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Higher spin gauge theory
M A Vasil’ev

1. Standard gauge theories

The aim of the present talk is to present the key ideas and
results of the higher spin gauge theory without delving into
technical details of the setup. In essence, we shall consider the
construction of a field theory model with maximally high
gauge symmetry. It is expected that such theories allow a new
vision of superstring theory which is presently thought to be
the main candidate for the theory of fundamental interac-
tions.

As usually, the gauge symmetries are those whose
parameters are arbitrary functions of space-time coordinates
x". Historically the first gauge theory was that of electro-
magnetism suggested by Maxwell. In this case the gauge field
is identified with the vector potential A, that generates the
field strength

Fvy:avAu_aqu 0, = v=0,1,2,3, (1)

oxv’

invariant under the gauge (gradient) transformations

84, = d,¢ (2)

with an arbitrary gauge parameter ¢(x). The gauge-invariant
Maxwell’s action

1
S=— ZJ d*xF,,F*  85=0 (3)

is known to describe massless particles of spin 1, the photons.

Maxwell theory can be generalized to Yang— Mills theory
by introducing a system of mutually charged spin 1 particles
described by the matrix-valued potential 47, which takes
values in some Lie algebra /. The corresponding strengths,
gauge transformations, and action have the forms

G"ﬂ = avA;z - apAv +g [Avv AH] 9 (4)

BAV = avﬁ +g [A\,,S] ) (5)
1

S = _ZJ d*xtr(G,,G"), (6)

respectively. The Yang—Mills theory can be understood as
the theory of interaction of massless spin 1 particles. Indeed,
by imposing natural conditions bounding the orders of
derivatives, the gauge symmetry principle fixes interactions
of spin 1 fields unambiguously to within an arbitrary choice of
the gauge group.

At first glance, the pure Yang— Mills theory seems poorly
adapted to describe the real physics since quanta of the
Yang—Mills fields are massless, at least perturbatively. At
one time, it was this point that prevented Pauli from
publishing the results he obtained where essentially the
Yang—Mills theory was discovered. Later on, owing to
discovery of the Higgs phenomenon in the phase with
spontaneously broken symmetry, this difficulty was found
to be apparent. From the symmetry viewpoint, the character-
istic feature of this phenomenon is the appearance of the
Higgs field & with the gauge transformation law in the form

St =t X)+ ..., (7)

where &4(X) are some combinations of the gauge parameters
¢(X) and the ellipsis denotes higher-order terms. Such a
transformation law of the Higgs field allows a partial fixation
of the gauge freedom by choosing the gauge ¢ = 0. The
remaining freedom is generated by those gauge parameters
¢(X) that do not contribute to &?(X). Presently, the Yang—
Mills theory is the foundation for the theory of strong and
electroweak interactions. In particular, introducing Yang—
Mills fields for the gauge group SU(2) x U(1) as carriers of
the electroweak interaction has enabled one to surmount
difficulties of Fermi theory of weak interactions.

The next textbook example of the gauge theory is general
relativity. Here the metric tensor g, plays the role of the
gauge field and gauge transformations are identified with the
coordinate ones

gy = 0u(&”)gpu + 0,u(e”)gpy + €70y (gua) » (8)

where ¢ (x) are infinitesimal parameters. The gauge invar-
iance principle is identified with Einstein’s equivalence
principle. The invariant Einstein— Gilbert action

—LH Vodet[g] (R + A) 9)

S =

contains two independent coupling constants: the gravita-
tional constant » and the cosmological constant A. To
interpret this theory in terms of particles, one should make
the expansion g,, = N + xhy, in some fixed background
metrics 7,, (flat for 4 =0 or (anti) de Sitter for 4 # 0)
where #,, describes dynamical fluctuations. For the flat
space (A = 0) Fierz and Pauli showed that the linearized
action S describes free massless particles of spin 2, the
gravitons. Again, by imposing some natural conditions the
Einstein — Gilbert action is found to be the only consistent
(gauge invariant) action for a self-interacting massless field of
spin 2.

In four dimensions, the only non-trivial modification of
the gauge theory of spin 1 and spin 2 is supergravity — the
theory in which, in addition to the spin 1 and spin 2 gauge
fields, a massless gauge field of spin 3/2 appears, the gravitino,
which is responsible for local supersymmetry transformations
with the spinor gauge parameters ¢,(x). A new feature of
supergravity is that it unifies particles carrying different spins,
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in particular bosons and fermions, into the same super-
multiplets.

So usual gauge theories are based upon gauge fields of
spin 1 with the scalar gauge parameters &(x), of spin 3/2 with
the spinor gauge parameters ¢,(x), and of spin 2 with the
vector gauge parameters ¢”(x). Needless to say how impor-
tant these theories are. It is also worth noting that within the
supergravity framework, higher supersymmetries of the
theory provide a softer quantum behavior due to cancella-
tion of divergences. The natural question arises: are there
other possibilities related to gauge fields of higher spins
(s > 2) and higher tensors as gauge parameters that also
lead to fruitful physical models and give hope for creating
the theory of quantum gravity?

2. Free massless fields of higher spins

The theory of massless fields of all spins in four-dimensional
space-time has been elaborated in detail due to the efforts of
many authors (see, for example, [1, 2]). All free fields with
s = 1 were found to be Abelian gauge fields. In particular,
massless gauge fields of integer spins s can be described by
totally symmetric tensors ¢, , subject to the double-
tracelessness condition [1] ¢”,",, , =0 which becomes
non-trivial for s > 4. The quadratic action Sy for free fields
of higher spins [1] is fixed unambiguously by requiring gauge
invariance under the Abelian transformations

5@\'“‘\7\ = a{v]gvg.“vx}v (10)
with parameters ¢,, ,_, which are totally symmetric traceless
rank-(s — 1) tensors, £, , , =0
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For s > 1 this action describes massless particles of spin s
having two independent degrees of freedomind = 3 + 1. The
quantization of this action leads to a unitary theory which is
free from negative-norm states. For s = 0, 1,2 S; reduces to
the standard actions of the lower-spin fields.

Massless gauge fields of half-integer spins are analogously
described in terms of the totally symmetric rank-(s — 1/2)
spin-tensors [1].

3. Motivation

After we have shown that the theory of higher-spin free gauge
fields is well determined, the next question is how to construct
their consistent interactions. The consistency of gauge
theories of higher spins means that they reduce to some
combination of free systems of higher spins at the linearized
level and that the number of gauge symmetries remains the
same for free and interacting theories, i.e., the interactions are
allowed to deform the Abelian gauge symmetries of free fields
like they do in the Yang— Mills and Einstein theories, but not
to reduce their number. The analysis of this problem is
interesting from several points of view.

The well known fact that theories of supergravity allow at
most 32 supersymmetries implies that these theories do not
contain fields of spins higher than two. ! Thus the analysis of
the existence of higher-spin gauge fields can be interpreted as
the analysis of the possibility of going beyond the framework
of the maximal eleven-dimensional supergravity model.

Superstring theory contains infinite systems of all spin
states. Excluding some fields of spin s < 2, all the higher-spin
fields in this theory have large masses exceeding the energy
scale of modern colliders. It can be expected that, in the same
way as W*- and Z-bosons in the electroweak theory, they
acquire mass due to spontaneous symmetry breaking. This is
manifested by superstring field theory which is based on the
so called Stueckelberg symmetries with the following struc-
ture:

690»'“\72,\!3.“()6) = avls"z‘\’s---(x) + te (12)

(13)
where ¢,,,, (x) are gauge parameters of the Stueckelberg
symmetries which are, just like higher-spin gauge parameters,
higher-rank Lorentz tensors. Fields ¢, ,, ,, (x) transform as

6q§v17vz (X) = 8\71,1'2.4.()5) + ... R

jeen

transform as the corresponding Higgs fields analogous to
(7). Such a structure corresponds to some broken higher spin
symmetries. In other words, the field formulation of super-
string theory unambiguously indicates that this theory is a
spontaneously broken phase of some higher-spin theory.

4. Obstacles

Irrespective of the specific motivation, the problem of higher
spins reduces to finding a non-trivial non-linear theory
describing interacting massless fields of spins s > 2. Such a
problem setting may seem not very restrictive. This is not so in
reality. Over decades, the opinion has dominated that the
higher-spin problem has no solution at all. This was based on
arguments of two types.

The S-matrix arguments by Coleman—Mandula and
Haag— Lopuszanski—Sohnius [3] stated that if symmetries
of the S-matrix of some relativistic theory in the Minkowski
space go beyond the framework of ordinary internal
(isotopic) symmetries associated with spin 1 gauge fields,
space-time symmetries associated with spin 2 gauge fields
(gravity), as well as (possibly) supersymmetries associated
with spin 3/2 gauge fields (gravitino), the S-matrix of such a
theory is trivial. In other words, if higher-spin symmetries are
those of the S-matrix, the scattering and hence the real
interaction is absent.

The analysis of gravitational interaction of higher-spin
gauge fields first carried out by Aragon and Deser in 1979 [4]
for a spin 5/2 field proved to be equally frustrating.
Technically, the problem is sufficiently simple: in order to
introduce an interaction with gravity possessing general
coordinate invariance, the ordinary derivatives should be
substituted by covariant ones: 0 — D = 0 — I'. This breaks
the invariance with respect to higher-spin gauge transforma-
tions, since in proving the invariance of action Sy one should
commute derivatives and the commutator of the derivatives is

! This follows from the analysis of supermultiplets. If the number of
supersymmetries exceeds 32, any supermultiplet contains states of spins
higher than two.
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proportional to the Riemann tensor [D...,D...]=R....
As a result, the gauge variation of the covariantized action
S¢oY with respect to covariantized transformations of higher
spins has the following structure:

8S{™ =R _(e.De ) #0.

. (14)
For spins s > 2 this variation contains the traceless part of the
Riemann tensor (the Weyl tensor) which does not permit such
terms to be compensated by some change in the action and/or
transformation laws, as was possible for the case s = 3/2,
which opened the way to supergravity. So it seemed that the
frustrating conclusion [4] is that the gauge fields of higher
spins do not allow for a consistent description in the
framework of Einstein’s gravity. Due to the universal role of
gravity, the existence of the consistent gravitational interac-
tion of higher-spin gauge fields is of principal importance.

It is not surprising that all this hindered the development
of a constructive attitude to the higher-spin gauge field
theory.

5. Higher spin currents

Nevertheless, consistent cubic interactions of higher spins
first constructed in [5] gave significant evidence that gauge
theories of higher spins really exist. Although these interac-
tions did not include gravitational interaction of massless
fields, the very fact of their existence is extremely remarkable.
In particular, interactions with conserved currents well
known from the theory of electromagnetism and
(super)gravity are of this type.

Usual internal symmetries are related by the Noether
theorem to a spin 1 conserved current which can be
constructed from different matter fields. For example, the
electric current

J'=¢0'p —0"p¢, (15)

constructed from a complex scalar field is conserved on the
solutions to the scalar field equations

0 = g(m+m’) ¢ — (C+m*) o (16)

Translational symmetry is related to a current 7" of spin
2 called the energy-momentum tensor. For a scalar matter
field it has the form

™ = ¢ f% 0" (0,60°¢ — m*¢?) . (17)

Supersymmetry is related to a conserved current called
supercurrent. It obeys the fermion statistics and is con-
structed from bosons and fermions. For massless scalars ¢
and massless spinors , it has the form

I =0, ("), (18)
where 7",/ are Dirac’s matrices in d dimensions.

Conserved currents associated with Lorentz rotations can
be constructed from the symmetric energy-momentum
tensor:

SUH = TP T T = T (19)

It is less known that one can construct conserved currents
of arbitrary spin. For example, currents of arbitrary integer

spin constructed from a massless scalar field ¢’ = 0 can be
chosen in the form [6]

TV =" L 00T O P —
k ViV V3 Vic4+1 V, Vo
—Enlza~...aw 0, 0" .. 0" 0" (20)
for even spins and
TV =" 3N p— g (21)

for odd spins. The fact that currents of higher spins are
conserved,

0, T"" ~0 (22)
(~ 0 denotes equality to zero on the equations of motion of
matter fields) allows us to construct the so called Noether
interactions of higher spins in the form

J d4x¢v1“.vj TVieYs , (23)

which are invariant under higher spin transformation (10), at
least up to higher orders in fields. As the currents of higher
spins contain higher derivatives, interactions of higher-spin
fields also contain higher derivatives with the order of
derivatives being proportional to the spin.

6. The role of anti-de Sitter geometry

All these results undeniably pointed to the existence of some
non-trivial gauge theory of higher-spin fields though they did
not resolve the problem with their gravitational interaction.
The solution of this problem, found in the P N Lebedev
Physical Institute of RAS [7], turned out to be fairly
unexpected. It was shown that the consistent cubic gravita-
tional interaction of higher spins can be constructed if the
problem is considered within the framework of the expansion
near the (anti) de Sitter background. In other words, gauge-
invariant and general-coordinate-covariant gravitational
interactions of higher spins contain some terms proportional
to negative powers of the cosmological constant diverging in
the flat limit. Schematically, the modification of the action

leading to the desired result has the following form:
S— S+AS, (24)

AS = ZA(H#)/ZDp(qu(bR’

Pq

(25)

where ¢ denotes higher-spin fields and R describes deviations
of the Riemann tensor from the background curvature of the
anti-de Sitter (AdS) space:

R;w,po = _A(g;tp 8ve — gvp g,ucr) + Rw,pa . (26)
Negative powers of A make terms with higher field derivatives
in (25) dimensionless; the variation of these terms leads to a
‘miraculous’ cancellation of the terms in the variation of the
initial action S. (Note that the order of derivatives of fields
with fixed spins is finite and proportional to the spin).

It is important that this result agrees with conclusions of
Ref. [4] where the problem was implicitly assumed to admit an
analysis within the framework of expansion in powers of the
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Riemann tensor. The point is that such expansions are
admissible only if the Riemann tensor is sufficiently small,
i.e., the geometry is almost flat, while action (24) explicitly
contains negative powers of A and does not permit a flat limit.

Simultaneously, it became possible to get around the
Coleman —Mandula—Haag— Lopuszanski—Sohnius no-go
theorem [3] since analysis of the S-matrix in the AdS space is
meaningless because the S-matrix can not exist in this space-
time.

Gauge theories of higher spins require a non-zero and
even large cosmological constant as these theories predict the
following simple relation between the gauge constant g, the
gravitational constant %, and the cosmological constant A:

g~ A (27)
At first glance, this circumstance could be considered as a
difficulty for the theory. However, this property follows from
the requirement that gauge symmetries of higher spins be
unbroken and apparently has as remote a relation to the
phase of the theory describing the reality as the Yang— Mills
fields being massless has to the theory of electroweak
interactions. It is expected that gauge symmetries of higher
spins will be broken in the physical phase, which makes
initially massless fields massive and simultaneously changes
the value of the cosmological constant.

Note that unbroken symmetries of higher spins requiring
a non-zero cosmological constant can serve as an explanation
as to why the symmetric phase of superstring theory has not
been found so far. The point is that the formulation of
quantum theory of superstrings in the AdS space is a non-
trivial task which has not as yet been solved.

Nevertheless, the fact that gauge theories of higher spins
require a non-zero cosmological constant was regarded until
recently only as a strange feature of the theory. The situation
significantly changed after the so called ‘AdS/CFT corre-
spondence’ (CFT — conformal field theory) had been
discovered.

7. AdS/CFT correspondence

We recall that d-dimensional de Sitter and anti-de Sitter
spaces can be realized as d-dimensional hyperboloids,

XX 5 = 0R?, (28)
embedded in d 4 1-dimensional spaces with coordinates X“
and metrics 14 with the signature + — —--- — o where
o =1 for anti-de Sitter and w = —1 for de Sitter space. The
parameter R is called the radius of the (anti) de Sitter space.
The cosmological constant A is proportional to R~ so the flat
limit of the Minkowski space corresponds to A — 0
(R — 00).

This realization immediately implies that anti-de Sitter
space AdS, has the symmetry group O(d —1,2), and de
Sitter space dS, has the symmetry group O(d, 1). In the flat
limit, each of these groups transforms to the group of
motions of the Minkowski space usually called the Poincare
group. An important feature is that the group of motions of
d+ 1-dimensional AdS space O(d,2) coincides with the
conformal group of d-dimensional Minkowski space. (We
recall that the conformal group is an extension of the Poincare
group and acts on certain, scale-invariant systems such as
systems of massless fields).

AdS space has no boundary. However, it is possible to
analyze the behavior of fields in AdS space in the asymptotic
regime when coordinates and time tend to infinity. For
example, such coordinates can be chosen in the form

=X X=X, i=1,...,d—1. (29)
At t,x" — oo fields exhibit the asymptotic behavior
plut, ux') = @l (1,x) (30)

where the parameter 4 characterizes the field ¢. So
asymptotic values of fields ¢ in d-dimensional AdS space
are characterized by a function of d— 1 coordinates. By
identifying the conformal infinity of AdSs with four-
dimensional Minkowski space, the hypothesis first put
forward by Maldacena [8] establishes the correspondence of
correlators of fields in the AdS space with correlators of
currents of a conformal theory on its boundary. More
precisely, this means the correspondence of a type IIB
superstring in the AdSs x S° space with A" = 4 supersym-
metric Yang—Mills theory with gauge group SU(N) in four-
dimensional Minkowski space if the following theory
parameters are identified:

1

(L)t 22

where [y is the string length scale, A is the cosmological
constant in AdSs, and g%, is the coupling constant of the
Yang— Mills theory on the boundary.

The limit originally considered by Maldacena [8]

(1)

= g%’MNv

gymMN — 00, A4-0, (32)
relates the strong coupling limit in the Yang— Mills theory to
the low-energy limit of the superstring in AdSs x S° described
by the classical theory of IIB supergravity. In this case
calculations in AdSs x S° are relatively simple and can be
used to analyze the strong coupling regime in the N' =4
supersymmetric Yang—Mills theory. However, recently
Sandborg and Witten [9] suggested considering the opposite
limit

GuN =0, (ly)4 — o0, (33)
relating the weak coupling regime in N' = 4 ‘super-Yang—
Mills’ theory to a very non-trivial superstring limit in
AdSs x S*. The key observation is that in this limit the
N =4 ‘super-Yang —Mills’ theory becomes free and hence
has the infinite-dimensional symmetry which should be
identified with some (conformal) symmetry of higher spins
(the corresponding charges are obtained by constructing
conserved currents analogous to currents of higher spins
(20) and (21) constructed from a free scalar field). So the
theory of superstring in AdSs x S° in limit (33) should possess
the same symmetry. Hence, it must be some gauge theory of
higher spins in AdSs x S°. Since little is known about
superstring theory in AdSs x S°, the meaning of this result
lies in the hope of obtaining an explicit description of
superstring in its maximally symmetric (using the language
of higher-spin theory) phase, which makes the problem of
higher spins even more actual. The higher-spin symmetry
algebra corresponding to the Sandborg—Witten limit was
explicitly constructed in [10].
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8. Higher spin symmetries

The main properties of the theory of gauge fields of higher
spins are determined by the higher spin global symmetry
algebra which has the structure of the algebra of oscillators
Vs o0 =1,..., M satisfying the commutation relations

[)A}mﬁ[f] = 2C7./37 (34)
where C,p is some non-degenerate matrix 2. Let us consider all
possible functions of oscillators:

o0
. 1 . .
P =) a1 D e B, (35)
n=0 :

(it is convenient to assume all coefficients P* % to be totally
symmetric with respect to permutations of indexes). Clearly,
the product of two operator functions of this kind will again
allow such a representation. The simplest (super)algebras of
higher spins are obtained from (anti)commuting of elements
(35). Needless to say, everyone who has made calculations
with harmonic oscillators using the secondary quantization
formalism has met these algebras. It is worth noting that
originally the higher-spin algebras were found in [11] without
using convenient oscillator realization (34) and (35) which
was discovered later in [12].

Oscillator indexes «, f3, . .. are interpreted as spinor ones.
In particular, in the case of four-dimensional space-time,
spinors have four components (M = 4). The dynamics of
higher-spin fields is described in terms of gauge fields of the
higher-spin algebra &, (|x). The spin of a field is determined
by the power of operator variables

Wy (uplx) = 1V, (5]x) (36)

The spin 2 gravitational field is described by fields o, (|x)
bilinear in spinor variables that correspond to Einstein’s
gravity formulation in the Cartan formalism. The spin 1
gauge fields are described by potentials &,(0|x) which are
independent of auxiliary operator variables. To include non-
Abelian Yang—Mills groups, it is sufficient to put matrix
indexes on fields &, (7|x). As shown in [13], this allows one to
construct higher-spin gauge theories with Yang— Mills gauge
groups in the spin 1 sector U(n) x U(m), O(n) x O(m), and
USp(n) x USp(m) with different n and m. Formula (36) also
immediately implies that the presence of some spin s > 2
gauge field in the theory leads to the presence of a tower of
fields with unlimitedly increasing spins. Indeed, the commu-
tator of two polynomials in oscillators of power n; and n,
yields a power nj + ny — 2 polynomial. In other words, a
commutator of spin 3 symmetries yields a spin 4 symmetry, a
commutator of spin 4 symmetries yields a spin 6 symmetry,
etc. Usual symmetries emerging in field theory models with
spins s < 2 and consistent with S-matrix no-go theorems turn
out to be finite-dimensional sub-algebras of higher-spin
symmetries generated by not higher than bilinear combina-
tions of oscillators , (or by their limits — in a way similar to
how the Poincare group is the limiting case of the AdS group).

Note that full gauge theories of higher spins also contain
fields with lower spins s = 0 and 1/2 which are described by
other generating functions. The minimal gauge theory of

2 The canonical choice of the matrix C,z corresponds to explicit decom-
position of oscillators y, into creation and annihilation operators. In four-
dimensional theory C,; coincides with the charge conjugation matrix.

higher spins contains fields of all even spins (one field of
each type).

As to theories in a different number of spatial dimen-
sions, the list of results obtained up to the present time
contains the full description of the non-linear dynamics of
higher spins in four-dimensional AdS space at the level of the
equations of motion [14], as well as partial results at the level
of the action, which solve the problem of higher-spin
gravitational interaction [7]. The case of AdSs most interest-
ing from the AdS/CFT-correspondence viewpoint, was
recently considered beyond the framework of free theory in
[15], where cubic vertexes of higher-spin interaction with
gravity were constructed. Interesting results obtained in
Ref. [16] for free fields in AdS,, indicate that the general
approach, applied previously in four and five dimensions,
may also bring success in the case of AdS;. We can also
mention the construction of full nonlinear invariant equa-
tions with higher-spin symmetries in three-dimensional AdS
[17], although three-dimensional theory of higher spins is
dynamically less interesting since higher-spin gauge fields in
three dimensions do not carry their degrees of freedom. More
detail on the formalism used for the formulation of higher-
spin theory and more complete list of references can be found
in [6].

9. Geometry of higher spins

The initial setting of the problem of higher spins is based on
the standard concept of space-time. One of the most
remarkable consequences of this theory is [18] that the
geometry adequate for the theory of higher spins and
possibly for the theory of fundamental interactions can
prove to be more interesting. It is necessary to emphasize
that this does not imply rejecting general relativity but some
more general approach promising a higher degree of unifica-
tion of different physical phenomena at the level of funda-
mental theory. The closest analogy is in passing to the
Minkowski space-time geometry as a consequence of Max-
well’s equations being invariant with respect to the Lorentz
transformations. Under the Lorentz transformations, electric
and magnetic fields form different components of the unique
relativistic field strength tensor (1).

The key observation is that infinite systems of massless
fields arising in four-dimensional theory of higher spins
transforms according to the extension of usual relativistic
symmetries to the Sp(8|R) group. In a way similar to how
electric and magnetic fields transform independently under
spatial rotations but are mixed by the Lorentzian boosts, each
of the massless fields transforms through itself under
relativistic transformations [conformal group SU(2,2)] but
different massless fields are mixed under other symmetries
from Sp(8|R). This observation raises the question of the
nature of the geometry ensuring the geometrical character of
the action of this more broad symmetry, and of how the
dynamics of massless fields is described in the language of this
geometry. The answer is as follows [10]. The relevant general-
ized space-time M, is described by coordinates X/ = X#*
which are symmetric bispinors. In the case of four-dimen-
sional space-time M = 4, the generalized space-time turns out
to be ten-dimensional. The equations of motion for massless
fields take the remarkably simple form:

o o’
(aX«ﬁaxvé - OX"oX P >b<X )=0

(37)
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for the scalar field 5(X) and

0 0

X B S (X) = X Jp(X) =0
for the fermion field f,(X). Here all massless fields of even
spins in four-dimensional Minkowski space are described by
one scalar field (X) and all massless fields of half-integer
spins in four-dimensional Minkowski space are described by
one fermion field f,(X) in the generalized space-time M.

The original Minkowski space-time appears as a sub-
space of My which allows the description in terms of local
events. It is the accurate analysis of the notion of local events
in the M4 space-time that has the decisive role in establishing
the relation to the geometry in the Minkowski space-time.
One can say that the dynamics of relativistic systems in My is
such that the Minkowski space-time turns out to be a
visualization of My via signals described by equations (37)
and (38), which can be focused (i.e., allow delta-function-like
initial conditions) in not more than three directions. On the
other hand, any visualization of My destroys the explicit
character of some of the Sp(8) symmetries. A detailed analysis
of the peculiarities of the relativistic dynamics in My was
carried out in [18] showing that its description in My is
consistent with the principles of classical and quantum field
theories. Note that this approach allows in particular a
geometrical interpretation of electromagnetic duality as a
specific Sp(8) transformation.

(38)
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