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Axisymmetric steady flows
in astrophysics

V S Beskin

1. Introduction

Observations show that many astrophysical sources can be
treated with good accuracy as axisymmetric and stationary.
These include both accreting neutron stars and black holes,
axisymmetric stellar (solar) wind, jet outflows from young

stellar objects, and ejection of particles from magnetospheres
of rotating neutron stars. Such flows also apparently form in
magnetospheres of supermassive black holes which are
thought to be the `central engine' in active galactic nuclei
and quasars [1, 2]. So, it is not surprising that ideal
magnetohydrodynamics, which allows a sufficiently simple
formalization of the problem, is actively applied when
describing these flows.

The point is that due to axial symmetry and stationarity
(as well as magnetic field line freezing-in), in the general case
five `integrals of motion' show themselves worth, being
conserved at axisymmetric magnetic surfaces. This remark-
able fact allows us to separate the problem of finding the
poloidal field structure (the poloidal flow structure in
hydrodynamics) from the problem of calculating the particle
acceleration and structure of electric currents. The solution to
the latter task in a given poloidal field can be obtained in
terms of quite simple algebraic relations. It is important that
such an approach can be straightforwardly generalized to
flows in the vicinity of rotating black holes, as the Kerr metric
is also axially symmetric and stationary.

On the other hand, it is much more difficult to find a two-
dimensional poloidal magnetic field structure (the hydrody-
namic flow structure). First of all, this is due to the complex
structure of the equation describing axisymmetric steady
flows. In the general case, it is a nonlinear equation of the
mixed type, which changes from elliptical to hyperbolical at
singular surfaces and in addition contains integrals of motion
in the form of free functions. Generally speaking, similar
equations, which stem from the classical Tricomi equation,
have been discussed starting from the beginning of the last
century in connection with transonic hydrodynamic flows [3].
Later on, axially symmetric stationary equilibrium equations
were calledGrad ± Shafranov equations after the authors who
formulated in the late 1950s an equation of such a type in
connection with controlled thermonuclear fusion [4]. This
equation, however, related to equilibrium static configura-
tions only and required strong revision when generalizing to
transonic flows. The full version of such an equation
including all five integrals of motion was formulated by
L S Solov'ev in 1963 in the third volume of Problems of
Plasma Theory [5] and was well-known to physicists. How-
ever, as often occurs, the full version of the Grad ± Shafranov
equation was little known in the astrophysical literature, so it
was `rediscovered' several times [6].

As it turned out the difficulty lay in the fact that the very
setting of the direct problem in the framework of the Grad ±
Shafranov equation method proved to be nontrivial. For
example, in the hydrodynamic limit, when there are only three
integrals of motion, the problem requires four boundary
conditions for the transonic flow regime. This implies that,
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for instance, two thermodynamic functions and two velocity
components either should be specified at some surface.
However, to determine the Bernoulli integral, which natu-
rally should be known in order to solve the equilibrium
equation, all three components of the velocity must be
specified, which is impossible since the third velocity
component itself is to be obtained from the solution. Such
inconsistency, as a matter of fact, is one of the main
difficulties of the approach under consideration.

Nevertheless, there exist approaches allowing analytical
solution of direct problems within the framework of the
Grad ± Shafranov equation method. For example, there is
such a possibility if the exact solution of this equation is
known and we explore flows weakly diverging from the
known one. Spherically symmetric accretion (ejection) of
matter could be such an exact solution. As a result, the
known structure of the flow in the zeroth approximation
enables us to determine with the required accuracy both the
location of singular surfaces and all integrals of motion
directly from boundary conditions, thus making it possible
to solve the equilibrium equation within the direct formula-
tion of the problem.

2. Grad ± Shafranov equation

Let us consider axisymmetric steady plasma flow in the
vicinity of a rotating black hole, i.e., in the most general
axially symmetric stationary metric [2]:

ds2 � ÿa2dt 2 � gik�dxi � bidt��dxk � b kdt� ; �1�
where

a � r
S

����
D
p

; b r � by � 0 ; bj � ÿo � ÿ 2aMr

S2
;

grr � r2

D
; gyy � r2 ; gjj � $ 2 : �2�

Here, a is the gravitational redshift vanishing at the horizon
rg �M�

������������������
M2 ÿ a2

p
, o is the angular velocity of local non-

rotating observers (the so-called Lense ± Thirring angular
velocity), and

D � r 2 � a 2 ÿ 2Mr ; r 2 � r 2 � a 2 cos2 y ;

S 2 � �r 2 � a 2�2 ÿ a 2D sin2 y ; $ � S
r
sin y : �3�

As usual, M and a are the black hole mass and angular
momentum per unit mass (a � J=M), respectively. Here
indices without hats denote components of vectors with
respect to the coordinate basis q=qr, q=qy, q=qj, and indices
with hats stand for physical components of the vectors.
Finally, we shall use below the system of units with
c � G � 1, except as noted.

Inwhat follows we shall utilize the 3+1 split technique [2].
In this approach, the physical quantities are expressed
through three-dimensional vectors which would be mea-
sured by local observers moving around the rotating black
hole with angular velocity o. The convenience of the 3+1
split lies in the fact that it allows the representation of many
expressions in the same form as in flat space. Here, all
thermodynamic quantities are determined in the co-moving
frame of reference.

Now, we shall demonstrate how the five `integrals of
motion', which are constant at the magnetic surfaces, arise

in the general case of axisymmetric steady flows. It is
convenient to introduce the scalar function C�r; y�, which
has a magnetic flux meaning. As a consequence, the magnetic
field is defined in the following way:

B � HHC� eĵ

2p$
ÿ 2I

a$
eĵ ; �4�

where I�r; y� is the total electric current inside the region
C < C�r; y�.

As usual, we assume that the magnetosphere contains
sufficient amount of plasma to provide the condition of
magnetic field line freezing-in, which using the 3+1 split is
written, as in flat space, in the form of E� v� B � 0. On the
other hand, the stationarity (as well as the condition for zero
longitudinal electric field) implies that the field E can be
written as

E � ÿOF ÿ o
2pa

HHC : �5�

Substituting relation (5) into the Maxwell equations it is easy
to verify that the condition B � HOF � 0 is satisfied, i.e., OF

must be constant at the magnetic surfaces (Ferraro's isorota-
tion law): OF � OF�C�.

Next, the Maxwell equation H � B � 0, the continuity
equation, and the magnetic field freezing-in condition allow
us to write down the 4-velocity of matter in the form

u � Z
an

B� g�OF ÿ o� $
a
eĵ ; �6�

where g � 1=
��������������
1ÿ v 2
p

is the Lorentz factor of matter, and the
quantity Z has the meaning of the ratio between the particle
flux and the magnetic field flux. Due to the relationship
HH � �ZBp� � 0, it must also be constant at the magnetic
surfaces C�r; y� � const, i.e., Z � Z�C �.

The next two integrals of motion are tied up with the
axial symmetry and stationarity of the considered flows,
with a consequent conservation of the flux of energy E and
the z-component Lz of angular momentum:

E � E�C� � OFI

2p
� mZ�ag� ouj� ; �7�

L � L�C� � I

2p
� mZ$uĵ ; �8�

where m � �rm � P�=n is the relativistic enthalpy (rm is the
internal energy density, P is the pressure). Finally, in the
axially symmetric case the isentropy condition yields
s � s�C �, so that the entropy per particle, s�C �, is in fact
the fifth integral of motion.

The five integrals of motion OF�C�, Z�C�, s�C�, E�C�,
and L�C�, as well as the poloidal magnetic field Bp, allow us
to recover the toroidal magnetic field Bĵ and all other plasma
parameters:

I

2p
� a2Lÿ �OF ÿ o�$ 2�Eÿ oL�

a2 ÿ �OF ÿ o�2$ 2 ÿM 2
; �9�

g � 1

amZ
a2�Eÿ OFL� ÿM2�Eÿ oL�
a2 ÿ �OF ÿ o�2$ 2 ÿM 2

; �10�

uĵ � 1

$mZ
�Eÿ OFL��OF ÿ o�$ 2 ÿ LM 2

a2 ÿ �OF ÿ o�2$ 2 ÿM 2
; �11�
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where

M 2 � 4pZ2m
n

: �12�

It is easy to see that the quantity M 2 represents to within the
factor a2 theMach number squared of the poloidal velocity up
with respect to the AlfveÂ n velocity uA � Bp=

�����������
4pnm
p

, i.e.,
M 2 � a2u2p=u

2
A.

Since m � m�n; s�, definition (12) allows us to express the
concentration n (and hence the specific enthalpy m) as a
function of Z, s, and M 2. This means that along with the five
integrals of motion, the expressions for I, g, and uĵ only
depend on one additional quantity, namely theMach number
M. To determine the Mach number, we should use the
obvious relation g2 ÿ u2 � 1, which, owing to equations (10)
and (11), can be rewritten in the form

K

$ 2A2
� 1

64p4
M 4�HHC�2

$2
� a2Z2m2 ; �13�

where

A � a2 ÿ �OF ÿ o�2$ 2 ÿM 2 �14�

and

K � a2$ 2�Eÿ OFL�2
�
a2 ÿ �OF ÿ o�2$ 2 ÿ 2M 2

�
�M 4

�
$ 2�Eÿ oL�2 ÿ a2L2

�
: �15�

As for the Grad ± Shafranov equation itself, viz. the
equilibrium equation for magnetic field lines, it can be
written in the form [7]

1

a
Hk

�
1

a$ 2

�
a2 ÿ �OF ÿ o�2$ 2 ÿM 2

�
H kC

�
� OF ÿ o

a2
�HHC�2 dOF

dC
� 64p4

a2$ 2

1

2M 2

q
qC

�
G

A

�
ÿ 16p3mn

1

Z
dZ
dC
ÿ 16p3nT

ds

dC
� 0 ; �16�

where

G � a2$ 2�Eÿ OFL�2 � a2M 2L2 ÿM 2$ 2�Eÿ oL�2 ;
�17�

and the derivative q=qC only acts on the integrals of motion.
We emphasize that, together with relation (13), equation (16)
contains only the flux function C and the five integrals of
motion.

Equilibrium equation (16) is a second-order equation
linear with respect to the highest derivatives. It changes
from elliptical to hyperbolical at singular surfaces where the
poloidal velocity of matter is compared with either fast or
slow magnetosonic velocity (when D � 0), or with the cusp
velocity (whenD � ÿ1). At theAlfveÂ n surfaceA � 0, the type
of equation does not change. Nonetheless, the AlfveÂ n surface
does represent a singular surface of the equilibrium equation,
as the regularity condition must be satisfied there.

3. Examples

Bondi ±Hoyle accretion. As the first example, we consider
hydrodynamic accretion onto a moving black hole (the
Bondi ± Hoyle accretion), which is one of the classical
problems of modern astrophysics [1]. First of all, let us

formulate the hydrodynamic limit of the Grad ± Shafranov
equation, where we can neglect the electromagnetic field
contribution. In this case, it is convenient to introduce a new
potential F�C� satisfying the condition Z�C� � dF=dC.
Using definition (6) we obtain

anup � 1

2p$
�HHF� eĵ� : �18�

Surfaces F�r; y� � const define the streamlines of matter.
In the hydrodynamic limit, there are only three integrals

of motion. These are the energy flux and the z-component of
the angular momentum:

E�F� � m�ag�$ouĵ� ; �19�
L�F� � m$uĵ ; �20�

as well as the entropy s � s�F�. Now the algebraic Bernoulli
equation (13) takes the form

�Eÿ oL�2 � a2m2 � a2

$ 2
L2 � M̂ 4

64p4$ 2
�HF�2 ; �21�

where the `Mach number' squared M̂ 2 is defined as
M̂ 2 � 4pm=n. Then Grad ± Shafranov equation (16) is rewrit-
ten in the form [7]

ÿ 1

a
Hk

�
M̂ 2

a$ 2
H kF

�
� 64p4

a2$ 2M̂ 2

�
$ 2�Eÿ oL�

�
�
dE

dF
ÿ o

dL

dF

�
ÿ a2L

dL

dF

�
ÿ 16p3nT

ds

dF
� 0 ; �22�

where now

D � ÿ1� 1

u2p

c2s
1ÿ c2s

: �23�

As we see, equation (22) contains only one singular surface,
viz. the sonic surface determined from the condition D � 0.

To construct the solution corresponding to the Bondi ±
Hoyle accretion, it turned out possible to search for the
solution of the equation for the flux function F�r; y� in the
form of a small correction to the spherically symmetric
solution. As a result, if there is a small parameter
e1 � v1=c1, which defines the ratio of the black hole velocity
to the velocity of sound at infinity, then the variables are
separated, so that the total solution can be represented in the
form

F�r; y� � F0

�
1ÿ cos y� e1g1�r� sin2 y

�
: �24�

Here, the radial function g1�r� is the solution of an ordinary
differential equation (see Refs [8, 9] for more details).

At the present level of PCdevelopment, thismeans that we
managed to construct the analytical solution to the problem
in hand allowing the full description of the flow structure. For
example, the sonic surface now has the nonspherical form

r��y� � r�

�
1� e1

�
G� 1

5ÿ 3G

�
k2 cos y

�
; �25�

where the numerical coefficient k2 � r�g 01�r�� is expressed
through the derivative of the radial function g1�r� at the
sonic point. As shown in Fig. 1, the analytical solution fully
agrees with numerical calculations [10] in spite of the
parameter e1 � 0:6 here being quite large.
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In connection with the above-obtained solution, we
should make one note. As can be easily seen, outside the
capture radius our main assumption, i.e., the smallness of the
deviation from the spherically symmetric flow, is invalid.
Nevertheless, the solution found remains valid. This remark-
able property is due to the Grad ± Shafranov equation
becoming linear for constant concentration n. But as we
learn from the spherically symmetric Bondi accretion, at
large distances r4 r� from the sonic surface the density of
accreting matter is virtually constant. Accordingly, the
density is constant for a homogeneous flow as well. As a
result, under the condition that the capture radius Rc 4 r�,
which holds true for e1 5 1, near and beyond the capture
radius (where the perturbation � e1g1�r� becomes compar-
able to the value � 1 in the zeroth approximation) Eqn (22)
becomes linear. So that the sum of two solutions, homo-
geneous and spherically symmetric, is also a solution.

Thin transonic disk. As the next example, we consider the
internal two-dimensional structure of a thin accretion disk.
Here, we consider for simplicity the case of a nonrotating
(Schwarzschild) black hole [11]. We recall that according to
the standard model [12] the accreting matter forms an
equilibrium disk rotating around the gravitating center with
the Keplerian velocity vK�r� � �GM=r�1=2. The disk will be
thin provided that its temperature is sufficiently small
(cs 5 vK), since the vertical balance of the gravity force and
the pressure gradient implies that H � rcs=vK. The general
relativity effects lead to two important properties: the absence
of stable circular orbits at r < r0 � 3rg, and the transonic
regime of accretion. Here, it is important that the rapid gas
fall inside the last stable orbit occurs with no viscosity, as well.
So, we can assume that the ideal hydrodynamics approxima-
tion is relevant to describe flows in the innermost parts of the
accretion disk.

So far, the vertical averaging procedure has been applied
in most papers on thin accretion disks, with the vertical
component uŷ of the velocity being assumed zero [13].
Because of this, the vertical component nub Hb�muy� of the
dynamic force in the Euler equation has also been assumed to
be small down to the black hole horizon. For this reason, the
disk thickness has been concluded to be determined by the
pressure gradient in the supersonic area, too.However, as was
shown in Ref. [11], the assumption uŷ � 0 near the sonic
surface is irrelevant. As in the case of the Bondi accretion, the
dynamic force becomes significant near the sonic surface.

Figure 2 shows the accretion disk structure near the sonic
surface in the presence of a small parameter e2 � u0=c0, as
inferred from the solution of Eqn (22). We emphasize that the
existence of the small parameter e2 5 1, which is the ratio of
the gas radial velocity to the velocity of sound in the last stable
orbit, comes from the relation vr=vK � aSSc2s=v

2
K for the radial

velocity of gas flow in the accretion disk. In the vicinity of the
last stable orbit this estimation is apparently inapplicable.
Nevertheless, below we shall consider the parameter e2 to be
small, as the presence of a small parameter allows us to
investigate analyticallymany features of the flow. In addition,
the small parameter makes the effect under discussion more
pronounced.

As we see, the flow structure near the sonic surface is far
from being radial. The appearance of a narrow waist has a
simple physical meaning. Indeed, if there is a small parameter
e2 � u0=c0 5 1, the density is nearly constant in the subsonic
region, while the radial velocity changes from u0 to c� � c0,
i.e., by several orders ofmagnitude. And so, in consequence of
the continuity equation the disk thickness H must change in
the same proportion (see Fig. 2):

H�r�� � u0
c0

H�3rg� : �26�

Here, it is extremely important that both components of the
dynamic force become comparable with the pressure gradient
near the sonic surface:

uŷ
r

quŷ
qy
� ur̂

quŷ
qr
� HŷP

m
� c20

u20

y
r
: �27�

Here, the angle y is reckoned from the equatorial plane.
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Figure 1. The flow structure and the sonic surface form for G � 4=3,
e1 � 0:6 [8]. Numbers alongside the curves denote values of F=F0, and the

dashed lines show the streamlines and the sonic surface form obtained

numerically in Ref. [10].
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Figure 2. The structure of a thin accretion disk (at the real scale) following

the passage of the last stable orbit r � 3rg, numerically obtained by solving

Eqn (22) for c0 � 10ÿ2, u0 � 10ÿ5. The solid lines correspond to the range

of parameter values u2p=c
2
0 < 0:2. The dashed lines show the extrapolation

of the solution towards the sonic surface. At the sonic surface, the flow

takes the form of an ordinary nozzle.
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In other words, if there appears a nonzero vertical velocity
component, the dynamical term �vH�v cannot be neglected in
striking the vertical force balance near the sonic surface [11].
It is clear that this property remains valid for arbitrary radial
velocity of the flow, i.e., even when the transverse contraction
of the disk is not so pronounced. Taking into account
dynamic forces causes two additional degrees of freedom to
appear, which relate to the higher derivatives in the Grad ±
Shafranov equation. This also leads to one more general
conclusion independent of the value of the parameter e2. In a
thin accretion disk, the critical condition at the sonic surface
does not fix the accretion rate any more, but determines
bending of the streamlines near the sonic surface. Finally, the
inclusion of the vertical velocity inevitably leads to the
appearance of a small longitudinal scale drk � H� in the
vicinity of a sonic surface, which for a thin disk proves to be
much smaller than the distance to the black hole at any value
of the parameter u0=c0. In the standard one-dimensional
approach, this small scale does not emerge. As for the
supersonic region (and, in particular, the region near the
black hole horizon), the disk thickness here will be determined
not by the pressure gradient, but by the form of ballistic
trajectories, as is the case of supersonic flows.

The Blandford ±Znajek process. In conclusion, we discuss
the energy losses of a black hole embedded in the external
magnetic field Ð the so-called Blandford ±Znajek process
[14], which is considered to be the most preferential mechan-
ism of energy release in active galactic nuclei. Its main idea is
based on the analogy with energy transfer in the internal
regions of magnetospheres of radio pulsars. Indeed, let us
suppose that there is a regular external magnetic field in the
vicinity of a rotating black hole. The electric current I flows
along this field. Then, the electric field E induced by plasma
rotating with an angular velocity OF and the toroidal
magnetic field Bj due to the longitudinal current I generate
the electromagnetic energy flux (the Poynting vector flux)
carrying away energy along the magnetic force lines.

Of course, by definition, general relativity effects are
important near the black hole. Consequently, it is not
obvious that the pulsar analogy can be useful in all cases.
Indeed, in pulsar magnetospheres, the ponderomotive action
of surface currents shorting electric currents in the magneto-
sphere results in the neutron star deceleration [15]. In the case
of black holes such currents cannot lead to deceleration,
though surface currents themselves can be formally intro-
duced in the framework of the so-called membrane approach
[2]. The point is that the horizon is not a physically preferred
surface, not to mention the fact that by definition the horizon
is not casually connected with the outer space (see, for
example, paper [16] concluding that there is no energy flux
along magnetic force lines passing through the black hole
horizon).

However, a recent more accurate analysis [17] (in which,
in fact, the first solution of the Grad ± Shafranov equation for
nonzero mass particles in the Kerr metric was obtained)
indicated that in fact the retarding torque operates in the
plasma generation region above the black hole horizon. Such
a retarding torque appears due to the action of long-range
gravitomagnetic forces which penetrate into regions causally
connected with the outer magnetosphere. The horizon is
indeed located inside the hyperbolic region of the total
Grad ± Shafranov equation and naturally cannot influence
the flow far away from the black hole (we recall that the
analysis in Ref. [14] was made in the force-free approximation

when the Grad ± Shafranov equation remains elliptical down
to the black hole horizon). And so a rotating black hole, as
well as a rotating neutron star, can work as a unipolar
inductor and effectively transfer energy to long distances. As
a result, the power lossWtot �WBZ, where

WBZ � OF�OH ÿ OF�
O2

H

�
a

M
�2

B2
0r

2
gc

� 1045
�

a

M
�2�

B0

104 G

�2� M
109M�

�2

erg sÿ1: �28�

It is easy to check that for the ultimately fast rotating black
hole and B � BEdd � 104�M=109M��ÿ1=2 G, power loss
WBZ (28) coincides with the Eddington luminosity.

It should be emphasized, however, that as follows from
equation (28), the rate of energy release needed to explain the
characteristic luminosity of active galactic nuclei can be
achieved only for limiting black hole masses � 109M�,
limiting magnetic fields B � BEdd near the black hole, and
limiting black hole rotation velocities a �M. Therefore,
papers have recently appeared in which the efficiency of the
Blandford ±Znajek process in real astrophysical conditions is
in doubt [18]. In particular, it was pointed out that for rapid
rotation theWald solution for a vacuummagnetosphere leads
to expulsion of the magnetic field into the ergosphere [2],
which could cause the appearance of an additional factor
1ÿ a2=M2 in expression (28).

In fact, as shown in Fig. 3a, in the black hole magneto-
sphere filled with plasma, all magnetic force lines crossing the
internal light surface a2 � �OF ÿ o�2$ 2 �M 2 ultimately
cross the black hole horizon, that is why to an order of
magnitude the energy release for the ultimately fast rotating
black hole coincides with Eqn (28). Here, the situation is fully
analogous to pulsar magnetospheres where force lines issuing
out of the light cylinder do not intersect the equatorial plane
(Fig. 3b).

4. Conclusion

Thus, in some simple cases the Grad ± Shafranov equation
allows us to construct an exact analytical solution to the
problem. In particular, this approach is very useful in
studying analytical properties of transonic flows and in
determining the required number of boundary conditions.
On the other hand, in the general case no consistent procedure

Internal
light
cylinder

Black
hole

a

Light cylinder

Radio pulsar

b

Figure 3. (a) The structure of the black hole magnetosphere completely

filled with plasma. The longitudinal currents that flow along the magnetic

field lines passing through the internal `light cylinder' direct the field lines

towards the black hole. (b) The structure of the radio pulsar magneto-

sphere. The force lines issuing out of the `light cylinder' do not intersect the

equatorial plane and go to infinity.
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exists regarding the solution construction within the Grad ±
Shafranov equation method. The point is that the location of
singular surfaces, at which critical conditions should be
formulated, is not known beforehand and itself must be
found from the solution to the problem. Moreover, it is
impossible to generalize this approach to the case of
nonideal, nonaxially symmetric and nonsteady flows. So it is
not surprising that most investigators, who are primarily
interested in astrophysical applications, have recently
focused on a totally different class of equations, namely, on
time relaxation problems, which can only be solved numeri-
cally [19]. Here, we would only like to hope that the key
physical results obtained using the Grad ± Shafranov equa-
tion, which, naturally, are independent of the computing
method, are not forgotten.
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Coherent light scattering stimulated
by a quasi-static electric field

V N Ochkin, S N Tskha|̄

1. Introduction

This work concerns radiation arising from the dipole-
forbidden molecular transition in the case of nondegenerate
four-wave interaction. One wave being unrelated to light
emission, its frequency is zero or close to zero. Parallel
monitoring of scattering intensity and anti-Stokes signal
intensities during a degenerate CARS process provides for
the absolute measurement of the static field strength, while
polarization measurements permit us to determine its direc-
tion. Due to the coherent and multiphoton nature of the
scattering process, the application of this approach, unlike
other known methods of Stark spectroscopy, makes it
possible to measure field characteristics in gases and plasma
under elevated pressure. In what follows, we give examples of
measurement in gas discharges.

In the presence of an electric field in an isotropic medium
for centrally symmetric particles, the selection rules for dipole
transitions can vary. E Condon [1] was the first to demon-
strate as early as 1932 that the description of such transitions
may be analogous to the description of Raman scattering of
light at a scattered wave frequency tending to zero (constant
field). Later on, spectroscopic constants were calculatedmore
precisely based on the measurements of electric field-induced
absorption of infrared (IR) radiation by homonuclear
molecules H2, D2, and N2 [2 ± 5].

Progress in laser technology and nonlinear optics gave rise
to many works on the generation of coherent harmonic and
mixed-frequency radiation, including generation in an exter-
nal electric field that permits us to ease the alternative
forbidding. Early studies [6 ± 8] have helped to elucidate the
generation of radiation at the difference frequency during
stimulated Raman scattering (SRS) of light from ruby and
neodymium lasers in H2 in an electric field. SRS is known to
have a high transformation threshold; in experiments [6, 7],
generation of radiation occurred at hydrogen pressure
p > 5:5 atm. This and the fact that the limitation on the
spectrum is only imposed by strongest transitions make it
very difficult to use SRS for quantitative measurements.

This paper reports studies on electric field-induced IR
radiation in hydrogen using biharmonic pumping of vibra-
tional transition and the application of this radiation to
measuring field parameters, in particular, for the diagnostics
of gas-discharge plasma.

2. Method. Experimental technique

We shall consider electric field-induced transitions as pro-
posed by Condon [1], i.e., by analogy with the well-developed
scheme of coherent anti-Stokes Raman scattering (CARS)
(see, for instance, monograph [9]). Figure 1 represents
schematically degenerate (a) and nondegenerate (b) CARS
transitions along with coherent IR transition (c) induced by
field E (o � 0). In CARS spectroscopy, biharmonic pumping
by two waves of laser lighto1 ando2 (such that the frequency
difference o1 ÿ o2 � O corresponds to the frequency of
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