
Abstract. Universal and nonuniversal critical exponents of a
three-dimensional Ising system with weak quenched disorder
are discussed. Experimental, computational, and theoretical
results are reviewed. Particular attention is given to field-the-
oretical renormalization-group results. Different renormaliza-
tion schemes are considered with emphasis on the analysis of the
divergent series obtained.

1. Introduction

This paper reviews properties of a three-dimensional weakly
diluted quenched Ising model (Fig. 1) 1 in the vicinity of a
critical point. If dilution by a nonmagnetic component is
weak, i.e., a system is far from the percolation threshold, the
magnetic second-order phase transition is maintained in
RIM, though possessing novel features in comparison with
the pure (d � 3) Ising model (see, for instance, review [1] as

well as Ref. [2]). Static critical exponents of RIM have been
the subject of detailed experimental [4 ± 20], numerical [21 ±
41], and theoretical [42 ± 65] analysis for almost three
decades.2 Recently, new data were obtained both in experi-
mental measurements [15 ± 20] and in Monte Carlo simula-
tions [33 ± 40]. A theoretical breakthrough occurred over
several months in 1999 ± 2000 when the perturbation expan-
sion series for RIM were extended from the 4th [54] through
5th [63, 64] to the sixth order [65, 66]. Therefore, a system-
atization of the large number of available results on the
critical behavior of RIM seems to be timely and expedient.

R Folk Institut fuÈ r Theoretische Physik, Johannes Kepler UniversitaÈ t

Linz, A-4040 Linz, Austria

Tel. (43-(0) 372) 24 68 83 99

E-mail: folk@tphys.uni-linz.ac.at

Yu Holovatch Institute for Condensed Matter Physics

of the National Academy of Sciences of Ukraine, UA-79011, Lviv,

Ukraine

Ivan Franko National University of Lviv,

UA-79005, Lviv, Ukraine

Tel. (38-032) (2) 76 09 08

E-mail: hol@icmp.lviv.ua

T Yavors'kii Ivan Franko National University of Lviv,

UA-79005, Lviv, Ukraine

Tel. (38-032) (2) 97 94 43

E-mail: tarasyk@ktf.franko.lviv.ua

Received 20 July 2001, revised 16 May 2002

Uspekhi Fizicheskikh Nauk 173 (2) 175 ± 200 (2003)

Translated by T Yavors'kii; edited by S N Gorin

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 11.10.Gh, 61.43. ± j, 64.60.Ak

Critical exponents of a three-dimensional

weakly diluted quenched Ising model

R Folk, Yu Holovatch, T Yavors'kii

DOI: 10.1070/PU2003v046n02ABEH001077

Contents

1. Introduction 169
2. Weakly diluted quenched Ising model 170
3. Experimental study 172
4. Monte Carlo simulations 175
5. Renormalization-group-theory expansions 179

5.1 Renormalization; 5.2 Perturbation expansion series and their `naive' analysis

6. Series resummation and numerical results 183
6.1 Summability of RIM divergent series; 6.2 PadeÂ ± Borel oriented resummation; 6.3 Resummation based on

conformal mapping

7. Conclusion 188
References 190

Physics ±Uspekhi 46 (2) 169 ± 191 (2003) #2003 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

Figure 1. The weakly diluted quenched (d � 3) Ising model describes a

system of scalar `spins' randomly distributed and fixed in sites of a three-

dimensional cubic lattice.

1 We denote the random Ising model as RIM.
2 Later in the review, only static critical behavior of RIM is considered.

For recentMonte Carlo results of the dynamic critical behavior of RIM as

well as their comparison with the theoretical data, see Ref. [3].



The subject of our discussionwill be focusedmainly on the
RIM critical exponents. An asymptotic critical exponent x of a
physical observable O�t� is defined [67] asymptotically close
to the critical point Tc:

x � ÿ lim
t!0

lnO�t�
ln jtj ;

where t � �Tÿ Tc�=Tc is the reduced distance to the critical
point. For instance, the magnetic susceptibility w diverges as

w ' G�jtjÿg ; t! 0 ; �1�
where g is the susceptibility critical exponent, whileG� andGÿ
denote critical amplitudes above and below the critical point,
respectively. The power law of type (1) holds exactly only in
the asymptotic regime t! 0. In this regime, the critical
exponents and ratios of the critical amplitudes take constant
values. According to the universality hypothesis, they are
defined by global variables only. For a short-range interac-
tion, the global variables are the space dimension and tensor
characteristics of an order parameter. In the nonasymptotic
regime, the approach to criticality is characterized by
nonuniversal effective critical exponents, which are intro-
duced to describe the behavior of a quantity in a certain
temperature interval [68, 69]. The susceptibility effective
critical exponent geff by definition is written as:

geff�t� � ÿ
d ln w�t�
d ln t

: �2�
In the asymptotic limit t! 0, the effective and asymptotic
exponents coincide. In the intermediate regime, the behavior
is characterized by the so-called Wegner expansion [70]

w ' G�jtjÿg
ÿ
1� G1;�jtjon � G2;�jtj 2on � . . .

�
; �3�

where G1;�;G2;� are nonuniversal amplitudes, n is the
correlation-length critical exponent, and o is the correction-
to-scaling exponent.

It is mainly the skill of the physicist which allows him or
her to discriminate between regimes (1) ± (3) either performing
experimental measurements or doing theoretical calculations
and numerical simulations. Below, we will review available
data on effective and asymptotic critical exponents of RIM.

The paper is arranged as follows. In Section 2, we give
general ideas about the influence of a weak quenched
disorder on a second-order phase transition, formulate the
model, and outline the main features of its critical behavior.
Section 3 is dedicated to a survey of the experiments on
weakly diluted uniaxial magnets. Data obtained by computer
Monte Carlo simulations of RIM are considered in Section 4.
In Sections 5 and 6, we outline themethod of the renormaliza-
tion group, which appeared to be the most fruitful theoretical
tool in the study of the critical properties of RIM. We
consider different renormalization schemes. Special atten-
tion is paid to analysis of divergent series, which reveal
themselves as an intermediate step in the application of the
method. In Conclusion, we discuss the main results and
possible future directions of RIM studies.

2. Weakly diluted quenched Ising model

The central questions one has to answer in studying the
influence of weak disorder on magnetic second-order phase
transitions are (1) do the critical exponents of a homogeneous
magnet change under dilution by a nonmagnetic component?

and (2) if this is the case, are the new exponents universal?
Regarding the first question, it has been argued [71] that if the
heat-capacity critical exponent a of the pure system is
positive, i.e., the heat capacity diverges at the critical point,
then a quenched disorder causes changes in the critical
exponents. This statement is known as the Harris criterion.
Later, it was proven for a large class of d-dimensional
disordered systems that the correlation-length critical expo-
nent n must satisfy the inequality n5 2=d [72]. Both state-
ments focus attention on studies of the d � 3 Ising model. In
the case of the absence of structural disorder in this model,
typical numerical values of the above exponents, together
with the magnetic-susceptibility and the order-parameter
critical exponents, were obtained by a resummation of the
perturbation-theory series of the scalar d � 3 f4 theory [73].
They read

a � 0:109� 0:004 > 0 ; n � 0:6304� 0:0013 <
2

3
;

g � 1:2396� 0:0013 ; b � 0:3258� 0:0014 : �4�

According to the inequalities mentioned above, for the case of
a diluted Ising model, new exponents are expected.

In order to obtain precise values of critical exponents, it is
now standard to rely on renormalization-group methods. In
particular, the theoretical estimates given in (4) were obtained
on the basis of a deep analogy between the long-distance
properties of the Ising model in the neighborhood of a
second-order phase transition point and a field theory with
an effective Landau ±Ginzburg ±Wilson Hamiltonian of the
form

HIsing�j� �
�
d3R

�
1

2

h��Hj��2 �m2
0j

2
i
� ~u0

4!
j4

�
: �5�

Here, m2
0 is a bare mass squared, which is proportional to the

distance to a critical point, andj � j�R� and ~u0 are the (bare)
scalar field and coupling, respectively.

One of the ways to introduce quenched dilution to the
effective Hamiltonian (5) is to add a random-temperature-
like variable c � c�R� [45] to m2

0:

Hc�j� �
�
d3R

�
1

2

h��Hj��2 � �m2
0 � c�j2

i
� ~u0

4!
j4

�
: �6�

One assumes that c obeys Gaussian distribution

P�c� � 1������
2p
p

w
exp

�
ÿ c2

2w2

�
�7�

with the dispersionw2. Introducing n replicas [74] ofmodel (5)
in order to perform averaging over quenched disorder [75],
one ends up [45] with a familiar effective Hamiltonian

HRIM�j� �
�
d3R

�
1

2

Xn
a�1

h��Hja

��2 �m2
0j

2
a

i
� u0

4!

Xn
a�1

j4
a �

v0
4!

�Xn
a�1

j2
a

�2�
: �8�

In the limit n! 0, the field theory (8) describes critical
properties of RIM. Here, the bare coupling u0 is positive,
being proportional to ~u0, whereas the bare coupling v0 is
proportional to the minus variance of the random variable c
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and thus is negative. The last term in (8) is present only for
nonzero dilution (in the presence of disorder): it is directly
responsible for the fluctuations' effective interaction due to
the presence of impurities.

Often (e.g., in Monte Carlo simulations) the microscopic
Hamiltonian of RIM is written in the following form:

H � ÿ 1

2

X
R;R 0

J
ÿjRÿ R 0j�SRS

0
R cRcR 0 ; �9�

whereR runs over sites of a simple cubic lattice, J is the short-
range translationally invariant interaction between pairs of
S � �1 `classical' Ising spins, and cR is the occupation
number equal either to 0 or to 1. It is considered that
geometrically the vacancies (cR � 0) are distributed indepen-
dently according to the law

P�cR� � �1ÿ p� d�cR� � pd�1ÿ cR� �10�

and fixed in different sites of the lattice (see Fig. 1). In (10),
p4 1 is the concentration of occupied sites. Calculating free
energy of model (9) and using a replica trick [74] to perform
the configurational averaging of the logarithm of the
configuration-dependent partition function, it can straight-
forwardly be shown that one ends up with the effective
Hamiltonian of type (8) in the replica limit (n! 0) with
u0 � p and v0 � p �pÿ 1�.

From the viewpoint of dynamics, one can point to two
opposite types of disorder. If a characteristic time of impurity
dynamics is comparable to relaxation times in the pure
system, impurity variables are treated identically to the
`pure' dynamical variables, since they are part of the phase
space of the disordered system. The corresponding annealed
disorder [75] is the subject of special investigations. Their
main result states that the presence of annealed disorder leads
to trivial consequences in the critical region. The so-called
Fisher renormalization [76] states the following: if the heat-
capacity critical exponent of an undiluted system apure is
positive, then the critical exponents x of an annealed system
are determined by those of the corresponding pure one (xpure)
by a simple renormalization in the form

x � xpure
1ÿ apure

; a � ÿapure
1ÿ apure

: �11�

This explains why prevailing interest is attracted by the
quenched disorder, when impurities can be considered as
fixed and thus one needs to perform configurational aver-
aging over an ensemble of disordered systems with different
realizations of the disorder.

The Hamiltonian (8) represents critical properties of the
problem (9) for small randomness. Alternatively, the scale-
invariant fractal ramified cluster at the percolation threshold
is a starting point of the strong-disorder approach. Here, the
field-theoretic description starts with the effective Hamilto-
nian of the Potts model. A unified theory of the critical
behavior of random systems, which would give regimes of
both strong and weak disorder as its limiting cases, is still
absent.

The translationally invariant Hamiltonian (8) presumes a
perturbative account of thermal fluctuations around a
spatially homogeneous unique ground state. Such an
approach can be justified for pure systems. For random
systems, in the region dominated by disorder there exists a
macroscopic number of spatially inhomogeneous ground

states. These correspond to local-minimum solutions of a
saddle-point equation for the effective Hamiltonian (8) [77,
78]. Physically, this equation corresponds to the so-called
Griffiths phase [79] caused by the existence of ferromagne-
tically ordered `islands' in the temperature interval between
the critical temperatures of pure and random systems. The
description of the phase at the critical point is provided by a
Hamiltonian with broken replica symmetry [77] and non-
trivial properties [80, 81]. However, recently a refined
analysis of the problem brought about a stability of the
critical behavior of the weakly disordered systems with
respect to replica-symmetry-breaking effects [82]. The
theoretical results reviewed in the present discussion will be
based on the replica-symmetrical Hamiltonian (8) (see
Section 5).

The effective Hamiltonians (6) and (8) possess different
global variables: although the space dimension is the same
(d � 3), the symmetry and the number of the order-parameter
components differ. Thus, one may expect that by application
of renormalization-group approach they will lead to different
models of critical behavior. One of the central notions of
renormalization-group formalism applied to critical phenom-
ena is that of the fixed point of the renormalization-group
transformation. If a fixed point exists and can be reached
from the initial values of the couplings, it corresponds to a
critical point of the system. Applying the renormalization-
group transformation to the effective Hamiltonian (6) and
starting from positive values of u, one reaches the stable fixed
point u� which corresponds to the critical point of a d � 3
pure Ising model. The calculations in this case lead in
particular to the results (4). The fixed point structure for the
effective Hamiltonian (8) is sketched in Fig. 2. The earliest
qualitative results about the structure of RIM fixed points
appeared in the mid-seventies [43 ± 45]. Later analysis
supported this picture [48, 50]. Indeed, the fixed point I of
the d � 3 pure Ising model appears to be unstable, and a new
stable fixed point R appears (see Fig. 2). Thus, the general
answer on the basis of the renormalization-group analysis of
RIM supports the nonperturbative results of Refs [71, 72]:
RIM critical behavior is governed by critical exponents
different from those of the pure Ising model.

In the subsequent sections we will consider in detail how
this statement was made clear in experimental, Monte Carlo,
and theoretical studies.

G

R

I

P

v

u

Figure 2. A qualitative structure of RIM fixed points. The Gaussian fixed

point G is stable for d5 4, and the stable fixed point P cannot be reached

from the initial coupling values u > 0, v < 0 (this region as well as other

unphysical regions of RIM are shown in grey). The fixed point I of a pure

Ising model is unstable. The fixed point R is both stable and accessible

(stable fixed points are shown by squares).
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3. Experimental study

In experiments on magnets, the Ising model is represented by
crystals of difluoride of a transition metal, normally iron or
manganese. In FeF2, which possesses a rutile (tetragonal)
crystal structure with lattice parameters a � 4:697 A

�
and

c � 3:309 A
�
at room temperature [83], the spins of metal

ions are ordered along the c axis in such away that the spins of
the body-centered ions are oriented in opposite directions to
those of the corner ions. The system can be well described by a
Heisenberg-like spin S � 2 Hamiltonian with a quadratic
anisotropic single-ion term. It follows from the spin-wave
dispersion relations on the basis of neutron scattering
measurements [84] that other interactions constitute less
than 6% of the interspin exchange force constant

J � 0:45 meV. Dominant intersublattice exchange interac-
tion and high anisotropy makes FeF2 a very good experi-
mental realization of an Ising antiferromagnet, where the
order parameter is the sublattice magnetization. Experimen-
tal studies confirm that this substance possesses the pure Ising
model critical behavior within the reduced temperature range
jtj < 10ÿ1 (t � �Tÿ TN�=TN) around NeÂ el temperature TN.
Another example is MnF2 with similar crystal structure but
with much weaker single-ion anisotropy in comparison with
FeF2. Nonetheless, the experimental study shows that this
substance also belongs to the Ising universality class [85 ± 87].

A material which corresponds to RIM can be obtained as
a crystalline mixture of two compounds on the basis of a
`pure' Ising model matrix (see Table 1). A corresponding site-
diluted uniaxial alloy is prepared by a substitution of

Table 1. The experimentally measured critical exponents of materials, which correspond to the random Ising model. *

References Material Method jtj b g n a

Dunlap et al.,
1981 [4]

MnpZn1ÿpF2

p � 0:864
NMR 10ÿ3 0:349� 0:008

Birgeneau et al.,
1983 [5]

FepZn1ÿpF2

p � 0:6; 0.5
NS; LB 10ÿ1ÿ2� 10ÿ3

2� 10ÿ2ÿ2� 10ÿ3
1:44� 0:06 0:73� 0:03 ÿ0:09� 0:03

Hastings et al.,
1985 [6]

Dy3Al5O12

+1% powder Y
MS 4� 10ÿ2 0:350� 0:01 0.73

Belanger et al.,
1986 [7]

FepZn1ÿpF2

p � 0:46
NS 10ÿ1ÿ1:5� 10ÿ3 1:31� 0:03 0:69� 0:01

Barret, 1986
[8]

FepZn1ÿpF2

p � 0:9925ÿ0:95
NS 10ÿ1 ë 10ÿ3 0:36� 0:01

Mitchell et al.,
1986 [9]

MnpZn1ÿpF2

p � 0:75
p � 0:5
p � 0:5

NS
2� 10ÿ1ÿ4� 10ÿ4

1� 10ÿ1ÿ5� 10ÿ3, t > 0

1� 10ÿ1ÿ5� 10ÿ3, t < 0

1:364� 0:076
1:57� 0:16
1:56� 0:16

0:715� 0:035
0:75� 0:05
0:76� 0:08

Thurston et al.,
1988 [10]

MnpZn1ÿpF2

p � 0:5
SMXS 6� 10ÿ2ÿ1� 10ÿ3 0:33� 0:02

Rosov et al.,
1988 [11]

FepZn1ÿpF2

p � 0:9
MS 1� 10ÿ1ÿ3� 10ÿ4 0:350� 0:009

Ramos et al.,
1988 [13]

MnpZn1ÿpF2

p � 0:40; 0 . 5 5 ;
0.83

LB 10ÿ2 ? ÿ0:09� 0:03

Ferreira et al.,
1991 [14]

FepZn1ÿpF2

0:314 p4 0:84
LB ? ÿ0:09

Belanger et al.,
1995 [15]

FepZn1ÿpF2

p � 0:5
NS < 10ÿ1 0.35

Belanger et al.,
1996 [16]

FepZn1ÿpF2

p � 0:52
NS 10ÿ2 0.35

Hill et al.,
1997 [17]

FepZn1ÿpF2

p � 0:5
XS 10ÿ2 0:36� 0:02

Slanic et al.,
1998 [18]

FepZn1ÿpF2

p � 0:93
LB ? ÿ0:10� 0:02

Slanic ,
1998 [19]

FepZn1ÿpF2

p � 0:93
NS ? 1:35� 0:01 0:71� 0:01

Slanic et al.,
1999 [20]

FepZn1ÿpF2

p � 0:93
NS 10ÿ2ÿ1:14� 10ÿ4 1:34� 0:06 0:70� 0:02

* The experimental techniques are given in the following notations: NMR, nuclearmagnetic resonance; LB, linear birefringence; NS, neutron scattering;
MS,MoÈ ssbauer spectroscopy; SMXS, synchrotronmagnetic x-ray scattering; andXS,X-ray scattering. t denotes a reduced temperature interval, where

the power-law fit to the experimental data was carried out or a minimal value of the reduced temperature reached in the experiment.
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nonmagnetic isomorph ZnF2 for FeF2 (MnF2). Experiments
on the critical behavior of random systems are extremely
sensitive to the sample quality. Macroscopic nonstatistical
gradients in concentration cause a variation of TN through
the sample, smearing out the sharp transition. Asymptotic
critical behavior is observable only very close to TN. There-
fore, to provide a satisfactory realization of random substitu-
tion of nonmagnetic ions (Zn�2) for magnetic ones (Fe�2,
Mn�2), mixed crystals FepZn1ÿpF2 as well as MnpZn1ÿpF2

should be grown so as to provide a very low degree of
mosaicity, high chemical homogeneity, and, especially, small
impurity concentration gradients. The last can be achieved by
choosing the impurity concentration from the condition [89]
dTN=dp � 0, or on the basis of geometric considerations,
taking into account that gradients are usually parallel to the
growth axis. Already early experimental studies on the critical
behavior of disordered crystals [90, 91] proved the crucial role
of sample quality; high-quality samples allowed the observa-
tion of sharp phase transition and the measurement of the
dependence of the NeÂ el temperature TN on p via the linear
birefringence method [92]. This provided a basis for measure-
ments of universal critical properties. The earliest experi-
mental study of the critical exponents governing the sharp
transition at a weak quenched dilution was the nuclear
magnetic resonance measurement of magnetization in
Mn0:864Zn0:136F2 [4]. The magnitude of the magnetization
exponent b was found to differ strongly from that in the
undiluted sample (see Table 1).

In two years, the study of Ref. [4] was corroborated by
measurements of the staggered susceptibility and the correla-
tion length in an iron-based crystal with a concentration
p � 0:5 (a high-dilution regime). The experiment was done in
a two-axis spectrometer using the neutron scattering techni-
que [5]. The smearing effects were eliminated by masking the
crystal to expose only a small homogeneous region. The
relative temperature control to about 0.01 K at the sub-
stance's NeÂ el temperature of 42.50 K allowed the attainment
of an accuracy djtj � 5� 10ÿ4 for the reduced temperature.
The data for the inverse correlation length and the inverse
staggered susceptibility were fit to power laws with critical
amplitudes and exponents as free parameters. The power law
was shown to be satisfied well within 10ÿ3 ± 2� 10ÿ1 with the
same critical exponents (see Table 1) below and above Tc

while differing strongly from those of the pure Ising model.
To support the result, caloric properties were measured, too.
The fact that for transition-metal difluorides the temperature
derivative of the linear birefringence is proportional to the
magnetic specific heat within jtj < 10ÿ1 [92, 93] served as a
basis for the experimental technique applicability. Measure-
ments of the critical exponent a were performed on an
Fe0:6Zn0:4F2 sample with TN � 47:05 K. In order to mini-
mize the effect of concentration gradients, the laser beam was
oriented perpendicularly to the concentration gradient. The
numerical value of the critical exponent was extracted by
fitting the data to the temperature integral of the specific-heat
scaling function taking into account correction-to-scaling
terms [i.e., the first two terms in expansion (3)]. In contrast
to the pure Ising case, the data obtained yielded a < 0 (see
Table 1). Within the whole region at reduced temperature t,
neither evidence of pure Ising behavior nor a crossover from
pure to random fixed-point critical behavior was found. It
was concluded that either the crossover is outside the critical
region or it is too smooth. In concluding, let us note that the
data obtained in Ref. [5] on the basis of two different

substances and quite different experimental procedures
proved the correctness of the scaling relation dn � 2ÿ a and
thus served as direct experimental support of scaling in dilute
systems.

With the typical energy of the neutron beam of about
10 meV, the neutron scattering measurements appeared to be
one of the most useful methods for studying the critical
region. However, the method turned out to be very sensitive
to the samples' quality, since their typical sizes were less than
several millimeters. The scattering data contain contributions
from transverse and longitudinal spin fluctuations, which
have to be separated in a detailed data analysis. This explains
why in the measurements of Ref. [7], which were performed
on FepZn1ÿpF2 with concentration 0:46, special attention was
paid to the quality of the sample. The variation of 2� 10ÿ4 in
the concentration over the entire volume that was achieved in
the study permitted scattering studies within the temperature
limits jtj5 10ÿ3. Within the interval 1:5� 10ÿ3 4 jtj4 10ÿ1,
the inverse correlation length was obtained from the width of
the Lorentzian fits as a function of temperature, and the
correlation length exponent was extracted from the power-
law fits. In order to obtain the exponent g, w data were
extrapolated to the wave vector length q � 0 (see Table 1)
and the fit to the power-law ansatz was done taking into
account the background term. An alternative Mn-based
substance (MnpZn1ÿpF2) was studied by neutron scattering
a year later [9]. The sample with p � 0:75 had an overall
spread in concentration of 0:001, which allowed the research-
ers to perform measurements up to jtj � 4� 10ÿ4 (Fig. 3).
The p � 0:5 sample was of lower quality, with a spread in
concentration of 0.005. The high quality of the samples, as
well as the temperature control up to 0.05 K, allowed the
researchers to obtain critical amplitudes ratios and exponents
with good accuracy. However, systematic errors, which were
assumed to be due to the resolution corrections, the quasi-

0.1

1

10

100

1000

0.01 0.1 1 10

Mn0.75Zn0.25F2

w�
0
�,
ar
b
.u

n
it
s

jDT j, K

T < TN

T > TN

Figure 3. Neutron scattering measurements of w�0� in Mn0:75Zn0:25F2 [9].

The solid lines represent a simple power-law dependence obtained by a fit

of its parameters to experimental data with the result g ' 1:364 above and
below NeÂ el temperature TN. The critical behavior is governed by RIM

asymptotic critical exponents within the reduced temperature interval

4� 10ÿ4 < jtj < 2� 10ÿ1. The figure is taken from Ref. [9].
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elastic approximation, concentration fluctuations, and back-
ground effects, appeared to be of more importance than
statistical ones. The authors stressed that, since no correc-
tion-to-scaling terms were used, the exponents found are
effective. Nonetheless, the p � 0:75 sample was shown to
exhibit RIM critical behavior over the entire reduced-
temperature interval 4� 10ÿ4 < jtj < 2� 10ÿ1; the critical
exponents at higher dilution p � 0:5 have not reached their
asymptotic RIM values (see Table 1 and Fig. 4).

The aforementioned results obtained for single crystals of
transition-metal fluorides were corroborated [6] by neutron
scattering experiments on a sample of Dy3Al5O12 powder. A
powder of this cubic noncollinear Ising antiferromagnet,
together with nonmagnetic yttrium, was prepared to avoid
gradients in a composite sample, where they usually occur.
The critical exponent b increased in a disordered sample in
comparison to the value of the `pure' Isingmodel (see Table 1)
and provided extra evidence of the conformity between
experiment and theoretical predictions.

It is known that static critical behavior of a diluted Ising
magnet in a uniform fieldH corresponds to the random-field
Ising model [94, 95]. This model is the subject of recent
intensive experimental studies (see [2, 96]). Two works on
neutron scattering measurements in RIM appeared in the
middle of the 1990s in the context of studies of random-field
model properties [15, 16]. In the experiments the problem of
the Bragg scattering saturation due to extinction effects was
partially solved by growing a 3.4-mm epitaxial film of
Fe0:5Zn0:5F2 on a (001) ZnF2 substrate. The small X-ray
rocking curve linewidth of the (001) reflection showed the film
to be of very high quality, which was in part due to the nearly
identical lattice parameters a of the substrate and substance.
On the other hand, since the film thickhess was 104 lattice
spacings, the film could be considered as a three-dimensional
object. This was proven in experiments on FeF2, where the

critical behavior of the `pure' d � 3 Ising magnet was
observed [97]. The transverse (100) Bragg scattering scan
data appeared to be well described by aGaussian distribution
with a background term. Fitting the Bragg amplitude vs.
temperature to a simple power law, a critical exponent
b � 0:35 was found for H � 0. However, a smoothing-off of
the expected critical behavior of the magnetization near TN

prevented an accurate analysis of the data. To reveal whether
this was caused by poor sample quality, measurements on the
3.4-mm film of Fe0:52Zn0:48F2 were performed [16]. The higher
resolution data confirmed the obtained value of b and showed
that smoothing-off was only due to insufficient resolution.
Recently in neutron scattering studies of a crystal 0:44 mm
thick, the region of investigation was extended from
jtj5 10ÿ2 to jtj5 10ÿ4, which allowed obtaining the correla-
tion length and susceptibility critical exponents [19, 20].

The MoÈ ssbauer spectroscopy studies of critical behavior
started in 1986 on a class of Fe-based substances with various
concentrations of magnetic atoms [8]. The method was tested
earlier for the `pure' Ising antiferromagnet FeF2. It had been
shown that the sublattice magnetization is proportional to the
field h, which can be measured in MoÈ ssbauer spectroscopy
[88]. To apply the approach to a dilute magnet, the variation
of the concentration of Zn was reduced to 10ÿ4, and a
temperature stability of 0.002 K was achieved. In order to
fix the critical temperature, the values of b were chosen such
that the plot h�T�1=b vs. T became a straight line intersecting
the abscissa axis at TN. This method appeared not to be
sensitive to particular values of b and gave an accuracy of
0.05 K for the critical temperature location. Though the
critical exponent b can be obtained from the curve slope in a
double-logarithmic plot, this method produced results only
after separating the data into two intervals in t, which were
characterized by obviously different critical exponents: one of
the `pure' Ising model and the other of RIM. The crossover in
b occurred within a very narrow range and at relatively large
values of t �10ÿ1 5 jtj5 10ÿ3� for small dilutions (p5 0:95).
Subsequent studies using MoÈ ssbauer spectroscopy appeared
two years later [11] and were characterized by a very detailed
analysis of the data. Their advantage was a high quality of
the sample grown from a stoichiometrical mixture of FeF2

and ZnF2 powders, each prepared by reacting a metal
sponge with dry HF at �900 �C. In the experiment the
concentration gradients in a single crystal absorber were
minimized by choosing the direction of the g ray parallel to
the growth axis, which was perpendicular to the plane of
the sample disk; the exposed area was 4� 5� 0:1 mm.
Twenty constant-acceleration spectra were obtained within
3� 10ÿ4 < jtj < 0:86. Very good temperature stability,
3 mK dayÿ1, and taking into account corrections to scaling
permitted the obtainment of the asymptotic RIM magnetiza-
tion critical exponent b from the data within the whole
investigated interval (see Table 1).

The optical linear birefringence method introduced in
Ref. [5] for the study of critical behavior of the magnetic
part of the specific heat cm in disordered magnets was further
developed in Refs [13, 14, 18]. A proportionality between the
temperature derivative d�Dn�=dT of the optical birefringence
Dn and cm is assumed for optically transparent materials.
Though the caloric properties in the critical region can also be
measured by a pulsed heat technique, the optical linear
birefringence method has several advantages. First, the
nonmagnetic contribution of the optical birefringence to the
temperature derivative is insignificant, contrary to thermal
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techniques, where the nonmagnetic phonon background is
often large and difficult to eliminate. Second, one can
minimize the concentration fluctuation effects by applying a
laser beam perpendicularly to the concentration gradients. In
the first experiment [13] on a class of single crystals with
various impurity concentrations, it was shown that the
exponent a is independent of the concentration and is in
very good agreement with the theoretical predictions (see
Fig. 5, as well as Section 4). Two subsequent studies [14, 18]
showed the equivalence of themethodwith direct heat pulsing
measurements. Magnetic X-ray scattering successfully
applied to the `pure' Ising crystal [98] was applied to the
`random' Ising crystal for high dilution in Ref. [10]. For
samples of size 5:7� 6:4� 8:9 mm of good crystallographic
quality (lowmosaicity) the mean-field value of the exponent b
was found up to jtj4 0:06, while closer to TN an exponent b
consistent with the RIM value was obtained.

4. Monte Carlo simulations

The power-law singularities of physical quantities [see, e.g.,
Eqn (1)] appear only in the thermodynamic limit, when the
system volume and the number of particles tend to infinity.
Therefore, an obvious obstacle in computer `experiments' is
that simulations can be done for a system of finite size only.
Moreover, in the computer `experiments' the asymptotic
temperature interval fails to be reached, since Tc itself does
not exist for finite systems. However, the location of the
critical temperature is crucial for the accuracy of determina-
tion of critical exponents. One can extrapolate data to the
thermodynamic limit assuming that the regime of a constant
asymptotic critical exponent is already established starting
from a certain finite system size and within an interval around
Tc of a certain nonzero size. The last assumption exploited in
computer simulations leads to a very narrow temperature
interval below and above Tc reliable for data sampling. The
upper bounds are the temperatures where corrections to
scaling are taken into account. The lower bound follows
from finite-size effects and is of an order of 10ÿ3 for typical
system sizes achieved now inMonte Carlo (MC) simulations.

Therefore, the exponents obtained in the manner described
are often effective critical exponents which characterize the
critical behavior in the observable temperature range. On the
other hand, the dynamic behavior of pure and disordered spin
systems is governed by different time scales. Thus, only very
long-running simulations yield reliable data in the latter case.
The relaxation time increases drastically not only when
approaching Tc. In early simulations it also increased with
the dilution; as a result, for several decades higher values for
relaxation times were obtained when passing from a pure
p � 1 system to a diluted one with p � 0:6. However,
application of a more elaborate simulation technique
resulted in an opposite behavior: a decrease of the relaxation
time for a certain disordered sample with an increase of p [99].
It is the configurational averaging that leads to an overall
increase in the computation time. The statistical errors for
thermodynamic observables result mainly from variance in
configurational space and are larger than usual statistical
errors in finite-size simulations with what are now usual
statistics of 106 MCS (Monte Carlo steps per spin). Conse-
quently, the accuracy is bounded by the available CPU time
on the one hand and limited by the number of samples to
perform the configuration averaging in a disordered model
[75] on the other hand. Efficient algorithms, together with
high-speed computers, partially solve the task.

Despite the complicated situation, Monte Carlo studies
provided deep insight into the origin of the phase transition in
the RIMas well as resulted in reliable numerical values for the
critical exponents. MC studies of the three-dimensional RIM
systems have been carried out over the last two decades [21 ±
40]. The first search [21] for universal critical characteristics of
RIM was performed on a simple cubic lattice of a size
303 using the importance-sampling MC method [100]. The
positions of specific heat peaks corresponding to finite-lattice
pseudo-critical temperature were extrapolated toTc bymeans
of finite-size scaling theory. The achieved accuracy of 500 ±
5000MCS per data point and averaging over several different
starting configurations of impurities did not allow the
researchers to discriminate between disorder relevance or
irrelevance. The data analysis revealed that values of the
order-parameter exponent b and the susceptibility exponent g
of RIM could not be distinguished (within the error bars)
from the corresponding exponents of the pure system for any
dilution (see Table 2, Ref. [21]). As a possible explanation, it
was stated that the lattice studied was too small to reach the
critical region. Thus, `impure' critical behavior can be
observed only for systems with larger critical regions (larger
value of apure). This assumption was refuted by MC simula-
tions of RIM on larger lattices, higher statistics (5000 ±
11000 MCS), larger numbers of averaged samples, and a
more detailed analysis of simulation data, however within a
narrower dilution range [22]. The location of the phase-
transition temperature Tc was determined from the data on
the specific heat and the numerical derivative of the energy. In
this way, the accuracy of critical temperature determination
was improved to 0.004. Finally, the processing of magnetiza-
tion data permitted concluding the relevance of disorder for
the universal critical properties of RIM. However, the critical
exponent b was found to vary continuously with the
magnetic-site concentration. It was also found that no
temperature region with a constant value of b exists.
Similarly to Ref. [21], the authors of Ref. [22] stressed that,
while they cannot exclude the existence of a tiny `impure'
critical region, it is unobservable for the weak dilution, both
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experimentally and within the Monte Carlo method. As a
result, effective critical exponents varying continuously with
dilution would always show up according to the two-fixed-
points scenario (see Fig. 2). The possibility of the existence of
a line of fixed points, one for each impurity concentration, is
not excluded either (compare the dependence of the magne-
tization critical exponent b on the concentration of magnetic
sites in Table 2, Ref. [22]).

The results mentioned above appeared to be in good
agreement with the MC data of Ref. [23] obtained on the
basis of amultispin coding program. Though systems twice as
large and 8000 MCS statistics were used for a given
concentration and temperature, the effective exponent b was

found to increase continuously with dilution as well. Such a
behavior of b was explained by the fact that the equilibrium
magnetization was calculated too far from the critical point.
Two years later, the conclusion that reliable critical exponent
values could not be obtained by the simulation of systems
with sizes l4 20 was drawn in Ref. [24]. Statistical errors in
the determination of the critical temperature from suscept-
ibility and/or specific heat data, together with the extrapola-
tion by finite-size scaling were thought to be responsible for
this situation. In particular, corrections to scaling [101]
needed to be taken into account. Instead, the simulation
with a statistics of 5000 ± 11000 MCS but without configura-
tion averaging, allowed the determination of the exponent b.

Table 2. The critical exponents of RIM obtained in MC simulations (the asterisk at the concentration value denotes that disorder was realized in a
canonical manner).

References Maximum
size

Concentration
interval

p b g n

Landau, 1980 [21] 30 0:4 < p4 1 all 0.31 1.25

Marro et al.,
1986 [22]

40 0:84 p4 1 1
0.985
0.95
0.9
0.8

0:30� 0:02
0:31� 0:02
0:32� 0:03
0:355� 0:010
0:385� 0:015

Chowdhury et al.,
1986 [23]

90 0:84 p4 1 1
0.95
0.90
0.80

0:29� 0:02
0:28� 0:02
0:31� 0;02
0:37� 0:02

Braun et al.,
1988 [24]

40 0.80 0:392� 0:03

Wang et al.,
1989 [26]

100 0:44 p4 0:8 ÄÔÇ 1:52� 0:07 0:77� 0:04

Wang et al.,
1990 [27]

300 0.8 1:36� 0:04

Holey et al.,
1990 [28]

64 0:8 < p4 1 1
0.9
0.8

0.629(4)
<2/3
0.688(13)

Heuer,
1990 [29]

60 0:5 < p4 1 1
0.9
0.8
0.6
0.5

0:305� 0:01
0:315� 0:01
0:330� 0:01
0:330� 0:01
0:335� 0:01

1:24� 0:01
1:30� 0:01
1:35� 0;01
1:48� 0:02
1:49� 0:02

Heuer,
1993 [30]

60 0:6 < p4 1 1
0.95
0.9
0.8
0.6

0:33� 0:01
0:31� 0:02
0:31� 0:02
0:35� 0:02
0:33� 0:02

1:22� 0:02
1:28� 0:03
1:31� 0:03
1:35� 0:03
1:51� 0:03

0:624� 0:010
0:64� 0:02
0:65� 0:02
0:68� 0:02
0:72� 0:02

Hennecke et al.,
1993 [32]

90 0.6 0:42� 0:04 0:78� 0:01

Wiseman et al.,
1998 [34]

64 0.8 0:344� 0:003 1:357� 0:008 0:682� 0:003

Wiseman et al.,
1998 [35]

90
80

0.6*

0.6
0:316� 0:013
0:313� 0:012

1:522� 0:031
1:508� 0:028

0:722� 0:008
0:717� 0:007

Ballesteros et al.,
1998 [33]

128 0:44 p4 0:9 all 0:3546� 0:0028 1:342� 0:010 0:6837� 0:0053

Marques et al.,
2000 [38]

60 0:84 p4 0:9975 all 0.3546 1.342

Marques et al.,
2000 [39]

100 0.5 0.6837
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The value obtained turned out to be evidently larger than the
corresponding value in the `pure' case. Simultaneously, due to
a large scatter of the data, a determination of the exponent g
was not done. A reanalysis of the previous MC simulations
[21 ± 23] led the authors of [24] to the conclusion that a large
part of the critical regime is dominated by the crossover from
pure Ising to RIM exponents: the results of Ref. [21] may
correspond to a plateau value of the effective critical exponent
governed by the pure Ising fixed point. Similarly, the results
of Refs [22, 23], after refined analysis, correspond to an
intermediate regime near Tc before the unaccessible asympto-
tic region. Exploiting the concept of effective critical
exponents [68, 69] [see formula (2)], the authors of Ref. [24]
claimed that the effective exponents they found were in
qualitative agreement with the renormalization-group flows
(see Fig. 2).

It soon became clear that the concentration dependence of
the critical exponents observed previously in MC simulations
is due to the large relaxation time at criticality. The
application of the Swedsen ±Wang algorithm to RIM
simulation [26] resulted in the conclusion that the analysis of
the susceptibility data within the finite-size scaling method is
not adequate to check whether new critical exponents appear
inRIM. The conclusionwas based on the observation that the
ratio g=n does not change with system size. On the other hand,
the determination of Tc from the susceptibility maximum on
the base of the fourth-cumulant intersection method per-
mitted the calculation of the effective critical exponent g by
analysing the data in successive time intervals. In this way, the
susceptibility and the correlation-length critical exponents
were found to be independent of concentration in a wide
range of dilutions (see Table 2, Ref. [24]). As observed in
Ref. [26], the exponent g is higher than the theoretical
asymptotic value. Thus, it was found that geff is a nonmono-
tonic function of reduced temperature with a maximum value
that is the larger, the bigger the dilution. For the particular
case of magnetic sites of concentration 0.8, the prediction was
investigated in Ref. [27] by the Swedsen ±Wang algorithm
and the single-cluster generalization of Wolf for rather large
systems.While the g=n ratio confirmed the result ofRef. [26], a
maximum of the effective critical exponent g when approach-
ing Tc was not observed.

The assumption that the interaction among block-spins in
diluted systems may be represented by renormalized coup-
lings of pure systems was used in the MC renormalization-
group approach for RIM in the weak-dilution region
(p5 0:8) [28]. The values for the correlation-length critical
exponent nwere found to depend on the concentrations of the
magnetic sites. For p � 0:8, the exponent n satisfied the exact
inequality n > 2=d for a diluted system [72]. This led the
authors of Ref. [28] to the assumption that they obtained an
asymptotic value of the critical exponent. At the mentioned
concentration of magnetic sites, the authors estimated the
width of the asymptotic critical region (jtjcrit 4 3� 10ÿ4)
where no influence of the fixed point of the pure Ising model
is observed. Alternatively, for p � 0:9 the inequality for n [72]
was not satisfied. Thus, either the critical region
jtjcrit 4 1:3� 10ÿ4 was not reached and the critical behavior
of the pure Ising model was observed, or the crossover to the
RIM asymptotic critical behavior for p � 0:9 is observable
only in larger systems. For p � 0:4, the accuracy of the data
obtained was too poor to draw any conclusions.

Reliable data obtained within theMonte-Carlo method in
Ref. [29] became possible after the application of a new cluster

algorithm [102] and a refined vectorized implementation of
local algorithms [103]. A progress in MC studies occurred
when an improved version of the multispin coding program
appeared [29, 103]. It allowed the researchers to verify all
previously obtained simulation data for RIM with the
unprecedented statistics of up to 3� 105 MCS and 10
averaged configurations for systems with p5 0:8 and up to
1:2� 106 MCS for higher dilutions. For instance, in the test
simulation, the above statistics permitted obtaining the
susceptibility and magnetization critical exponents of a two-
dimensional pure Ising model with an accuracy of 1% and
3%, respectively. For RIM, the effective exponents g, b, and
z � 1ÿ b (the last one describes the divergence of the
magnetization ± energy correlation function) [29] were
shown to be concentration-dependent in the concentration
region 0:54 p < 1 (see Table 2). The value of Tc, as well as of
g, was obtained by fitting susceptibility data to a simple power
law; the Tc location was then verified by the 4th and 6th
cumulant of magnetization. The investigation of the energy ±
magnetization correlation function enabled the researchers to
check whether scaling holds; the critical exponents z and b
were obtained by fitting the data to a simple power law with a
value Tc taken from the susceptibility analysis. All data
showed power-law behavior within the chosen temperature
range, but the values of critical exponents changed with
concentration (see Fig. 6). For instance, the values of g and
b increased from the pure Ising value and smoothly changed
with dilution, achieving a plateau value at p � 0:5. Simulta-
neously, the value of z decreased in such a way that the sum of
z and b was equal to 1 within the limit of errors. The
conclusion of Ref. [29] was that while new critical exponents
that change with the dilution were observed, no line of stable
fixed points exists as supposed, in particular, in Ref. [22]. A
conjecture was expressed that such a behavior originates from
the crossover from a pure to a diluted regime, as well as from a
percolation regime to a diluted one with effective exponents
for all concentrations.

The evidence of crossover phenomena motivated the
authors to undertake a more systematic study. The data of
Ref. [29] were revised three years later in Ref. [30] where a
cumulant method was used in order to determine Tc. For
thermal averaging, up to 40000MCSwere performed, and for
configurational averaging, up to 32 configurations were used
(compare this with 5000 MCS and only several samples for
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the configurational average in Ref. [21]). The critical
exponents z, b, and g were shown to vary with concentration
in consistency with the two-fixed-point scenario for the weak
dilution. However, for the strong dilution (p � 0:5; 0.6) an
influence of a different `percolative' fixed point was assumed.
A central part of Ref. [30] dealt with the magnetization ±
energy scaling function. It was shown that dilute systems
exhibit a complex crossover behavior before they reach an
asymptotic critical region with the values of the exponents
consistent with the weak random fixed point, while pure
systems reach their asymptotic limit for small sizes. In weakly
random systems (p5 0:8), the asymptotic values for the
exponents are smoothly approached from below, whereas in
strongly diluted systems they are approached from above.
The asymptotic values of the exponents are reached at a
characteristic system size lp that depends on the concentra-
tion p. According to the estimates performed, the value of lp is
on the order of 20 ± 30 lattice constants for pure systems, 50 at
p � 0:95 and 0:9; about 100 ± 150 at p � 0:6; and diverges at
the percolation point. Thus, more strongly disordered
systems necessitate a refined analysis with an appropriate
treatment of their percolative structural effects relevant for
nonasymptotic sizes and correlation lengths. Due to presently
unknown reasons, the crossover function changes its sign at
p � 0:8, so the asymptotic values appear to be reached
already for small systems (cf. Refs [27, 29]).

Due to works [26, 27] and especially [29, 30], it became
clear that the concentration-dependent critical exponents
found in MC simulations are effective, characterizing the
approach to the asymptotic region. This point of view found
its support in a conjecture about a steplike universality of the
three-dimensional diluted magnets [31]. An attempt to study
the diluted model at p � 0:6 by means of taking MC data
from different subsystems of one large system was made in
Ref. [32]. It was concluded that the resulting values of the
critical exponents are strongly influenced by the size of the
system. Recently, the critical behavior of the RIM was
reexamined by the MC method in Ref. [33] for 0:44 p4 0:9
and in Refs [34, 35] for concentrations p � 0:8 and 0:6. In
particular, the simulations performed in Ref. [35] revealed
that a disorder realized in a canonical manner (by fixing the
fraction of magnetic sites) leads to different results in
comparison with disorder realized in a grand-canonical
manner (see Table 2). Studies of Ref. [33] were based on the
importance of taking into account the leading correction-to-
scaling term in the infinite volume extrapolation of the MC
data and, thus, the analysis does not agree with the data of
Ref. [35]. The results of the simulations for the concentrations
p � 0:9, 0:8, 0:6, and 0:4 were extrapolated to an infinite
system size (see Fig. 7) and led to the proof of universal critical
behavior of the site-diluted Ising model in a wide range of
concentrations. In particular, the value of the correction-to-
scaling exponentowas found to beo � 0:37� 0:06, which is
almost half as large as the corresponding value in the pure
d � 3 Ising model (o � 0:799� 0:011) [73]. The smaller the
value ofo, the larger the interval where it has to be taken into
account [cf. formula (3)]. Thus the smallness ofo in the dilute
case explains its importance for an analysis of the asymptotic
critical behavior.

Another important question considered in Refs [34, 35]
was the problem of self-averaging in RIM. The Gibbs
approach to static collective phenomena rests on the
statistical independence of macrosamples according to the
short-range nature of interparticle interactions. In agreement

with this approach, any thermodynamic extensive quantityM
is (strongly) self-averaging. This means that the normalized
square width RM of the squared variance of its subsystem
values behaves as RM � 1=n � lÿd, where n is the number of
subsystems and l is the system linear size. However, in the
vicinity of the critical point the statistical independence does
not hold, since the correlation length of a system x can be
arbitrarily large (x � l ), and thus subsystems cannot be
considered as independent. The concept of weak self-aver-
aging corresponds to the case where a number x1 (0 < x1 < d)
exists such that RM at criticality scales as lÿx1 . On the
contrary, if RM ! const 6� 0, M is called non-self-averaging.
It has been predicted on the basis of heuristic arguments that
for random models all extensive quantities are strongly self-
averaging far from criticality. Yet for a quantity M, which
scales as l r at the critical point, the strong self-averaging
should fail. Here, the squared varianceVM is expected to scale
as l 2r�a=n for arandom < 0 assuming RM � l a=n or weak self-
averaging [104].

Lack of self-averaging in RIM is not only of high
theoretical interest. The reliability of MC simulations
depends on whether an increase of the lattice size improves
the statistics of the simulations. If a quantity is non-self-
averaging, the simulational data are unreliable. Theoretical
studies based on the renormalization-group approach con-
firmed the strong self-averaging for l4 x. In contrast, special
MC investigations in finite systems found no self-averaging in
the case of a significant disorder apure > 0. It appeared that
weak self-averaging is the case only for insignificant disorder
[105], in disagreement with Ref. [104]. TheMC simulations of
Refs [34, 35] were performed in order to solve this problem. It
was shown that the normalized square width RM goes to a
constant for large l, which is independent of the dilution of the
grand-canonical type. For the canonical type of dilution, this
is not the case [34]. The last result, however, may have its
explanation in a very slow approach of R to its universal
asymptotic value, estimated as l a=n [36], in the case of the
canonical realization of disorder in RIM.

The evolution of the self-averaging from pure Ising model
to RIM has been studied recently [37] in order to determine
the transition zone between the universality classes of pure
and diluted Ising models. It was shown that the transition
zone is smoothly dependent on the concentration of magnetic
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sites and independent of the lattice size. On the contrary,
critical exponents did not depend on concentration and were
found identical to the data of Ref. [33]. The universal value of
the normalized square width of the susceptibility in the
infinite-volume limit was estimated to equal Rw�1� � 0:155.

Apart from short-range site dilution, other realizations of
disorder have become the subject for MC simulations
recently. The thermally diluted Ising model has been studied
as a generalization of the RIM [38, 39]. There, the realization
of the vacancy distribution is determined from the local
distribution of spins in a pure Ising model at criticality. The
critical properties, in particular, the universality class of the
model, appeared to differ strongly from the RIM one and
better agree with the theoretical predictions for long-range-
correlated disorder. 3

The problem of whether the RIM fixed point also
describes the phase transition in the Ising model with
random bonds has been studied explicitly in Refs [40, 41].
Using a numerical renormalization-group analysis, the
renormalization-group (RG) flows for random Ising models
have been obtained. The existence of a fixed point character-
izing the random Ising model irrespective of the type of
disorder has been shown [40].

5. Renormalization-group-theory expansions

In Sections 5 and 6, we will review results on RIM critical
exponents obtained my means of renormalization-group
(RG) methods. In Section 5, we will report the main relations
of the field-theoretical RG approach and dwell upon
perturbation-expansion series available. In Section 6, we will
consider the RG series resummation methods and discuss the
results obtained on their basis.

5.1 Renormalization
To theoretically describe the long-distance properties arising
in different systems in the vicinity of a second-order phase
transition point, it is now standard to use a field-theoretical
RG approach [108, 109]. The renormalization is used to
remove divergences that occur during evaluation of the bare
vertex functions in the asymptotic limit. For RIM, one-
particle irreducible bare vertex functions are defined as

d�q1 � . . .� qN�GN
0 �q1; . . . ; qN; m0; u0; v0; L0�

�
�
exp

�
i�q1r1 � . . .� qNrN�

	
� 
j�r1� . . .j�rN�

�HRIM

1PI
dr1 . . . drN ; �12�

where the angular brackets denote the statistical average over
the Gibbs distribution with Hamiltonian (8) in the replica
limit n! 0, and the subscript 1PI indicates that only one-
particle irreducible diagrams are taken into account. The
functions depend on the set ofmomenta q1; . . . ; qN (withL0 as
a momentum cutoff) and the bare parametersm0; u0; v0 of the
Hamiltonian (8). Divergences in (12) occur in the asymptotic
limit L0 !1. Their removal is achieved by a controlled
rearrangement of the series for the vertex functions. Several
asymptotically equivalent procedures serve this purpose. We
will use two complementary approaches: (a) dimensional

regularization and the minimal-subtraction scheme [110]
and (b) the fixed-dimension renormalization at zero external
momenta and nonzero mass (a massive RG scheme) [111].

Let us formulate relations of the renormalized theory. The
renormalized fields, mass, and couplings f, m, u, v are
introduced by

j � Z
1=2
f f ; �13�

m2
0 � Zm2 m2 ; �14�

u0 � me Z4; u

Z 2
f

u ; �15�

v0 � me Z4; v

Z 2
f

v : �16�

Here, e � 4ÿ d; m is a scale parameter equal to the
renormalized mass at which the massive scheme [111] is
evaluated or in the minimal-subtraction scheme [110] it sets
the scale of the external momenta; andZf,Zm 2 ,Z 4; u,Z 4; v are
the renormalizing factors. The renormalized vertex functions
GN
R expressed in terms of the bare vertex functions by

GN
R �q1; . . . ; qN; m; u; v� � Z

N=2
f GN

0 �q1; . . . ; qN; m0; u0; v0�
�17�

are finite. This is the main content of the multiplicative
renormalizability of the field theory defined by the Hamilto-
nian (8).

First, let us consider the minimal-subtraction scheme.
Here, the renormalizing Z factors (13) ± (16) are determined
by the condition that all poles at e � 0 are removed from the
renormalized vertex functions. The RG equations are written
bearing in mind that the bare vertex functions GN

0 (12) do not
depend on the scale m, and therefore their derivatives with
respect to m at fixed bare parameters are equal to zero. So, we
obtain

m
q
qm

GN
0

��
0
� m

q
qm

Z
ÿN=2
f GN

R

��
0
� 0 ; �18�

where the index 0 means differentiation at fixed bare
parameters. Then, the RG equation for the renormalized
vertex function GN

R reads�
m

q
qm
� bu

q
qu
� bv

q
qv
� gm m

q
qm
ÿN

2
gf

�
� GN

R �m; u; v;m� � 0 ; �19�

and the RG functions are given by

bu�u; v� � m
qu
qm

����
0

; �20�

bv�u; v� � m
qv
qm

����
0

; �21�

gf � m
q lnZf

qm

����
0

; �22�

gm�u; v� � m
q lnm
qm

����
0

� 1

2
m
q lnZÿ1

m2

qm

����
0

: �23�

Using themethod of characteristics [112], a formal solution of
the partial differential Eqn (19) can be written as

GN
R �m; u; v; m� � X�`�N=2GN

R

ÿ
Y�`�m; u�`�; v�`�; m`� ; �24�

3 Currently, two possible scenarios for the influence of long-range-

correlated disorder on critical behavior are discussed (cf. Refs [106] and

[107]). Although both confirm the relevance of long-range-correlated

disorder for critical universal properties, they lead to different numerical

predictions for the critical exponents.
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where the characteristics are the solutions of the ordinary
differential equations (flow equations)

`
d

d`
lnX�`��gf

ÿ
u�`�; v�`�� ; `

d

d`
lnY�`��gm

ÿ
u�`�; v�`�� ;

`
d

d`
u�`��bu

ÿ
u�`�; v�`�� ; `

d

d`
v�`��bv

ÿ
u�`�; v�`�� �25�

with

X�1� � Y�1� � 1 ; u�1� � u ; v�1� � v : �26�

For small values of `, Eqn (124) maps the large length scales
(the critical region) to the noncritical point ` � 1. In this limit
the scale-dependent values of the couplings u�`� and v�`�
approach the stable fixed point, provided such a fixed point
exists. The fixed points u� and v� of the differential Eqns (25)
are given by the solutions of the system of equations

bu�u�; v�� � 0; bv�u�; v�� � 0 : �27�

The stable fixed point is defined as the fixed point where the
stability matrix

Bi j �
qbui
quj

; ui � fu; vg �28�

possesses eigenvalues o1 and o2 with positive real parts. The
stable fixed point, which is reached starting from the initial
values `0 in the limit `! 0, corresponds to the critical point
of the system. In the limit `! 0 (corresponding to the limit of
an infinite correlation length), the renormalized couplings
reach their fixed-point values and the critical exponents Z and
n are then given by

Z � gf�u�; v�� ; �29�

1

n
� 2
ÿ
1ÿ gm�u�; v��

�
: �30�

In the nonasymptotic region but near the fixed point,
deviations from the power laws with fixed-point values of
the critical exponents are governed by the correction-to-
scaling exponent

o � min�o1;o2� �31�

in accordance with the Wegner expansion [70] (3). The other
critical exponents are obtained by familiar scaling laws [67,
108]

a � 2ÿ dn ; b � n
2
�dÿ 2� Z� ; g � n�2ÿ Z� ; �32�

which can be shown to hold from solutions (24).
The flow equations (25) can serve to describe the

approach to criticality in a larger region where corrections
to scaling do not suffice. As was mentioned in Section 1, out
of the asymptotic region physical observables are character-
ized by effective exponents introduced to describe a crossover
from the background behavior to the asymptotic critical one.
In the RG language they depend on the flow parameter `�t�
through the dependence of couplings on `. In particular,
according to the definition [see formula (2)] for the magnetic

susceptibility effective exponent geff, we have

geff�t� � ÿ
d ln w�t�
d ln t

� g
ÿ
u�`�t��; v�`�t���� . . . ; �33�

where the second part is proportional to the b functions and
comes from the change in the amplitude part of the
susceptibility. It is natural to neglect this part in the vicinity
of a fixed point. Moreover, the contribution of the amplitude
function to the crossover does seem to be small [113, 114].
Under this restriction, the effective exponents are simply
given by the expressions for the asymptotic exponents (29),
(30) but replacing the fixed-point values of the couplings u�

and v� by the solutions of the flow equations (25)

Zeff�`� � gf
ÿ
u�`�; v�`�� ; 1

neff�`� � 2�1ÿ gm
ÿ
u�`�; v�`��� :

�34�

In the massive RG scheme, the Z factors (13) ± (16) are
calculated from the vertex functions (12) at zero external
momenta q1; . . . ; qN and nonzero mass at fixed space
dimension in the limit L0 !1. These normalization condi-
tions lead to the equation for the renormalized vertex
functions which is known as the Callan ± Symanzyk equa-
tion. Differentiation of the proper bare vertex function GN

0

with respect to the renormalized mass [cf. Eqn (18)] gives

m
q
qm

GN
0

����
0

� m
qm2

0

qm

����
0

G�1;N�0 ; �35�

where, again, the index 0 means differentiation at fixed bare
parameters. A new vertex function

G�1;N�0 � qGN
0

qm2
0

�36�

appears. This vertex function differs fromGN
0 by an extra term

j2�R� inside the averaging h. . .i in (12). As a result, for the
renormalized vertex functions GN

R one obtains an inhomoge-
neous Callan ± Symanzyk equation containing G�1;N�R on the
right-hand side. However, close to the critical pointm � 0 the
right-hand side can be neglected with respect to the left-hand
side and one arrives at the homogeneous Callan ± Symanzyk
equation which repeats the structure of the RG Eqn (19):�

m
q
qm
� bu

q
qu
� bv

q
qv
ÿN

2
gf

�
GN
R�m; u; v� � 0 ; �37�

where the coefficients bu, bu, and gf are defined by relations
(20) ± (22), and the parameter m here is to be understood as the
renormalized massm. The partial differential equation (37) is
solved by the method of characteristics, which is sketched by
relations (24) ± (26) and leads to the fixed-point relations
given by (27) ± (31).

For the sake of completeness, let us note that the finiteness
of the renormalized vertex function G�1;2�R with one f2

insertion is achieved by the familiar renormalizing factor �Zf2

G �1; 2�R �k; q;ÿq;m; u; v� � �Zf2G �1; 2�0 �k; q;ÿq;m0; u0; v0� :
�38�

Then, formula (30) for the correlation-length critical expo-
nent n may be recast in terms of �Zf2 by a substitution 2gm �
gf � �gf2 , which follows from the relations Zm2 � �Zf2Zÿ1f and
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�gf2 � m q ln �Zÿ1
f2 =qmj0. This leads to the relation

1

n
� 2ÿ gf�u�; v�� ÿ �gf2�u�; v�� : �39�

The explicit expressions for the RG b and g functions are
scheme-dependent: they differ in different renormalization
schemes. Consequently, the fixed-point coordinates are
scheme-dependent as well. However, the RG functions
coincide in different schemes once calculated at the fixed
point. This leads to the same asymptotic values of the critical
exponents: they are universal and do not depend on the re-
normalizationscheme[108,109]. In thenextsubsection,wewill
give available expansions for the RG functions of RIM.

5.2 Perturbation expansion series
and their `naive' analysis
Expressions for the RG functions of RIM are obtained as
series in renormalized couplings u and v. The perturbation
theory in powers of u and v is in fact a perturbation theory in
the number of integrations in k space. On the other hand, this
corresponds to the number of loops in Feynman diagrams in
the diagrammatic representation for the vertex functions
[108]. By now, the RIM RG functions are known up to the
order of five loops in the minimal-subtraction scheme [115]
and with a record six-loop accuracy when calculated directly
for d � 3 in the massive scheme [66].

Written in the minimal-subtraction scheme, the functions
read

bu � ÿu
�
eÿ uÿ 3

2
v� 17

27
u2 � 23

12
uv

� 41

32
v2 � . . .� b�5LA�u

�
; �40�

bv � ÿv
�
eÿ vÿ 2

3
u� 21

32
v2 � 11

12
vu� 5

27
u2
�
; �41�

gf �
1

54
u2 � 1

24
uv� 1

64
v2 � . . .� g�5LA�f ; �42�

�gf2 � 1

3
u� 1

4
vÿ 1

9
u2 ÿ 1

4
uvÿ 3

32
v2 � . . .� �g�5LA�

f2 : �43�

Here and below, we give the RG functions in the convenient
normalization, where the one-loop coefficient at u (v) equals
unity in the corresponding function bu (bv). We write down
the functions only up to the two-loop approximation (2LA),
referring to paper [57] where they were obtained in 3LA.
Four- and five-loop contributions may be derived from the
RG functions of the anisotropic cubic model obtained in
Ref. [115].

Note that in the minimal-subtraction scheme the depen-
dence on the space dimension d is trivial and enters into
expressions (40) ± (43) only via a single term proportional to
e � 4ÿ d explicitly written in the b functions (40) and (41).
On the contrary, in the massive scheme the space dimension d
enters into the expressions for the loop integrals, correspond-
ing to each Feynman diagram of perturbation expansion.
Consequently, the theory is evaluated at a space dimension
that is of interest. Values of the loop integrals for fixed space
dimension d � 2 and d � 3 are given in [116]. The series for
RG functions of the d � 3 RIM read

bu � ÿu
�
1ÿ uÿ 3

2
v� 308

729
u2 � 104

81
uv

� 185

216
v2 � . . .� b �6LA�u

�
; �44�

bv � ÿv
�
1ÿ vÿ 2

3
u� 95

216
v2 � 50

81
vu

� 92

792
u2 � . . .� b�6LA�v

�
; �45�

gf �
8

729
u2 � 2

81
uv� 1

108
v2 � . . .� g�6LA�f ; �46�

�gf2�1

3
u� 1

4
vÿ 2

27
u2 ÿ 1

6
uvÿ 1

16
v2 � . . .� �g�6LA�

f2 : �47�

Again, we show here only the two-loop functions. In the e
expansion, these functions were first obtained in Ref. [45].
Three-loop terms first reported in Ref. [48] contained some
errors, partially corrected in Ref. [49]. Finally, three-loop
expressions free of errors were reported in Ref. [53].
Subsequently, four-loop series were obtained in Ref. [54]
and only recently five-loop [64] and record six-loop [66]
expansions became available. Universal critical-amplitude
ratios at d � 3 were first obtained in three-loop approxima-
tion [117] and are known by now to an accuracy of five loops
[118].

As we noted above, the massive RG scheme does not
necessarily mean evaluation at d � 3. The possibility of
applying the scheme in order to get the RIM RG functions
at an arbitrary noninteger space dimension was outlined in
Ref. [56]. For the two-loop RG functions, we obtain [56]

bu � ÿ�4ÿ d �u
�
1ÿ uÿ 3

2
v� 8

27

�
9

�
i1 ÿ 1

2

�
� i2

�
u2

� 2

3

�
12

�
i1 ÿ 1

2

�
� i2

�
uv� 1

4

�
21

�
i1 ÿ 1

2

�
� i2

�
v2
�
;

�48�

bv � ÿ�4ÿ d �v
�
1ÿ vÿ 2

3
u� 1

4

�
11

�
i1 ÿ 1

2

�
� i2

�
v2

� 2

3

�
6

�
i1 ÿ 1

2

�
� i2

�
vu� 8

27

�
3

�
i1 ÿ 1

2

�
� i2

�
u2
�
;

gf � ÿ2�4ÿ d �
��

2

27
u2 � 1

6
uv� 1

16
v2
�
i2

�
;

�49�
�gf2 � �4ÿ d �

�
1

3
u� 1

4
v

ÿ 12

�
1

27
u2 � 1

12
uv� 1

32
v2
��

i1 ÿ 1

2

��
:

The space dimension d enters into expressions (48) and (49)
also by the d-dependent two-loop integrals i1�d� and i2�d�.
Their dependence on d is shown in Fig. 8. Evaluating the
integrals [118] for d � 3 [i1�3� � 2=3, i2�3� � ÿ2=27], we
return to the two-loop contributions of expressions (44) ±
(47). In the next order of perturbation theory for the
noninteger d, the RG functions of RIM are derived in
Ref. [60], and the values of the corresponding loop integrals
are obtained in Ref. [119].

With the series for theRG functions at hand, there are two
different ways to proceed in any of the two RG approaches:
(40) ± (43) or (44) ± (47). In this way, one comes to four
different schemes of the analysis. Indeed, the minimal-
subtraction scheme can be realized by the familiar e expan-
sion [120] as well as directly at d � 3 [121]. Similarly, the
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expressions for the RG functions obtained in the massive
scheme can be directly solved for the fixed points or by the
pseudo-e expansion. The latter method was introduced by
B G Nickel (unpublished; see Ref. [19] in Ref. [122]).
However, as we will see below, only two of these schemes
lead to reliable results for RIM critical behavior. Before we
proceed, let us discuss this situation in more detail.

1. First, let us consider functions (40) ± (43) and perform
the e expansion. In order to obtain the expansion, one should
(a) solve the fixed-point equations (27) with e as a small
parameter and (b) substitute the coordinates u��e� and v��e�
as series in e into the RG g-function for the critical
exponents.

Looking for fixed-point solutions in a one-loop approx-
imation [i.e., leaving only terms linear in u and v in the
brackets in (40) and (41)], one finds three fixed points
(compare with Fig. 2): the Gaussian fixed point G,
u� � v� � 0; the pure Ising fixed point I, u� 6� 0, v� � 0 (this
describes n noninteracting Ising models, cf. Hamiltonian (8)
with v � 0); and the `polymer' fixed point P, u� � 0, v� 6� 0
(putting u� � 0 in (8), we obtain the O�n � 0� model
describing the scaling properties of self-avoiding walks). It is
straightforward to check that the fixed points G and I are
unstable, whereas the fixed point P is stable. However, as far
as v� > 0, it is inaccessible for the initial values of couplings of
the model under consideration. In a one-loop approximation,
the fixed point R with both nonzero coordinates (u� 6� 0 and
v� 6� 0) does not exist; this occurs because the system of
equations for the fixed points is degenerate on the one-loop
level [42, 44, 45]. This fixed point appears in the next (two-
loop) approximation, and leads to the qualitative picture
shown in Fig. 2. However, because of the degeneracy of the
one-loop equations, instead of expanding in e, one has to
expand in

��
e
p

[43, 45]. Proceeding as usual, this leads to
��
e
p

expansions for the critical exponents and the stability matrix
(28) eigenvalues [58, 61]:

n � 0:5� 0:08411582 e1=2 ÿ 0:01663203 e

� 0:04775351 e3=2 � 0:27258431 e2 ; �50�

Z � ÿ0:00943396 e� 0:03494350 e3=2

ÿ 0:04486498e2 � 0:02157321 e5=2 ; �51�

g � 1� 0:16823164 e1=2 ÿ 0:02854708 e

� 0:07882881 e3=2 � 0:56450490 e2 ; �52�

o1 � 2 e� 3:704011194 e3=2 � 11:30873837 e2 ; �53�

o2 � 0:6729265850 e1=2 ÿ 1:925509085 e

ÿ 0:5725251806 e3=2 ÿ 13:93125952 e2 : �54�

Two-loop expressions for the exponents were obtained in
Ref. [45], three-loop results were presented independently in
Refs [46] and [47]. The

��
e
p

-expansion series for the RIM
amplitude ratios [123] are also available to a three-loop
accuracy [124]. Due to the five-loop results for an anisotropic
cubic model [115], it was possible to obtain four- and five-
loop

��
e
p

expansion for the critical exponents [58] (50) ± (52)
and the stability-matrix eigenvalues [61] (53), (54) of theRIM.

2. The second way of calculation that may be used in the
minimal-subtraction RG approach is the d � 3 technique
[121]. It consists of (a) fixing the value of e � 1 in (40) and
(41), (b) solving the system of fixed-point equations (27)
numerically, and (c) substituting the numerical values of the
fixed-point coordinates into the series for the critical
exponents. The RIM b functions are shown in Fig. 9 in two-
loop approximation. One can see that they do not possess
nontrivial fixed points at all. However, such behavior is not
surprising and is not a particular feature of the RIM. It is well
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Figure 8. Two-loop integrals of the RG functions in a massive scheme

[formulas (48), (49)] as functions of the space dimension d. The figure is

taken from Ref. [56].
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Figure 9. b functions of RIM, bu�u; v� and bv�u; v�, calculated in two-loop

approximation within a d � 3 minimal-subtraction scheme without

resummation. Only the Gaussian fixed point u� � v� � 0 survives. The

figure is taken from Ref. [126].
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known that perturbation series for the RG functions in the
weak coupling limit are asymptotic at best and should be
evaluated bymeans of special resummation techniques. These
will be the subject of the next Section 6. Here, to complete the
list of possible calculation schemes, we mention two more
schemes in the massive RG approach.

3. The massive RG scheme is implemented by (a)
numerically solving the system of fixed-point equations (27)
and then (b) substituting the numerical values of the fixed-
point coordinates into the series for the critical exponents. It
is this way that is concerned with in most papers devoted to
the RIM RG analysis (see Section 6 for details).

4. The massive RG scheme is also implemented by a
pseudo-e expansion [122, 125]. This scheme is based on the
observation that in order to analyze the series (44) ± (47) one
can imitate an e expansion by introducing an auxiliary
parameter t instead of the zeroth-order term 1 in the
massive-scheme b functions (44) and (45). Then, the fixed-
point and critical exponents are obtained as series in t; to
obtain their final values, one puts t � 1. The described
pseudo-e expansion allows us to avoid cumulation of the
errors for the critical exponents from the errors of the fixed-
point coordinates and the g functions. It proved to be highly
efficient for the pure d � 3 Isingmodel [73, 122]. For the same
reasons that the e expansion in the case of RIM turns into the��
e
p

expansion, the expansion in t turns into a
���
t
p

expansion.
On the basis of the six-loop expansions (44) ± (47), we obtain
the following

���
t
p

expansion for the RIM critical exponents
and the stability matrix eigenvalues:

n � 0:5� 0:10291260 t1=2 � 0:01251853 t

� 0:01270178 t3=2� 0:05663757 t2� 0:03694322 t5=2 ;

�55�

Z � ÿ0:00836820 t� 0:02173733 t3=2

ÿ 0:01487714 t2 � 0:01733771 t5=2 ; �56�

g � 1� 0:20582521 t1=2 � 0:02922117 t

� 0:01539608 t3=2 � 0:11858141 t2 � 0:06658280 t5=2 ;

�57�

o1 � 2 t� 2:59761132 t3=2 � 7:51800557 t2

� 39:86825804 t5=2 ; �58�

o2 � 0:82330084 t1=2 ÿ 1:74713206 tÿ 1:26569350 t3=2

ÿ 8:75074159 t2 ÿ 40:98838378 t5=2 :

These expressions should be compared with formulas (50) ±
(54).

6. Series resummation and numerical results

6.1 Summability of RIM divergent series
The core of the perturbation approach is a sequential account
of corrections in expansions in a small parameter. However,
such an approach does not necessarily lead to cumulation of
the calculation accuracy by a `naive' summation of successive
perturbation-theory terms. It is well known by now that the
weak-coupling expansion series for RG functions have zero

radii of convergence and are asymptotic at best [109].
Appropriate resummation procedures are to be applied in
order to handle them. Early studies of critical phenomena by
the e-expansion technique lead to a concept of an `optimal
truncation' of a series as a maximal number of terms
possessing convergent behavior. Such behavior is typical for
an asymptotic series [127], where series expansion coefficients
grow factorially. For example, the expansion of an RG
function f �u� of a pure Ising model in powers of a single
renormalized coupling u

f �u� �
X
k

Aku
k �59�

was shown to possess the following behavior:

Ak � ckb0�ÿa�kk!

�
1�O

�
1

k

��
; k!1 ; �60�

with known values [128 ± 131] of constants c, b0, and a. The
property (60) indicates the Borel summability of the series
(59). The Borel resummation procedure takes into account
the asymptotic behavior of the coefficients (60) and maps the
asymptotic series (59) to a convergent one with the same
asymptotic limit. We will describe the procedure in detail in
Sections 6.2 and 6.3.

It is worthwhile to note that a proof of the Borel
summability for the e expansion of a pure Ising model does
not exist. Only an expansion in coupling (59) is proved to
posses this property [128]. Nonetheless, the rich number of
numerical estimates obtained on the basis of the resummed e
expansion for the pure Ising model (see, e.g., [109]) convinces
one of its reliability. However, this is not the case for the

��
e
p

expansion of RIM. The fact that e expansion will not be able
to give information on critical exponents in a system with
quenched disorder was predicted already in Refs [132, 133] by
studying the randomly diluted model in zero dimensions. The
perturbation-theory series of this `toy' model appeared to be
Borel-nonsummable. Moreover, such properties were shown
[133] to be a direct consequence of the existence of Griffiths-
like singularities [79] caused by the zeroes of the partition
function of the pure system. Although the

��
e
p

expansion
allowed one to predict a qualitatively new critical behavior
of the RIM [43, 45], it seems to be of no use for a quantitative
analysis. Moreover, by naively adding the successive pertur-
bational contributions in the

��
e
p

expansion for the RIM
stability-matrix eigenvalues (53) and (54), one already
observes that in the three-loop approximation (� e) o2

becomes negative and, therefore, no stable fixed point exists
in a strict

��
e
p

expansion [61]. Even the resummation
procedures applied do not change this picture [63]. Quite
different convergence properties of the expansions for a pure
d � 3 Ising model and RIM may already be seen by applying
a simple PadeÂ analysis, as was shown in Refs [59, 63].

The above-mentioned divergent properties of the
��
e
p

expansion concern also the pseudo-
��
e
p

expansion (55) ± (58)
derived in Section 5. So, there remain only two out of four
different ways of numerical analysis of the RIM RG
functions. They are denoted by 2 and 3 in the preceding
Section 5.2. Both are based on analysis of RG series in two
couplings. The nature of the RIMRG function expansions in
couplings u and v remains open for discussion. Nonetheless,
the resummation procedures that in different modifications
are used in the analysis of asymptotic series have been
applied fruitfully to the RIM RG series as well [51 ± 57, 59 ±
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65]. The method which prevails in the resummation of the
RIM RG series is the generalization of the PadeÂ ± Borel
resummation technique [134] for the case of two variables.
We will review the results based on such a resummation in
the next Section 6.2.

Recently, it was shown that the expansions for the
quenched diluted Ising model in d � 0 dimensions are Borel-
summable, provided a specific means of summation is applied
[135]. This allowed the authors of Ref. [65] both to recover the
asymptotic behavior of the expansion coefficient and to apply
the resummation technique refined by conformal mapping to
RIM six-loop massive RG functions [66]. This method will be
reviewed in the last Section 6.3.

6.2 PadeÂ ± Borel oriented resummation
In order to perform the PadeÂ ± Borel resummation of a
truncated (asymptotic) series in a single variable (e.g., series
(59) with L terms available), one defines the Borel ± Leroy
image of the initial sum S �PL

i�0 ai u
i by

SB�u� �
XL
i�0

ai u
i

G�i� q� 1� ; �61�

where G�x� is Euler's gamma function and q is an arbitrary
nonnegative number, which will serve as a fit parameter. The
result (61) is extrapolated bymeans of a rational approximant
M=N� ��u�, which is the quotient of two polynomials in u with
M as the order of the numerator and N as that of the
denominator (a PadeÂ approximant [136]). Finally, the
resummed function Sres is obtained in the form

Sres�u� �
�1
0

dt exp�ÿt�t q
�
M=N

�
�ut� : �62�

In the analysis of single-variable RG functions, this proce-
dure was initiated in Refs [134].

There are different ways to generalize single-variable
PadeÂ approximants for the case of two variables �u; v� [136]
and, accordingly, to generalize the resummation procedure
(61) and (62). One possibility is to construct a series in a
single dummy variable x (the so-called resolvent series
[137]). The variable is introduced by a substitution u! ux,
v! vx, and x must be put equal to 1 to obtain the final
results. Accordingly, the Borel ± Leroy image of a truncated
series S �P04 i�j4L ai; j u

iv j is defined by

SB�x� �
X

04 i�j4L

ai; j�ux�i�vx� j
G�i� j� q� 1� : �63�

Then, the series in x is resummed by formula (62) and
evaluated at x � 1. We will refer to this method below as the
PadeÂ ± Borel method, similar to the one-coupling case.

Another way to proceed is to make use of the Chisholm
approximants [136, 138] which are the generalization of PadeÂ
approximants to the many-variable case. A Chisholm
approximant can be defined as a ratio of two polynomials
both in variables u and v, of degreeM andN such that the first
terms of its expansion are equal to those of the function that is
approximated. Again, the resummation is performed by
Eqn (62), however, with the Chisholm approximant instead
of the PadeÂ approximant. This method will be referred to
below as the Chisholm ±Borel resummation.

For a given Borel ± Leroy image, many approximants,
both PadeÂ and Chisholm, can be constructed. However,
restrictions are imposed naturally. First, an approximant

should be chosen in the form re-constituting the sign-
alternating high-order behavior of the general term of b and
g functions [66]. The approximant generating a sign-alternat-
ing series might be chosen in a form M=1� � with the positive
coefficients at the variable x (or u and v). However, it is the
diagonal approximants that give the best convergence in the
PadeÂ analysis [136] (see also [63] for a toymodel example). On
the other hand, a high degree of a polynomial in the
denominator often leads to poles on the positive semiaxis.
One can use analytic continuation and calculate the principal
value of integral (62) to process the singularities; however,
practical calculations force us to reject this generalization.
The reason is both the unexpected shift of fixed-point location
and the different topological structure of the lines of zeroes
for the resummed b functions. The choice of a Chisholm
approximant is even more complicated, since often its
coefficients are undetermined. For instance, the construction
of a nontrivial approximant for a two-variable polynomial of
a second order requires two additional conditions to be
imposed. Normally they are chosen to preserve certain
symmetry properties. Provided the couplings u0 and v0 enter
into the Hamiltonian (8) symmetrically, the approximants
must be symmetric in variables u and v in order not to
introduce an additional symmetry. Another point is that by
substitution v � 0 all the equations that describe the critical
behavior of the diluted model are converted into appropriate
equations of the pure model. However, if the pure model is
considered independently, the resummation technique with
the application of the PadeÂ approximant is used. Thus, the
Chisholm approximant is to be chosen in such a way that, by
putting any u or v equal to zero, one reproduces familiar
results for the one-variable case. This also implies a special
choice of additional conditions.

Most numerical results on the universal characteristics of
RIM at criticality were obtained on the basis of the massive
renormalization scheme by numerically solving fixed-point
equations (27) for the resummed b functions (44) and (45) and
resumming the g functions (46) and (47) in the stable fixed
point (scheme 3 in Section 5.2). The study of the massive b
functions of RIM resummed in this way revealed that,
starting from the two-loop approximation, the random fixed
point (R in Fig. 2) is stable and is present in all orders of
perturbation theory [51 ± 56, 60, 62, 64, 139]. As an example,
in Figs 10 and 11 we show the lines of zeroes of functions
bu�u; v� and bv�u; v� in different orders of perturbation theory
without resummation and resummed by the Chisholm ±Borel
method. One can see that without resummation all nontrivial
fixed points are obtained only in the three-loop approxima-
tion. Resummation restores the presence of nontrivial fixed
points.

The massive scheme of the field-theoretical renormaliza-
tion group was the basis of the first numerical estimates of
RIM critical exponents. Alternatively, the nonperturbative
scaling-field approach for solution of the Wilson's renorma-
lization-group equation was used to study RIM critical
behavior in Ref. [50]. This approach, similarly to e expan-
sion, permits us to treat the model in continuous dimensions
d. As a result, RIM critical exponents were found for
2:84 d4 4. The scaling-field approach was not followed by
more precise calculations.

Already the study of two-loopRIMmassiveRG functions
resummed by the Chisholm ±Borel procedure [51] revealed
that no difficulties connected to the degeneracy of the b
functions are encountered. Critical exponents extracted

184 R Folk, Yu Holovatch, T Yavors'kii Physics ±Uspekhi 46 (2)



from resummed g-function values at the fixed point were
found to be clearly larger than the pure-model ones (see
Table 3). As noted above, in the three-loop level the
straightforward analysis of the b functions [48, 49] yielded
fixed-point coordinates and critical exponents without
resummation, but the accuracy obtained did not allow us to
estimate, for instance, heat capacity critical behavior. On the
other hand, the application of the PadeÂ ± Borel technique also
encountered hardships within the three-loop level (see
diagram in Fig. 12). Here, the approximant with a linear
denominator does not yield a fixed point, while another near-
diagonal approximant 1=2� � is unreliable because it reveals a
fixed point only when calculating the principal value of the

corresponding integral via analytic continuation. When
treated by means of a Chisholm ±Borel technique, the same
expressions allowed one to obtain asymptotic critical expo-
nents of RIM [52, 53].

The four-loop results [54] were resummed by means of the
Chisholm ±Borel [54], the first confluent form of the E
algorithm of Wynn [55], and the PadeÂ ± Borel [55, 62]
methods and showed close results (see Table 3 and diagram
in Fig. 12). Whereas PadeÂ ± Borel calculations of Ref. [55]
exploited the [3/1] PadeÂ approximant, Ref. [62] used a more
elaborated generalized PadeÂ ± Borel ± Leroy resummation
method. The last is based on exploiting all possible PadeÂ
approximants in the Borel ± Leroy resummation (61) ± (62),
choosing for each of them the optimal value of the Leroy
parameter q and then averaging the result over all values given
by the approximants [62].

The analysis of expressions in the five-loop approxima-
tion with the application of the fit parameter q required rather
artificial rejection of many approximants [64]. For instance,
using a criterion that it is those approximants are working
that provide maximal stability against variation of q, the
approximant 2=2� � was chosen to estimate u� and the
approximant 3=1� � to obtain v�. The analysis allowed the
authors of Refs [64] to obtain five-loop estimates for the RIM
critical exponents (see Table 3). However, the extension to the
six-loop order revealed a wide gap between five- and six-loop
fixed-point coordinates [139] with respective inconsistency in
the six-loop values of critical exponents compared with the
five-loop results of Refs [64]. This might serve as indirect
evidence of the possible nonasymptotic nature of the series
under consideration.

A similar resummation technique was also applied to the
minimal-subtraction RG functions (40) ± (43) directly at
d � 3 (scheme 2 in Section 5.2) [57, 59, 61, 63]. Here,
asymptotic behavior, as well as effective critical behavior,
was studied. Again, as in the massive RG case, resummation
restores the presence of the nontrivial fixed point in the two-
loop approximation (see Fig. 13) and preserves it in three- [57]
and four-loop approximations [59, 63]. However, in the five-
loop order the appliedChisholm ±Borel resummation scheme
did not lead to a real root for the random fixed point [59, 63].
One of reasons for such behavior may be possible Borel-non-
summability of the series under consideration. In this case the
four-loop approximation will be an `optimal truncation' for
the resummed minimal-subtraction perturbation-theory ser-
ies, similar to the nonresummed asymptotic series. It is known
for the e expansion of the O�n�-symmetric f4 model that a
`naive' interpretation of the series truncated by the e2 term
leads to the best (optimal) result.

Values of asymptotic critical exponents obtained in three-
[57] and four- [59, 61, 63] loop approximations are listed in
Table 3; effective exponents were calculated [57, 63] by
resummation of formulas (34). Figure 14 shows the solutions
u�l�, v�l� of the flow equations (25) calculated by the
Chisholm ±Borel resummation of four-loop b functions
(40), (41) [63]. The flows shown in Fig. 14 predict several
different scenarios for the behavior of the effective critical
exponents (see Figs 15, 16). Both in experiment and in
computer simulations (see Tables 1, 2), the exponents
reported differ from and even exceed the known asymptotic
theoretical values. This nonuniversal behavior might be
related to the possible nonasymptotic behavior found in
different flows, as has been suggested in Refs [30, 57]. The
difference might be due to (a) the different temperature
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regions of the experiment and/or (b) the different concentra-
tions. The initial values for the couplings in the flow equations
depend on the value of the concentration; in particular, for a
small dilution one expects the coupling v to be proportional to
the concentration. If this is the case, one expects a monotonic
increase in the values of the effective exponent to the
asymptotic value. A typical scenario is presented by curves 3
in Figs 14 ± 16. In this case effective exponents equal to the
pure model critical exponents might be found in a relatively
wide region of temperature. Then, as the attraction region of
the fixed point I becomes weaker and weaker, overshooting is
possible, where effective exponents larger than their asymp-
totic values might be found. This scenario is predicted for
larger dilutions and represented by curves 6 in Figs 14 ± 16.
Curves 4 and 5 correspond to the situation where crossover
from the mean-field behavior toward the random one is not
influenced by the presence of a pure fixed point I.

6.3 Resummation based on conformal mapping
The resummation procedure based on conformal mapping is
widely used in the analysis of asymptotic series for models
with one coupling, in particular for the pure d � 3 Isingmodel
(scalar f4 theory, see, e.g., [73, 109, 122]). However, an

application of such a method assumes that the behavior of
high-order terms of the series is known. It is not the case for
RIM. This explains why in the studies of RIM the PadeÂ ±
Borel-based resummation technique was used, as described in
Section 6.2. However, by studying the d � 0 quenched diluted
Ising model, it was recently shown analytically [135] that the
perturbative expansions for the free energy are Borel-
summable, provided the summation is carried out in a special
way. The main results of Ref. [135] state that if the double
expansion of theRIM functions in powers of u and v is written
as

f�u; v� �
X1
i�0

ci�v�ui ; �64�

ci�v� �
X1
j�0

ci j v
j ; �65�

then expansion (65), as well as expansion (64) at fixed v is
Borel-summable. These results enabled the authors of Ref.
[65] to perform the resummation of the six-loop series (44) ±
(47) (see [66]). Moreover, by noticing that the large-order
behavior of the series (65) can be derived on the basis of

Table 3. The theoretical values of asymptotic critical exponents of RIM. *

References RG scheme Order Summation n Z g o

Sokolov et al.,
1981 [49]

massive 3LA No 0.009 1.31

Newman et al.,
1982 [50]

SF No 0.70 0.015 1.39 0.41

Jug, 1983 [51] massive 2LA ChBr 0.678 0.031 1.336 0.450c

Mayer et al.,
1984 [52]

massive 2LA
3LA

ChBr
ChBr

0.031
0.022

1.337
1.325

Mayer et al.,
1989 [54]

massive 4LA ChBr 0.670 0.034 1.326

Mayer,
1989 [55]

massive 4LA
4LA

AW
PdBr

0.6680
0.6714

1.318
1.321

Shpot, 1989 [53] massive 3LA ChBr 0.671 0.021 1.328 0.359

Janssen et al.,
1995 [57]

MS, d � 3 3LA PdBr 0.666 1.313 0.366

Holovatch et al.,
1997 [60]

massive 3LA ChBr 0.671 0.019 1.328 0.376

Folk et al.,
1998 [59]

MS, d � 3 2LA
3LA
4LA

ChBr 0.665
0.654
0.675

0.032
0.022
0.049

1.308
1.293
1.318

0.162
0.430
0.390c

Folk et al.,
1999 [61]

MS, d � 3

massive
4LA
4LA

ChBr
ChBr

0.39(4)c

0.372(5)

Pakhnin et al.,
2000 [64]

massive 5LA PdBr 0.671(5) 0.025(10) 1.325(3) 0.32(6)

Varnashev,
2000 [62]

massive 4LA PdBr
PdBr

0.681(12)
0.672(4)

0.040(11)
0.034(10)

1.336(20)
1.323(10) 0.330

Pelissetto et al.,
2000 [65]

massive 6LA PdBr ëCM
PdBr ë PdBr

0.678(10)
0.668(6)

0.030(3)
0.0327(19)

1.330(17)
1.313(14)

0.25(10)
0.25(10)

* nLAdenotes the nth order in loopwise approximation within massive (`massive') and d � 3minimal-subtraction (`MS') schemes of the éeld-theoretical
renormalization-group approach. The resummation procedures are given in the following notations: ChBr, Chisholm ëBorel; PdBr, PadeÂ ± Borel; AW,

e-algorithm ofWynn; andCM,Borel transformationwith conformalmapping. SF stands for theGolner ±Riedel scaling-field approach, and superscript

`c' at the correction-to-scaling exponent o indicates that the real part of the corresponding complex number is shown.
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known asymptotics (60) (see [129 ± 131]), they were able to
perform the resummation based on conformal mapping for
the series in v (65) to get convergent results for the coefficients
ci�v�.

The procedure of conformal-mapping resummation of a
series in a single variable u is standard [122, 140]. For a given
Borel ± Leroy transform SB�u� (61), the initial series may be
restored from

S res�u� �
�1
0

dt exp�ÿt� t b SB�ut� : �66�

Assuming the asymptotic behavior of the general term in the
form (60), one concludes that the singularity of the trans-
formed series SB�u� closest to the origin is located at the point
�ÿ1=a�. Conformallymapping the cut plane u onto a unit disk
and leaving the origin invariant (see Fig. 17),

w � �1� au�1=2 ÿ 1

�1� au�1=2 � 1
; u � 4

a

w

�1ÿ w�2 ; �67�

substituting the result into SB�u�, and reexpanding in w, one
receives a series defined on disk with radius 1 in the w plane.
This series is then resubstituted into Eqn (66). In order to
weaken a possible singularity in the w plane, the correspond-
ing expression is multiplied by �1ÿ w�r and, thus, one more
parameter, r, is introduced [140].

However, the above procedure may be applied only to the
RIM RG series for the coefficients ci (65), inasmuch as the
large-order behavior (60) may be derived only for series in v
(65) (see [65]). The asymptotics of the resulting series in u (64)
is still unknown. This compels one to apply the PadeÂ ± Borel

resummation technique for their analysis. It can be applied to
series (65) as well. In summary, this leads to different ways of
series resummation: (i) applying the PadeÂ ± Borel method
both for series (64) and (65) (in Ref. [65] this technique is
called the `double PadeÂ ± Borel method') and (ii) applying the
conformalmethod for series (65) and the PadeÂ ± Borelmethod
for series (64) (`conformal PadeÂ ± Borel method'). Both
approaches were implemented in Ref. [65], paying special
attention to the choice of different PadeÂ approximants as well
as optimizing the results on the basis of fit parameters. In
Table 3 we display the data for the RIM critical exponents
proposed by the authors on the basis of the analysis of the six-
loop RG functions, containing estimates on the basis of both
the double PadeÂ ± Borel method and the conformal PadeÂ ±
Borel method (we denote them as PdBr ±CM). Separately, we
give the results of the analysis by the double PadeÂ ± Borel
method (PdBr ± PdBr). Let us note that the conformal-
mapping technique appears to give more robust results, even
in resumming the RG series for fixed v�=u�. Applying a
procedure of conformal-mapping-based resummation of
Ref. [66], the authors of Ref. [65] obtained for the six-loop
RG series values of critical exponents which are in quite good
agreement with the other estimates (see Table 3). However,
the estimates of the fixed-point coordinates differ essentially
in different calculation schemes. This leads us to the
conclusion [65] that probably the optimal truncation of the
RIM b functions corresponds to a shorter series than a six-
loop one.
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7. Conclusion

In this article, we have reviewed results obtained so far in the
description of critical properties of a three-dimensional
weakly diluted quenched Ising model (RIM). Following the
prevailing bulk of experimental,Monte Carlo, and theoretical
studies, we focused our attention on the critical exponents of
the model. The large number of papers devoted to the precise
determination of the exponents undoubtedly bears witnesses
to the great interest in the problem. The reason for this is two-
fold: (i) at the level of a simple model, RIM allows us to
include into consideration macroscopic effects of disorder
always present in real substances; and (ii) the study of the
influence of disorder on universal properties of critical
behavior, aside from practical needs, is of high academic
interest. It is precisely the domain very close to critical
temperature where even a very small amount of impurities
can change the properties drastically in comparison with an
ideal magnet. In accordance with the heuristic Harris
criterion [71], only when the specific heat of an ideal system
is divergent at criticality, the disordered magnet is character-
ized by new critical exponents. The change in critical
exponents of RIM is well established both in experimental
and Monte Carlo and theoretical studies. However, the
numerical values obtained show much worse self-consistency
as compared to the situation in studies of pure Ising magnets.
This happens due to both technical and principal difficulties.
Moreover, often the technical difficulties in determining the
RIM exponents are caused by the principal ones.

Though it is commonly believed that various defects are
inevitable in experimental samples, the number of experi-
mental RIM studies is much fewer than those devoted to the
determination of the Ising-model critical exponents. As an
explanation, one might mention that the Ising-model uni-
versality class includes not only magnets but also simple
fluids, ferroelectrics, binary alloys, etc. Moreover, the RIM
itself can show an effective critical behavior of the same type
as that in the Ising-model universality class. The data for
experimentally determined RIM critical exponents are
collected in Table 1. As a peculiarity we note that already in
early studies [4] a difference between the critical behavior of
RIM and the pure Ising model was observed. Surprisingly
enough, since that work neither the experimental precision of
the determination of the critical exponents has increased nor
could a narrower temperature interval around the critical
point be accessed. This can be explained by noting that
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starting from the end of the eighties the researchers' attention
shifted to the random-field Ising model and the data for RIM
were obtained only as side-product results. It is worthwhile to
note that the theoretically predicted critical exponents for
quenched disorder [65] (n ' 0:678, g ' 1:330) and for
annealed disorder 4 (n ' 0:708, g ' 1:391) are different, but
only slightly. Most probably, one can suggest a scenario
according to which in real samples one observes an inter-
mediate situation, and then an exact coincidence between
experiments on diluted crystalline antiferromagnets and
theoretical calculations can hardly be expected.

While the existence of a new universality class for theRIM
has been observed already in early experimental studies, this
was not the case in Monte Carlo simulations. Due to the lack
of a proper finite-size analysis, a continuous dependence of
the critical exponents on concentration was observed. The
exponents were interpreted as effective critical exponents [68,
69]. Subsequently, it was crucial to recognize the role of the
correction-to-scaling exponent in the analysis of the simula-
tion data [33 ± 35]. This allowed one to conclude from the
numerical data the concentration-independent asymptotic
critical exponents [33]. As one can note from Table 2, the
improvement of computers, as well as of the calculation
algorithms, has allowed one to increase the accuracy of
critical exponents. Recently, in Monte Carlo simulations of
RIM, attention was paid also to the study of the problems of
self-averaging in diluted systems [37, 38].

The results of experimental studies and Monte Carlo
simulations are confirmed by theoretical calculations. The
numerical values of critical exponents obtained by different
theoretical methods are collected in Table 3. Note that all
theoretical results were obtained within the renormalization-
group approach, and most of them within its field-theoretical
formalism on the basis of the effective Landau ±Ginzburg ±
Wilson Hamiltonian (8). Though the last approach encoun-
ters intrinsic difficulties (such as problems with the break-
down of replica symmetry and the possible existence of a
Griffiths phase [79]), it remains the only method which allows
one to calculate the asymptotic values of exponents. For the
pure Ising model, many results are also based on other
methods, in particular, on high- and low-temperature expan-
sions.

Another evident difference of RIM in comparison with
the Isingmodel lies in the applicability of certain computation
schemes within the field-theoretical renormalization-group
approach, and the failure of others. In the case of the pure
Ising model, both massive and minimal-subtraction schemes
followed by e expansion provide consistent and reliable
results. For RIM, the e expansion degenerates into

��
e
p

expansion [43, 45, 58, 61], which appeared to be of no use
for quantitative studies [59, 63]. Moreover, the initial series in
couplings, both in the massive and the minimal-subtraction
schemes, seem not to be Borel-summable [132, 133, 135].
Nevertheless, PadeÂ ± Borel-like resummation procedures
were employed and allowed one to obtain convergent
sequences for the critical exponents within low orders of
perturbation theory. This is evident from the agreement of
the theoretical results obtained in different orders of
perturbation theory (Table 3) with the data of experimental
(Table 1) and Monte Carlo (Table 2) studies. However, the

resummation failed in higher orders, which resulted in the
conjecture that there exists an optimal truncation for theRIM
RG functions [63].

On the basis of the six-loop RG functions of the massive
scheme, results could only be obtained [65] by means of a
highly sophisticated resummation procedure [135]. In the
framework of this scheme, the estimates for critical expo-
nents are characterized by the same order of accuracy as for
the Ising model, which are based [73] on six-loop expansions
for RG b functions and seven-loop expansions for g
functions. However, the determination of error-bars in the
theoretical calculations is a difficult problem which is solved
in various ways [62, 65]. Here, the errors seem to measure the
uncertainty of specific theoretical procedures rather than the
confidence intervals of true values.

For a comparison of the theoretical predictions with
experimental and simulation data, one should use effective
critical exponents, which have been calculated for the RIM
within the RG approach [57, 63].

At the very end of this review we want to attract attention
again to the fact that the new critical behavior corresponding
to the RIM universality class was experimentally observed so
far only in magnetic systems like (anti)ferromagnets (see
Table 1). Still, it remains a challenge to set up an experiment
showing RIMbehavior in other condensed-matter systems. A
promising example might be a fluid near its liquid ± gas
critical point in a porous medium. One should note that
only in a special case are liquids in porous media an example
of the site-diluted Ising model; otherwise, they are conjec-
tured to be examples for random-field models (see for
instance [142]). Recently, precise experiments on the critical
behavior of liquid helium-4 near the superfluid transition in
porous medium [143] confirmed the irrelevancy of quenched
disorder. This was expected from the Harris criterion, since
the specific heat exponent near the superfluid transition is
equal to a � ÿ0:01056� 0:00038 [144], which is less than zero
within error bars. Thus, an experimental study of a simple
liquid in a porous medium may provide the first observation
of critical RIM behavior in a nonmagnetic system.
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Notes added in proof. Recently, the critical properties of
RIM were analyzed by means of a nonperturbative RG
approach based on the concept of an effective average
action [145]. The values of critical exponents obtained are
in good agreement with the results of recent theoretical and
experimental studies. Thus, the works [50, 145] remain the
only theoretical studies where critical exponents were
obtained by methods different from the field-theoretical
RG approach.

4 These numbers follow from the Fisher renormalization (11) applied to

the pure (d � 3) Ising model exponents (4).
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