
Abstract. In recent years, the kinetic and hydrodynamic de-
scriptions of transport phenomena have been improved signifi-
cantly through the extension of the Boltzmann physical
kinetics. In this review the basic results of the generalized
Boltzmann kinetic theory of partially and fully ionized gases
are presented and some of its applications are discussed.

1. Introduction

At the heart of the kinetic theory of neutral and ionized gases
is the Boltzmann equation (BE) which describes how the one-
particle distribution function f1 changes over times of the
order of the mean time between collisions and of the order of
the gasdynamic flow time. Despite certain difficulties in the
theory long-positioned as classic, the Boltzmann equation,
now 130 years old [1], has had no alternatives until recently as
the basis for physical kinetics.

A weak point of the classical Boltzmann kinetic theory is
the way it treats the dynamic properties of interacting
particles. On the one hand, as the so-called `physical'
derivation of the BE suggests [1, 2], Boltzmann particles

are treated as material points; on the other hand, the
collision integral in the BE brings into existence the cross
sections for collisions between particles. A rigorous
approach to the derivation of the kinetic equation for
f1 �KEf1� is based on the hierarchy of the Bogolyubov ±
Born ±Green ±Kirkwood ±Yvon (BBGKY) equations. A
KEf1 obtained by the multiscale method turns into the BE if
one ignores the change of the distribution function (DF) over
a time of the order of the collision time (or, equivalently, over
a length of the order of the particle interaction radius). It is
important to note [3 ± 5] that accounting for the third of the
scales mentioned above has the consequence that, prior to
introducing any approximations destined to break the
Bogolyubov chain, additional terms, generally of the same
order of magnitude, appear in the BE. If the method of
correlation functions is used to derive KEf1 from the BBGKY
equations, then a passage to the BE implies the neglect of
nonlocal and time delay effects.

Given the above difficulties of the Boltzmann kinetic
theory (BKT), the following clearly interrelated questions
arise. First, what is a physically infinitesimal volume and how
does its introduction (and, as a consequence, the unavoidable
smoothing out of the DF) affect the kinetic equation [3, 6]?
And second, how does a systematic account for the proper
diameter of the particle in the derivation of theKEf1 affect the
Boltzmann equation? In the theory we develop here, we will
refer to the corresponding KEf1 as the generalized Boltzmann
equation, or GBE.

The derivation of the generalized Boltzmann equation
and the applications of the generalized Boltzmann physical
kinetics are presented, in particular, in Refs [3 ± 5]. The review
we offer the reader is a natural follow-up of our recentPhysics
Uspekhi paper [5] which outlines the basic concepts of the
generalized Boltzmann kinetic theory as applied to neutral
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rarefied gases. In the same paper, a brief historical back-
ground and a general outline of the problem are given.
Accordingly, our purpose in this introduction is first to
explain the essence of the physical generalization of the BE
and then to take a look at the specifics of the derivation of the
GBE, when Ð as is the case in plasma physics Ð the self-
consistent field of forces must of necessity be introduced.

As the Boltzmann equation is the centerpiece of the theory
of transport processes (TPT), the introduction of an alter-
native KEf1 leads in fact to an overhaul of the entire theory,
including its macroscopic (for example, hydrodynamic)
aspects. Conversely, a change in the macroscopic description
will inevitably affect the kinetic level of description. Because
of the complexity of the problem, this interrelation is not
always easy to trace when solving a particular TPT problem.
The important point to emphasize is that at issue here is not
how to modify the classical equations of physical kinetics and
hydrodynamics to include additional transport mechanisms
(in reacting media, for example); rather we face a situation in
which, those involved believe, wemust go beyond the classical
picture if we wish the revised theory to describe experiment
adequately. The alternative TPTs can be grouped conven-
tionally into the following categories: (1) theories that modify
the macroscopic (hydrodynamic) description and neglect the
possible changes of the kinetic description; (2) those changing
the kinetic description at the KEf1 level without bothering
much whether these changes are consistent with the structure
of the entire BBGKY chain, and (3) kinetic and hydrody-
namic alternative theories consistent with the BBGKY
hierarchy.

One of the pioneering efforts in the first line of research
was a paper by Davydov [7], which stimulated a variety of
studies (see, for instance, Refs [8 ± 10]) on the hyperbolic
equation of thermal conductivity. Introducing the second
derivative of temperature with respect to time permitted a
passage from the parabolic to the hyperbolic heat conduction
equation, thus allowing for a finite heat propagation velocity.
However, already in his 1935 paper B I Davydov points out
that hismethod ``cannot be extended to the three-dimensional
case'' and that ``here the assumption that all the particles
move at the same velocity would separate out a five-
dimensional manifold from the six-dimensional phase space,
suggesting that the problem cannot be limited to the
coordinate space alone''. We note, however, that also quasi-
linear parabolic equations can produce wave solutions.
Therefore, to hyperbolize the heat conduction equation
phenomenologically [8] is not valid unless a rigorous kinetic
justification is given. The hyperbolic heat conduction equa-
tion appears when the BE is solved by the Grad method [10]
retaining a term which involves a derivative of the heat flow
with respect to time and to which, in the context of the
Chapman ±Enskog method, no particular order of approx-
imation can be ascribed.

Major difficulties arose when the question of existence
and uniqueness of solutions of the Navier ± Stokes equations
was addressed. O A Ladyzhenskaya has shown for three-
dimensional flows that under smooth initial conditions a
unique solution is only possible over a finite time interval.
Ladyzhenskaya even introduced a `correction' into the
Navier ± Stokes equations in order that its unique solvability
could be proved. It turned out that in this case the viscosity
coefficient should be dependent on transverse flow-velocity
gradients Ð with the result that the very idea of introducing
kinetic coefficients should be overhauled.

G Uhlenbeck, in his review of the fundamental problems
of statistical mechanics [11], examines in particular the
Kramers equation [12] derived as a consequence of the
Fokker ± Planck equation

q f
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qr
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where f �r; v; t� is the distribution function of Brownian
particles, a is the acceleration due to an external field of
forces, andmb is the coefficient of friction for the motion of a
colloid particle in the medium. What intrigues Uhlenbeck is
how Kramers goes over from the Fokker ± Planck equation
(1.1) to the Einstein ± Smoluchowski equation
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(r is the density) which has the character of the hydrodynamic
continuity equation. In Uhlenbeck's words, ``the proof of this
change-over is very interesting, it is a typical Kramers-style
proof. It is in fact very simple but at the same time some tricks
and subtleties it involves make it very hard to discuss''. The
velocity distribution of colloid particles is assumed to be
Maxwellian. The `trick', however, is that Kramers integrated
along the line r� v=b � r0, and the number density of
particles turned out to be given by the formula

n�r0; t� �
�
f

�
r0 ÿ v

b
; v; t

�
dv : �1:3�

So what exactly did H Kramers do? Let us consider this
change from the point of view of the generalized Boltzmann
kinetic theory (GBKT) using, wherever possible, qualitative
arguments to see things more clearly.

The structure of the KEf1 is generally as follows

D f1
Dt
� JB � J td ; �1:4�

where D=Dt is the substantial (particle) derivative, JB is the
(local) Boltzmann collision integral, and J td is the nonlocal
integral term incorporating the time delay effect. The general-
ized Boltzmann physical kinetics, in essence, involves a local
approximation

J td � D

Dt

�
t
D f1
Dt

�
�1:5�

for the second collision integral, here t being the mean time
between the particle collisions. We can draw here an analogy
with the Bhatnager ±Gross ±Krook (BGK) approximation
for JB:

JB � f
�0�
1 ÿ f1

t
; �1:6�

whose popularity as a means to represent the Boltzmann
collision integral is due to the huge simplifications it offers.
The ratio of the second to the first term on the right-hand side
of Eqn (1.4) is given to an order of magnitude as

J td

JB
� O�Kn2� ; �1:7�
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and at large Knudsen numbers these terms become of the
same order of magnitude.

It would seem that at small Knudsen numbers answering
to hydrodynamic description the contribution from the
second term on the right-hand side of Eqn (1.4) is negligible.
This is not the case, however. When one goes over to the
hydrodynamic approximation (by multiplying the kinetic
equation by collision invariants and then integrating over
velocities), the Boltzmann integral part vanishes, and the
second term on the right-hand side of Eqn (1.4) gives a single-
order contribution in the generalized Navier ± Stokes descrip-
tion. Mathematically, we cannot neglect a term with a small
parameter in front of the higher derivative. Physically, the
appearing additional terms are due to viscosity and they
correspond to the small-scale Kolmogorov turbulence [3, 5].
The integral term J td, thus, turns out to be important both at
small and large Knudsen numbers in the theory of transport
processes.

The important methodical question to be considered is
how classical conservation laws fit into the GBE picture.
Continuum mechanics conservation laws are derived on the
macroscopic level by considering a certain reference volume
within the medium, which is enclosed by an infinitesimally
thin surface. Moving material points (gas particles) can be
either within or outside the volume, and it is by writing down
the corresponding balance equations for mass, momentum
flux, and energy that the classical equations of continuity,
motion, and energy are obtained. In particular, we obtain the
continuity equation in the form

qra

qt
� q
qr
� �rv0�a � 0 ; �1:8�

where ra is the gas density, v a0 is the hydrodynamical flow
velocity, and �rv0�a is themomentum flux density obtained by
neglecting fluctuations. Thus, Boltzmann particles are fully
`packed' in the reference volume. It would appear that in
continuum mechanics the idea of discreteness can be
abandoned altogether and the medium under study be
considered as a continuum in the literal sense of the word.
Such an approach is of course possible and indeed leads to
Euler equations in hydrodynamics. But when the viscosity
and thermal conductivity effects are to be included, a totally
different situation arises. As is well known, the dynamical
viscosity is proportional to the mean time t between the
particle collisions, and a continuum medium in the Euler
model with t � 0 implies that neither viscosity nor thermal
conductivity are possible. The appearance of finite size
particles in the reference contour leads to new effects.

Let a particle of finite radius be characterized, as before,
by the position vector r and velocity v of its center of mass at
some instant of time t. Then the fact that its center of mass is
in the reference volume does notmean that all of the particle is
there. In other words, at any given point in time there are
always particles which are partly inside and partly outside of
the reference surface, unavoidably leading to fluctuations in
mass Ð and hence in other hydrodynamic quantities.

There are two important points to bemade here. First, the
fluctuations will be proportional to the mean time between
the collisions (rather than the collision time). This fact is
rigorously established in Refs [3 ± 5], but it can also be made
evident bymeans of quite simple arguments. Suppose we have
a gas of hard spheres kept in a hard-wall cavity as shown in
Fig. 1. Consider a reference contour drawn at a distance of the
order of a particle diameter from the cavity wall. The

mathematical expectation of the number of particles moving
through the reference surface strictly perpendicular to the
hard wall is zero. Therefore, in the first approximation,
fluctuations will be proportional to the mean free path (or,
equivalently, to the mean time between the collisions). As a
result, the hydrodynamic equations will explicitly involve
fluctuations proportional to t. For example, the continuity
equation changes its form and will contain terms propor-
tional to viscosity [3]. On the other hand Ð and this is the
second point to be made Ð if the reference volume extends
over the whole of the cavity, then the classical conservation
laws should be obeyed, and this is exactly what the paper [5]
proves. However, we will here attempt to `guess' the structure
of the generalized continuity equation using the arguments
outlined above.

Neglecting fluctuations, the continuity equation should
have the classical form (1. 8) with

ra � rÿ tA ; �1:9�
�rv0�a � rv0 ÿ tB : �1:10�

Strictly speaking, the factors A and B can be obtained from
the generalized kinetic equationÐ in our case, from theGBE.
Still, we can guess their form without appeal to the KEf1 .

Indeed, let us write the generalized continuity equation

q
qt
�rÿ tA� � q

qr
� �rv0 ÿ tB� � 0 �1:11�

in the dimensionless form using l, the distance from the
reference contour to the hard wall (see Fig. 1), as a length
scale. Then, instead of t, the (already dimensionless)
quantities A and B will have the Knudsen number Knl � l=l
as a coefficient. In the limit l! 0, Knl !1, the contour
embraces the entire cavity contained within hard walls, and
there are no fluctuations on the walls. In other words, the
classical equations of continuity and motion must be satisfied
at the wall. Using hydrodynamic terminology, we note that
the conditions

A � 0 ; B � 0 �1:12�

l

Figure 1. Closed cavity and the reference contour containing particles of a

finite diameter.
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correspond to a laminar sublayer in a turbulent flow. Now if a
local Maxwellian distribution is assumed, then the general-
ized equation of continuity in the Euler approximation is
written as

q
qt

�
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�
qr
qt
� q
qr
� �rv0�

��
� q
qr
�
�
rv0 ÿ t

�
q
qt
�rv0� � q

qr
� rv0v0 � I

$ � qp
qr
ÿ ra

��
� 0 :

�1:13�
In the hydrodynamic approximation, the mean time t
between the collisions is related to the dynamic viscosity Z
by tp � PZ, where the factor P depends on the choice of a
collision model and is P � 0:8 for the particular case of
neutral gas comprising hard spheres. The generalized equa-
tions of energy andmotion aremuchmore difficult to guess in
this way, making the GBE indispensable. It is worthwhile
though to say a few words about the treatment of the GBE
(1.4) in the spirit of the fluctuation theory:

D f a

Dt
� JB� f � ; �1:14�

where JB� f � is the Boltzmann collision integral, and

f a � fÿ t
D f

Dt
: �1:15�

Thus, tD f=Dt is the distribution function fluctuation, and
writing Eqn (1.14) without taking into account Eqn (1.15)
makes the BE nonclosed. From the viewpoint of the
fluctuation theory, Boltzmann employed the simplest possi-
ble closure procedure:

f a � f : �1:16�

Now, having inmind theKramers method, let us compare
the generalized continuity equation (1.13) and the Einstein ±
Smoluchowski equation (1.2). Equation (1.13) reduces to
Eqn (1.2) if (a) the convective transfer corresponding to the
hydrodynamical velocity v0 is neglected; (b) the temperature
gradient is less important than the gradient of the number
density of particles, n qT=qr5T qn=qr, and (c) the temporal
part of the density fluctuations is left out of account. By
integrating with respect to velocity v from ÿ1 to �1 along
the line r� v=b � r0, Kramers [see also Eqn (1.3)] introduced
nonlocal collisions without accounting for the time delay
effect. In our theory, the coefficient of friction b � tÿ1, which
corresponds to the binary collision approximation. If the
simultaneous interaction with many particles is important
and must be accounted for, additional difficulties associated
with the definition of the coefficient of friction b arise, and
Einstein ± Smoluchowski theory becomes semiphenomenolo-
gical. Overcoming these difficulties may require the use of the
theory of non-Markov processes for describing Brownian
motion [13].

Notice that the application of the above principles also
leads to the modification of the system ofMaxwell equations.
While the traditional formulation of this system does not
involve the continuity equation, its derivation explicitly
employs the equation

qra

qt
� q
qr
� j a � 0 ; �1:17�

where ra is the charge per unit volume, and j a the current
density, both calculated without accounting for the fluctua-
tions. As a result, the system of Maxwell equations written in
the standard notation, namely

q
qr
� B � 0 ;

q
qr
�D � ra ;

q
qr
� E � ÿ qB

qt
;

q
qr
�H � j a � qD

qt
;

�1:18�

contains ra � rÿ r f l, and j a � jÿ j f l. The r f l, j f l fluctua-
tions calculated using the GBE are given, for example, in
Ref. [3].

We shall now turn to approaches in which the KEf1 can be
changed in a way which is generally inconsistent with the
BBGKY hierarchy.

It has been repeatedly pointed out that using a wrong
distribution function for charged particles may have a
catastrophic effect on the macroparameters of a weakly
ionized gas. Let us have a look at some examples of this.

As is well known, the temperature dependence of the
density of atoms ionized in plasma to various degrees was first
studied by Saha [14] and Eggert [15]. For a system in
thermodynamic equilibrium they obtained the equation

nj�1ne
nj
� sj�1

sj

�2pmekT �3=2
h3

exp

�
ÿ ej
kT

�
; �1:19�

where nj is the number density of j-fold ionized atoms, ne is the
number density of free electrons,me is the electronmass, k the
Boltzmann constant, h the Planck constant, sj the statistical
weight for a j-fold ionized atom [16], and ej the jth ionization
potential. The Saha equation (1.19) is derived for the
Maxwellian distribution and should necessarily be modified
if another velocity distribution of particles exists in the
plasma. This problem was studied in work [17], in which, for
illustrative purposes, the values of nj�1ne=nj calculated with
the Maxwell distribution function are compared with those
obtained with the Druyvesteyn distribution function, the
average energies for both distributions being assumed equal.
LetT � 104 K, ne � 1014 cmÿ3, ej � 10 eV, the charge number
Z � 1, and sj�1=sj � 1. Then one arrives at [17]

nj�1ne
nj
� 6� 102 �calculation using

the Druyvesteyn distribution�;
nj�1ne
nj
� 4:53� 1016 �calculation using

the Maxwellian distribution function;

by the Saha formula�:
AsEDewan explained, ``the discrepancy in fourteen orders of
magnitude obtained above is clearly due to the fact that,
unlikeMaxwellian distribution, the Druyvesteyn distribution
does not have a `tail''.

In our second example, two quantities Ð the ionization
rate constant and the ionization cross section Ð were
calculated by Gryzinski et al. [18] using the two above-
mentioned distributions. The ionization cross section si is
defined by the following interpolation formula known to
match satisfactorily the experimental data:

si � s0
e 2i

Gi�x; z� ; �1:20�
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where s0 � 6:56� 10ÿ14 cm2 (eV)2, ei is the ionization
potential of the atom, and x is a dimensionless parameter
characterizing the atomic electron shell:

x �W

ei
; �1:21�

whereW is the average kinetic energy of the atomic electrons,
given by the formula

W � 1

Ne

XNe

j� 1

ej ; �1:22�

in which Ne is the number of electrons in the atom, and ej are
the ionization potentials for the atom successively stripped of
its electrons. The parameter z is defined by the expression

z � Ue

ei
; �1:23�

whereUe is the energy of the electrons bombarding the atom.
The neutral particle velocities are assumed to be much lower
than the average electron velocity, and the plasma is taken to
be uniform. The average value of the ionization cross section
is then given by

si �
�1
0

si�ve� f �ve� dve ; �1:24�

and the ionization rates are evaluated by the formula

sive �
�1
0

si�ve� ve f �ve� dve ; �1:25�

provided the function Gi�x; z� defined as [18]

Gi�x; z� � �zÿ 1�
�
1� 2

3
x
�

1

�z� 1��1� x� z� �1:26�

is known. Table 1 illustrates the calculated values of si and
sive for x � 1 and various T̂ � kTe=ei. It can be seen that the
results obtained with different DFs can differ widely, indeed
catastrophically so even for relatively small values of T̂. Thus,
the reliable computation of DFs remains a topic of intense
current interest in plasma physics problems, the weak effect of

the DF form on its moments being rather an exception than
the rule.

The use of collision cross sections which are `self-
consistent' with kinetic equations is also suggested by the
well-known Enskog theory of moderately dense gases [19].
Enskog's idea was to describe the properties of such gases by
separating the nonlocal part out of the essentially local
Boltzmann collision integral. The transport coefficients
obtained in this way for the hard-sphere model yielded an
incorrect temperature dependence for the system's kinetic
coefficients. To remedy this situation, the model of `soft'
spheres was introduced to fit the experimental data (see, for
instance, Ref. [20]).

In the theory of the so-called kinetically consistent
difference schemes [21], the DF is expanded in a power series
of time, which corresponds to using an incomplete second
approximation in the `physical' derivation of the Boltzmann
equation [5]. The result is that the difference schemes
obtained contain only an artificial ad hoc viscosity chosen
specially for the problem at hand. Some workers followed the
steps of Davydov by adding the term q2f=qt 2 to the kinetic
equations for fast processes. Baka|̄ and Sigov [22] suggest
using such a term in the equation for describing DF
fluctuations in a turbulent plasma. The so-called `ordering
parameter' they introduce alters the very type of the equation.
To describe spatial nonlocality, Baka|̄ and Sigov complement
the kinetic equation by the q2f=qx 2 term and higher
derivatives, including mixed time ± coordinate partial deriva-
tives Ð a modification which can possibly describe non-
Gaussian random sources in the Langevin equations [23]. It is
interesting to note that the GBE also makes it possible to
include higher derivatives of the DF (see the approximation
(5.8) in Ref. [5]).

Clearly, approaches to the modification of the KEf1 must
be based on certain principles, and it is appropriate to outline
these in brief here. Of the approaches we have mentioned
above, the most consistent one is the third, which clearly
reveals the relation between alternative KEf1 's and the
BBGKY hierarchy. There are general requirements to which
the generalized KEf1 must satisfy.

(1) Because the artificial breaking of the BBGKY
hierarchy is unavoidable in changing to a one-particle
description, the generalized KEf1 should be obtainable with
the knownmethods of the theory of kinetic equations, such as
the multiscale approach, correlation function method, itera-
tive methods, and so forth, or combinations of them. In each
of these, some specific features of the particular alternative
KEf1 are highlighted.

(2) Theremust be an explicit link between theKEf1 and the
way we introduce the physically infinitesimal volume Ð and
hence with the way themoments in the reference contour with
transparent boundaries fluctuate due to the finite size of the
particles.

(3) In the nonrelativistic case, the KEf1 must satisfy the
Galileo transformation.

(4) The KEf1 must ensure a connection with the classical
H-theorem and its generalizations.

(5) TheKEf1 should not lead to unreasonable complexities
in the theory.

The last requirement needs some commentary. The
integral collision terms Ð in particular, the Boltzmann local
integral, and especially the nonlocal integral with time
delay Ð have a very complex structure. The `caricature' the
BGK approximation makes of the Boltzmann collision

Table 1. Comparison of ionization cross sections si and ionization rates
sive calculated with the Maxwellian and Druyvesteyn DFs �x � 1�.
T̂ Maxwellian DF Druyvesteyn DF

si sive si sive

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9

10

4:206� 10ÿ6

8:262� 10ÿ4

5:029� 10ÿ3

1:259� 10ÿ2

2:194� 10ÿ2

3:180� 10ÿ2

4:143� 10ÿ2

5:047� 10ÿ2

5:875� 10ÿ2

6:624� 10ÿ2

1:079� 10ÿ1

1:195� 10ÿ1

1:209� 10ÿ1

1:185� 10ÿ1

1:146� 10ÿ1

1:102� 10ÿ1

1:056� 10ÿ1

1:010� 10ÿ1

9:662� 10ÿ2

1:184� 10ÿ5

1:184� 10ÿ3

9:251� 10ÿ3

2:103� 10ÿ2

3:415� 10ÿ2

4:687� 10ÿ2

5:842� 10ÿ2

6:857� 10ÿ2

7:733� 10ÿ2

8:482� 10ÿ2

1:171� 10ÿ1

1:190� 10ÿ1

1:137� 10ÿ1

1:069� 10ÿ1

9:992� 10ÿ2

9:326� 10ÿ2

8:704� 10ÿ2

8:123� 10ÿ2

7:589� 10ÿ2

1:278� 10ÿ27

4:382� 10ÿ9

2:128� 10ÿ5

5:403� 10ÿ4

2:773� 10ÿ3

7:305� 10ÿ3

1:376� 10ÿ2

2:145� 10ÿ2

2:973� 10ÿ2

3:813� 10ÿ2

9:918� 10ÿ2

1:233� 10ÿ1

1:311� 10ÿ1

1:320� 10ÿ1

1:299� 10ÿ1

1:263� 10ÿ1

1:222� 10ÿ1

1:179� 10ÿ1

1:137� 10ÿ1

4:077� 10ÿ27

1:011� 10ÿ8

4:135� 10ÿ5

9:405� 10ÿ4

4:466� 10ÿ3

1:110� 10ÿ2

1:998� 10ÿ2

3:001� 10ÿ2

4:033� 10ÿ2

5:039� 10ÿ2

1:132� 10ÿ1

1:312� 10ÿ1

1:717� 10ÿ1

1:298� 10ÿ1

1:243� 10ÿ1

1:184� 10ÿ1

1:125� 10ÿ1

1:069� 10ÿ1

1:017� 10ÿ1
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integral (to use Yu L Klimontovich's expressive word) has
turned out to be a very successful approach, and this
algebraically approximated Boltzmann collision integral is
widely used in the kinetic theory of neutral and ionized gases.
The generalized Boltzmann equation introduces a nonlocal
differential approximation for the nonlocal collision integral
with time delay. Here, we are faced in fact with the `price ±
quality' problem familiar from economics. That is, what
price Ð in terms of the increased complexity of the kinetic
equation Ð are we ready to pay for the improved quality of
the theory? An answer to this question is possible only
through experience with practical problems.

A consistent theory meeting the above requirements is
being developed, in particular, by Klimontovich [6, 24] and,
the present author believes, within the GBE framework. One
can recognize points of common ideology in the two
approaches. However, whereas in Klimontovich's work the
treatment of the physically infinitesimal volume is transferred
to the `upper echelon' of the BBGKY hierarchy and leads to a
change in the Liouville equation, in the GBE theory it turns
out that approximated nonlocal terms can even be introduced
at the level of a one-particle description. The essential point to
be made here is that GBE theory does well without specifying
the smoothing procedure, whereas in Klimontovich's theory
altering this procedure unavoidably modifies the alternative
KEf1 .

Vlasov [25] suggested that nonlocal effects could be
described by introducing additional independent dynamic
variables (derivatives of the velocity) into the one-particle
distribution function. However Ð due primarily to the
reasonable complexity requirement which should be met for
a theory to be useful in practice Ð this approach is, in our
view, too early to try until all traditional resources for
describing the DF are exhausted.

From this perspective, fluctuation terms in the GBE are
due to the fact that the reference volume as a measuring
element for a system of finite-sized particles is introduced
without changing the DF form used for describing point
structureless particles.

The reader is referred to a monograph by Rudyak [26] for
a detailed review of some other theories of transport proper-
ties (see also review [5]).

To conclude, it remains only to note that the effects listed
above will always be relevant to a kinetic theory using a one-
particle descriptionÐ including, in particular, applications to
liquids or plasmas, where self-consistent forces with appro-
priately cut-off radius of their action are introduced to
expand the capabilities of the GBE.

2. Generalized Boltzmann equation
including self-consistent forces

The dimensionless equation of the Bogolyubov ± Born ±
Green ±Kirkwood ±Yvon (BBGKY) hierarchy for the
s-particle distribution function fs (s � 1; . . . ;N, N is the
number of particles in the system) has the form

q f̂s
qt̂b
�
Xs
i� 1

v̂ib � q f̂sqr̂ib
�
Xs
i j� 1

F̂i j � q f̂sqv̂i b
� a

Xs
i� 1

F̂i � q f̂sqv̂ib

� ÿe 1

N

Xs
i� 1

XN
j� s�1

�
F̂i j � q

qv̂ib
f̂s�1�t̂; Ô1; . . . ; Ôs; Ôj� dÔj ;

�2:1�

where f̂s � fsv
3s
0bn

ÿs; v0b is the characteristic collision velocity;
n is the number density of particles; a � F0l=F0 is the ratio of
the scales of the internal and external forces; dOj � drj dvj is
an elementary phase volume of the particle j, whose position
is determined by the radius vector rj and whose velocity is vj.
We employ dot notation for a scalar product.

A spatial variable is nondimensionalized by introducing
the interaction length rb, and the characteristic time scale is set
by rbv

ÿ1
0b ; e corresponds to the number of particles which is

contained in the interaction volume vint and serves as a small
parameter in the kinetic theory of rarefied neutral gases.
There are actually at least three groups of scales to consider in
a rarefied gas. Apart from rb, v0b, and t0b � rb=v0b, there exist
`mean free path' l-scales (the mean free path l, the mean free-
flight velocity v0l, and the characteristic time scale l=v0l) and
L-parameters corresponding to hydrodynamic flow para-
meters (the characteristic hydrodynamic dimension L, the
hydrodynamical velocity v0L, and the hydrodynamic time
L=v0L).

The fundamental aspect of plasma physics is the presence
of multiparticle interaction. The choice of the characteristic
scales which determine the evolution of a plasma volume and
are used in the multiscale method below is discussed in
Appendix 1. Let us introduce a small parameter
e � nr 3b � vint assuming that the interaction energy per
particle is much less than the particle's kinetic energy. We
also assume that the plasma is nondegenerate and employ the
multiscale approach. In the discussion to follow we shall
concern ourselves with describing a physical system at the
level of one-particle distribution function f1 on the scales
rb � l; l;L (l, the Landau length; l, the mean free path of a
probe particle between two `close' collisions, and L, hydro-
dynamic scale). Note that the mean free path of a plasma
particle is introduced as

ln � Lÿ1l ; �2:2�

with L being the Coulomb logarithm. The mean free path ln
or the corresponding mean time between the collisions are
involved in the definition of kinetic coefficients [27]. In the
multiscale method [28, 29], f̂s is expressed in the form of an
asymptotic series

f̂s �
X1
v� 0

f̂ vs �t̂b; r̂ib; v̂ib; t̂l; r̂il; v̂il; t̂L; r̂iL; v̂iL�e v �2:3�

in which the functions f̂ vs depend on all the three types of
variables.

From the above-written BBGKY equation, taking the
derivatives of the composite functions on the left-hand side of
this equation and then equating the coefficients of e 0 and e1,
we find that
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where m is the number of components in the mixture, Nd is
the number of particles of the dth kind, e1 � l=L (the
Knudsen number), e2 � v0l=v0b, and e3 � v0L=v0l. The
integration in Eqn (2.5) is performed on the rb scale.
Importantly, no restriction is placed on the value of
the Knudsen number. Equation (2.4) shows that the
function f̂ 01 does not change along the phase trajectory on
the rb-scale Ð in other words, following the integration on
the rb-scale we have

f̂ 01 � f̂ 01 �t̂l; v̂1l; r̂1l; t̂L; v̂1L; r̂1L� : �2:6�

If the last function is known, f̂ 11 needs to be found from
Eqn (2.5). This is possible if certain additional assumptions
are posed on the function f̂ 02 entering the right-hand, integral
part of the expression (2.5). Thus we see that the system of
equations contains linked terms. In real life, the dependence
(2.6) is unknown beforehand. Then Eqn (2.5) can serve to
determine f̂ 01 on the l- and L-scales, but in this case it
becomes doubly linked, with respect to both the lower index
`2' and the upper index `1'. As a result, the problem of
breaking the equations arises.

Let us now write the analogue of Eqn (2.4) for the two-
particle function f̂ 02 dependent on time and on the dynamic
variables for the particles 1 and j:

q f̂ 02
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q f̂ 02
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� 0 :

�2:7�

Introducing the new variable x̂1; j2Nd � r̂1b ÿ r̂j2Nd;b, we
find from Eqn (2.7) that

ÿ F̂1; j2Nd �
q f̂ 02
qv̂1b
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Using the last equation, we obtain the following repre-
sentation for the integral in Eqn (2.5):

ÿ
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The last integral on the right-hand side of Eqn (2.9) can be
written in the form�

F̂j2Nd; 1 �
q f̂ 02

qv̂j2Nd;b
dÔj2Nd

�
���

q
qv̂j2Nd; b

� �F̂j2Nd; 1 f̂
0
2 � dv̂j2Nd

�
dr̂j2Nd : �2:10�

But the inner integral can be transformed by the Gauss
theorem into an integral taken over an infinitely distant
surface in the velocity space, which vanishes because f̂ 02 ! 0
for v̂j !1.

Let us now introduce two-particle correlation functions
Ŵ2�t̂; Ô1; Ôj2Nd� (hereinafter fj is the one-particle function
corresponding to the particles Nj):

f̂ 02 �t̂; Ô1; Ôj� � f̂ 01 �t̂; Ô1� f̂j2Nd�t̂; Ôj2Nd� � Ŵ 0
2 �t̂; Ô1; Ôj2Nd� :

�2:11�

The next to last integral in Eqn (2.9) then becomes��
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In expression (2.12), the first integral on the right is zero
because of the relation (2.4), and the third integral is zero for
the same reasons as in Eqn (2.10). The situation with the
second and fourth integrals, however, requires a more
detailed treatment. Consider first the integral

A �
�
f̂ 01

q f̂ 0j2Nd

qt̂b
dÔj2Nd : �2:13�

The dynamic variables determining the motion of the
given trial particles 1 and j are correlated with one another in
the collision of the particles, i.e., on the rb-scale. In the center-
of-mass system, the equations of motion for these particles
are written as

_v1b � F1j ; _vj b � Fj1; p1 � ÿpj ; �2:14�

where a dot over denotes differentiation with respect to time,
and p is the particle momentum.

Using equations (2.14) and integrating by parts, we arrive
at the relation

A � ÿF̂a
1d �

q f̂1
qv̂1b

; �2:15�
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where F̂ a
1d is the average force acting on particle 1 during its

collision with particle jwhich has an arbitrary velocity and an
arbitrary position on the rb-scale (particles j belong to the
chemical component d):

F̂ a
1d �

�
f̂j F̂1j dv̂j2Nd dr̂j2Nd : �2:16�

Thus, the integral A vanishes provided that the self-
consistent force of internal nature can be neglected, in
particular, in comparison with the external force acting on
particle 1. We next transform the integral A further by using
the series (2.2), to obtain

A � ÿF̂ a
1d �

q f̂ 01
qv̂1b
ÿ eF̂ a

1d �
q f̂ 11
qv̂1b

: �2:17�

The last term in Eqn (2.17) ensures, as we shall see below, that
the generalized kinetic equation is written in a symmetrical
form.

Now consider the fourth Ð the last Ð integral on the
right-hand side of Eqn (2.12). To do this, we write down an
equation for the two-particle function f2 of the Bogolyubov
chain, in which, in this case, we do not separate out groups of
particles belonging to a certain chemical component. The
two-particle function f2 corresponds to the dynamical
variables of particles N1, N2 and is written in the form
f2 � f2�1; 2� for brevity. Thus, one finds

q f2
qt
� v1 � q f2qr1

� v2 � q f2qr2
� F12 � q f2qv1
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��
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where the three-particle function f3 has been approximated
by using correlation functions as follows:

f3�O1;O2;O3; t� � f1�O1; t� f1�O2; t� f1�O3; t�
� f1�O1; t�W2�O2;O3; t� � f1�O2; t�W2�O1;O3; t�
� f1�O3; t�W2�O1;O2; t� �W3�O1;O2;O3; t� : �2:19�

The effect of the correlation functionW3�O1;O2;O3; t� is here
neglected.

Equation (2.18) written in the zeroth approximation in e
as an equation for finding f 02 is identical with Eqn (2.7) only
when the zero-order correlation functions are zero, viz.

W 0
2 �O2;O3; t� � 0 ; W 0

2 �O1;O3; t� � 0 ; �2:20�
W 0

2 �O1;O2; t� � 0 ; W 0
3 �O1;O2;O3; t� � 0 ;

and when the interaction forces determining the effect of the
third particle on the first and the second ones during their
`close' collision are small, i.e., F13 � 0, F23 � 0. Hence, in the
multiscale approach, polarization terms on the right-hand

side of Eqn (2.18) appear in the next, of order small o�e 2�,
approximation.

Thus, in the multiscale approach, the last integral on the
right-hand side of Eqn (2.12) vanishes because of the
condition (2.20). The integral relation (2.9) can be written in
the following form
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: �2:21�

We now introduce the cylindrical coordinate system l̂; b̂;j
with the origin at point r1 and l̂-axis parallel to the vector of
the relative velocity of the colliding particles 1 and j. Then, in
terms of b̂ (dimensionless impact parameter) and j (azi-
muthal angle), the first term on the right-hand side of
Eqn (2.21) is written as
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�
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q f̂ 02
ql̂

dl̂

�
b̂ db̂ djdv̂j2Nd; b

�
Xm
d� 1

Nd

N

��
f̂ 02 ��1� ÿ f̂ 02 �ÿ1�

�
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�2:22�
The integration in Eqn (2.22) was performed on the rb

scale, i.e., the distribution functions f̂ 02 ��1�, f̂ 02 �ÿ1� are
calculated for the velocities v̂ 01, v̂

0
j2Nd

and v̂1, v̂j2Nd in the
situation where the particles are found outside of their region
of interaction Ð in other words, before or after the collision
(with primed velocities in the latter case). If before the
collision the conditions of molecular chaos are fulfilled on
the l-scale, then the two-particle DFs can be expressed as a
product of one-particle DFs. In this case Ĵ st; 0 is the
Boltzmann collision (`stoû') integral:

Ĵ st; 0 �
Xm
d� 1

Nd
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��
f̂ 0 01 f̂ 0 0j2Nd

ÿ f̂ 01 f̂ 0j2Nd

�
ĝj2Nd; 1b̂ db̂ dj dv̂j2Nd :

�2:23�

Lenard [30] and Balescu [31] solved the equation for the
correlation functionW2 under the assumptions of aweakened
initial correlation, no time delay, and spatially uniform DF
f1. The corresponding collision integral (the Balescu ±
Lenard collision integral) incorporates the polarization of
the plasma and allows elimination of the logarithmic
divergence of the Boltzmann collision integral for a Cou-
lomb plasma [30 ± 33]. If, however, the Boltzmann collision
integral is still used in plasma description, a cut-off procedure
involving Debye screening must be employed.

Using expressions (2.20), the kinetic equation (2.5) is
written down in the form
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where
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Xm
d� 1
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F̂ a
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It should be emphasized that in its dimensional form the
factor

eF̂ a
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v 20b=rb

�
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if it is remembered that

e � nr 3b ; f̂ � fv 30bn
ÿ1 ; v̂ � v

v0b
;

r̂ � r

rb
; F̂1j � F1j

v 2
0b=rb

:

The scale of the internal force F1j corresponds to choosing
the Landau length l as rb. Let us now write Eqn (2.24) in the
form (cf. Eqn (2.10) of Ref. [5])
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where we have introduced the notation
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We now wish to use Eqn (2.26) for describing the
evolution of the distribution function f̂ 01 Ð but the
trouble is, this equation involves a single-order term
D1 f̂

1
1 =D1 t̂b linked with respect to upper index. So we are

faced with the problem of how to approximate this term Ð
a problem which is similar in a sense to that of
approximating the two-particle distribution function in
the collision integral. Using the series (2.3) allows an
exact representation for the term of interest:
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� D1
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: �2:29�

The term D1 f̂
1
1 =D1t̂b describes how the distribution

function varies over times of the order of the collision time,
or equivalently on the rb-scale. If this term is left out of
account then, from the viewpoint of the derivation of the
hierarchy of kinetic equations, this means that

(1) the distribution function does not vary on the rb-scale
[provided we also neglect the average internal force that
gives rise to the second and third terms on the right in
Eqn (2.21)];

(2) the particles are point-like and structureless;
(3) changes in DF due to collisions take place instanta-

neously and are described by the source term Ĵ st; 0.
In the field description, however, the DF f1 on the

interaction scale (rb-scale) depends on e through the dynamic
variables r, v, t related by the laws of classical mechanics, thus

allowing the approximation [3 ± 5]
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�2:30�
In expression (2.30) we have introduced an approxima-

tion proceeded against the flying direction of an arrow of
time, which corresponds to the condition of there being no
correlations for t0 ! ÿ1, with t0 being a certain instant of
time on the rb-scale at which the particles start to interact. In
this way, Markov processes are separated out from all
stochastic processes possible in the system.

For the particles of the chemical sort a �a � 1; . . . ; m� we
employ the following normalized DF:

fa � f1Na

N
;

�
fa dva � na ;

�
na dr � Na : �2:31�

In Eqn (2.31), f1 is a one-particle DF. Returning to the
expression (2.26) written in the dimensional form, we
convolute the multiscale substantial derivatives to obtain
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where

D
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� va � qqr� F sc
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; F sc
a � Fa � F a

a : �2:33�

Let us comment on equation (2.32).
(1) We consider that the particle numbered 1 in the

multicomponent mixture belongs to a component a, which is
exactly what the subscript a on the symbol of the DF
indicates. Note also that we dropped the superscript 0 from
this symbol: carrying it no longer makes sense because all the
equations hereinafter already contain only functions of zero
order (in the sense of the series expansion in terms of the
density parameter e).

(2) The parameter ta is written in the form

ta � e�
qe=qt

�
e� 0

; �2:34�

where e is the number of particles of all kinds that find
themselves in the interaction volume of an a particle by the
instant of time t; introducing e eq (the `equilibrium' particle
density in the close interaction volume), Eqn (2.34) is written
in a typical relaxation form

qe
qt
� ÿ e�t� ÿ e eq

ta
: �2:35�

The denominator in Eqn (2.34) is interpreted as the
number of particles that find themselves within the interac-
tion volume of a certain particle belonging to the ath
component per unit time; the derivative is calculated under
the additional condition e � 0. Clearly, this number is equal
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to the number of collisions occurring in the interaction
volume per unit time. Hence, ta is the mean time between
collisions of a particle of the ath sort with particles of all other
sorts. The procedure includes the action, during the collision
of the particles, of the self-consistent force F sc being the sum
of the external force and the force F a of internal origin.

As the derivation of formula (2.34) suggests, ta is
determined by close collisions occurring in the plasma. By
analogy with expression (2.2) we have

t na � Lÿ1ta ; �2:36�

where t na is the mean time between collisions.
In the hydrodynamic approximation, the time ta can be

expressed in terms of the viscosity Za of the component a [27,
34]; for example, for ions one has

ta � LPZa p
ÿ1
a : �2:37�

Equation (2.37) involves the coefficient P which is
determined by the interaction model (for ions P � 1:04 [27,
35], and the static pressure

pa � nakTa : �2:38�
The generalized Boltzmann equation is invariant under

the Galileo transformation and has a correct free-molecular
and Maxwellian asymptotic behavior. Alternative
approaches to the derivation of the KEf1 are discussed
elsewhere [5].

We shall now write down the system of generalized
hydrodynamic equations. These equations have been
obtained previously [3 ± 5] for gaseous systems in an external
field of forces. The distinguishing feature of the generalized
Enskog equations we display below is the inclusion of the self-
consistent forces F sc [see formulas (2.33)]. The continuity
equation for the component a is given by

q
qt

�
ra ÿ ta

�
qra
qt
� q
qr
� �rava�

��
� q
qr
�
�
rava ÿ ta

�
q
qt
�rava� �

q
qr
� ravava

ÿ raF
�1�sc
a ÿ qa

ma
rava � B sc

��
� Ra ; �2:39�

the equation of motion is written as

q
qt

�
rava ÿ ta

�
q
qt
�rava� �

q
qr
� ravava ÿ raF

�1�sc
a

ÿ qa
ma

rava � B sc

��
ÿ F �1�sca

�
ra ÿ ta

�
qra
qt
� q
qr
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��
ÿ qa
ma

�
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�
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qt
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qr
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ÿ raF
�1�sc
a ÿ qa

ma
rava � B sc

��
� B sc

� q
qr
�
�
ravava ÿ ta

�
q
qt
�ravava� �

q
qr
� ra�vava�va

ÿ raF
�1�sc
a va ÿ ravaF

�1�sc
a ÿ qa

ma
ra�va � B sc�va

ÿ qa
ma

rava�va � B sc�
��
� Ia;mot ; �2:40�

and the equation of energy has the form
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ÿ raF
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ÿ raF
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ÿ 1

2
rav 2

aF
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a ÿ eanaF sc

a

��
ÿ
�
raF

�1�sc
a � va ÿ ta

�
F �1�sca �

�
q
qt
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� q
qr
� ravava ÿ raF

�1�sc
a ÿ qanava � B sc

���
� Ia; en

�a � 1; . . . ; m� ; �2:41�
where F sc

a is the total self-consistent force acting on the unit
mass of species of the ath kind, F �1�sca is the component of the
self-consistent force independent of the velocity of the
charged particle, B sc is the magnetic induction, qa the charge
of the particle a, ea its internal energy, and ra the density of
component a; the bar indicates an average over the velocities.

Thus, the generalized Enskog hydrodynamic equations
involve self-consistent forces due to the collective nature of
plasma particle interactions. In the following sections we
discuss the applicability of the above theory to plasma
physics problems.

3. Generalized Boltzmann equation
in the physics of a weakly ionized gas.
Hydrodynamic aspects of the theory

The traditional area of application of the Boltzmann kinetic
theory (BKT) is the physics of a weakly ionized gas. It is
interesting to see what the GBE yields in this case and how its
results differ from those of the classical theory. To answer this
fundamental question, let us consider the classical Lorentz
formulation of the problem. We consider a spatially homo-
geneous, weakly ionized gas, for which it is assumed that
collisions between charged particles may be ignored:

ne 5 dnea ;

where ne is the collision rate between charged particles; nea is
the collision rate between charged and neutral particles, and d
is the relative amount of energy which a charged particle loses
in one collision with a neutral particle. We assume that the
magnetic field is either absent or has a static component Bz,
and that the electric field is along the x-axis; all inelastic
interactions are neglected. The classical BE in this case takes
the form

D fe
Dt
� q fe

qt
� Fe � q feqve

� Jea ; �3:1�

where Fe � qeE=me is a force acting on a unit mass of the
charged particle, and qe is the particle charge. The GBE is
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written in the following way:

D fe
Dt
ÿ D

Dt

�
tea

D fe
Dt

�
� Jea : �3:2�

In Eqn (3.2), tea is the mean time between the collisions of
neutral and charged particles. As the GBE theory suggests
[3 ± 5], the collision integral can be taken in the Boltzmann
form. Multiplying Eqns (3.1) and (3.2) by the collision
invariants me, meve, mev

2
e =2 and then integrating them over

the velocities ve, we arrive at the classical hydrodynamic
equations (HEs) and the generalized hydrodynamic equa-
tions (GHEs), which assume a closed form provided we know
how to evaluate the moments of the collision integrals
involved. Note that in this case the following relation holds:�

Jeame dve � 0 �3:3�

owing to the law of conservation of mass in elastic
nonrelativistic collisions. But the integrals�

Jeameve dve and

�
Jea

mev
2
e

2
dve

can be taken explicitly only for special models of particle
interaction. Let us adopt the Maxwell model, in which the
force Fea of the intermolecular interaction depends on the
inverse fifth power of the interparticle spacing:

Fea � wea
r 5

: �3:4�

For this model, the integrals mentioned above are well
known [36, 37], and the quantity tea (hereinafter the subscript
ea is dropped) was calculated to be

t �
�
0:422 2p

�
w�me �ma�

mema

�1=2

na

�ÿ1
: �3:5�

Introducing the quantities

A � 8
���
p
p
3

G
�
5

2

�
0:422�me �ma�ÿ1

�
w

maMe

�1=2

�3:6�

and

Ma � ma

ma �me
; Me � me

ma �me
; �3:7�

the rate n of collisions between charged and neutral particles
can be written in the form

n � na�ma �me�A ; �3:8�

where t � nÿ1, and na is the number density of neutral
particles.

The continuity equations obtained from Eqns (3.1) and
(3.2) yield the condition ne � const, and the GBE in this case
becomes

q fe
qt
� Fe � q feqve

ÿ t
�
q2fe
qt 2
� 2Fe � q

2fe
qve qt

� q2fe
qve qve

: FeFe

�
� Jea :

�3:9�

From here on, a colon denotes the double scalar product of
tensors.

We now introduce the drift velocity vex defined by the
expression

vex � 1

ne

�
fevex dve : �3:10�

Then the equation of motion entering the system of GHEs
takes the form

t
d2vex
dt 2

ÿ dvex
dt
ÿ Amanavex � qeEm

ÿ1
e � 0 : �3:11�

In writing Eqn (3.11) we have used the result [36, 37]�
mevexJea dve � ÿAmanavexmene :

The solution of Eqn (3.11) takes the form

v GBE
ex �

�
v 0
ex ÿ

qeE

memanaA

�
exp

�
ÿ t

2t

� ������������������
4Ma � 1

p
ÿ 1
��

� qeE

memanaA
: �3:12�

The superscript 0 here refers to the initial instant of time.
The problem of the time relaxation ofMaxwell particles in an
electric field is known to be amenable to a BE solution [37]
giving for the drift velocity the result

v BE
ex �

�
v 0
ex ÿ

qeE

memanaA

�
exp �ÿtAnama� � qeE

memanaA
:

�3:13�

For example, let us assume that me 5ma. Then, from
Eqns (3.12) and (3.13), it follows that

v GBE
ex � �v 0

ex ÿ Fext� exp
�
ÿ 0:618t

t

�
� Fext ; �3:14�

v BE
ex � �v 0

ex ÿ Fext� exp
�
ÿ t

t

�
� Fext : �3:15�

Thus, all other things being equal, the relaxation of the
drift velocity vex in the framework of BKT proceeds faster
than in the generalized BKT, whereas the steady-state drift
velocities are found to be the same.

We now turn our attention to the equation of energy and
introduce the energy temperatures T̂e and ~Te in accord with
the definitions

T̂e � me

3ne

�
fev

2
e dve ; �3:16�

~Te � me

3ne

�
fe�ve ÿ ve�2 dve :

Clearly, which of these temperatures is used is a matter of
convenience, and in our case one obtains

T̂e � ~Te � 1

3
mev

2
ex : �3:17�

We next evaluate the moments on the left-hand side of
the kinetic equations. For example, the following relations
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hold true:

q
qt

�
mev

2
e

2
fe dve � 3

2
ne

qT̂e

qt
; �3:18��

Fe � q
2fe

qve qt
mev

2
e

2
dve � ÿFexmene

qvex
qt

; �3:19��
mev

2
e

2

q2fe
qve qve

: FeFe dve � F 2
exmene : �3:20�

The corresponding integral on the right-hand side was
calculated in Ref. [37] and is found to be�

Jea
mev

2
e

2
dve � ÿ 3�T̂e ÿ T̂a�

me �ma
Amemanena : �3:21�

We have then the following inhomogeneous linear second-
order differential equation

d2 ~Te

dt 2
ÿ 1

t
d ~Te

dt
ÿ 2

T̂e ÿ T̂a
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ex : �3:22�

Omitting the straightforward but tedious algebra we
arrive at the following results. For example, by setting
me 5ma, the GBE yields

~T GBE
e � ~Ta � C2 exp

�
ÿ2 me

ma
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ÿ 2:175metFex�v 0

ex ÿ Fext� exp
�
ÿ0:618 t

t

�
ÿ 1

3
me�v 0

ex ÿ Fext�2 exp
�
ÿ1:236 t

t

�
� 2

3
F 2
ext
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where the following notation was used:

C2 � ~T 0
e ÿ ~Ta � 2:157metFex�v 0

ex ÿ Fext�

� 1

3
me�v 0
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3
F 2
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2ma :

Similar BE results are as follows

~T BE
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Here, the notation was used:

C2 � ~T 0
e ÿ ~Ta � 4

3
metFex�v 0

ex ÿ Fext�

� 1

3
me�v 0

ex ÿ Fext�2 ÿ 1

3
F 2
ext

2ma :

In the steady-state regime, the above solutions are related by
the expression

� ~Te ÿ ~Ta�GBE
st � 2� ~Te ÿ ~Ta�BEst : �3:25�

As before, the superscripts on the energy temperature
differences in Eqn (3.25) refer to the type of the solution.

We are now in a position to write down the solutions for
the energy temperatures T̂e; in the GBE scheme we have
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�
T̂ 0
ea ÿ

2

3
Fext

me

Ma�2Me ÿ 1�

�
������������������
4Ma � 1

p �
v 0
ex ÿ

Fext
Ma

�

ÿ t 2

3

F 2
ex

M 2
a

�1�Ma��me �ma�
�

� exp

�
ÿ t

2t

� ������������������������
8MaMe � 1

p
ÿ 1
��

� 2

3
Fext

me

Ma�2Me ÿ 1�
������������������
4Ma � 1

p �
v 0
ex ÿ

Fext
Ma

�

� exp

�
ÿ t

2t

� ������������������
4Ma � 1

p
ÿ 1
��

� t 2

3

F 2
ex

M 2
a

�me �ma��1�Ma� ; �3:26�

with T̂ 0
ea � T̂ 0

e ÿ T̂ 0
a .

In the framework of the classical Boltzmann equation we
find [29]
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Notice that the vanishing of the term 2Me ÿ 1 in the
denominators in Eqns (3.26) and (3.27) does not actually lead
to singularities atMe � 0:5, because the corresponding terms
cancel due to the exponential factors being equal. From
Eqns (3.26), (3.27) it follows that

T̂ GBE
ea; st � �1�Ma� T̂ BE

ea; st : �3:28�

Thus, unlike drift velocity calculations, not only the GBE
changes the trend of the relaxation curves but it also leads to
different steady-state values of the energy temperatures. For a
weakly ionized Lorentz gas, the effect of the self-consistent
forces of electromagnetic origin can be neglected. Then,
multiplying the GBE [see also Eqns (2.39) ± (2.41)] by the
collision invariants

ma; mava;
mav

2
a

2
� ea
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(with ea being the internal energy of the particles of the
component) and integrating with respect to the velocities we
arrive at Enskog's system of generalized hydrodynamic
equations (GHEs), in which only the effect of external forces
is included:

the continuity equation for the component a
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the equation of motion
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and the equation of energy
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where v0 is the hydrodynamical velocity, B is the magnetic
induction, F �1�a are external nonmagnetic forces per unit mass
of the particle a, and qa is the charge. The right-hand sides of
Eqns (3.30), (3.31) involve the integral relaxation terms �Ja;mot

and �Ja; en which, due to momentum and energy conservation

laws, satisfy the relationsXm
a� 1

�Ja;mot � 0 ;
Xm
a� 1

�Ja; en � 0 : �3:32�

However, for the systems being far from equilibrium one
has to introduce approximations for �Ja;mot, �Ja; en. This can be
done in a number of ways, including the Bhatnagar ±Gross ±
Krook (BGK) method or its extensions [38].

The generalized Boltzmann equation and the system of
GHEs can be used to study plasma in an electric field, in
particular to understand the electron energy runaway effect
[39, 40]. We now proceed to apply the generalized Boltzmann
kinetic theory to the classical problems of plasma physics.

4. Charged particle distribution function
for a Lorentz gas

Calculating the distribution function for charged particles
added as an impurity to a neutral gas in an external electric
field is a classical problem in gas discharge physics, whose
long history dates back to Pidduck's 1913 attempt to
calculate the ion drift velocity in gases [41]. Mention should
also be made of Compton's work concerned with computing
the charge particle distribution function and its moments
[42, 43]. Later on, Druyvesteyn [44, 45] and Davydov [46]
obtained analytical expressions for the distribution function
and transport coefficients for the special case of elastic
collisions. More recent work (note, in particular, the
monograph [47]) has been aimed principally at investigat-
ing the effect of inelastic collisions on the DF and transport
processes within the BKT framework. It is important to
note that the calculation of the DF depends heavily on what
model of particle interaction is adopted Ð and hence
ultimately on the collision cross sections involved. For
example, the Davydov ±Druyvesteyn distribution obtained
under the assumption of a constant mean free path l for
elastically colliding, charged gas particles significantly
underpredicts the number of `hot' particles on the tail of
the DF and leads ultimately to unacceptable results when
the theory is extended to calculating the kinetics of inelastic
processes [47].

We apply the generalized Boltzmann equation

Fe � q feqve
ÿ t

q2fe
qve qve

: FeFe � Jea �4:1�

to consider charged particles in a steady state in a Lorentz gas
subject to a stationary external electric field, where
Fe � eE=me. The Boltzmann kinetic equation is usually
solved by expanding the DF in a power series of zero-order
solid spherical harmonics, i.e., of Legendre polynomials. The
corresponding system of linked equations was obtained
elsewhere [48, 49]. The solution to the GBE (4.1) is
conveniently sought as an expansion in terms of solid
spherical harmonics:

f �ve� � f0�ve� � Fe � ve f1�ve� � FeFe : v 0e ve f2�ve� � . . . �4:2�

Here v 0e ve is the zero-trace tensor. For our further calculations
in this section we assume that the force Fe is along the positive
direction of a certain chosen coordinate axis.

We now substitute expansion (4.2) into Eqn (4.1) and
transform the corresponding terms; we have, for example, the
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following relations:
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The left-hand side L of the generalized Boltzmann
equation then takes the form
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Denoting the angle between the vectors Fe and ve by #
�04#4 p�, multiplying the GBE by dcos#, and integrating
over the entire range of angles, we arrive at
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Multiplying the GBE by cos# d cos#, a similar procedure
gives
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As has been indicated, the collision terms Jea and J1 in
the generalized Boltzmann kinetic theory (GBKT) can be
taken in the form in which they are usually written in the
Boltzmann equation. In the case we consider below,
assuming that the change in the electron energy due to an
elastic collision [approximately equal to �me=ma�1=2ee] is
much less that the electron energy prior to the collision, in
the Fokker ± Planck approximation (see, for example,

Ref. [50]) we have
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�
v 3e n
�
f0

T̂
� 1

meve

q f0
qve

��
; �4:8�

J1 � 2

3
Fe

v 2e
l

f1 ; �4:9�

where T̂a is the energy temperature of the neutral gas
�T̂a � kTa�, n is the collision rate which generally depends
on the velocity, and l is the mean free path for collisions of
neutral and charged particles. It is relations (4.6) ± (4.9)
which provide the required basis for determining the DF
and its moments. Traditionally, two limiting situations are
considered in detail: (1) a constant frequency rate,
n � const, n � tÿ1 � velÿ1, and (2) a constant mean free
path between the collisions of charged and neutral particles,
l � const.

We take up the former case first. Multiplying Eqn (4.6)
through by 3v 2

e and using Eqn (4.8), we find, after some
algebra, that

F 2
e

d

dve

�
v 3e f1 ÿ tv 2e

d f0
dve

�

� 3T̂ame

tma

d

dve

�
v 3
e

�
f0

T̂
� 1

meve

d f0
dve

��
; �4:10�

or upon integration over ve:

f1ve �
�
t� 3T̂a

F 2
e mat

�
d f0
dve
� 3

F 2
e

me

ma

ve
t

f0 ; �4:11�

because the constant of integration is zero due to the fact that
both the left-hand and right-hand sides of Eqn (4.11) vanish
for ve � 0. Equation (4.11) was obtained under the condition
(which will also be used in the following analysis) that small
terms proportional to f2 may be dropped. Substituting now
Eqn (4.11) into Eqn (4.9) and making use of the result
produced to eliminate f1 from Eqn (4.7), we arrive at the
following equation in f0:

v 2
e

�
t� 3T̂a

F 2
e mat

�
d3f0
dv 3e
� ve

�
2t� 3me

F 2
e mat

v 2e �
6T̂a

F 2
e mat

�
d2f0
dv 2e

�
�
ÿ2tÿ 10

3tF 2
e

v 2e ÿ
5T̂a

t 3F 4
e ma

v 2
e �

12me

F 2
e mat

v 2e

ÿ 6T̂a

F 2
e mat

�
d f0
dve
ÿ 5me

F 4
e t 3ma

v 3
e f0 � 0 : �4:12�

To solve Eqn (4.12), three boundary conditions are
needed. These are in fact quite obvious. Indeed, for ve � 0,
we can specify a certain value of f0, determined only by the
normalization of the function. From Eqn (4.12) it is also seen
that f 00 � 0 for ve � 0. Finally, dividing the above equation by
v 3
e we find that f0 ! 0 for ve !1. Thus, Eqn (4.12) is easily
solved by, for example, the sweep method. To do this, it is
convenient to first bring the equation to the dimensionless
form by introducing the following dimensionless quantities
labelled with arcs over the symbols:

�ve � ve
Fet

; �e � meF
2
e t

2

T̂a

; �f0 � f0
f0�ve � 0� : �4:13�
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The procedure is realized to yield

�v 2e

�
1� 3me

ma�e

�
d3 �f0
d�v 3e
� �ve

�
2� 6me

ma�e
� 3me�v

2
e
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� �v 2e
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3
� 5me

ma�e
ÿ 12

me

ma

��
d �f0
d�ve

ÿ 5
me

ma
�v 3e

�f0 � 0 : �4:14�

Let us define the energy temperature of charged particles
as follows

T̂e � 1

3ne

�
fe mev

2
e dve �

1

3ne

�
f0 mev

2
e dve : �4:15�

This means, for example, that, in terms of definitions
(4.13), the Maxwellian function �fM has the form

�fM � exp

�
ÿ T̂a�e

2T̂e

�v 2e

�
: �4:16�

Let us examine the asymptotics of the function f0 at large
velocities ve. From Eqn (4.14) it follows that for ve !1 the
equation

d2f0
dv 2e
ÿ 5

3F 2
e t 2

f0 � 0 �4:17�

holds, which has the solution

f0 � exp

�
ÿ

����
5

3

r
ve
Fet

�
: �4:18�

Note that, in the limiting case we are considering, the
classical solution of the Boltzmann equation [50] leads to a
Maxwellian distribution function with a temperature T̂e

different from the neutral gas temperature T̂a. Thus, the
solution of the GBE results in a large number of `hot'
charged particles on the tail of the distribution function.

Of course, the moments of the distribution functionÐ the
temperature T̂e and the drift velocity vex Ð can be found by
properly integrating the DF after the solution of Eqn (4.14)
has been found. There is no need to do this, however. Indeed,
multiplying Eqn (4.14) by ve and integrating term by term we
obtain�

3T̂a

mat 2F 2
e

� 2

��1
0

f0v
2
e dve �

me

mat 2F 2
e

�1
0

f0v
4
e dve : �4:19�

Assuming that�
fdve �

�
f0 dve � 4p

�1
0

f0v
2
e dve � ne ; �4:20�

as was done in Eqn (4.15), it is found that

T̂e � T̂a � 2

3
mat 2F 2

e : �4:21�

In a similar way, without explicitly solving Eqns (4.11)
and (4.12), we can determine the drift velocity. To accomplish
this, we multiply Eqn (4.11) termwise by v 3

e and integrate the

resulting expression to yield�1
0

f1v
4
e dve �

�
t� 3T̂a

F 2
e mat

��1
0

v 3e
d f0
dve

dve

� 3

F 2
e

me

mat

�1
0

f0v
4
e dve ; �4:22�

leading to

vex � 3�T̂e ÿ T̂a�
matFe

ÿ tFe ; �4:23�

because, by definition, the following relations hold true:

vex � 1

ne

�
fvex dve � 4pFe

3ne

�1
0

f1v
4
e dve : �4:24�

Using expressions (4.21) and (4.23), we achieve the result
sought:

vex � tFe : �4:25�
Comparing relations (4.21) and (4.25) with known

classical results [Ref. 50, p. 108] suggests that in the limiting
case n � const the drift velocity remains unchanged and that
T̂e increases [the classical analogue of Eqn (4.21) contains the
numerical coefficient 1=2 instead of 2=3]. In concluding the
discussion of this limiting case, we present the corresponding
form of Eqn (4.14) (me 5ma) for �e0 1:

�v 2e
d3�f0
d�v 3e
�
�
2� 3

me

ma
�v 2e

�
�ve

d2�f0
d�v 2

e

ÿ
�
2� 10

3
�v 2e

�
d �f0
d�ve

ÿ 5
me

ma
�v 3e

�f0 � 0 : �4:26�

As a check on the correctness of the above results, note
that if Fe � 0, then Eqn (4.11) leads, as it should, to the
Maxwellian distribution function f0M:

d f0
dve
� ÿmeve

T̂
f0 ; �4:27�

f0M � C exp

�
ÿmev

2
e

2T̂

�
: �4:28�

We proceed now to the second limiting case, l � const
[51]. In this case, the analogue of Eqn (4.11) is as follows

f1ve �
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t� 3T̂ve

F 2
e mal

�
d f0
dve
� 3
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e

me

ma

v 2
e

l
f0 : �4:29�

By the same procedure used in the limiting case n � const,
we arrive at the following equation in f0:
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e
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e l
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v 4e
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d f0
dve
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e
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me

F 2
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ÿ 5
me

tF 4
e mal 2

v 3e

�
f0 � 0 : �4:30�

Again, it is easily seen by multiplying Eqn (4.30) termwise
by F 4

e that the vanishing of the external force Fe leads to
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Eqn (4.27) and then, upon integration, to the Maxwellian
distribution function (4.28). The boundary conditions for
Eqn (4.30) are as follows: f0 is specified for ve � 0 in accord
with the chosen normalization; for ve � 0, as Eqn (4.30)
suggests, f 00 � 0, and, finally, f0 ! 0 when ve !1. The last
result becomes evident if one first divides Eqn (4.30) through
by v 5

e .
In order to numerically integrate Eqn (4.30), it is

convenient to bring this equation to the dimensionless form
by using the dimensionless quantities

�ve � ve
l=t

; �e � meF
2
e t

2

T̂a

; �A � F 2
e t

4

l 2
�4:31�

to give the ordinary differential equation

�v 2
e

�A

�
1� 3

me

ma

�ve
�e

�
d3�f0
d�v 3

e

�
�

�A

�
2� 12

me

ma

�ve
�e

�
� 3

me

ma
�v 3e

�
�ve

d2�f0
d�v 2e

�
�
ÿ2 �Aÿ 5

3
�v 2
e ÿ

�
5

3
ÿ 18

me

ma

�
�v 3e ÿ 5

me

ma

�v 4e
�e

�
d �f0
d�ve

� �v 2e
me

ma

�
12ÿ 5
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with the boundary conditions

�f0�0� � 1 ; �f 00�0� � 0 ; �f0�1� � 0 : �4:33�

Here the term-by-term integration no longer leads to
elegant results like Eqns (4.21) and (4.25). We can, however,
give a useful formula for computing the drift velocity vex,
which is obtained from Eqn (4.32) by multiplying it by v 3e and
then integrating, to yield

vex � 4pFe

3ne

�
18

5

T̂at
ma

�1
0

f0 dve � C
6

5
t 2lF 2

e

� 2l

�1
0

f0ve dve ÿ 9

10

me

pma
tne

�
; �4:34�

with C � f0 �v0 � 0�. Although Eqn (4.34) can of course be
used only after numerically integrating Eqn (4.33), it is of
interest to note that, unlike Eqn (4.25), the drift velocity is a
nonlinear function of Fe in this limiting case.

Let us consider here some numerical results for the
distribution function of charged particles in an external
electric field, produced when employing the generalized
Boltzmann equation [51].

In Fig. 2, the dimensionless distribution function �f0 is
plotted versus the dimensionless velocity �ve for �e � 10ÿ3 and
t � const. The line 1 corresponds to theMaxwellian distribu-
tion function, and the curve 2, to the distribution function
obtained using the GBE. As �e is decreased, the two
distributions approach each other. Note that the function
�f GBE
0 lies above the Maxwellian function. Figures 3 and 4

present �f0 calculated in the case of l � const under the
conditions �e � 10ÿ2, �A � 1, and �e � 10ÿ2, �A � 10ÿ1, respec-
tively. The curves 1, 2, and 3 in Figs 3 and 4 correspond to the
Maxwellian distribution function, the generalized Boltzmann
equation, and the Druyvesteyn distribution function, respec-
tively. It is interesting to note that the distribution function
�f GBE
0 may lie both between the Maxwell and Druyvesteyn

functions and above the two. In practical computations, to
reemphasize, the distribution functions can be normalized to
the number density of the charged particles involved.

5. Charged particles
in an alternating electric field

As another example of the application of the GBE, let us
consider the time evolution of the DF of charged particles
moving in an alternating electric field. In this problem, only
elastic collisions will be considered; the GBE takes the form�

q fe
qt
� Fe � q feqve

��
1ÿ qt

qt

�
ÿ t
�
q2fe
qt 2
� 2Fe � q

2fe
qve qt

� qFe

qt
� q fe
qve
� q2fe
qve qve

: FeFe

�
� Jea : �5:1�
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Figure 2.Dependence of �f0 on �ve for t � const: 1, Maxwellian distribution

function; 2, �f GBE
0 .
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Figure 3. Dependence of �f0 on �ve for l � const, �e � 10ÿ2, �A � 1:

1, Maxwellian distribution function; 2, �f GBE
0 ; 3, Druyvesteyn distribution

function.
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Figure 4. Dependence of �f0 on �ve for l � const, �e � 10ÿ2, �A � 10ÿ1:
1, Maxwellian distribution function; 2, �f GBE

0 ; 3, Druyvesteyn distribution

function.
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If we make use of the expansion

f �ve; t� � f0�ve; t� � Fe � ve f1�ve; t� � FeFe : v 0e ve f2�ve; t� ;
�5:2�

then utilizing a procedure analogous to that described above
we arrive at the following equations in the functions f0 and f1:�
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where, for example, J1 � �2=3�Fe f1v
2
e =l.

Now consider a case in which the mean time between
collisions t � 1=ne is independent of the velocity. It proves
possible to determine the distribution function moments vex
and T̂e without directly solving Eqns (5.3) and (5.4). Multiply
Eqn (5.4) termwise by v 3

e and integrate the resulting
expression over all absolute velocities. Using the additional
conditions�1

0

f1v
4
e dve �

3ne
4pFe

vex ;
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0

f0v
2
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me
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we derive the following equation
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d2vex
dt 2
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vex � Fe ÿ t

dFe

dt
� 0 : �5:5�

Suppose that the time dependence of the external force
can be represented as

Fe � eE0

m0
cosot ;

where the frequency o is related to the external electric field
strength. The solution of the inhomogeneous differential
equation (5.5) is written as

v GBE
ex � C1 exp

�
ÿ at

t

�
� bt

�ot�4 � 3�ot�2 � 1

�
cosot� ot�2� o2t 2� sinot� ; �5:6�

where b � eE0=me, and C1 is the constant of integration,
which is determined by the initial conditions of the
problem.

The classical result which can be obtained from the BE for
the quasi-stationary case is given by

v BE
ex �

bt

�ot�2 � 1
�cosot� ot sinot� : �5:7�

The introduction of the mobility K usually defined through
the expression

vex � K
me

e
Fe

would serve no purpose due to singularities that can appear
for Fe � 0.

We now turn our attention to Eqn (5.3). We multiply this
equation termwise by v 4e and integrate the resulting expres-
sion over all ve to obtain
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where Fe � b sinot, and consequently
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The differential equation (5.8) integrates in the finite form to
the following expression
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where the notation was used:
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In the quasi-stationary limiting case, under the condition
ot4 1, one finds
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or, taking into account that the time average

sin2 ot � 1

2
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we arrive at
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Thus, in the limiting case l � const, the following equality
holds true:

T̂ BE
e � T̂ GBE

e : �5:13�

In the opposite limit of ot5 d5 1, one has

T̂ea � t 2Z
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or, computing the average over the time, we obtain
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; �5:14�

i.e., a result which corresponds to the solution of the classical
Boltzmann equation [50].

6. Conductivity of a weakly ionized gas
in crossed electric and magnetic fields

In this section, the conductivity of a weakly ionized gas
subject to crossed magnetic and (alternating) electric field
will be examined using the GBE with the BGK approxima-
tion for the elastic collision integral. The BGK-approximated
kinetic equation takes the form
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where Fe � F �1�e � FB is the Lorentz force which, in our case,
includes the effect of the alternating electric field

F �1�e � eE 0

me
exp �iot�

directed along the x-axis, and of a static magnetic field, whose
induction is along the z-axis. The equation of motion (3.30)

reduces to the form
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The components of the drift velocity ve along the axes x
and y are determined by the following set of equations
�vez � 0�:
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The solution to Eqn (6.2) is naturally sought in the form
v � v 0 exp �iot�, thus leading to the following system of
algebraic equations
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where oB � eB=me. From these equations it is not difficult to
find the components vex and vey of the drift velocity, and
hence to determine the components of the electrical con-
ductivity tensor. In our case, the complex conductivity sx
assumes the form
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where we have used the notation:
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Separating the real part of sx now yields

Re sx � s0
�
1� 3o2t 2� o 4t 4� o 2

Bt
2�3� 6o2

Bt
2� o2

Bt
2��

�
n�
1� o2t 2 � o 4t 4 � o2

Bt
2�3� o2

Bt
2 ÿ 2o 2

Bt
2��2

� 4o2t 2�1� o2t 2 ÿ o2
Bt

2�2
oÿ1

: �6:8�
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The Boltzmann theory, as is known, leads to the following
results

Re sx � s0�1� o2t 2 � o2
Bt

2�
1� 2o2t 2 � o 4t 4 � o2

Bt 2�2ÿ 2o2t 2 � o2
Bt 2�

;

�6:9�

sx � s0
1� iot

1� �o2
B ÿ o2�t 2 � 2iot

: �6:10�

For the traditionally considered limiting cases, Eqns (6.7) ±
(6.10) give the following results:

(a) o � 0, a constant electric field:

Re sGBE
x � s0

1

1� 3o 2
Bt 2 � o 4

Bt 4
;

Re sBE
x � s0

1

1� o 2
Bt 2

;

(b) oB � 0, no magnetic field:

Re sGBE
x � s0�1� 3o2t 2 � o 4t 4�

�1� o2t 2 � o 4t 4�2 � 4o2t 2�1� o2t 2�2 ;

Re sBE
x � s0

1

1� o2t 2
;

(c) o � oB:

Re sGBE
x � s0

1� 6o2t 2 � 8o 4t 4

1� 12o2t 2 � 16o 4t 4
;

Re sBE
x � s0

1� 2o2t 2

1� 4o2t 2
;

(d) o � oB, ot4 1, the cyclotron resonance condition:

Re sGBE
x � Re sBE

x � 1

2
s0 :

Finally, from the system of equations (6.3), (6.4) the drift
velocity along the y-axis is found as

v 0
ey

GBE � eE 0

me
oBt 2

��o 4 ÿ o 4
B� t 4 ÿ 3�o2 � o2

B� t 2

ÿ 2� iot�3o2t 2 � o2
Bt

2��Dÿ1 ;
D � 1� �o6 � o6

B� t6 � 4o2
Bt

2 � 4o2t 2o2
Bt

2

ÿ o 4t 4o2
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2 � 4o 4
Bt

4 ÿ o2t 2o 4
Bt

4

� iot�3o 4t 4 ÿ 5o2t 2 � 3� 3o2
Bt

2

ÿ 2o2t 2o2
Bt

2 ÿ o 4
Bt

4� :

Notice that the BE implies that

v 0
ey

BE � ÿ eE 0

me
oBt 2

1

1� �o2
B ÿ o2� t 2 � 2iot

:

In particular, it follows that

�a� if o � 0 ;

Re v 0
ey

GBE � ÿ eE 0

me
oBt 2

o 4
Bt

4 � 3o2
Bt

2 � 2

o6
Bt6 � 4o 4

Bt 4 � 4o2
Bt 2 � 1

;

Re v 0
ey

BE � ÿ eE 0

me
oBt 2

1

o2
Bt 2 � 1

;

�b� if o � oB ;

Re v 0
ey

GBE � ÿ eE 0

me
ot 2

� 2� 14o2t 2 � 28o 4t 4 � 56o6t6

�1� 4o2t 2 � 8o 4t 4�2 � o2t 2�3ÿ 2o2t 2�2 ;

Re v 0
ey

BE � ÿ eE 0

me
ot 2

1

1� 4o2t 2
:

The calculations show that while the BE and GBE results
may happen to be identical, they may also be significantly
different, both qualitatively and quantitatively. The question
of exactly how significantly can only be answered through the
solution of concrete problems. In particular, the generalized
Boltzmann equation has been applied successfully to trans-
port processes in a partially ionized gas of inelastically
colliding particles [52].

7. Plasma dispersion relations
for the GBE model with a collision term

The generalized Boltzmann equation describes how the
one-particle distribution function fa �a � 1; . . . ; m� in a
m-component gas mixture changes over times of the order of
the time between collisions, of the order of the hydrodynamic
flow time, and, unlike the conventional Boltzmann equation,
over a time of the order of the collision time. The GBE for a
plasma medium has the form

D fa
Dt
ÿ D

Dt

�
ta

D fa
Dt

�
� Ja ; �7:1�

where

D

Dt
� q

qt
� va � qqr� Fa � q

qva
�7:2�

is the substantial (particle) derivative containing the self-
consistent force Fa, Ja is the classical (Boltzmann) collision
integral, and ta is the mean time between the close particle
collisions. In the hydrodynamic regime ta can be expressed in
terms of the Coulomb logarithm L, viscosity Za, static
pressure pa, and the coefficient P dependent on the particle
interaction model [see Eqn (2.37)].

The generalized Boltzmann equation in general and that
for plasma in particular have a fundamentally important
feature that the additional GBE terms prove to be of the
order of the Knudsen number. This does not mean that in the
hydrodynamic (small Kn) limit these terms may be neglected:
theKnudsen number in this case appears as a small parameter
of the higher derivative in the GBE. Consequently, the
additional GBE terms (as compared to the BE) are signifi-
cant for any Kn, and the order of magnitude of the difference
between the BE and GBE solutions is impossible to tell
beforehand (see Ref. [3]).

In this connection, it is of interest to apply the GBEmodel
to obtain the dispersion relation for a plasma in the absence of
a magnetic field. In doing so, we will make the same
assumptions that were used in the BE-based derivation,
namely: (a) the integral collision term is neglected; (b) the
evolution of electrons and ions in a self-consistent electric
field corresponds to a nonstationary one-dimensional model;
(c) the distribution functions for ions, fi, and for electrons, fe,
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deviate little from their equilibrium counterparts f0i and f0e;
(d) a wave number k and a complex frequency o are
appropriate to the wave mode considered; (e) the quadratic
GBE terms determining the deviation from the equilibrium
DF are neglected, and (f) the self-consistent forces Fi and Fe

are small.
Results of the calculations done under these assumptions

are given in Appendix A.2. Proceeding now to the dispersion
relation, we lift one of these assumptions, the first, by
introducing the Bhatnagar ±Gross ±Krook (BGK) collision
term

Ja � ÿ fa ÿ f0a
nÿ1a

�7:3�

into the right-hand side of the GBE. Here, f0a and nÿ1a � tpa
are respectively a certain equilibrium distribution function
and the relaxation time for species of the ath kind. Using
Eqns (A2.9) and (7.1), we arrive at the dispersion relation

1 � ÿ e 2

e0k

�
1

me

��1
ÿ1

�q f0e=qu�
�
iÿ te�oÿ ku��

i�oÿ ku� ÿ te�oÿ ku�2 ÿ ne
du

� 1

mi

��1
ÿ1

�q f0i=qu�
�
iÿ ti�oÿ ku��

i�oÿ ku� ÿ ti�oÿ ku�2 ÿ ni
du

�
: �7:4�

In the Boltzmann kinetic theory, the analogue of Eqn (7.4) is
the equation [53]

1 � ÿ e 2

e0k

�
1

me

��1
ÿ1

q f0e=qu
oÿ ku� ine

du

� 1

mi

��1
ÿ1

q f0i=qu
oÿ ku� ini

du

�
: �7:5�

To solve Eqn (7.4), we take advantage of the additional
conjectures. Let us assume that the ions are at rest and that
both the temperature and average velocity of the electrons are
zero. Then the electron distribution function can be expressed
in terms of the delta function:

f0 e�u� � ne d�u� : �7:6�

Upon integration by parts in Eqn (7.5), we arrive at the
equation (the subscript `e' on ne and te is dropped for brevity)

1� e 2ne
e0me

��1
ÿ1

d�u���1� it�oÿ ku��2 � nt
	�

i�oÿ ku� ÿ t�oÿ ku�2 ÿ n
�2 du � 0 : �7:7�

In the special case of Boltzmann collisionless plasma,
Eqn (7.7) leads to the classical formula

1ÿ e 2ne
e0me

��1
ÿ1

d�u�
�oÿ ku�2 du � 0 : �7:8�

Using the properties of the delta function and performing the
integration in Eqn (7.7), it is found that

o2
e � ÿ

�nt� o2t 2 ÿ iot�2
t 2�1� ntÿ o2t 2 � 2iot� ; �7:9�

with oe �
���������������������
e 2ne=e0me

p
being the plasma frequency.

Let us consider the limiting cases inherent in Eqn (7.9). If
jojt5 1, then separating the real and imaginary parts of

relation (7.9) leads to the result

o2
e � ÿ

n
1� nt

�1� nt�n� 2o 00

1� ntÿ 4o 00t
; �7:10�

o 0
1� 2tn

�1� nt��1� ntÿ 4o 00t� � 0 ; �7:11�

where o � o 0 � io 00. From the last equation it follows that

o 0 � 0 ; �7:12�

and from Eqn (7.10) one obtains

o 00 � ÿ 1

2

�1� nt���1� nt�o2
e � n 2

�
nÿ 2o2

et�1� nt� : �7:13�

If o2
et

2 5 1, then

o 00 � ÿ 1

2
n�1� nt� : �7:14�

Thus, the condition jojt5 1 leads to the fast decay of the
perturbation (A2.2) in accordance with the solution (A2.4).

In the opposite limit of jojt4 1 �o 0t4 1,o 00t4 1�, from
the relation

o2
e � ÿ

�o2t 2 ÿ iot�2
t 2�ÿo2t 2 � 2iot�

we find that

o2 � o2
e : �7:15�

Thus, for the election distribution function of the form (7.6),
the asymptotic solutions of the dispersion relation (7.9) have a
transparent physical meaning.

Now let the ions be at rest, and the electron component
have a Maxwellian velocity distribution:

f0 e � ne

�
me

2pkBT

�3=2

exp

�
ÿmeV

2

2kBT

�
;

where kB is the Boltzmann constant. Then equation (7.4)
becomes

1� e 2ne
e0kme

�
me

2pkBT

�1=2 ��1
ÿ1

�
iÿ t�oÿ ku��

� q
qu

exp

�
ÿ meu

2

2kBT

��
i�oÿ ku� ÿ t�oÿ ku�2 ÿ n

�ÿ1
du � 0 ;

�7:16�

where we have reintroduced the notation �u � Vx� for the
velocity of the one-dimensional, unsteady wave motion.
From the above equation one derives the expression

1� 1

r 2D k2

�
1ÿ

���������������
me

2pkBT

r
�
��1
ÿ1

��
iÿ t�oÿ ku��oÿ n

	
exp �ÿmeu

2=2kBT �
i�oÿ ku� ÿ t�oÿ ku�2 ÿ n

du

�
� 0 ;

�7:17�

where rD �
������������������������
e0kBT=nee 2

p
is the Debye ±HuÈ ckel radius.

158 B V Alekseev Physics ±Uspekhi 46 (2)



Introducing now the dimensionless variables

û � u

������������
me

2kBT

r
; ô � o

1

k

������������
me

2kBT

r
;

�7:18�

n̂ � n
1

k

������������
me

2kBT

r
; t̂ � tk

���������������
2kBT

me
;

s

we can rewrite Eqn (7.17) in the form

1� 1

r 2D k2

�
�
1ÿ 1���

p
p
��1
ÿ1

��
iÿ t̂�ôÿ û��ôÿ n̂

	
exp �ÿû 2�

i�ôÿ û� ÿ t̂�ôÿ û�2 ÿ n̂
dû

�
� 0 :

�7:19�
Now consider a situation in which the denominator of the

complex integrand in Eqn (7.19) becomes zero. The quadratic
equation

t̂y 2 ÿ iy� n̂ � 0 ; y � ôÿ û ; �7:20�

has the roots

y1 � i

2t̂

ÿ
1� ���������������

1� 4t̂n̂
p �

; y2 � i

2t̂

ÿ
1ÿ ���������������

1� 4t̂n̂
p �

: �7:21�

Hence, Eqn (7.19) can be rewritten as

1� 1

r 2D k2

�
�
1� 1

t̂
���
p
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��1
ÿ1

��
i� t̂�ûÿ ô��ôÿ n̂

	
exp �ÿû 2�

�ûÿ û1��ûÿ û2� du

�
� 0 ;

�7:22�
where

û1 � ôÿ y1 ; û2 � ôÿ y2 : �7:23�

Let us transform equation (7.22) to the following one:

1� 1

r 2D k2
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1� 1���

p
p
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in̂� 0:5ô���������������
1� 4t̂n̂
p ÿ 0:5ô
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1� 4t̂n̂
p � 0:5ô

���1
ÿ1

exp �ÿû 2�
û2 ÿ û

dû

��
� 0 : �7:24�

The last equation contains improper Cauchy type inte-
grals which can be evaluated using the theory of residues. Let
us first analyze the conditions under which plasma waves can
be damped. This requires, first, that [see Eqn (A2.4)] the
imaginary part of the complex frequency fulfil the condition

o 00 < 0 �7:25�

and, second, that the poles involved in the calculation of the
integrals in Eqn (7.24) lie in the upper half-plane (see Fig. 5, in
which the integration contour is shown). Since

û1 � ô 0 � i

�
ô 00 ÿ 1� ���������������

1� 4t̂n̂
p

2t̂

�
; �7:26�

û2 � ô 0 � i

�
ô 00 ÿ 1ÿ ���������������

1� 4t̂n̂
p

2t̂

�
; �7:27�

the second condition is fulfilled for the integral

I2 �
��1
ÿ1

exp �ÿû 2�
ûÿ û2

dû

if the inequality

ô 00 �
���������������
1� 4t̂n̂
p ÿ 1

2t̂
> 0 �7:28�

is satisfied.
A similar condition for the integral

I1 �
��1
ÿ1

exp �ÿû 2�
ûÿ û1

dû �7:29�

cannot be satisfied. For this integral, the poles lie in the lower
half-plane, and hence

I2 � 2pi res �û � û2� ; �7:30�
I1 � 0 : �7:31�

Then Eqn (7.24) produces the dispersion relation which
admits a damped plasma wave solution:

exp �û 2
2 �
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where
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�
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���������������
1� 4t̂n̂
p ÿ 1

t̂
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p

2t̂ 2
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t̂

�
ô 0 : �7:33�

The relaxation time trel can be estimated in terms of the mean
time t between close collisions and the Coulomb logarithm
[35]:

trel � tLÿ1 : �7:34�

We can then write

tn � L ; t̂n̂ � L : �7:35�

û2

û1

û0

Figure 5. Integration contour for evaluating complex integrals in Eqn

(7.24). The two open circles are the possible positions of the poles û1 and û2
[see Eqns (7.26) and (7.27)] involved in the solution of the dispersion

equation in the regime of damped plasma oscillations.
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Now, in Eqn (7.32) we write down the complex part of the
exponential in the trigonometrical form:

exp

�
ÿiô 0

�
2ô 00 �
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��
and then separate the real and imaginary parts. For the real
part we have
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Similarly, for the imaginary part we find
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The system of complicated transcendent equations (7.36),
(7.37) can generally be solved only on a computer. If,
however, the Coulomb logarithm L is large enough for
terms of order Lÿ1=2 to be negligible, then a common
calculator will do. The system of equations (7.36), (7.37) in
this case simplifies to

1� r 2D k2���
p
p exp �ô 0 2 ÿ ô 00 2�

� ô 00 cos �2ô 0ô 00� ÿ ô 0 sin �2ô 0ô 00� ; �7:38�
ô 0 cos �2ô 0ô 00� � ô 00 sin �2ô 0ô 00� � 0 : �7:39�

Let us introduce the notation

a � 2ô 0ô 00 and b � 1� r 2D k2 �7:40�
and note that

ô 0 2 � ÿ 1

2
a tan a ; ô 00 2 � ÿ 1

2
a cot a ;

ô 0 2 ÿ ô 00 2 � a cot 2a :

Then from Eqns (7.38), (7.39) one finds

ÿ sin 2a exp �2a cot 2a� � p

b 2
a :

Now if one introduces the variable g � ÿ2a � ÿ4ô 0ô 00,
the problem reduces to that of solving the transcendent
equation

ÿ exp �g cot g� sin g � p

2b 2
g ; �7:41�

which can be solved either graphically or iteratively [54]. The
graphical solution for b 2 � 1 (corresponding to r 2D k2 5 1) is
illustrated in Fig. 6, which shows that in this case a discrete
plasma oscillation spectrum appears even for an unbounded
medium. The first seven values of g are as follows:
g1 � 1:361p, g2 � 3:418p, g3 � 5:439p, g4 � 7:449p,
g5 � 9:460p, g6 � 11:465p, and g7 � 13:469p.

In the asymptotic limit of large, odd positive integers n
�n5 301�, we have

gn �
�
n� 1

2

�
p : �7:42�

The dimensionless frequencies ô 0n, ô
00
n are calculated using

the formulas
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ô 00n � ÿ
1

2

���������������������
ÿgn cot

gn
2

r
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Their asymptotic values are given by
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�s
: �7:46�

For example, ô 02 � 1:866, ô 002 � ÿ1:438, and ô 03 � 2:221,
ô 003 � ÿ1:510.

In the classical Boltzmann kinetic theory, the search for
damped wave modes in collisionless plasma leads to necessity
of taking complex integrals of the type (A2.12), whose
integrands have no poles in the upper half-plane [the `upper'
being specified by the choice of the solution in the form
(A2.4)]. This problem is overcome by an artifice, the Landau
rule for making a detour from below around a pole located on
the real axis. We will show how the dispersion relation (7.32)
produces results corresponding to `classical' damping in
collisional and collisionless plasmas. To do this, let us

0
p

2p

3p

4p
5p

6p1.36p 3.42p 5.44p g

0.95

Figure 6.Graphical solution of Eqn (7.41), producing a discrete spectrum.
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examine the asymptotic behavior of the dispersion relations

1� r2D k2

2
���
p
p exp

�
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The passage to the case of classical collisions is achieved
by proceeding to the limit t! 0 [see the generalized
Boltzmann equations (7.1) ± (7.3)] at a fixed frequency n.
The indeterminate forms involved in the calculation are
evaluated by expanding the corresponding terms in a power
series of a small parameter t̂n̂ and retaining the first two terms
in the expansion in Eqns (7.47), (7.48) [in the last term in the
curly brackets in Eqns (7.47), the quadratic term is also
retained, though]. We follow this procedure to give

1� r 2D k2

2
���
p
p exp

�
ô 0 2 ÿ �ô 00 � n�2�

� �ô 00 � n̂� cos �2ô 0�ô 00 � n̂��ÿ ô 0 sin
�
2ô 0�ô 00 � n̂�� ;

�7:49�
ô 0 cos

�
2ô 0�ô 00 � n̂��� �ô 00 � n̂� sin �2ô 0�ô 00 � n̂�� � 0 :

�7:50�
Equations (7.49) and (7.50) can be brought to the same form
as the system of equations (7.38), (7.39):

1� r 2D k2

2
���
p
p exp �ô 0 2 ÿ ô 00 21 �

� ô 001 cos �2ô 0ô 001 � ÿ ô 0 sin �2ô 0ô 001 � ; �7:51�
ô 0 cos �2ô 0ô 001 � � ô 001 sin �2ô 0ô 001 � � 0 �7:52�

by replacingo 00 with the variableo 001 � o 00 � n. It should also
be noted that, in the asymptotics we are considering, an
additional factor 0.5 appears on the left-hand side of
Eqn (7.51). Equations (7.51) and (7.52) are then solved in
exactly the same manner to give (for large n):

ô 0n �
1

2

���������������������
p
�
n� 1

2

�s
; ô 00n � ÿ

1

2

���������������������
p
�
n� 1

2

�s
ÿ n̂ : �7:53�

The relevant pole here lies in the upper half-plane (see Fig. 5)
inside the integration contour and has the ordinate o 00 � n.
We are now in a position to determine the frequency spectrum
corresponding to the classical collisionless damping regime
(Landau damping). For this we proceed to the limit n! 0 in

formulas (7.53). Using the notation introduced in Eqn (7.40),
it then follows from Eqns (7.51) and (7.52) that

ÿ sin 2a exp �2a cot 2a� � 4p

b 2
a : �7:54�

If we introduce the variable g � ÿ2a � ÿ4ô 0ô 00, then the
problem reduces to that of solving the transcendent equation

ÿ exp �g cot g� sin g � 2p

b 2
g ; �7:55�

which can be solved either graphically or iteratively. The
graphical solution for the b2 � 1, corresponding to the long-
wavelength limit r 2D k2 5 1, is illustrated in Fig. 7. This
solution shows that in the case of interest a discrete
oscillation spectrum appears even for an unbounded
medium. The first seven values of g are as follows:
g1 � 1:271p, g2 � 3:379p, g3 � 5:410p, g4 � 7:432p,
g5 � 9:444p, g6 � 11:452p, and g7 � 13:458p. In the asymp-
totic limit of large, odd positive integers n �n > 301� we have

gn �
�
n� 1

2

�
p : �7:56�

The dimensionless frequencies ô 0n and ô
00
n are calculated using

formulas (7.43), (7.44), and their dimensional forms are
represented as follows

o 0n � k

��������������������������������
ÿ kBT

2me
gn tan

gn
2

s
; o 00n � ÿk

��������������������������������
ÿ kBT

2me
gn cot

gn
2

s
:

�7:57�
The asymptotic values of the frequencies are

ô 0n �
�����
gn
p
2
� 1

2

���������������������
p
�
n� 1

2

�s
;

�7:58�

ô 00n � ÿ
�����
gn
p
2
� ÿ 1

2

���������������������
p
�
n� 1

2

�s
:

It is also worthwhile to list the first seven pairs of dimension-
less frequencies [55]:

ô 01 � 1:484 ; ô 001 � ÿ0:673 ; ô 02 � 1:979 ; ô 002 � ÿ1:341 ;

ô 03 � 2:379 ; ô 003 � ÿ1:786 ; ô 04 � 2:691 ; ô 004 � ÿ2:169 ;

ô 05 � 2:975 ; ô 005 � ÿ2:493 ; ô 06 � 3:235 ; ô 006 � ÿ2:780 ;

ô 07 � 3:473 ; ô 007 � ÿ3:043 : �7:59�
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Figure 7.Graphical solution of the dispersion equation (7.55).
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8. Generalized dispersion relations for plasma:
theory and experiment

In this section theoretical results are discussed in the context
of Looney and Brown's experiments [56] on the detection of
plasma waves excited by an electron beam. The experimental
setup of Looney and Brown (see Fig. 8) consists of a bulb
about 10 cm in diameter, in which mercury plasma at a
pressure of as low as 3� 10ÿ3 mm Hg was created between
two cathodes C and an anode ring A using an electric
discharge. An electron beam produced in a lateral tap was
accelerated by a voltage of several hundred volts and then
introduced into the plasma through a hole of diameter 1 mm
in the bulb wall. In the region between the accelerating anode
A and the anode disk D, with a separation of 1.5 cm, an ion
cloud formed. The beam electrons excited oscillations in the
region AD. The oscillations were registered by a movable
probe attached to the detector. The results of the experiment
are presented in Fig. 9 reproduced from Looney and Brown's
paper. Because the density of the electron beam is propor-
tional to the discharge current, Looney and Brown presented
their results as the dependences of the oscillation frequency
squared on the electron number density ne. The inset on the

left shows the electric field distribution over the region AD,
and the dashed straight line corresponds to the dispersion
relation

o � op e ; �8:1�

where op e is the Langmuir frequency of plasma electron
oscillations. Equation (8.1) follows from the one-dimensional
hydrodynamic equation of motion without considering
convective terms and the pressure gradient. In a more general
form including the electron pressure, this equation becomes

o2 ÿ o2
p e �

3

2
k2v 2T ; �8:2�

where v 2
T � 2kBT=me. The term on the right-hand side of

Eqn (8.2) was dropped in constructing the dashed line inFig. 9
in order to achieve a better agreement between the theoretical
and experimental results [56, 57].

Looney and Brown noted the fundamental disagreement
between the dispersion relations (8.1), (8.2), which lead to a
continuous oscillation spectrum, and the experimental data
displaying a discrete oscillation spectrum. Furthermore, as
the electron density increases, one can see from Fig. 9 that the
curve grows stepwise, with discontinuities and a slight
increase in the slope of the steps within the confines of the
plateau, i.e., the oscillation spectrum one observes is in fact of
a band type. Band spectral structures were also seen in later
experiments on the damping of electron waves in collisionless
plasmas (see, for instance, Ref. [58]). Neither Eqns (8.1), (8.2)
nor qualitative considerations based upon the theory of
standing waves can explain these experiments. We proceed
now to the interpretation of the experimental data based on
the generalized dispersion relations (7.51), (7.52). We note
from the start that a study on the level of dispersion relations
is inadequate to give a complete picture of processes
occurring in the system under study here. Therefore, the
calculation of o�l� only reflects major qualitative and
quantitative features of the system Ð provided we know the
wavelengths of the observed waves and the hydrodynamic
parameters, primarily the concentrations of the components
and the ion and electron temperatures.

A. The dispersion relation (7.55) produces a discrete
spectrum of solutions gn and, hence, of o 0n�ln;T �,
o 00n �ln;T �. The discrete frequency spectrum is observed in
experiment. To proceed to quantitative estimates, however, it
is necessary first to estimate the beam temperature. From the
requirement that the theoretical value of the square of the
linear frequency

f 0 21 � ô 0 21
2kBT

l21me

�8:3�

be equal to its experimental value ( f 0 21 � 3� 1017 Hz2), we
have T � 40 eV. While the temperature was not measured
directly in the experiment, there is indirect experimental
evidence to support this value. Based on the parameters of
the experiment, for the lower frequency level the wavelength
l1 � 1 cm and r 2Dk

2 � 0:2. Consequently, this experiment
fails to satisfy the conditions

r 2D k2 5 1 ; l4 rD ;

which formally underlie the Landau-damping solution of the
classical dispersion relation [59]. The solutions of equation

� 200 V
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C

A D

Figure 8. Schematic of Looney and Brown's experiment on the excitation

of plasma oscillations.
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Figure 9. Square of the observed frequency versus plasma electron number

density, as measured in the Looney ±Brown experiment. The inset shows

the oscillations observed in the anode gap AD.
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(7.55) presented above has been found for the limiting case

b 2 � 1 : �8:4�
Note, however, that the region where the straight line 2pg
intersects the curve F�g� � ÿ exp �g cot g� sin g is that of the
steep rise of the function F�g� (see Fig. 7). Consequently,
varying the slope of this line in the region of existence of
solutions to Eqn (7.55) has a little effect on the solution gn. To
estimate

f 0 2n � ô 0 2n
2kBT

l2nme

; �8:5�

one should take the calculated values of ô 0 2n and the
experimental values of ln and T. The electron temperatures
in experiments yielding the frequencies f 0n can be estimated
from the simplest form of the beam equilibrium condition:

pe � ppl ; �8:6�
where pe is the pressure produced by the beam electrons, and
ppl is that of the mercury plasma. As a result, the quantitative
agreement between the theory and experiment is quite
reasonable (to within 20 ± 50%) for the second through the
fifth of the observed levels f 0 2n .

B. Under the condition (8.4), the straight line 1 in Fig. 7
has the maximum slope possible. The straight line 2
corresponds to a certain nonzero value of r 2Dk

2 and is drawn
for illustrative purposes. Now suppose that the concentration
ne of the beam electrons starts to increase, whereas other
plasma parameters remain, to a first approximation,
unchanged. Increasing ne reduces [see Eqn (A1.5)] the
Debye ±HuÈ ckel radius rD and increases the slope of the
straight line 2, which now takes position 3. The straight line
approaches position 1. Instead of a certain discrete set of gn's,
we will have a set of possible intervals Dgn, and hence of
intervals Do 0n, Do

00
n Ðgiving rise to the plateau regions of the

experimentally revealed values of o 0 2n .
C. It is easily verified by direct calculation that the

function

F �gn� �
gn
4

tan

�
ÿ gn

2

�
�8:7�

increases with decreasing gn. Hence, within the confines of a
plateau the square of the frequencyo 0 2n will grow slightly with
concentration of the beam electrons:

o 0 2n; gÿDg � o 0 2n; g � o
ÿjDgnj� : �8:8�

This effect is also observed in experiment.
D. The square of the oscillation frequency of plasma

waves, o 0 2n , is proportional to the wave energy. Hence, the
energy of plasma waves is quantized, and as n grows we have
the asymptotic expression

ô 0 2n �
p
4

�
n� 1

2

�
; �8:9�

and the squares of possible dimensionless frequencies become
equally spaced:

ô 0 2n�1 ÿ ô 0 2n �
p
4
: �8:10�

E. Let us see how the motion of ions affects the solution of
the dispersion equation. The velocity distribution of electrons

is taken to be Maxwellian; the thermal motion of ions is
neglected. The ion distribution function is then written as

fi � ni d�vi� : �8:11�

The generalized dispersion relation in the collisionless limit
becomes

1� 1

r 2D k2

�
1� 2piô exp �ÿô 0 2 � ô 00 2 ÿ 2iô 0ô 00�� � o2

p i

o2
;

�8:12�
where op i is the Langmuir ion frequency.

Introducing the parameter

e � meni
2mine

; �8:13�

equation (8.12) is written in the following way

1� r 2D k2 � 2piô exp �ÿô 0 2 � ô 00 2 ÿ 2iô 0ô 00� � e
ô2

: �8:14�

Under the conditions of the experiment being discussed, e
is a small quantity. In the general case, however Ð if ni 4 ne
and if the parameter e is not too small Ð it may happen that
the ion motion must be accounted for. Equation (8.14) can be
solved perturbatively by expanding the frequencies in power
series:

ô 0 �
X1
k� 0

e kô 0 �k� ; �8:15�

ô 00 �
X1
k� 0

e kô 00 �k� : �8:16�

Then for k � 0, in the first approximation, we arrive at a
special case of Eqns (7.49), (7.50) as a result of separating the
real and imaginary parts of Eqn (8.14).

In the second approximation �k � 1�, we have

ô 0 �1�
�
cos

g0
2
ÿ g0

2
cot

g0
2

�
� ô 00 �1�

�
sin

g0
2
� g0

2

�
� sin2 g0

g0
���
p
p exp

�
g0
2

cot g0

�
ÿ ô 0 �0� ; �8:17�

ô 0 �1�
�

b���
p
p ô 0 �0� exp

�
g0
2

cot g0

�
ÿ g0

2
ÿ sin

g0
2

�
ÿ ô 00 �1�

�
b���
p
p ô 00 �0� exp

�
g0
2

cot g0

�
� cos

g0
2
� g0

2
tan

g0
2

�
� sin 2g0

2g0
���
p
p exp

�
g0
2

cot g0

�
� ô 00 �0� ; �8:18�

where g0 is the first-order approximation to the solution of
Eqn (8.14). We can estimate the magnitude of the effect by
giving the second-order results for the coefficients in the
expansions (8.15), (8.16):

ô 0 �1� � 3:05 ; ô 00 �1� � ÿ0:87 :
The complete solution of the boundary value problem

concerning the spatial and temporal evolution of plasma in
the Looney ±Brown apparatus can only be obtained by
solving the GBE. Still, the dispersion relation we have
considered correctly reflects the essential features of the
experimental results.
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We now proceed to compare the theoretical results with
those of the computer experiment. Extensive simulations of
the attenuation of Langmuir waves in plasma have been
performed at the SB RAS Institute of Nuclear Physics
(Novosibirsk) in the 1970s and 1980s (see, for example,
Refs [60 ± 63]). Of interest to us here is the formulation of
the problem close to the classical Landau formulation [64 ±
66]. The problem involves a one-dimensional plasma system
subject to periodic boundary conditions. The velocity dis-
tribution of plasma electrons is taken to be Maxwellian, and
ions are assumed to be at rest �mi=me � 104� and distributed
uniformly over the length of the system. It is also assumed
that at some initial point in time the system is subjected to
small electron velocity and electron density perturbations of
the form

dn
n0
� k0E0

4pen0
sin �o0tÿ k0x� ;

�8:19�
dv � o0E0

4pen0
sin �o0tÿ k0x� ;

corresponding to the linear wave

E�x; t� � E0 sin �o0tÿ k0x� ;

with o2
0 � o2

p e � �3=2�k20v 2T, and k0 � 2p=l0. The quantities
E0, j0, l0, o0, and k0 are the initial values of the field
amplitude, potential, wavelength, frequency, and wave
number, respectively. The numerical integration is per-
formed using the `particles-in-cells' method. The number of
particles is not large (in Refs [60 ± 63], the authors usually put
N � 104, with about 102 particles per cell). To reduce the
initial noise level, the `easy start' method is used, in which
neither the coordinate nor velocity distribution functions of
the electrons change from one cell to another. In this case, it
was noted in Ref. [61] that the noise level is determined by
computation errors but increases for the computation scheme
chosen; the noise level increases with increasing E0 and with
decreasing l0. The computation only makes sense until the
noise level remains small compared to the harmonics of the
effect under study that arise in the calculation.

The calculations in Refs [60 ± 63] were performed over a
wide range of initial wave parameters. The time dependence
of the field strength is quite complicated, but the initial stage
always corresponds to the wave damping regime in which an
increase in the amplitude and the phase velocity vf in the
range ej0=�kBT � > 1 (and the corresponding decrease in the
parameter k0rD) dramatically increases the damping decre-
ment compared to the Landau value [64]. Table 2 summarizes
the results of the numerical simulation series I-1 to I-8 [62, 63].

Table 2. Comparison of analytical predictions with numerical simulation results.

N I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8

vf���������������
kBT=m

p 2.46 2.95 4.2 6.9 9.4 11.2 16 22.4

l0
rD

11 15 24 42 58 70 100 140

k0rD 0.57 0.42 0.26 0.15 0.11 0.09 0.063 0.045

�k0rD�2 3:3� 10ÿ1 1:7� 10ÿ1 6:8� 10ÿ2 2:2� 10ÿ2 1:2� 10ÿ2 8� 10ÿ3 3:9� 10ÿ3 2� 10ÿ3

Ê0 1 ë 60 11 ë 60 26 ë 70 70 ë 170 119 ë 250 170 ë 250 240 ë 450 333 ë 591

��������������
ej0=m

p���������������
kBT=m

p 0.2 ë 1.6 0.8 ë 1.9 1.6 ë 2.6 3.5 ë 5.4 5.3 ë 7.6 6.9 ë 8.4 9.8 ë 13.5 13.7 ë 18.3

��������������
ej0=m

p
vf

8� 10ÿ2 ë 0.8 0.28 ë 0.65 0.38 ë 0.62 0.5 ë 0.78 0.56 ë 0.81 0.61 ë 0.75 0.61 ë 0.84 0.61 ë 0.82

ej0

kBT
4� 10ÿ2 ë 2.7 0.7 ë 3.6 2.5 ë 6.8 11.9 ë 28.5 28 ë 58.4 48 ë 70.5 96.7 ë 181 188 ë 334

DN
N

;% 0ë 20 1 ë 13 1 ë 7 1 ë 11 1 ë 12 2 ë 7.5 1 ë 13 0.5 ë 10

gL
op e

0.32 0.17 6� 10ÿ3 10ÿ8 4� 10ÿ17 2� 10ÿ25 6� 10ÿ53 2� 10ÿ105

g
op e

0.32 ë 1 0.17 ë 0.96 0.03 ë 0.4 0.03 ë 0.65 0.03 ë 0.8 0.04 ë 0.2 0.03 ë 0.8 0.02 ë 0.3

gA
op e

0.522 0.4 0.247 0.143 0.105 0.0857 0.06 0.0428

g
gL

1.0 ë 3.4 1.0 ë 5.6 5 ë 60 � 106ÿ108 � 1015ÿ1016 � 1023ÿ1024 � 1050ÿ1052 � 10102ÿ10104
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In the leftmost column of the table, the following definitions
need some comment: Ê0 � E0et 20p=mrD is the dimensionless,
normalized wave amplitude, t0p is the period of plasma
oscillations, DN=N the fraction of trapped electrons (in %),
g is the damping decrement determined in the simulation
experiment, gA � ÿo 001 the damping decrement found as the
asymptotics of the solution to the generalized Boltzmann
equation and calculated from the first decrement involved in
the discrete spectrum of solutions. Table 2 also presents the
damping decrement gL � ÿo 00L calculated from a modified
Landau formula [67]. There is strong disagreement between
the decrements g, gA, and gL in the long wavelength limit
k0rD 5 1. This disagreement is easy to explain from the
computation point of view. Let us write down the Landau
formula in its classic form

g
op e
�

����
p
8

r
1

k30 r
3
D

exp

�
ÿ 1

2k20 r
2
D

�
: �8:20�

For k0rD 5 1, the damping decrement calculated by
Eqn (8.20) becomes very small, whereas its simulation
counterpart does not differ much from the plasma fre-
quency. Applying the GBE asymptotics to the solution of
classical problem of Landau damping makes it possible, even
in Landau's linear formulation, to obtain a quite satisfactory
agreement with both physical andmathematical experiments.

To conclude, the results presented here are only a small
part of what the generalized kinetic theory has produced
during the 15 years of its developmentÐ the years, one is safe
to say, which have showed it to be a highly effective tool for
solving many physical problems in areas where the classical
theory runs into difficulties.
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9. Appendices

A.1 Characteristic scales in plasma physics
The fundamental feature of plasma physics is the existence of
a multiparticle interaction in the system under study.
Consequently, care must be exercised when choosing typical
scales for describing the evolution of a plasma volume. The
Landau length l over which the characteristic kinetic energy
kBT of thermal motion equals the potential energy of
interaction between charges e is determined by the relation

l � e 2

4pe0kBT
� 1:67� 10ÿ5

T
m ; �A1:1�

where e0 is the electric constant, and kB is the Boltzmann
constant.

Binary collisions for which impact parameters are less
than or equal to the Landau length are said to be `close'. It is
useful to introduce the ratio of the Landau length to the
average distance nÿ1=3 between plasma particles:

b � ln1=3 � 1:67� 10ÿ5n1=3T ÿ1 ; �A1:2�

where n is the number density of particles, in mÿ3.

While the interaction parameter b is usually small in
laboratory plasma, the solar corona and the solar atmo-
sphere, in the ionosphere and interstellar gas, but for free
electrons in a metal it can reach a value of � 102. The cross
section sb for close collisions is determined by the relation

sb � pl 2 ; �A1:3�

and the mean free path of a probe particle between binary
close collisions is

l � 1

pnl 2
� 1

pn1=3b 2
� 1:1� 109

T 2

n
m : �A1:4�

The pair interaction between particles in a plasma
effectively extends to the distance determined by the
Debye ±HuÈ ckel radius rD defined as follows

rD �
�����������
e0kT
ne 2

r
� 1

n1=3
��������
4pb
p � 0:69� 102

����
T

n

r
m : �A1:5�

It can be argued that collective plasma properties
disappear in systems less than rD in size. The following
relationship between the characteristic plasma lengths
should be noted:

l : nÿ1=3 : rD : l � b : 1 :
1

2
������
pb
p :

1

pb 2
: �A1:6�

Equation (A1.6) should be complemented by the hydro-
dynamic scale L being the characteristic size of the system; L
is usually much larger than l.

The above list of characteristic plasma scales is not
exhaustive, though. For processes in rapidly alternating
fields Ð when the distance a particle travels over a period of
oscillation of the field is less than the range of the forces
involved Ð additional scales may appear in the problem.

A.2 Dispersion relations in the generalized Boltzmann
kinetic theory neglecting the integral collision term
We are concerned with developing (within the GBE frame-
work) the dispersion relation for plasma in the absence of a
magnetic field. We make the same assumptions used in
developing this relation within the BE model, namely: (a) the
integral collision term is neglected; (b) the evolution of
electrons and ions in a self-consistent electric field corre-
sponds to a one-dimensional, unsteadymodel; (c) distribution
functions for ions fi and electrons fe deviate only slightly
from their respective equilibrium values f0i and f0e:

fi � f0i�u� � d fi�x; u; t� ; �A2:1�

fe � f0e�u� � d fe�x; u; t� ; �A2:2�

(d) we consider a wave mode corresponding to a certain wave
number k and a complex frequency o, so that the solution of
the GBE can be written in the form

d fi � hd fii exp
�
i�kxÿ ot�� ; �A2:3�

d fe � hd fei exp
�
i�kxÿ ot�� ; �A2:4�

(e) the quadratic terms in the GBE, determining the deviation
from the equilibrium DFs, are neglected, and (f) the self-
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consistent forces Fi and Fe are small:

Fi � ÿ e

mi

qj
qx

; �A2:5�

Fe � ÿ e

me

qj
qx

; �A2:6�

where e is the absolute electron charge,mi are the ion masses,
me the electron mass, and finally

j � hji exp �i�kxÿ ot�� : �A2:7�

Under these assumptions, the GBE is written as follows
(we seek the solution for the ion plasma component, to be
specific):

q fi
qt
� u

q fi
qx
� Fi

q fi
qu
ÿ ti

�
q2fi
qt 2
� 2u

q2fi
qt qx

� u 2 q
2fi

qx 2

� 2Fi
q2fi
qt qu

� qFi

qt
q fi
qu
� Fi

q fi
qx
� u

qFi

qx
q fi
qu

� F 2
i

q2fi
qu 2
� 2uFi

q2fi
qu qx

�
� 0 : �A2:8�

Using the assumptions listed above, we find the relations

q fi
qt
� ÿio d fi ; u

q fi
qx
� iku d fi ;

Fi
q fi
qu
� ÿ e

mi

qj
qx

q f0i
qu

;
q2fi
qt 2
� ÿo2 d fi ;

2u
q2fi
qt qx

� 2ouk d fi ; u 2 q2 fi
qx 2
� ÿu 2k2 d fi ; �A2:9�

2Fi
q2fi
qu qt

� 0 ;
qFi

qt
q fi
qu
� ÿ e

mi
okj

q f0i
qu

;

Fi
q fi
qx
� 0 ; u

q fi
qu

qFi

qx
� e

mi
k2uj

q f0i
qu

;

F 2
i

q2 fi
qu 2
� 0 ;

q2fi
qu qx

2uFi � 0 ;

which when substituted into Eqn (A2.8) yield

i�kuÿ o�hd fii ÿ i
e

m
khji q f0i

qu

ÿ �kuÿ o� ti
�
ÿ�kuÿ o�hd fii � hji ek

mi

q f0i
qu

�
� 0 ; �A2:10�

giving the ion density fluctuation

hdnii � ÿ e

mi
hji k

�
q f0i
qu

1

oÿ ku
du ; �A2:11�

and the electron density fluctuation

hdnei � e

me
hji k

�
q f0e
qu

1

oÿ ku
du : �A2:12�

Equations (A2.11) and (A2.12) are identical to their BE
analogues. Substituting Eqns (A2.11) and (A2.12) into the
Poisson equation

e0k2j � e�dni ÿ dne� ; �A2:13�

we arrive at the classical dispersion relation (see, for instance,
Ref. [53])

1 � ÿ e 2

e0k

�
1

me

��1
ÿ1

q f0e
qu

1

oÿ ku
du

� 1

mi

��1
ÿ1

q f0i
qu

1

oÿ ku
du

�
: �A:14�

Although Eqns (A2.11) and (A2.12) are a consequence of
the general statement that in the absence of the integral
collision term the relation

D fa
Dt
� 0 �A2:15�

(the Vlasov equation) is the solution of the equation

D fa
Dt
ÿ D

Dt

�
ta

D fa
Dt

�
� 0 ; �A2:16�

the above argument shows that the GBE can produce correct
and expected results, when treated perturbatively.
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