in the

derivation of formula (195), is valid.
The specific power of cyclotron radiation is given by

ge = Ione, (200)
where
42?3 T,
Iy = THJ (201)
€

is the intensity of the cyclotron radiation of the free positron
[74], and

For example, if there is no energy exchange between long-
itudinal and transverse (with respect to the magnetic field)
motions of the positron, then the plasma will cool down
according to the law

dT, 1
-7
ds T0 a
C3med 03
40wl

(202)
70

Thus, in the experiments under consideration a single
positron emits radiation in the same way as in a vacuum,
and the collective effects are not important. However, as

follows from estimate (199), the range of plasma parameters
where these effects are significant is not far from the
experimental range. It is achieved when the temperature is
reduced, and/or the plasma density is increased. According to
Ref. [114], in such a case the shielding effect occurs and it
reduces the intensity of cyclotron radiation.

13. Two-temperature model of supermagnetized
plasma (SMP). Longitudinal — transverse
relaxation in SMP

The rate (reciprocal time) of relaxation of the distribution
function to the Maxwellian distribution in conventional
plasma (43) is defined as [79, 80]

4/1 —
to=-"0 L — 1510710 au,
me! “T3/2 T
n
=7x10% —= s, (203)
73

where A, = In(rp/Rr) is the Coulomb logarithm. In super-
magnetized plasma (44), one has Rt > ry. In the limiting case
¢ — 0, where

'H
&= Re (204)
the Larmor circle may be considered as a point compared
with the typical distance of closest approach (~ Rt) to which
the positrons may come together. This means that with & — 0
the energy exchange between the longitudinal and transverse
motion of positrons in SMP discontinues, and the corre-
sponding temperatures 7 and T become independent, they
‘deviate’ from one another like it often takes place with the
electron and the ion temperatures in conventional plasma
(43). At finite but small values of the parameter (204) (and it is
this case that holds the interest for the experiments discussed
in this review), this energy exchange will be slow because of
the exponentially low degree of nonconservation of the
adiabatic invariants during the slow variation of external
conditions [32] [in our case it is the quantities (58) and (60)].
The purpose of this section consists in calculating the rate
(reciprocal time) /. of the longitudinal — transverse relaxation
(LTR) with an exponential accuracy. For this it will suffice to
calculate the mean value

((Ae1)’)

of the variation of energy of the transverse motion:

2

—m L

&1 = me 2
for two positrons moving along the same magnetic field line
and experiencing a head-on collision. From formulas (165)

follow the equations

vy —logvy = Fy,
(205)
V_ +iCUHU_ :F_7
where vy = v, £ivy, v, =p,, v, = Py and
. x Eiry,
Fi:FYilF},%2M7 (206)
p3(t)

p(1) = (P +2(1)"2.
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To solve the problem with an exponential accuracy, we only
need to drop in formula (206) the constant factor r, +ir,
related to the plane of the collision parameters. For a head-on
collision, the impact parameter is zero: r = 0. With these
simplifications, the function z(r) is calculated from the
equation

1 1,

7'2 =
RN

(207)
where v = v)| is the relative velocity of positrons at infinity
(Iz] = o0).

Dropping now all constant factors, we find

(Aey)* ~ 07, (208)

o de .
0= Jioo =00 exp(iont) . (209)

Solving equation (207) in the parametric form [32]

2
=5 (coshx +1),

2
1 =—

5 (sinhx +x),
v

—00 < X< +0o0,

we get

exp [ify(sinh (x) + x)] (210)

o0 dx
e~ ,[700 cosh(x/2)

where

sz

ﬁ0:7>1. (211)

The main contribution to this integral of the quickly
oscillating function comes from the singularity of the
integrand, which is nearest to the real x-axis [73]. In this case
it is a pole x = im, which simultaneously is a point of the
stationary phase:

0 ~ exp(—2nf,) . (212)

Owing to the smallness of typical values of Ae¢,, the
process of longitudinal —transverse relaxation bears the
nature of diffusion with respect to energy &, with the
diffusion coefficient [80]

D, = %< (ASTL)Z > = %J:O 2nrdr Jic dv f(v) (Aey ) vne
(213)

where
10 = e (57 ) 014)

To analyze the experiments (see below), the most important is
the case when

Ty> T, . (215)

In this case, the relaxation rate A, is of the order of the
reciprocal time 7, of diffusive motion over the scale of energies
&) to the characteristic distance ~ T):

(216)

where we carry out averaging over the relative velocity v of
the longitudinal motion with the distribution function
(214).

Evaluating the integral (216), viz.

dnoy v
U3 4 T‘ | ’

o0

@)~ |

dv exp < —
0

by the steepest descent method, we get

Jr ~ 2o exp(=p), (217)
where the preexponential factor /g is defined by formula (203)
in which, with due account for inequality (215), we must make
the replacement 7' — Tj|, and

24ne’H

5
== <7
12 mé/chﬁ/z

Here the notation was introduced: 7) = T}/ To.
It should be recognized that

3/2
i~ (o) >

'

2/5
) ~ 13(H)° (1) 7.

where for the temperature we must take 7). It is interesting
that the main contribution to 4, comes from the remote tail of
the Maxwellian distribution (214):

12 1/2
UV~ Uy = ?ﬁ UT > UT.

14. Kinetic model of antiproton stopping
in the positron plasma with regard to
longitudinal — transverse relaxation.
Analysis of recent experiments

Let us summarize the results discussed in the previous
sections.

The temperature balance of supermagnetized plasma is
described by the equations

dT,

TH:f]o—/lr(T‘ -T.), (218)
t

ar, . 1

T = /Lr(’TH — TL) — CL‘L'O TL . (219)

Here, the heat release power density

_ P
9= I’lcTER2LCH ’

where P is the heat release power in the plasma [expression
(160)], € = 3/2, C. = 2 are the heat capacities at constant
pressure for the one-dimensional and two-dimensional gases,
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respectively (which corresponds to the longitudinal and
transverse motions of positrons), and /; is given by formula
(217). In developing equations (218) and (219) we have taken
into consideration that the cyclotron radiation is produced by
the motion of positrons that is transverse but not longitudinal
relative to the direction of the magnetic field. In addition, we
have taken into account that because of the long-range nature
of Coulomb forces, the energy of decelerated antiprotons is
transferred mainly to the longitudinal motion of the positrons
(see Section 7): owing to the conservation of adiabatic
invariants (58) and (60) in the distant collisions which play
the dominant role, the transverse positron energy is not
changed.

The number of antiprotons Np(¢) in the positron cloud at
the point in time ¢ obeys equation (152) corrected to account
for the formation of antihydrogen atoms:

dN;

1
Ty— *<;+)]:[> N13+Jf)(l‘). (220)

Finally, the yield of atoms per unit time is given by equations
(105) and (125).

Let us discuss next the results of experiments [23, 26].

The former was concerned with the stopping of protons in
the electron cloud, and the latter with the stopping of
antiprotons in the positron cloud. The parameters of the
Penning traps in both the experiments are rather similar, as is
the number of particles:

Ne~3x10°, N, ~10%,

and the energies of decelerated particles are of order

Ep ~10—50 eV.

From this we can make an estimate for the plasma
temperature established in the process of deceleration:

E,
T~ N, FPNO'S_I ev,

€

which will be rigorously substantiated below.

It will be important and interesting to discuss here the
method of measuring the number of particles in the cloud
confined in the trap, which was developed in works [25, 117].

The external potential on the axis of the Penning trap near
point B (see Fig. 3) takes the form

2

z
~—k —
) 27

where z is the coordinate counted along the axis of the trap.
Consequently, a single electron (for the sake of definiteness
we shall speak of the electrons) oscillates along the z-axis with
the frequency

ek 1/2
e — (f) .
me

Since the mass and the charge of the cloud are proportional to
the number of particles, the cloud will oscillate with the same
frequency. To the electrodes B and C we connect the external
RLC circuit and tune it in resonance with these axial
oscillations of the cloud. In this way, we have two

‘oscillators’ with the same natural frequencies. As the cloud
oscillates, the image charges are induced on electrodes B and
C, which create additional potential difference proportional
to the charge of the cloud, thus establishing coupling between
the two oscillators. As known from mechanics, if two
oscillators with coinciding eigenfrequencies are coupled, we
get two new nearby frequencies @w; and w, characteristic of
the system as a whole. In the case of the Penning trap, the
magnitude of frequency splitting

Aw = w) — ws

depends on the charge of the cloud, and hence on the
number of particles therein (splitting is proportional to the
square root of the number of particles). For measuring the
number of particles in the cloud we have to measure the
spectrum of noise in the RLC circuit near the resonance
frequency. In the absence of a cloud this spectrum exhibits
the Lorentz profile. In the presence of the cloud, the
spectrum appears as two resonances with a frequency
splitting as described above. The comparison of theoretical
and observed profiles allows us to deduce the absolute
number of particles in the cloud.

As explained earlier, inside the plasma we have £ = 0 —
that is, the external potential ¢, inside the plasma is
compensated for by the plasma potential ¢,. For our
estimates we represent the electron cloud as a sphere of
radius R, then from the relations

__eNe
¢y = R )

lpy| = |<Po(z = R)|

follow the estimates

R ~ 28Ne " s Ne ~ E .
k 8e

In this way, the density of the cloud does not depend on the
number of particles and is determined by the parameters of
the installation. According to Gabrielse et al. [26], one has

ne="7x10% cm™?, (221)

which means that a close value of the number density was also
realized in the experiment [23]. At this density, the radius of
the cloud is about 2 mm, and the time of proton deceleration
in the cloud (see Section 7) approximates

ta~ 10, (222)

which agrees with the observations [23]. The calculation of the
deceleration time was based on the above estimate of the
electron plasma temperature established in the course of
deceleration of protons. In the experiment with antiprotons
[26], the deceleration time is about 1 s.

The heat release power and the heat release power density
in Ref. [23] were (in a.u.)

NpEp

P="P"P_1x1071,
Td

qo=2x10"". (223)

Towards the end of the proton deceleration, the value of ¢
increases to 5 x 10718 a.u. The time 7, = C 79 =0.2 s is
small compared with 74, and therefore the quasi-stationary
approximation d7, /d¢ ~ 0 holds true for equation (219),
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which gives us the linkage between the temperatures

A

T, =—"— Ty,
+ ;Lr+1/fl I

(224)

Tj
1+ A1 ’

Ty~ T, = (225)

The physical meaning of the result (225) is clear: when the
rate A, is high (4,7 > 1), the temperature deviation is
negligibly small, namely

Ty — Ty
— <1

T
Such a deviation of temperatures becomes considerable at
low rates of longitudinal — transverse relaxation. Substituting
formula (224) into equation (218), we arrive at the equation
for 7) alone:

T _ o= at, (226)
dt - QO H ’
I
= . 227
1+ 41 ( )
From formula (227) it is clear that

. 1
A < min ()Vr; —) . (228)

Ty

The rate A,(7))) at the magnetic field strength ' = 6 T, as
in the experiment of Ref. [23], has a maximum at 7) = 300 K
(Fig. 9). The second term on the right-hand side of equation
(226) has a maximum

(AT pax = 0.5 x 107" a.u. (229)

max

at temperature 7} = 400 K. From estimates (223) and (229)
we conclude that in the experiment of Ref. [23] one can
recognize that

q0 > AT (230)

over the entire time of proton deceleration:

O0<t<1y,

. 2_

3 i

T

=

Sr 2

1 1 1
0 300 600 900  T),K

Figure 9. Temperature dependence of the rate of longitudinal — transverse
relaxation, H, > H; =6 T.

when the heat release takes place (go # 0). Physically,
relation (230) implies that practically all the energy of the
protons is transferred to the longitudinal motion of the
electrons.

At the end of proton deceleration (z = 14), as follows from
the law of conservation of energy and formula (224), the
parameters of the plasma account for

Ty=2eV, T, =0.05¢eV. (231)

To measure the energy of the protons, the electrostatic
barrier in the region D (see Fig. 7) was reduced to a certain
value E;. The protons with energies £ > E; were no longer
retained by the trap; they escaped in the axial direction and
were absorbed by the detector that performed their counting.
In the experiment of Ref. [23], the microchannel plates (MCP)
were used as detectors. The estimate (231) agrees with the thus
measured value of the temperature of the electron cloud,
T =2 eV, which follows from the analysis of the proton
spectrum reproduced in Fig. 3 from paper [23].

For ¢ > 14, the heat release stops, P =0, and gy = 0. At
T) = 2 eV, the parameter 4 measures

A=05%x10""7 au. =02s"".

From this and equation (226) we see that for ¢ > 14 the
temperature 77 slowly (with the characteristic time ~ 5 s)
falls to almost zero (~ 20 K) over the time of approximately
10—15 s. The last stage of the temperature relaxation

proceeds very slowly because of the effect of slow-down of
longitudinal — transverse relaxation at such temperatures (see
Fig. 9), which agrees with Refs [23, 26]. Production of
antihydrogen atoms was not observed in Ref. [26] (nor in
Refs [24, 25]). The materials of this review disentangle this
puzzle. The first reason is the very short confinement time of
antiprotons in the positron cloud, as follows from formula
(151). The second reason is the low rate of production of
atoms because of the high temperature 7)) [formula (231)], as
follows from the results presented in Section 6.

Now let us discuss the ATHENA experiment in the design
regime (see Fig. 7), and specify the optimal conditions for the
conduction of the experiment, ensuring the highest yield of
antihydrogen atoms.

Since the pulse repetition rate f is large, fo7; > 1, we may
assume with high accuracy that the antiproton current Jj is
constant, and consider the stationary conditions

a7, dr,
— =0, =0.
dr dr
In general, the stationary approximation holds true when

fo > 5 Hz. The typical parameters of the experiment are as
follows

H=3T, Ey=c(pc— ¢g)~20cV. (232)

Let us introduce the notation for the reduced antiproton
current:

Js="=2  J=10*s", 233
p
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then
Pr» s~
=5x10"" J; a.u. 234

q0 p (234) 400 1
From equation (226) at d7j;/dr = 0 we get the equation for
the longitudinal temperature 7):

AT 200 |

——=qp. 235

1+ A7 90 ( )

From Eqn (235) it follows that for | |

0
J5>3x10*s7!, 2 4 J5, 1047
. Figure 11. Yield of antihydrogen atoms vs. the number of antiprotons
one obtains L o
injected per unit time.
T ~6J; K,
1.5% 104 Under these conditions, the magnitude of specific heat release
Iy = W s, (236) gy~ 1 x 108 a.u. is close to the value given in Eqn (223),
p

For J; < 10* s7!, the temperature T} weakly depends on the
magnitude of J;:

T~ 10K,

Jy~5x10° Ty s (237)

The plasma temperature as a function of the antiproton
current J is shown in Fig. 10, and the achievable yields J5
(per unit time) of antihydrogen atoms are shown in Fig. 11.
The highest value of J; = 400 s~ is reached at the current
Jy =2 x 10* s7!. The temperature of the plasma then is
T), = 15 K. Observe that in the region near the maximum
yield Jy, we have

TL%T'HET

and therefore in Fig. 10 the temperature is depicted without
any subscripts.

It is interesting to note that the initial design [3] assumed
the following conditions:

Js=10"s7" ne=10" cm™3. (238)
T.K
20
10 ~
| | 1
0 2 4 6 Jp, 10%s7!

Figure 10. Temperature of positron plasma in the steady-state regime of
antiproton injection.

characteristic of the experiments by Gabrielse et al. [23, 26].
However, the positron density number 7, is much higher, and
therefore the temperatures differ from the values given in
Eqn (231):

Ty~1eV, T, ~09eV. (239)

According to Fig. 11, owing to the high values of temperature
(a short confinement time of antiprotons in the plasma, low
rate of atomic production), there ought to be no atoms
observed under conditions (238).

15. Conclusions

Currently, the recombination processes are the key issues in
the production and study of cold antihydrogen atoms. The
rate of radiative (spontaneous) recombination decreases
rather slowly with increasing temperature. In spite of the
relatively low characteristic values of this rate, this circum-
stance allows us to use this process for the production of
antihydrogen in plasma with a temperature of about 100 K.
The rate of this process is considerably affected by the
magnetic field: at A= 1 T, the rate of radiative recombina-
tion increases approximately twofold compared with the case
of H=0.

The situation with stimulated (laser-assisted) radiative
recombination is not yet completely clear. The construction
of the theory of this process is currently impeded by the
deficiencies in the theory of stochastic ionization of Rydberg
atoms. The available data were obtained with pulsed lasers.
For this reason, these results are not relevant to the
continuous-wave laser mode required for the production of
antihydrogen atoms: in the pulsed mode, the emerging atoms
do not have time to be ionized with the laser field, whereas the
cw laser produces fast stochastic ionization.

Rather high yields of antihydrogen atoms are anticipated
if the temperature of the positron plasma can be reduced to
T<100 K. At such temperatures, the main mechanism of the
production of atoms is the three-particle recombination. As a
result of this process, excited antihydrogen atoms will be
ejected from the positron plasma in the states with n ~ 30.
The problem of capture and confinement of these atoms calls
for special research. According to preliminary estimates, this
problem can be best solved using the Ioffe — Pritchard traps. It
is also very interesting to study the idea of the possible cooling
of excited antihydrogen atoms by collisions with atoms of
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noble gases. The best candidate for such a cooling is probably
neon.

Another key process that determines the yield of anti-
hydrogen atoms is the longitudinal diffusion of antiprotons
(along the magnetic field), which allows the latter to escape
through the ends of the positron plasma. A typical residence
time of antiprotons in plasma is approximately equal to
103 —10"* s. The loss of antiprotons due to their lateral
diffusion in the field can be neglected.

Injection of antiproton bunches into the positron plasma
is accompanied by a number of heat and particle transport
processes. In supermagnetized positron (or electron) plasma,
these processes are determined by the collective effects, and
are therefore fast. Because of this, the temperature and
density of positron plasma after injection of antiprotons
remain practically unchanged in the bulk of the plasma.

In cold magnetized plasma it would be natural to expect
manifestations of the shielding of cyclotron radiation, leading
to a considerable suppression of this radiation. Our analysis
indicates, however, that this effect is negligibly small in the
typical conditions of the ATHENA and ATRAP experi-
ments.

In low-temperature supermagnetized plasma, the energy
transfer from longitudinal (along the magnetic field) to
transverse motion of positrons is suppressed. This effect
leads to the ‘disengagement’ of the longitudinal temperature
of positrons from their transverse temperature in the course
of injection of antiprotons. This two-temperature model
explains the results of recent experiments with stopping of
protons (antiprotons) in cold electron (positron) plasmas.

Under conditions (232) and an antiproton current
Jy ~ 10* s71, this effect of ‘disengagement’ of temperatures
is not significant. According to the theory presented here,
under these conditions the production of antihydrogen atoms
will be efficient.

The authors are grateful to I N Meshkov, V S Lisitsa,
V 1Kogan, and V D Shafranov for useful discussions.

Explanatory note 1 added in proofs. This paper was
received by Phys. Usp. Editorial Board in May 2002. In
August 2002, the first antihydrogen atoms were registered in
the ATHENA experiments [118]. Recombination of posi-
trons and antiprotons was accomplished in a special regime
selected on the basis of the material presented in this review.
In early November 2002, antihydrogen atoms were registered
in ATRAP [119]. As the situation in this area of research is
changing fast (in particular, new interesting theoretical results
have been produced), the authors decided not to make any
major updates of this review (which would increase its size
and delay publication), and only introduced minor correc-
tions as required.

Explanatory note 2 added in proofs. Looking through the
literature cited in Ref. [81], we found that the idea of the effect
of LTR suppression, considered in Section 13 of our review,
was actually contained in item [41] (Ref. [120] in this review)
in the bibliography of Ref. [81]. In that paper this effect was
first established in the experiment staged in the context of
studying the method of beam cooling by electrons. According
to Ref. [120], the LTR is suppressed in a sufficiently strong
magnetic field, when

rg <ry= min(RT, R) y

where Rt = ez/T”, and R = n§1/3. By virtue of the effect of
kinematic cooling of the accelerated beam [121], the achiev-

able longitudinal temperature of the electron beam is low
(T < Ty) and, as a rule, close to its limiting value
1/3

Ty~ etng',

at which Ry ~ R. The physical meaning of this relation is
that the kinetic energy of Larmor circles moving along the
magnetic field is of the order of the potential energy of their
interaction. Calculation of the effect of LTR suppression
has not been done in Ref. [120] (and is hardly feasible given
the nonideality of plasma). In our case, in the cloud of
positrons

T’H>TL7

the plasma is ideal, and so the calculation was done relatively
straightforward.

16. Appendices

I. Rate of stimulated radiative recombination.

Derivation of formula (77)

The Hamiltonian of the interaction of an atom with a linearly
polarized (along the z-axis) laser field E = Ejcos(wt) takes
the form

V =d.Ey cos(wt), (L.1)

where d. is the projection of the operator of the atomic dipole
moment onto the z-axis, and Ej is the amplitude of laser field.

In the first order of perturbation theory, the probability
amplitude of the atomic transition

[y =1p) = |f) = |nim)

is given by
y P
Cpu(t) = J (d-); Eo cos(wt') exp {— i(;—&- I,,) t’} dr’.
ot

As t — +o00, the transition probability is equal to

2 T 2 2 [)2
The time-averaged laser intensity is given by
EZ
I=2"c. 1.3
i C (13)

The wave function of the positron continuous spectrum
has the asymptotic form

¥y (r) — exp(ipr) ,
and is thus normalized to unity in a unit volume. The number
of positrons in this volume with velocities from the interval

d*v equals

AN, = ne f(v) &0, J ) du=1,

where f(v) is the positron distribution function.
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The rate of recombination on one antiproton (probability
per unit time) is defined as

/

Js(nl) =Y J ne f(v)d*

m=—1

o
t

After integration with respect to velocity, the delta-function
in formula (I.2) vanishes, which gives us result (77). Nume-
rical factor 1/3 comes from the relation

1
> ’(dz)ﬁ’Z -3 > ’(d)ﬁfz :

II. Transverse transport of energy

and momentum by plasmons

In supermagnetized plasma ry < Rr, the transverse motion
of electrons (for definiteness, in this section we shall be
speaking of the electron plasma) is suppressed by the
magnetic field, and therefore, as indicated in Section 10, the
transverse transport of energy and momentum is performed
in collective processes. To be more specific, let us demonstrate
that this transport is performed by plasmons. To a reasonable
accuracy we may disregard the transverse motion of elec-
trons, and assume that they only move along the magnetic
field lines (z-axis). In this approximation (and in the
hydrodynamic approximation) the equations that describe
plasmons are written down as

Ap = 4men , (IL1)
dv Op

mea—e§, (112)

on. 0

B + 2 (nev) =0. (11.3)

Here, n. is the number density of electrons, ¢ is the electric
potential, and v = v, is the longitudinal velocity of the
electrons. Now we linearize the equations:

ne:n0+n1(xay727t)7 q):(p()—i_qol’

where ny and @, are the unperturbed quantities that satisfy the
equation
Agy = 4meny ,

and n; and @, are the perturbations that arise in plasma
oscillations:

ny =n1exp(iy), ¢, = ¢,exp(iy), ¥ =kr— ot.

From the linearized equations
A, = 4men, ,
ov 00,
me & =e E 5

61’!1 ov 0
om v
or 0oz

follows the dispersion relation for plasmons in SMP:

® = wp|cosal, (IL.4)

where o is the angle between the vectors k and H. Relation
(I1.4) holds if we can neglect the collisions between electrons,
as seen from equation (I1.2). The mean free path of electrons
is of order

e ~ (10R3 1) ™" ~0.05 cm,

and is small compared with the size of the plasma. This means
that, along with the Coulomb long-range interaction which is
described by the potential ¢ in formula (II.2), we must also
take into account the interaction between the particles at
small distances (~ Rt), which, owing to the conservation of
momentum, is transferred to the large scales in the form of
pressure, and thus affects the collective phenomena. These
effects are taken into account by introducing into the right-
hand side of equation (I1.2) the term —0p/0z with the pressure
p=neT of the electron gas, where T'=T). Of practical
importance is the case

Dp
r

when the relaxation of temperatures 7 and 7 does not have
time to complete. In this case we have the formula

>1,

2
T~ ng,

which characterizes the adiabatic compression of one-dimen-
sional gas, from which follows the relation
op one

Lo3r =,
0z 3 0z

Given this, the dispersion law (II.4) is changed:

o= |cosa\(w§+3v%k2)l/2, (11.5)
where vt = (T/me) 12 In this way, owing to thermal motion,
the plasmons exhibit dispersion — that is, their frequency
shows dependence on the wave vector k. In addition, we have
Landau damping [79, 80] whose decrement 7 is small when
krp < 1, and becomes large, viz.

Vo~ Wp, (11.6)
at krD ~ 1.
For typical plasmons one finds
1
k~—, o~op, (I1.7)
'p

and the group velocity is of the order of vt. Given that
T > wp, from the Planck distribution for the concentration of
plasmons we get the estimate (4 = m, = e = 1):

T

— .
I'pWp

(11.8)

}’le

Assume now there is a transverse temperature gradient
directed along the x-axis. Then the heat flux density carried
by the plasmons traveling from the region x < 0 to the region
x > 01is of the order of

(1L.9)

g+ ~ OpNpUT .

From estimate (I1.6) we conclude that the mean free path of
the plasmon is about rp. The variation of temperature on this
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length approximates velocity u:
dTr du
AT ~ rp|— I1.10 Au ~ rp|— I1.14
Dl 4y (I1.10) Dl 4y (IL.14)

and the change of thermal velocity is of order

AT
Avt ~ vt -
and so the resulting heat flux along the x-axis is given by
oA vT dT
= —g_ ~ v ~ — .
q q+ q p/'p T r2D dx

Hence we get the following estimates for the heat conductivity
coefficient and thermal diffusivity:

vT X
o~ XL~n—L~vTRT. (IL11)
D €

For evaluation of the transverse viscosity let us consider
the case when plasma is flowing along the magnetic field
(z-axis) with a velocity

u=u(x).

The plasmon dispersion law (I1.5) holds true in the plasma’s
frame of rest. The formula for the laboratory system of
coordinates is derived from relation (II.5) through the
replacement

w—w—ku.

Hence, we arrive at

o — ko= |cosaf(w? + 3v3k?)"2. (IL.12)
This simple procedure is also suitable for the quasi-classical
case of a plasmon propagation in inhomogeneous plasma:

kiL>1,

where L = u| du/ dx|™". Given the estimates (I1.7), this means
that L > rp.

The component k, of the wave vector of the plasmon
moving along the x-axis is changed, which physically implies
the transfer of the momentum component

Pz = hkz

from plasmon to plasma: the plasmon is the carrier of
momentum from one region in plasma to another. Unlike
the wave vector k, the frequency of plasmon is preserved as it
travels. From relation (I1.12), with due account for estimates
(IL.7), for the most important case of the slow motion of
plasma

u<vr,
we get
h A
Aps| ~— =2, (I1.13)
'p vt

where Ap; is the change of the z-component of the plasmon
momentum on the length rp, and Au is the same for the

The viscous force acting on the unit area of surface x = 0 is
equal to the flux density of the z-component of the
momentum transferred across this plane (in atomic units):

du

S~ Ap-nyvr ~ ny i

Accordingly, the transverse viscosity is approximately equal
to

Ny ~np. (I1.15)

The density of electron momentum is

e ™~ NeMell .

The similar quantity for plasmons equals

h u
Gy ~ Ny— — .
P L

Hence, we conclude that

a  Rr
qe )}

~ 5—3/2 < 17

where ¢ is the parameter of ideality of plasma [79, 80].
Consequently, the momentum of plasma consists practically
of the momentum of electrons, but it is transported in the
transverse direction by plasmons. The effective kinematic

viscosity is given by
v, =~ urRy
NeMe

and coincides by an order of magnitude with the thermal
diffusivity as defined by formula (II.11). This is not surpris-
ing, since the mechanisms of transport of energy and
momentum are the same.
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