
Abstract. From the Editorial Board. November 9, 2003 would
have marked the seventy-fifth birthday of Boris Borisovich
Kadomtsev, were he alive. An outstanding theoretical physi-
cist, teacher, and enlightener, a prominent scientist in plasma
physics and controlled nuclear fusion, Kadomtsev was also
actively involved in science organization activities. In particu-
lar, from 1976 until his untimely death on August 19, 1998,
Kadomtsev was the Editor-in-Chief of Physics-Uspekhi, and it
is owing to his efforts that the journal improved notably during
his tenure. Now, the Editorial Board, with gratitude and sorrow,
would like to celebrate his birthday and to honor his blessed
memory in these pages. There is, however, a rule Ð indeed an
immutable tradition Ð in the journal that, except for the
Personalia section, no anniversary can be marked in any way
other than in a scientific publication. This rule was strictly
observed under Kadomtsev, and certainly should not be vio-
lated now, even when honoring his memory. Fortunately, there
is a video which remained of a lecture on modern problems of
quantum physics that Kadomtsev delivered on May 12, 1997.
Prepared for publication byMB Kadomtsev, the lecture allows
the reader to revisit the heritage of B B Kadomtsev, to appreci-
ate his logic in treating this very difficult area of physics, to hear
his voice as it were, to recall Boris Borisovich Kadomtsev and to
honor his memory.

1. Introduction.
The Einstein ±Podolsky ±Rosen Paradox.
Discussion between Einstein and Bohr

With respect to quantum irreversible processes, there is, as
Mikhail Gorbachev would put it, a plurality of opinions. This
may sound strange to a physicist, but nevertheless it is true.
Most physicists believe that a sufficiently reliable methodol-
ogy for calculation of all kinds of irreversible processes is
already available, and all one needs to do in order to solve a
particular problem is to find the right textbook or the
published solution (probably even not too recent). At the
same time, there is a group of enthusiasts Ð which includes
both theoreticians and experimentalists Ð who argue that
irreversibility in quantummechanics is a fundamental issue, a
key point that is necessary for understanding the very
foundations of quantum theory. It is this group of people,
and the related theoretical and experimental studies, that will
be the subject of my presentation today.

Every student starting to get acquainted with quantum
mechanics immediately learns about wave-particle duality. It
is this phenomenon, so often discussed in monographs and
textbooks, that is a vivid example of irreversibility. In order to
clarify this statement, let us consider the standard Young's
experiment with two slits, incident on which are certain
quantum particles (Fig. 1). They can be photons, electrons,
neutrons, or atoms. If the wavelength of these particles is
large enough for interference to occur, then we shall see the
interference pattern on a screen. If, however, we try to
measure this interference pattern, we find that the instrument
detects a particle instead of a wave. And not only the
instrument. Let us place a photographic plate here on the
screen. In Fig. 2 you see the experimental data obtained by
Tanamura (who gained fame as the first observer of the
Aaronov ±Bohm effect). In these pictures you see bright
dots produced by the electrons hitting the screen. At first
they are very few (Fig. 2a). As the time of exposure increases,
there are more andmore dots (Figs 2b and 2c), until finally we
see a distinct interference pattern (Fig. 2d). Going back we see
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that there was some hint of these bands in the first pictures,
but a good interference pattern is only produced with a large
number of electrons.

Obviously, the complete interference wave had been there
before the dot was produced. Nevertheless, an individual
electron had no way of manifesting its presence other than by
producing a dot. It happens that out of the wave we suddenly
get a particle. Students (and not only students) are always
taken aback by this: how could this happen? Usually the
following explanation is given: ``This is the effect of the
instrument that registers the particles (in our case the
electrons) as individual dots''. But, after all, the photo-
graphic plate is a perfectly ordinary physical object, and
therefore the registration of particles is at the same time a
physical process of some kind. This process is certainly
irreversible, because all you get after the registration is one
small dot, and you can forget about the big wave that had
produced this dot.

How does this dot arise? The standard recipe (and please
note that `recipe' is exactly what this is called) is the following:
the predictions of quantum theory are essentially probabil-
istic. Where there is wave motion we can use the SchroÈ dinger
equation, while the screen on which the registration of
particles takes place is not described by the SchroÈ dinger
equation. The thing that causes this registration is called the
measuring instrument, even though in this case it is simply a
photographic plate known to most people from their school
years Ð and certainly not regarded as an `instrument'. Well,
how does the measurement proceed according to this recipe?
It is assumed that in the course of registration the wave

function experiences the action of the so-called projection
operator, which (with a certain probability) transforms this
huge and diffuse wave function (see Fig. 1) into a small tiny
object. This is referred to as either reduction of the wave
function or simply the measurement.

The first question that naturally arises in this connection is
whether we can put up with such an abstract arrangement Ð
the use of the projection operator as a kind of makeweight to
the SchroÈ dinger equation Ð instead of analyzing the actual
irreversible physical process? If (indeed) the process of
measurement is not described by the SchroÈ dinger equation,
then by what it is described? And a more profound question
Ðwhere does the probability come from? In my presentation
I will try to answer all these questions.

We shall need to start from something a little far away ±
from the famous Einstein ± Podolsky ±Rosen paradox. Ein-
stein, Rosen, and Podolsky once expressed awave function [1]
with the following characteristics (Fig. 3). If you measure the
coordinate of particle x1, then, since here we have the delta-
function, this means that we have simultaneously measured
the coordinate of particle x2. If instead we measure the
momentum of particle p1, then, since here we have the delta-
function of the difference p2 ÿ p1, we have measured the
momentum of the second particle p2. In other words,
depending on what the first experimenter is doing, the second
experimenter either gets a particle with fixed coordinate, or a
particle with fixed momentum. This is a kind of long-range
action, action at a distance. Einstein was outraged by such a
possibility of long-range action, and he considered this a
result of the incompleteness of quantum mechanics. Accord-

Figure 3.
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ingly, the paper was entitled ``Is quantum mechanics suffi-
ciently complete?''

Beside the idealized example proposed by Einstein,
Rosen, and Podolsky, in real physics there are many similar
instances of quantum mechanical long-range action. For
example, when two particles scatter from one point in
different directions in a spherically symmetric way (see
Fig. 3), the measurement of one particle will immediately
register the direction taken by the other particle. In another
realization of this experiment we could measure the particle
here (dotted line in Fig. 3), and the second particle would then
take a different path. Or, here is a typical example of
thermonuclear reaction: a D-T reaction takes place in
plasma, after which the neutron and the nucleus of helium-4
go in different directions. Now if this helium-4 is registered by
somebody (later I will show that this registration must not
necessarily be performedwith a special instrumentÐ it can be
done by themedium itself), then the direction ofmotion of the
neutron will also be known.

The discovery of this immanent quantum mechanical
paradox gave rise to the argument between Einstein and
Bohr. Einstein was the advocate of local realism. In his
opinion, the paradoxicality of the laws of quantum mechan-
ics is not real, but is related to the properties of the deeper
unobservable subquantum world (this direction of research
later became known as the theory of hidden variables). In
other words, he deemed it possible to find hidden and
previously unknown physical variables whose complex

dynamic behavior gives rise to stochasticity in the quantum
world. You may ask me what `local realism' has to do with
this (Fig. 4). As a matter of fact, keeping within the realm of
the conventional concepts of classical physics, it would be
natural to expect that no manipulations with the first particle
could ever affect the state of the faraway second particle.
According to Einstein, quantum mechanical long-range
action should be regarded as a paradox that has no place in
any realistic physical theory.

In his response, Bohr, in the same year (1935) [2],
formulated the principle of complementarity and indicated
that the elements of physical reality (momentums or coordi-
nates) are not objectively existing attributes of the micro-
scopic world Ð instead, they directly depend on the
instruments used in measurements. In this way, according to
Bohr, the example proposed by Einstein, Podolsky, and
Rosen (the EPR paradox) is not a demonstration of the
deficiency of quantum theory, but rather signals the advent
of the new reality that has come to replace the conventional
notions of classical physics. In other words, long-range action
and stochasticity, in spite of being seemingly paradoxical, are
the most fundamental properties of our surrounding world.

So, more than 60 years ago two fundamentally different
approaches to the understanding of quantum mechanical
phenomena were established. One, supported by Einstein,
was looking for purely classical processes acting at some
submicroscopic level, which could be responsible for the
probabilistic nature of quantum mechanics. By contrast,
Bohr held that it was necessary to modify all our concepts
taken from the compendium of classical physics so as to
reconcile them with the more comprehensive quantum
mechanical view of the world. In this confrontation of two
outstanding thinkers, some physicists sided with Einstein,
and put considerable effort into the development of a
modified version of quantum theory with the classical hidden
variables (in this connection we should recall the original
approach of Bohm, who replaced the wave function with two
interacting objects Ð the classical wave field and the point
particle Ð the pilot wave theory), others were heart and soul
with Bohr (the Copenhagen school, Fock in this country),
while the more practically-minded scientists regarded this
discussion as purely philosophical, since both sides in their
opinion just wanted to validate the equations that worked
well enough for all practical purposes. I think, however, that
the overwhelming majority of physicists were uneasy with the
radical novelty of quantum mechanical concepts, and
together with Einstein they hoped that sooner or later a
more `reasonable' and complete physical theory would be
created, which resolve all `oddities' and paradoxes of
quantum theory.

2. Bell's inequalities. Experimental proof
of the nonlocal nature of quantum theory

The situation changed radically when in 1964 John Bell [3]
formulated his famous theorem, or the famous Bell's inequal-
ities, which implied that this argument can be resolved by
purely experimental means. In other words, he showed that it
is possible to invent such experiments that would give a
straightforward answer as to who is right, Einstein or Bohr.

Bell's inequalities consist of the following: assuming that
hidden variables do exist, it is possible to derive certain simple
inequalities for quantum operators or quantum physical
quantities and see that these simple relations Ð inequalities

Figure 4.
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Ð directly contradict those formulas that can be derived by
the standard methods of quantum mechanics. I shall now
explain how to construct Bell's inequalities in the most simple
version, proposed somewhat later by Clauser, Horne,
Shimony, and Holt [4]. We shall be concerned with the
simplest quantum quantities Ð spins. Assume that we have
spins correlated in pairs (so far, it is not important how they
are correlated). One experimenter measures the direction of
one spin, the other experimenter measures the direction of the
second spin correlated with the first. The observers sit at
different locations, and each can arbitrarily change the spatial
orientation of his spin-measuring instrument.

Each spin (up to the coefficient 1/2, which we drop) from
the standpoint of mathematics is an operator that has only
two eigenvalues, and from the standpoint of physics the spin
can only have one out of two orientations in space: �1 along
the axis, andÿ1 counter to the direction of the axis. Observer
A can only register each spin that comes his way in one of two
directions set by vectors a and c, and observer B in the
directions set by vectors b and d. Assume now that there are
hidden variables. The existence of hidden variables implies
that the observed value of spin: �1 or ÿ1 with respect to any
spatial direction Ð is only determined by the local properties
of the particle involved in the measurement, and does not
depend on what happens with the other particle. If this is true,
then a can be �1, and c can also be �1. If a and c have
different signs, then (a� c) is zero, and (aÿ c) is either �2 or
ÿ2. If a and c are of the same sign, then the opposite is true:
(aÿ c) is 0, and (a� c) is either �2 or ÿ2, while b and dmust
be either �1 or ÿ1. It turns out that this expression at any
value of a, b, c, d must give �2 (Fig. 5). Now where is the
hidden variable in these calculations?

As a matter of fact, if we follow Bohr, the experimenter
cannot simultaneously know the value of spin along two
different directions (a and c in our case), because in changing
the direction of measurement the experimenter must every
time readjust his instrument. If, however, we admit the
existence of hidden variables, then the rotation of the
instrument does not help in any way: the local hidden
variables would always yield �1 irrespective of where exactly
you point your instrument at your particular location.
Because of this, if hidden variables do exist, for each pair we
have this identity, and if we perform averaging with respect to
our hidden variables (in other words, perform measurements
with a large number of pairs), we get the following inequality
(Fig. 5). Indeed, since this combination is always less than or
equal to 2, the mean value, which I have denoted by S in my
drawing, cannot be greater than 2. And indeed, if we take real
pairs Ð for example, singlets (pairs of particles with
antiparallel spins), and use quantum mechanics for calculat-
ing thesemean values, we find that Smay be greater than 2. In
particular, if we select the directions so that a and c, b and d
are mutually orthogonal, and the angle between a and b is
135 degrees, S takes on the maximum value of 2

���
2
p

, and it is
such geometry of the experiment that makes it especially easy
to verify experimentally the validity of one theory or the
other. Experiments with various quantum objects reveal that
Bell's inequalities do not hold, in complete agreement with the
quantum theory. I am not going to quote all results, but will
only mention two papers [5, 6], which are especially helpful
for understanding the basic features of quantum long-range
action.

The first crucial experiment [5] was carried out by Aspect,
Dalibard, and Roger in 1982. They studied polarization

correlations of photon pairs using very fast-changing analy-
zers. The source of correlated pairs was the so-called S-P-S
cascade on a calcium atom. It works like this. Assume that
initially we have an atom in the excited S state, which means
that its total momentum J is zero. Then it decays to an
intermediate level, and, according to the known law of dipole
radiation, its momentum becomes equal to 1; then it emits a
second quantum, and the atom's angular momentum again
becomes 0 (Fig. 6). Obviously, the result of this cascade
transition from J � 0 to J � 0 will be absolutely spherically
symmetrical. In addition to space symmetry, the polarizations
of the two quanta will be concerted in such a way that their
total polarization is zero. Then, at some sufficiently large
distance from the source of photons, they placed polarizers
that could change the direction of polarization faster than the
time of transit of the photon from the source to the polarizer.
This was done with an ultrasonic lattice that could be
switched very quickly, so they had a polarizer that could be
easily switched in a very short time.

Question from the audience: How short?
I do not know Ð questions perhaps later? In fact, the

situation here was more complicated: these polarizers were
rotating quickly, and made several revolutions in the mean
time between two consecutive emissions. One could assume,
therefore, that these polarizers simply change their polariza-
tion before the emitted photons hit them. Then there was the
coincidence circuit, and this circuit produced appropriate
counts, and it was found that these coincidence events,

Figure 5.
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depending on the directions of the polarizers p1 and p2, were
in perfect agreement with quantum mechanics, and `Bell's
inequalities' did not hold. Moreover, this experiment proved
the nonlocal nature of quantum correlations Ð the correla-
tions exist at any time, and are not transmitted by an
electromagnetic signal of any kind.

Another experimentÐknown as Franson's experimentÐ
was proposed much later, in 1989. Franson did not do that
experiment himself; he proposed the scheme for producing
and observing nonlocal interference [7], and this scheme was
subsequently realized by three independent teams. I shall only
speak about one of them [6], but they all got similar results [8,
9]. Franson's experiment is a really wonderful one, it is a
straightforward demonstration of the nonlocality of quantum
theory. I will be speaking of the nonlocality of quantum
theoryÐ this is an established termÐ so as I speak, please get
accustomed to the fact that quantum theory is a nonlocal
theory.

So what is the idea of Franson's experiment? We take the
same S-P-S cascade, but in an unusual configuration. The
atom is selected (Fig. 7) so that its upper S level undergoes a
very long and slow decay over the characteristics time t1, but
as soon as the atom gets into the intermediate P level, it very
quickly goes on into the lower S state, so that t2 Ð the lifetime
of state PÐ is much shorter than t1.

Nowwe apply quantummechanical reasoning. Before the
measurement, quantummechanics cannot tell us at what time
the second quantum will be emitted. This second quantum
will wait for the time when the atom goes from the upper S
level to the intermediate level. This time t1 is large. Because of
this, before the measurement neither the first nor the second

quantum is localized either in time or in space, so that the
width of both packets in space is ct1

Assume now that you place a photodetector on the path of
this first quantum, and this device at some point in space
suddenly detects our photon g1. As soon as it has detected the
photon g1 Ð and the photons are correlated, they move in
different directions Ð the second photon is immediately
localized at the same distance in the opposite direction. This
means that the broad wave packet disappears, and there
remains only a small portion whose width is on the order of
ct2. So, when we measure the position of the photon g1 (the
photon counter is activated), the second photon is localized
on the space interval ct2, which is much smaller than ct1. In
brief, the positions of the two photons aremutually correlated
with an accuracy down to the width ct2, but before the
measurement it is absolutely impossible to say in which part
of the big packet of width ct1 each photon occurs. Moreover,
we can cut two non-overlapping packets of width ct2 each out
of the big packet of the first photon, and then in the second
correlated packet a similar structure will be automatically cut
out, consisting of two narrow packets. It will be easier for me
to further explain Franson's arguments using the experi-
mental results obtained by one of the teams [6]. I already
said that there were three teams [6, 8, 9]. This is one of the
experiments (Fig. 8). This is how it works. Here we have the
source of correlated photons. It is a nonlinear crystal that
converts the incident photon with a very precisely defined
frequency into two photons whose frequencies are defined
with a much worse accuracy: one has (with an accuracy of
� 1=t2) the frequency o1, the other, o2. We can install filters
that direct, for example, g1 to the right, and g2 to the left. Then

Figure 7.Figure 6.
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each photon goes into an interferometer of the Mach ±
Zehnder type: the semitransparent mirror splits the incident
beam into two beams of half the intensity. Half of the
intensity is passed through, and the other half takes a longer
pathÐ it is bounced off themirror back to the point where we
again have a semitransparent mirror Ð here the two halves
meet and continue together. Thanks to this second semitran-
sparent mirror it is possible to observe interference in the
Mach ±Zehnder interferometer. The fact is that the prob-
ability of registration of a photon by detectorD (see Fig. 8) is
1/2 only in the case of a noncoherent beamÐ that is, when the
characteristic length of the wave packet of the photon is less
than the path difference between the long and short arms of
the interferometer. If, however, the frequency has a precisely
defined value, the probability of detecting the photon
oscillates depending on the phase difference between the two
paths covered by the photon in the interferometer. In
addition, one of the interferometers (the left one in Fig. 8)
has a device that can change the length of the longer arm and
produce a step change in the phase (the step was made equal
to p=2); in the other interferometer (the right one in Fig. 8) the
phase could be varied continuously with several p. The
experimental configuration is such that t2 is much shorter
than the time of transit of the photon over the longer arm.
Because of this, no internal primary interference can be
observed in either of the interferometers, because the
uncertainty of the values of individual phases j1 and j2 is
much greater than p. This means that detector D1 and
detector D2 will each fire exactly one-half of the time after
such quanta get into the first and second interferometers. On
the other hand, this time of transit of photons is selectedmuch
shorter than t1, and therefore both the total energy and the
total phase j1 � j2 are defined with great accuracy. This
allows us to observe interference under very strange circum-
stances when remote quanta, each of which gets into
independent interferometers and which then follows the

short and the long paths in different interferometers, are
registered by two independent detectors D1 and D2. We get a
striking situationÐ it seems that there can be no interference
at all, because the first detector works independently, and the
second detector works independently, but they are both
connected to the coincidence circuit! What does this give us?
Remember my drawing (Fig. 7): when we measure the
position of one quantum at some distance from the source,
the second quantum at the very same time is at the same
distance from the source (naturally, to the other side from the
source). In our present case (see Fig. 8), for the two detectors
to fire simultaneously it is necessary that the two quanta
should simultaneously take either the short or the long paths,
each in its own interferometer. In order to find the probability
of this process, it is necessary to take into account the
interference between the short-short and the long-long
amplitudes of propagation of the two photons. It turns out
that one has to add up these two amplitudes, square the result,
and this will give the probability of simultaneous actuation of
the two detectors. The resulting interference pattern (Fig. 9) is
very similar in appearance (only the intensity is somewhat
lower because some photons miss the detectors and others are
not detected simultaneously) to that which would have been
produced by the primary quantum with the frequency
o1 � o2 getting into one of the interferometers. Our inter-
ference, however, is essentially nonlocal, because it involves
two remote particles at the same time.

Here are the results of experiments carried out by Chiao
and colleagues [6] (there were also two other experiments [8,

Figure 8.
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9]).We show (see Fig. 9) two experimental curves for different
values F2, F1. The jump in the phase of the second curve is
caused by activation of the device (see Fig. 8) that changesF2

by p=2. What you see is a genuine interference pattern, which
exhibits a sine-wave dependence on the total phase j1 � j2:
the intensities may drop to zero, and may rise up to their
maximum values. Franson [7] further proves that there is no
logical explanation of such interference from the standpoint
of local `elements of physical reality'. And, indeed, it is easy to
demonstrate that any assumption of the existence of
`objective' (that is, prior to any measurement) characteristics
of the particle, such as its energy of position in space,
obviously contradicts the experimental findings. The quan-
tity S (see definition in Fig. 5), whose absolute value in any
theory with hidden variables cannot be greater than 2, is here
ÿ2:63� 0:08 (at F2 � 0, ÿp=2, and F1 � p=4, 3p=4).

3. Entangled states and Schmidt's form

All these experiments show that the theory of hidden
variables is refuted with gigantic accuracy. There are no
hidden variables. Let me now give an illustration of what
can be meant by hidden variables. It will be convenient to use
the following simple analogy. Assume that we have two balls,
a black ball and awhite ball (Fig. 10).We put them into a box,
shake the box, insert a divider not knowing the color of the
ball in each of the two new boxes, and pull the boxes away
from each other. In the classical case we have hidden
variables. We do not know them, but they are there. One
box contains the black ball, the other the white one. We do
not know which box contains which color, but we know that
this color exists and is preserved, therefore it is our hidden

variable. Now we open one box. If we see black color, we
know immediately that the color in the other box is white. Of
course, we cannot speak of long-range action or nonlocality
Ð it is simply that the initial correlation leads to a situation
when, as soon as we see one hidden variable (the black color
of one ball), we know the hidden variable of the other. I think
that everything here is quite obvious.

Quantum theory is in complete contradiction with this
simple picture, and this ought to be understood very clearly.
In quantum theory there are no hidden variables, and before
the measurement the corresponding ball is neither white nor
black. We can say that it has no color at all Ð that is, before
the measurement we cannot speak of the color of any
individual ball. We can only say that the two balls (two at
once, and not each separately) occur in the superposition of
white and black colors, and this superposition is such that if
we measure one ball and find that it is black, the other ball is
white. And conversely, if the first ball is white, then the second
is black. Such closely correlated states of two quantum
systems (of which I will be speaking further on) are known
in quantum mechanics as entangled states. So, assume that
these colors here are entangled in such way that if one ball
turns black, the other immediately turns white. Now we have
separated these balls, the ball has no color Ð neither white
nor black. Open the box. If the color we see is black, this
means that the other ball automatically assumes the white
color. Its color appears at the instant the box is opened.
Nothing happens before the box is opened, and only when
one box is opened does the other assume (the opposite) color.

You may say that, well, quantum mechanics works that
way Ð there are projection operators that randomly project
the quantum state into one of the colors, and in this particular
case it turns out to be white. Now the question is: what is a
projection operator? What is the real irreversible physical
process that corresponds to this purely formal procedure? To
be able to discuss this question we need to go back to the
problem of quantum correlations. Assume that we have two
quantum systems: system A and system B. We do not know
yet what they are Ð they are simply quantum systems with a
certain set of variables. If these systems are not correlated
with each other, then their joint wave function is expressed as
the direct product of the wave function of one quantum
system by the wave function of the other quantum system.
Accordingly, the SchroÈ dinger equation splits up, the variables
separate, and it becomes two SchroÈ dinger equations: one in
variables A, and the other in variables B. You can write two
SchroÈ dinger equations, they have no connection with each
other. We may assume, for example, that B is the external
world, andA is an isolated system.Here, you have isolated the
system and say: there are no links between this system and the
surrounding world, therefore A evolves according to the
SchroÈ dinger equation, and we do not care about the
evolution of the external world because we know that the
variables are completely separated. The situation is entirely
different if c�A;B� is a joint wave function which is not the
direct product of the two. This means that the wave functions
Ð or the two systems Ð are mutually correlated, and their
wave function is indivisible. What does this mean? Let us first
take the simplest example proposed by Bohm. Assume that
one quantum system is the spin of one particle, the other is the
spin of the second particle, and their joint function is the so-
called singlet state (Fig. 11). This is the superposition of two
possibilities: one with the spin of particle a directed upwards
and the spin of particle b directed downwards, and the

Figure 10.
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opposite with the spin of particle a directed downwards and
the spin of particle b directed upwards. This is Bohm's singlet.
Even if these particles fly far apart, this singlet state remains,
and if we measure one spin in the singlet, the other spin will
become known at once Ð it will be directed the other way.
Spins in a singlet are always directed oppositely. This is an
entangled state. For two spins this is the state of maximum
entanglement, which I will explain shortly. How could we use
the same arrows for constructing other entangled states? Very
simple. Here I take Bohm's wave function, it is written in
Dirac's notation (which in our present case has a rather clear
meaning), and write in place of the numeric coefficient 1=

���
2
p

the amplitude cos y, and here the amplitude sin y. Now look
(see Fig. 11): if I take y � 0, then the first term is multiplied by
1, and the second by 0, so my wave function becomes the
product of one wave function times the other, and the state is
not an entangled one. If we take y � p=2, we again get a non-
entangled state. That is, by varying the angle ywe can vary the
degree of entanglement, and the highest entanglement occurs
at y � p=4.

Now I shall tell you in what sense this state may be
regarded as the simplest variant of a quantum memory
element. To get the feel of the quantum memory element
and the degree of entanglement, it will be useful to provide
here the general definition of the measure of an entangled
state which was quite recently Ð just a year ago Ð proposed

by Bennett, Bernstein, Popescu, and Schumacher [10]. The
measure of entanglement is denoted by the symbol E and is
defined as follows. Assume that we have two quantum
systems, A and B. It turns out that for two quantum systems
A and B it is always possible to select the presentation of their
wave function in a certain particular form which is known as
Schmidt's form. Schmidt's form can be obtained in the
following manner. Assume that we have system A, whose
wave function is defined on a certain basis of unit vectors as a
superposition of different unit vectors with certain coeffi-
cients, and system B, which is also defined in terms of other
unit vectors with some coefficients. We denote these basic
functions by the letters a and b. You have great freedom in the
selection of a particular basis: any unitary transformation
gives you a new system of basic vectors as good as your old
one. However, in order to obtain Schmidt's form for a given
wave function c of the two systems A and B, these vectors
must be selected in a very special way. Namely, we take a
scalar product of c with any unit vector defined on a certain
basis a, then with a vector defined on b, and then rotate these
a and b until we get the maximum of this scalar product.
Having found themaximumof this scalar product c1, wewrite
the first element of Schmidt's form c1ja1b1i, and fix the first
basic function ja1b1i. Thenwe go into space orthogonal to the
first basic function and perform this procedure once again.
We find the next term of the expansion with a smaller
coefficient c2, and the second basic function ja2b2i. This is
repeated over and over until we come to zero. Assume that

Figure 11.
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this happens at step number d, so that the coefficients ci are
numbered from 1 to d. Number d is referred to as the
dimension of the space, and the representation of c in terms
of the basic functions jaibii is known as Schmidt's form
(Fig. 12). Since the unit vectors are defined up to an arbitrary
phase, it is always possible to make all these coefficients ci
real-valued. This done, we can define the measure of
entanglement as E � ÿSc2i log2 c2i .

Why do we need here this logarithm to base 2? In order to
express the result in bits. Let us find the measure of
entanglement E for the maximally entangled singlet state,
when y � p=4. Then the coefficient by each term is 1=

���
2
p

,
squared 1=2, logarithm of 2 to base 2 is 1. When I add up all
this, �1=2� 1� � �1=2� 1�, I get 1. This means that the
measure of entanglement of the singlet is 1 bit. Note that
since the measure of entanglement does not have a straight-
forward classical analogy, for avoidance of confusion this
measure is usually expressed in special units called ebits (from
`entangled bits', of course). Similarly, for a completely
factored-out state at y � 0, p=2, there is no entanglement,
and its measure E becomes equal to zero. Please note that the
measurement of the direction of the spin of one particle (one is
enough Ð quantum mechanics is nonlocal!) in the singlet
immediately reduces the entangled state (y � p=4) to a
factored-out state (y � 0 or y � p=2), and thus destroys one
bit (ebit) of quantum memory.

4. Quantum irreversibility and probability

A singlet is the simplest example of an entangled system;
however, similar irreversible transitions also occur in more
complex systems, which we are going to discuss now. Assume
that we have two arbitrary quantum systems, A and B. What
happens with these systems after they have interacted with
each other? According to the general approach, after the
interaction the wave function of the system is no longer equal
to the product of the wave function that only involves the
variables of system A and the wave function that only
involves the variables of system B. This means that we can
write their joint wave function in the form of the so-called
Schmidt decomposition, and find the number of bits that
describes the degree of entanglement of the two subsystems.
In the experiments of Yuri|̄ Sokolov [11], this number is
slightly less than one, but is not too small. It turns out that no
unitary transformations applied to either of the two systems,
or involving a third system, can change this entanglement. If
the system evolves according to the SchroÈ dinger equation
without any irreversibility, then this entanglement stays
forever, and no trick will help you to get the direct non-
entangled product of the two wave functions. It so happens
that, in the absence of irreversible processes, the information
that from the beginning has rested in the interacting systems
would remain there forever, and then all our world would be
in terrible confusion, because it would be built up of
completely entangled states, always remembering all informa-
tion about one another.

This, however, is not the case with our world, and
entanglement disappears with time, so that the erasing of
information Ð reciprocal information of one quantum
system with respect to another Ð is the simplest example of
an irreversible process, possibly the most fundamental
irreversible process in quantum mechanics that one could
imagine. What, then, is this irreversibility that erases the
quantum memory?

When quantummemory is erased, the wave functionmust
transform from this entangled state (Fig. 13) into the direct
product of two wave functions. We see that this erasing only
takes place because of the irreversible interaction with the
outside world. And this outside world erases the information
in such a way that each of the quantum systems gets into one
of the orthogonal states.

Assume that we have a system A that has only four
quantum states (see Fig. 13). As a result of interaction with
system B, which may have a very large number of states, we
get an entangled state as a sum of only four terms, each term
containing the product of the wave functions of the system
with a certain real-valued coefficient ci. As a matter of fact,
what I am drawing here is a multiple repetition of one and the
same systemÐknown as the quantum ensemble. If we have a
quantum ensemble, then even after the interaction we have
the ensemble of pure quantum states Ð albeit entangled and
showing dependence on the variables of two systems at once.
It is only the contact of the system B with a third system Ð
and not simply a third system, but with an irreversible
external environment Ð that leads to the loss of quantum
information. After that the pure (but entangled) wave
function collapses into a single state with the probability
determined by the coefficient c2i . If we repeat the experiment
once again, the wave function may collapse at random into a
different state. In other words, the initial ensemble of totally
identical quantum states after the encounter with the
irreversible environment transforms into a set of different
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(in our case four) quantum states. After each experiment with
a new member of the ensemble we get a system that has
collapsed into one of the states; eventually Ð having
conducted a sufficiently large number of experiments Ð we
get the statistics enabling us to determine the probability of
each particular finite state.

Let us go back once again to the picture that I showed you
at the beginning (see Fig. 2). What we see here is the result of
interaction of the electron with the molecules of silver
bromide present in the sensitive layer of the photographic
plate. Therefore (simplifying a little but not departing from
the logic) we may assume that the electron hitting the
photosensitive layer gives rise to a multicomponent highly
entangled wave function spread over the entire plate and
composed of the compact wave functions of the electron itself
and the silver atom (produced in the chemical reaction of the
decomposition of silver bromide). Owing to the irreversibility
of the environment, this entanglement is erased, and the
smeared wave function collapses each time into a dot on the
photographic plate. It is exactly in this way that the
irreversible process of registration of one electron takes
place in the photographic plate; if we repeat the experiment
over and over again, we will see the interference pattern. This
means that the pure ensemble, as they say in statistical
mechanics, becomes a mixed ensemble. In fact, however,
each member of this mixed ensemble may be regarded as a
new quantum system. It can also be regarded as a `pure'
system, but it will evolve differently after the registration. I
will talk about this a little later.

So we see that the erasing of quantum information leads
automatically to collapses of wave functions. A collapse
leaves only a single component of the wave function; all

other components are either erased or destroyed. Reasoning
in this way, we can give the answer to the question asked at the
beginning of the lecture Ð how do probabilities arise in
quantum mechanics? Ð without resorting to the non-native
formalized method of projection operators.

5. Quantum and classical chaos of atomic gas

To better understand the physics of the collapse, it is
convenient to analyze certain particular systems. With my
son Mikhail, I have been looking into this matter for a rather
long time, and have found quite a number of quantum
systems that exhibit such processes of collapsing. The most
convenient system turns out to be atomic gas at room
temperature. That is, atomic gas at a relatively high
temperature, when at first glance quantum effects might not
seem to be important. For the sake of clarity, we may even
take air under normal conditions. Air is as good as anything,
because the rotational degrees of freedom of molecules are
not important for our subsequent analysis. From the
standpoint of classical physics, gas is an awfully stochastic
system, and a small perturbation leads to exponentially fast
deviation of the new path from the initial one. The stochastic
behavior of gas atoms in quantum mechanics, even though it
may look similar, is due to entirely different reasons.

For the sake of convenience, let us first consider some test
particleÐ it can be a particle with almost the same properties,
like some isomer or isotope, as long as the isotopic effects are
not important. This particle flies and collides with atoms. It
collides and scatters, as we know from classical mechanics, at
the mean free path length l. From the standpoint of classical
mechanics, the atom will experience one collision on this free
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path length, and will take a different path. From the
standpoint of quantum mechanics, however, everything goes
on differently, because the wave function of the atom is
always more or less smeared in space, and therefore the
particle moving in the gas Ð even as a small wave packet Ð
gives rise to a lot of scattered waves, quite a lot of scattered
waves.

Question from the audience: But with small amplitudes?
Yes, with small amplitudes. So we may ask what

happens with these scattered waves. Let us try to under-
stand step by step what is going on. First we consider a
reversible system. In other words, assume that we take a
small lump of the gas and isolate it completely from the
outside world. After that the atoms behave in complete
compliance with the SchroÈ dinger equation (and hence in a
completely reversible way), and the transformation of the
wave function of the system from one point in time to
another is a unitary transformation. This is so from the
standpoint of mathematics. From the standpoint of physics,
complete reversibility means the following. If at some point
we turn the time backwards, all these arrows must be
reversed (Fig. 14). Accordingly, all these diverging waves
start to converge, and eventually they ought to merge into
the initial wave packet with which we started. In this way,
complete reversibility implies that we must simultaneously
have both converging waves and diverging waves.

Assume now that our gas is in a weak contact with the
environment. In my opinion, it is simply impossible to
imagine that all the converging waves could be phased so
perfectly that theywould be able tomerge back into that small
packet. Wemust say that if there is any external perturbation,
then all the converging waves must be crossed out in the same
way that it is done in electrodynamics, and we only have the
diverging waves. This means that a weak contact with the
outside world leads to a situation when only the diverging
waves remain. Let us now estimate the characteristic size of
the wave packets. Our reasoning is as follows. Take a cube
with the side equal to the path length. Obviously, all memory
Ð quantummemory or any other memoryÐmust disappear
on the scale of the free path length. The particles forget with
what and how they have collided. If so, then we already
understand the scale of wave packets that could correspond to
the gas atoms. These wave packets cannot be larger than the
free path length. In fact, however, they are even smaller.

This can be proved in the following manner. For this we
need to reason again in the spirit of the Einstein ± Podolsky ±
Rosen paradox Ð that is, in the spirit of correlated wave
functions. Assume that we have two particles (see Fig. 14):
having experienced a collision, they travel far away from each
other. If at some distanceÐa distance on the order of lÐthe
second particle experiences a certain irreversible process, like
a collapse into some region of size b, then the first particle also
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undergoes a collapse, since the particles in correlated
quantum systems cannot experience a collapse separately.
Then Ð either from theoretical constructions or from simple
considerations like Fresnel zones Ð we conclude that if the
second particle experiences a collapse, then, since both
particles were emitted from the same source, the first particle
is localized on the scale of the first Fresnel zone. From these
simple considerations we can find the size of thewave packet b
of atoms of the gas. It turns out to be the geometric mean, that
is, the square root of the product, of the de Broglie's
wavelength lB and the free path l, and is thus considerably
smaller than the free path length.

I am not going into too many details, because all this has
been published, and those interested can refer to paper [12].
To complete the picture, however, I will tell you how one can
estimate this value. Consider first the case of one measure-
ment (Fig. 15). If at the initial time we postulate the wave
packet as a plane wave delimited by some Gaussian envelope,
then we can use the nonstationary SchroÈ dinger equation to
see how this packet evolves in time. It broadens little by little,
the short-wave portion running faster forward, and the
longer-wave portion lagging behind. This is the result of
dispersion. In my lectures for the students of the Physico-
Technical Institute I describe in detail how this happens. But I
think it is anyway obvious that because of the dispersion this
is what takes place in quantummechanics. Now that we know
this, it is easy to understand that the three-dimensional packet
will spread out in exactly the same way in each dimension.
However, it does not occur in an empty space, so on the free
path length it will necessarily collide with one of the gas
atoms. We assume that the wave function of the atom is a
similar Gaussian packet. A diverging wave is created after the
collision, and the wave function of the system (test particle�
gas atom) after the collision becomes highly entangled. The
next collision (let us assume that it will first happen with the
atomic partner) will lead to factorization (or collapsing) Ð
that is, the quantum memory of the previous collision will be
instantly erased, and the wave function of the test particle will
have exactly the same functional form as before the first
interaction, which is easily proved by straightforward
calculation. This will take place if we select the initial size of
packet b equal to the square root of the quantity �ht=m (where
�h is Planck's constant, t is the time between the consecutive
interactions, andm is the mass of the atom). From Fig. 15 we
see that before each collision the imaginary and the real parts
in the Gaussian exponent of the packet are exactly the same.
For the sake of clarity (using the most straightforward
algebra), the average size of packet b can be expressed as the
square root of the free path times the de Broglie wavelength.
For a typical molecule of the surrounding air we find
b � 20 A

�
, which is about an order of magnitude greater than

the size of the molecule.
So, in the quantum case, the motion of the test particle

(and, for that matter, of any gas atom) looks like the
following. The initial wave packet of the atom moves and
creates numerous scattered waves (with small amplitudes Ð
about 1=10 for air, as follows from the estimate developed
above). This packet gradually spreads out, then suddenly one
of these scattered waves (only one!) survives, while all the rest
are destroyed, and a collapse occurs. The wave packet (see
Fig. 15) contracts a little (by a factor of

���
2
p

)Ð in other words,
it pulsates from one collision to the next. This pulsation,
however, can be neglected, and then we come to the model of
continuous collapsing.

6. Model of continuous collapse.
Gas as a measuring instrument

For describing the process of collapse in terms of the one-
particle equation, it is necessary to extend the SchroÈ dinger
equation so as to make it explicitly take into account the
irreversible processes of interaction with the surrounding
world Ð in our case, with atomic gas particles. Upon
collision, the two wave packets approach each other and
exchange momentums (and, of course, energies), and since
each of them has some amount of uncertainty as regards its
momentum, the exchange of momentums is associated with a
kind of diffusion with respect to momentums. After colliding,
each of the wave packets exhibits additional broadening with
respect to momentum. Since each packet occupies a cell in the
phase space, there is some contraction with respect to x. This
diffusion with respect to momentums can be described with a
simple diffusion equation (Fig. 16), and after the transition to
the configuration space we get the SchroÈ dinger equation with
a new term that leads to the contraction of the packet. There is
also an added term that accounts for the normalization of the
wave function. We get a kind of equation for the oscillator,
but this is a special kind of oscillator, with purely imaginary
stiffness. This is the model of continuous collapsing. In this
model all atoms may be regarded as wave packets of steady
shape traveling along classical paths, and when these packets
pass through one another, they either scatter with some small
probability, or (with overwhelming likelihood) continue their
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motion, as though they have not noticed the collision. Of
course, the formulas for the differential cross sections of
scattering (if any) of the particles are taken from quantum
mechanics, but in the model under consideration these
packets have essentially become classical particles. Yes, they
are wave formations of rather large size Ð the square root of
the free path times the de Broglie wavelength, but still they are
analogs of the particles. The kinetic equation describing the
dynamic behavior of such quasi-particles will be constructed
as a purely classical equation. In this way, this ongoing
internal self-measurement leads to continuous collapsing of
the wave functions, and at the end the same circumstance
gives us the opportunity to describe the gas with standard
methods based on the kinetic equations for purely classical
distribution functions. If we know the mechanism of irrever-
sibility in the gas, we can now understand the mechanism of
the irreversibility of the measuring act of which I spoke at the
very beginning.What is it from themicroscopic point of view?
What can we see here?

Now you can often hear the argument (reproduced in
many publications) that everything we see in measurements
and instruments is in fact the natural consequence of
irreversible processes, whereas evolution according to the
SchroÈ dinger equation is typical of closed systems. If so, we
must learn to describe the irreversibility Ð especially the type
of irreversible processes that lead to the contraction of the
wave function to the size of a little spot (see Fig. 2) on the
photographic plateÐusually referred to as themeasurement.
Now I will show a scheme that can be used instead of
registration of an electron with a photographic plate.
Assume that we have a gas layer (Fig. 17) confined between
walls. These walls contain the atoms of the gas, but freely let
through some particle with some wave. Assume that this gas
layer is entered by electrons that have passed through two
slits Ð the scheme is the same as in the very first picture (see
Fig. 1). The electrons after the two slits have the same
distribution jcj2, but now they fall on the gas layer (see
Fig. 17) rather than on the photographic plate. Now we ask
what kind of irreversible process is taking place in the gas. In
the gas the atoms collide with one another all the time, and
their wave packets are sustained continuously owing to the
continuous collapsing of their wave functions. As soon as the
wave function of our particle gets in, it becomes entangled
with the atoms of the gas. In other words, having entered the
gas, our particle becomes entangled with all atoms (a great
number of atoms) that happen to be near the wall at that time,
and there is also additional entanglement with each atom due
to the fact that the wave functions of the atom and the particle
are not representable as the direct product of one with the
other, but are expressed as the Schmidt form of which I spoke
earlier (see Fig. 12). In Fig. 17 I tried to show each elementary
collision of a particle with an atom as a little dot. I thought it
better not to draw such tiny details as the diverging waves,
and so let us believe that each point symbolizes one of the
basic orthogonal states of the wave functions of the atom that
have to be multiplied by certain similarly basic and orthogo-
nal wave functions of the particles, so as to get eventually the
Schmidt representation of the complete wave function. We
may also assume Ð and this will always be true if it is an
electron Ð that the incident particle initially has a very large
velocity (as compared with the mean thermal velocity), and
then these points will represent the sites of emission of
secondary waves. What is the amplitude ci for each point,
with which it enters the Schmidt form? It is of the order of

� 1=
����
N
p

, where N is the total number of atoms in the
subsurface layer; in addition, we need to take into account
variation of this quantity (see Fig. 17) both along the y-axis
(owing to the interference pattern) and into the depth of the
gas, because of the damping of the incident particle. Such an
immensely complicated wave function has no chance of
surviving in the gas, and, as I have already noted, over the
characteristic time between collisions t only one atom
happens to have a collision with the incident particle, and
the wave function, smeared until now over the entire gas
layer, turns into a quite small object with a characteristic size
equal to the square root of the de Broglie wavelength times the
free path time. The situation will be slightly different if the
mass of the incident particle is much smaller than the atom's
mass [15]. It turns out that when the particle is light, each
separate collision with an atomdoes not result in the complete
measurement of the position of the light particle, and in the
limit of a very lightweight particle, its passage through the
gas will be similar to the passage of light through a turbid
mediumÐ that is, the atoms of the gas will no longer act as a
measuring instrument for this particle. In this way, the wave
function of the electron after several collisions, when its
energy becomes equal to the thermal energy, will look much
more swelled [15] than the wave functions of the atoms.
However, as follows from simple estimates, the location of
the first collision, when the electron has not yet lost its
entrance energy, is determined with this degree of precision.

We see that for the electron, the layer of gas is a measuring
instrument as efficient as the photographic plate Ð what

Figure 17.
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happens in both cases is a very fast collapse of the initially
very extensive wave function into a wave packet of very small
size, in both cases following the jcj2 law. The only difference
is that this locus of collapse remains on the plate as a latent
image (which can later be developed) and is remembered for
years to come, while in the gas the memory of this event is lost
almost at once Ð within the time t between two collisions of
atoms.

If the mass of the particle entering the gas was very large,
then further behavior of the particle (after the loss of its initial
energy, which can be greater than the thermal energy by
several orders of magnitude) takes on the appearance of
irregular Brownian motion. Right now, together with my
son, I am publishing a paper in Physics Letters [14] where we
consider the Brownian motion of this particle and show what
happens with the wave function of this Brownian particle as it
further evolves in the gas. It turns out that little by little it
narrows down because of subsequent interactions, and if the
mass of this Brownian particle is large, it actually turns into a
classical particle. In other words, if you throw a heavy particle
into the gas Ð not an electron, as we did here, but a heavy
particle Ð and then look at what happens with the track of
the wave function (not of the particle but of the wave
function), you will see that this wave function contracts, and
the particle becomes classical (see Fig. 17). This shows in a
simple way how quantum objects develop classical properties.
The heavier the particle, the more macroscopic it is, and the
narrower is the wave packet produced in the course of its
interaction with, say, a gas or some other irreversible
macroscopic system.

7. General method of description of collapses.
Microworld and macroworld

So what is the general approach to the description of
irreversible processes in quantum mechanics? In a way it is a
combination of all the things that I have described in the
course of this lecture. In other words, the general method
consists of the following: instead of describing the measure-
ments with an abstract mathematical procedure using the
projection operators of dubious origin, we say that each
irreversible quantum system has its own irreversible process
that looks like collapsingÐ that is, like the destruction of the
most part of the wave functions, so that only a small packet
remains. As a matter of fact, this looks like some kind of
projection on to a small region, but this is a physical
mechanism that arises because of irreversibility. It is con-
veniently described in the following manner. We take the
conventional SchroÈ dinger equation and add two new terms.
First is the term that describes regular washout of the initial
wave function because of the interactionwith the atoms of the
gas (if it is a gas). Indeed, when you pass a particle through a
turbidmedium, its initial wave function gradually disappears.
But this is not all. In this gas there is a continuous process that
is one of internal self-measurements, and this process
produces collapses. These collapses occur at random, and
therefore this equation is the equation for a random wave
function (Fig. 18). It is very similar in form to the Langevin
equation. The Langevin equation is written for the Brownian
motion of a classical particle and is constructed like this.
Following Langevin, we assume that the Brownian particle is
under the action of forces of two types: one is the slow
deceleration of a particle because of viscosity, and the second
is the incessant impacts from the surrounding atoms. So, if

you take such regular viscous damping, and add impacts of
atoms, you can use the equation in the coordinates for
describing the random motion of a Brownian particle.

Alternatively, instead of the equation for the random
coordinate we can define the distribution function, and write
the Fokker ± Planck equation for the distribution function.
However, the equation for the distribution function has
nothing to do with the underlying physical process Ð it
simply is a convenient method of describing a random
process. In our case, we employ essentially the same logic.
This is the equation (see Fig. 18) for a random wave function,
and it extends the SchroÈ dinger equation to the case of
irreversible processes. Here t is the mean damping time and
K is an operator similar to the projection operator, which
destroys the random wave function in the largest part of the
Hilbert space and projects it on to one of the orthogonal
states, just as happens when quantum information is erased.
Quantum information from previous correlations is erased,
and a structured wave function is createdÐ this is forgetting.
Forgetting of quantum information means that our wave
functions become simpler and simpler. In other words, from a
highly entangled state they go to a factorized state; then,
owing to the interaction between the particles, a new
entangled state is born, irreversibility then erases quantum
information, and so this process continues ever and ever
again. If you wish, we can average this random process over
the ensemble, and get the conventional kinetic equation for
the density matrix. But again, we must keep in mind that the
kinetic equation for the density matrix is not the original
physical picture, but a mathematical method used for
describing something that lies in the foundation of every-
thing Ð that is, the evolution that leads to the random wave
function.

Then, from this approach we see what the macroworld
isÐ themacroscopic world, or the classical world inwhich we
live, to which we are accustomed, as opposed to the quantum
world that we can only observe with our instruments. The
classical world is the world of informationally open systems.
As a matter of fact, we can only live because we continuously
exchange not only entropy, not only energy with the
surrounding world, but also information, quantum informa-
tion.

Imagine, for example, that we have a macroscopic body,
like a soccer ball. In principle, for such a body of
macroscopic size we could imagine any kind of a wave
function, including the function localized, for example,
within the confines of this room. We immediately see the
eccentricity of such a situation, but we may be slow to
understand why this is not possible. This is not possible
because this macroscopic body is under continuous monitor-
ing from the side of the environment. Light quanta, atoms
fall on this body, bounce off, and fly away. What happens,
then, with these atoms and quanta of light? These quanta of
light find their way into the irreversible world and are
measured. If photons bounce off this screen, they are
measured not only with your eyes Ð I mean the eyes of
those who have not yet fallen asleep Ð but with any objects
that are in this room. They are damped and thus measured,
and atoms are also measured because the processes of
internal measurements are under way all the time in the air.
Accordingly, the wave function of a macroscopic body
cannot be highly delocalized. It is easy to calculate that
irrespective of how it is initially defined, it very soon
contracts into a small wave packet, and the size of this
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wave packet is much smaller than the actual dimensions of
this macroscopic body Ð the body becomes a classical
object.

Now what is a measurement? Measurement is the
interaction of two quantum systems. One system is a
microscopic object that we can keep for some time in an
isolated state, and then bring it into contact with another
object called the instrument. The instrument itself is being
permanently measured by the environment. The surrounding
world keeps monitoring the instrument; this linkage between
the instrument and the environment can be considered very
weak. It is convenient to view it simply as the information
link, quantum information link. However weak, it still exists,
and therefore the wave function of the instrument must
always be packetized, and it is the surrounding world that
transforms the joint wave function of the entangled state of
the microscopic object and the instrument into a simple
product, and this is why we get the statistical results of
measurements when the instrument is brought into contact
with the microscopic object.

It follows that today wemust admit that the nonlocality of
quantum theory has been confirmed experimentally. It has
been proved that there are internal correlations that link
together quantum objects at large distances and in all
collapse-like processes. The correlation is such that one
object will collapse simultaneously with the other, irrespec-

tive of the distance between these objects. We may ask now
whether this effect can be used for building the quantum
telegraph. What is a quantum telegraph? This is a conven-
tional name for a device that can send information from one
quantum object to another quantum object using only the
quantum correlation links. Assume that we have a certain
joint system AB (Fig. 19); it is entangled because if the wave
functions had not been entangled they would simply be
independent from one another. So we assume that they are
entangled, andwe carryA andB away to a large distance from
one another. Then we performmeasurements on system B, or
some other irreversible manipulations. If we do something
reversible in system B, or bring it into contact with another
reversible system C, then nothing happens with the reversi-
bility. This theorem was proved by Bennett, Bernstein,
Popescu, and Schumacher [10, 16].

If, however, systemB touches the external environmentÐ
well, let us say something is measured in this system Ð then
system A immediately responds to that. This is an experi-
mental fact, there is no room for doubt. The question is
whether we could use this correlation for sending a signal
from system B to system A without using any material
carriers: no light, no waves, no anything, only purely
quantum correlation links. The answer to this question is
the following. If the principle that the probability is propor-
tional to the corresponding jcj2, that is, the probability of the

Figure 18.
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corresponding collapse when quantum information is erased
is proportional to c 2i , is true, then in the case where this
distance is large it is not possible to transmit quantum
information. To be more precise, if this distance L is much
greater than ct, where t is the characteristic relaxation time in
system B, then quantum information certainly cannot be
transmitted. This statement can be proved using the standard
mathematical methods of quantum mechanics. If we take the
density matrix of system A, i.e., perform complete averaging
of the joint wave function with respect to the base vectors of
system B, then it turns out that rA absolutely does not depend
on whatever is taking place in system B. The same idea can be
conveyed in the following words: in spite of the existence of a
quantum correlation bond, in spite of the nonlocality of
quantum theory (quantum physics is nonlocal indeed), this
effect cannot be used for transmitting information, because in
order to transmit information it is necessary to accumulate
the signal over a large number of single events. In order to see
in system A that system B is sending signals, we need to
perform averaging over a large number of events. Going back
again to our picture (see Fig. 2), in order to see that yes, this is
a quantum system, and quantum information is being
transmitted, we need to have a very large number of events.
But you can say nothing looking at individual points, and you
cannot transmit information. If the information is trans-
mitted over a large number of events, then we need to
perform statistical averaging. In quantum mechanics it is a
known procedure. It is based on the same principle as taking

the trace of the density matrix Ð Tr, as mathematicians write
it. In other words, it is the averaging of the overall density
matrix with respect to the variables of system B. Then we find
that communication faster than light is not possible at a large
distance. So the discussion reduces to the issue of what
happens on a time scale smaller than t, and space scales
smaller than ct, when there is no real separation of the system
into system A and system B, and the system AB continues in
fact to relax as a joint system. In this case, the possibility of
transmitting quantum information from one system to the
other is open, and it is not possible to resolve it from purely
theoretical considerations. These distances are very small Ð
these links (correlation links) exist within one and the same
complex quantum system, and, therefore, it is an experi-
mental problem. We need experiments to tell us in a
straightforward manner whether it is possible, or whether it
is not possible.

8. Conclusion.
There is no complete determinism in nature

So, I am coming to the conclusion. Irreversible processes
in quantum mechanics, as I tried to demonstrate with all
these examples, are closely associated with the collapses of
wave functions, even those processes to which we are
accustomed Ð for example, gas kinetics, which we have
learned to describe with quantum or classical kinetic equa-
tions. As a matter of fact, averaging has been performed in
advance, and we do not look at what is taking place behind
the curtain, the collapses of the wave functions. If we follow
this more carefully, as I attempted to describe, then we see
that all kinetic phenomena are closely associated with the
collapses of the wave functions. Collapsing is erasing of
quantum information through factorization of the wave
functions. The world continuously simplifies its wave func-
tions, it erases the mutual memory of one system with respect
to the other and turns them into independent systems. This
means that their joint wave functions become independent
products of one another. Moreover, quantum mechanics is
nonlocal, there are irreversible processes of superluminal
erasing of information. This fact has been established by
now with absolute certainty, and not only in those experi-
ments that I referenced here [5 ± 9]. We can name a large
number of experiments Ð certainly more than a dozen,
maybe twenty or thirty Ð which give a straightforward
demonstration of the nonlocality of quantum theory and
quantum mechanics. From this it follows that the argument
between Einstein and Bohr has been resolved in Bohr's favor.
There are no hidden variables in quantum mechanics, and
they cannot be used for constructing the random processes of
quantum mechanics. Quantum mechanics must be accepted
as it isÐ it can be understood if we get accustomed to the fact
that the wave function c has informational nature, and is
different from all other wave fields to which we are
accustomed, which always obey certain conservation laws,
for example, conservation of energy or charge (we multiply
something, integrate, and see that something is conserved).
For the wave function, these conservation laws only work in
the case of reversible evolution, in the framework of the
SchroÈ dinger equation. If the system is irreversible, the wave
function evolves as a probability. I drew a picture of a die
somewhere Ð here, imagine that you roll a die (Fig. 13).
Before the die is rolled, the probability of getting any of its six
sides on top is 1=6. As soon as the die is rolled, and some

Figure 19.
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number comes up Ð for example, one Ð this means that the
probability of getting number one is one, and all the other
probabilities turn to zero.

Speaking of probabilities, we are not embarrassed by the
fact that for each given realization of the random process all
other possibilities are immediately destroyed. When we speak
of the wave function, this sounds a little bizarre, but this is
simply because we are not accustomed to it. If we assume,
however, that all these projection operators that are defined
as indispensable attributes of the complete interpretation of
quantum mechanics are, in fact, some kind of a physical
process that exists along with evolution in accordance with
the SchroÈ dinger equation, we can assimilate this idea. This is
something that does not entirely correspond to probability,
but there is some semblance. It may be some analog of
complex probability, so that jcj2 becomes a probability after
the collapse.

Evolution of quantum systems surrounded by the
irreversible world is described not by the SchroÈ dinger
equation, but by the Langevin-type equation for the
random c function. We must assume that the c function
is a random function; in this way we introduce collapses
into our theory, and then also the equation that describes
this random process becomes similar to the Langevin
equation.

Classical bodies arise because of the ongoing monitoring
of macroscopic bodies by the environment. The measurement
occurs through the interaction of the objects of the micro-
world with instrumentsÐ that is, with macroscopic bodiesÐ
and these macroscopic bodies in turn are measured by their
environment.

Superluminal communication is not possible at distances
greater than ct, where t is the characteristic time of relaxation
processes like irreversible measurements. Is there a possibility
of Ð here it is written (see Fig. 20) Ð superluminal
communication? We should probably emphasize not the
word `superluminal', or faster than light, but simply the
possibility of quantum-correlation communication, because
this is the most important thing. Whether the quantum-
correlation link can exist in the course of measurement Ð

this issue is purely experimental, and must be studied
experimentally.

And the last point. As we see, there is no complete
determinism in nature, it is neither entirely classical not
completely quantum; random processes are hidden inside.
We are lucky to live in the non-deterministic ever-developing
world, and not in a world that could have been predicted with
equations of some kind.

Discussion
Question from the audience: I seem to have missed the main point, and I

want to make it clear. Assume that we have a closed system containing

1000 atoms, which are isolated from the environment but can collide with

one another. My argument is that in this case there is no irreversibility in

quantum mechanics; the irreversibility is, so to say, effective, because we

cannot calculate anything, if I take not packets, which by themselves are

non-stationary states, and then I get time dependence. Each collision of

two packets is even more non-stationary problem, even in the pure

quantum mechanics of two particles. If I take a large number of particles

and know the state at the initial time, then, irrespective of their collisions, I

can predict all the future in principle Ð now we are only discussing the

matter in principle Ð and therefore there is no need for introducing an

irreversible term into the SchroÈ dinger equation. If we consider ordinary

kinetic phenomena, they arise because the nondiagonal elements of the

density matrix or the correlations between different states are very

sensitive to the external action, and can get lost, but this is something

different. I take some part of the system, which, in spite of everything,

interacts with another system, some information flows into the other

system and, of course, I get some irreversibility, but really it is not there,

like what you call self-measurement, unless I interfere with my external

system.

Answer: You are saying practically the same things as I did, only in

different words. I say the same. If there is a closed quantum system, its

evolution is reversible. It evolves according to the SchroÈ dinger equation,

and the recalculation from one state to another is performed with an

elementary transformation. There is no irreversibility. If we take

1000 atoms, they will naturally obey the SchroÈ dinger equation, and there

cannot be any irreversibility. What is more, there are publications by

Serge|̄Yakovlenko and colleagues [19], he used to work at our institute for

some time, and he argues that effects of this type occur even in classical

mechanics, and he received the Krylov Award for this. They take

1024 atoms (210) interacting according to Coulomb's law, and argue that

if these atoms are contained between mirror walls, then (or it can be stars

with gravity) the processes of recombination ought to in principle be

Figure 20.
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taking place there: some of the oppositely charged particles ought to come

closer and closer to each other, classically without limit. They say that if

you take a good computer and do the calculation, there is no

irreversibility. For me it is not quite clear what is behind that; it is likely

that the high symmetry of the Coulombian interaction prevents homoge-

neous occupation of the phase space.

Question from the audience: Is the energy fixed?

Answer: It does not matter. The phase space for the recombining
particles is immense, everything could roll down there. The energy would
go to those particles that do not recombine. All cannot recombine, but a
small part can ì and will give the energy to the non-recombining ones. It
seems that for describing the processes of recombination we need to
postulate some linkage with the environment. But in quantum mechanics
it is very straightforward: if the system is not linked with the environment,
then it is absolutely reversible. But further on, the more complicated the
system (I am repeating what you have said), the more complicated the
system, the smaller the linkage with the environment that is sufécient for
erasing the quantum information, which can be expressed either in terms
of disappearance of the nondiagonal elements of the density matrix, or in
terms of the collapse of wave functions in a separate constituent ì that is,
in the formation of wave packets. So you and I are saying the same thing,
only in different words.
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