
Abstract. Under conditions which are usually associated with
collisionless plasma, and in which the mean free path of charged
particles considerably exceeds the characteristic size of the
spatial inhomogeneities involved, plasmas always contain slow
particles whose mean free path proportional to the fourth power
of their velocity is less than the inhomogeneity scale. Although
relatively few in number, these subthermal particles play a
dominant role in such `weakly collisional' plasmas. In this
paper, the results of the analytical kinetic theory of plasma
are discussed, which highlight the determining role slow colli-
sional particles play in such plasma phenomena as ion-acoustic
wave damping and nonlinear electron-density perturbations due
to the inhomogeneous intensity of the plasma-heating electro-
magnetic field. It is shown that by affecting these plasma
properties the subthermal electrons correspondingly make an
impact on parametric instabilities such as plasma radiation
filamentation and stimulated Mandelstam ±Brillouin scatter-
ing. Theoretical predictions are compared with numerical solu-
tions of the Boltzmann equation. The concept of nonlocal
plasma transfer processes, attracted to the interpretation of
such solutions, is also discussed.

1. Introduction

The development of the theory of parametric action of
electromagnetic radiation on a fully ionized plasma has led
to the concept of a weakly collisional plasma, for which new

specific manifestations of charged particle collisions were
discovered [1 ± 30]. They were found to show up in the
peculiar behavior of the nonlinear plasma density perturba-
tion, which determines the development of electromagnetic
pump field filamentation and stimulated Mandelstam ±
Brillouin scattering (SMBS)1, as well as in the new collisional
dependence of the damping of ion-acoustic plasma waves,
which defines the SMBS threshold. First of all, there is a good
reason to provide a qualitative definition of the notion of a
weakly collisional plasma, which is governed by the Coulomb
law of interaction of charged particlesÐ electrons and ions in
a fully ionized plasma. The notion of a weakly collisional
plasma is essentially intermediate between the notion of a
collisionless plasma and that of a strongly collisional or, as is
often said, collisional plasma. While on the subject of a
collisionless plasma limit, it is common to imply a situation
when the characteristic scale of inhomogeneity l��� kÿ1�
proves to be much shorter than the mean free path lei�VTe� of
a thermal [i.e. having a thermal velocity VTe � �kBTe=me�1=2]
electron:
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Here, e and ei are the electric charges of ions and electrons,me

is the electron mass, Te is the electron temperature, ni is the
ion number density, andL is the Coulomb logarithm [31]; the
summation is extended over plasma ions of all sorts. We can
conveniently invoke the effective degree of ionization Zeff

defined by the relationship
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1 According to the tradition established in off-Russian scientific literature

this latter scattering is termed a stimulated Brillouin scattering, viz. SBS.

(Editor's note.)



where ne is the electron number density. In the analytical
treatment being outlined below we consider the conditions
when the effective degree of ionization is everywhere high:

Zeff 4 1 : �1:3�
In this connection it is pertinent to note that the mean free
path of a thermal electron for its collisions with ions, which
appears in the right-hand side of inequality (1.1), proves to be
short in comparison with the mean free path lee of a thermal
electron for its collisions with thermal electrons:

lei�VTe�5 lee�VTe� � 3m 2
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On the other hand, a strongly collisional plasma is referred to
when the following inequality is valid:

l�4 lee�VTe�4 lei�VTe� : �1:5�

In this case, the plasma is described in the framework of
hydrodynamic notions of viscosity, thermal conduction, and
plasma conductivity. By contrast, in the collisionless limit
(1.1) the plasma description is based on the collisionless
kinetic equation with a self-consistent Vlasov field.

The present review is concerned with the theory of
phenomena caused by charged particle collisions in the
conditions where inequality (1.1) is satisfied and the plasma
is commonly referred to as collisionless. On the face of it, this
statement sounds paradoxical. It is reliant on the fact that the
Rutherford scattering cross section of colliding charged
plasma particles, defined by their Coulomb interaction, viz.
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4�Y=2� ; �1:6�

is inversely proportional to the fourth power of the relative
velocity Vab of the colliding particles. In formula (1.6), ea and
eb are the electric charges, mab is the reduced mass of the
colliding particles, andY is the scattering angle. The velocity
dependence of the cross section (1.6) has the effect that, for
instance, the mean free path of an electron with a velocity V
for its collisions with ions can be written as

lei�V � �
�

V

VTe

�4

lei�VTe� : �1:7�

The direct proportionality of the mean free path to the fourth
power of the electron velocity leads to the result that there
always exist plasma electrons slow to the extent that the
condition for frequent collisions is fulfilled for them:

l�4 lei�V � : �1:8�

The velocities of these electrons, which will be referred to as
`strongly collisional', satisfy the inequality

V < VTe

�
l�

lei�VTe�
�1=4

� V� : �1:9�

When condition (1.1) holds good, the inequality

V�5VTe �1:10�
is valid. In our consideration this signifies the necessity not to
forget about the collisions between the ions and the relatively

small fraction of cold (or subthermal) collisional electrons
having velocities that satisfy inequality (1.9). When the
collisions of these subthermal electrons prove to be signifi-
cant for one or other physical phenomenon in a plasma, in the
subsequent discussion such a plasma will be referred to as
weakly collisional.

When inequality (1.1) is satisfied, the division of electrons
constituting a so-called collisionless plasma into thermal
collisionless and subthermal collisional, which was done in
Ref. [12], forms the physical basis which makes it possible to
construct an analytical kinetic theory of phenomena in a
weakly collisional plasma. This kinetic theory underlies the
materials in the subsequent sections.

We emphasize that formula (1.9) is appropriate when the
velocity of slow subthermal collisional electrons exceeds the
thermal ion velocity VTi � �kBTi=Mi�1=2. This requires that
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It is evident that the velocity range defined by inequalities
(1.11) is quite broad. In such a broad range of parameters, the
electron ± ion collision integral can be represented in the
following form
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where f is the electron distribution function. This formula
describes the momentum transfer in electron ± ion collisions.
It is worth mentioning that formula (1.12) does not describe
the small effect of the electron-to-ion energy transfer, which
depends on the electron-to-ion mass ratio. This effect is
insignificant for the subsequent consideration.

We use the notation
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for the electron ± ion collision frequency to represent formula
(1.12) in the form

Jei� f � �
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Hence it is easily seen that the effective collision frequency
increases according to the law�

VTe

V

�3

�1:15�

with a decrease in electron velocity.
We now address ourselves to the description of collisions

between slow subthermal electrons and the bulk of thermal
electrons, which is highly significant for a weakly collisional
plasma. Since the relative velocity at the collision of a
subthermal electron with a thermal one is of the order of
VTe, then on the strength of inequality (1.4), when the
collisionlessness condition (1.1) is fulfilled, also fulfilled is
the condition

l�5 lee�VTe� : �1:16�

This seemingly allows one to neglect the electron ± electron
collisions. However, the situation is not that simple. The
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matter is that the collision integral describing the collisions of
cold subthermal electrons with the thermal ones which form
the bulk of the electron distribution in the conditions of our
interest, may be written as

Jee� f � � nee�VTe� divV �V 2
Te gradV f� Vf � ; �1:17�

where f is the subthermal electron distribution function. The
vectorial operations of divergence and gradient in formula
(1.17) are performed in the electron velocity space, and the
effective electron ± electron collision frequency for thermal
electrons is defined by the relationship
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: �1:18�

The senior term in the right-hand side of relationship (1.17)
describes diffusion in the velocity space. The corresponding
diffusion coefficient bearing the responsibility for the effect of
collisions is determined by thermal electrons:

D � V 2
Tenee�VTe� : �1:19�

At the same time, the differential operator DV in the velocity
region defined by inequality (1.9) has the effect that the
effective electron ± electron collision frequency for subther-
mal electrons proves to be significantly higher than in
expression (1.18), namely

nee; eff�V � � D
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This is indicative of the possible increase in significance of the
part played by electron ± electron collisions of subthermal
electrons of a weakly collisional plasma in comparison with
the collisions of only thermal electrons between each other.
An important note is in order. A comparison of the collision
integrals (1.14) and (1.17) shows that under conditions where
slow subthermal electrons are of interest and the electron
collision integral (1.14) increases with decreasing their
velocity in inverse proportion to the third power of velocity,
the electron ± electron collision integral increases, in accor-
dance with expression (1.20), as the reciprocal of the velocity
squared. That is why the electron ± electron collision integral
proves to be smaller than the electron ± ion one to the extent
of the smallness of subthermal-to-thermal electron velocity
ratio �V=VTe�. Under the conditions of interest when inequal-
ity (1.3) is satisfied, the second cause for a similar smallness
arises from the large value of the effective degree of
ionization. This reasoning permits us to neglect electron ±
electron collisions when they compete with electron ± ion
collisions. The latter is the case when the electron distribu-
tion function is anisotropic in the velocity space. By contrast,
an isotropic electron distribution function nullifies expression
(1.12) for the electron ± ion collision integral. Then, it is
precisely the electron ± electron collisions which determine
the form of electron distribution function.

This is the reason for consistent accounting of electron ±
electron collisions in the theory being worked out. The
relatively simple form of the linear differential operators,
namely the collision integrals (1.14) and (1.17), makes it
possible, as shown in the present review, to construct an
analytical theory of kinetic phenomena in a weakly collisional
plasma.

In the framework of ideas outlined here, the material of
our review allows one to see the existence conditions for a

weakly collisional plasma in which along with collisionless
effects due to thermal electrons there occur collisional effects
attributed to subthermal electrons. Collisional and collision-
less processes thereby compete under the conditions (1.11) in
which a plasma is usually assumed to be collisionless.

The development of the theory of a weakly collisional
plasma involved matching the resultant data to the notions of
the so-called nonlocal electron heat transfer in plasmas. In
this connection we now dwell upon these notions here.

First of all we emphasize that the conventional Fourier ±
Fick law

q�r� � ÿw gradT �r� �1:21�

relates the heat flux density q�r� to the temperature gradient
T �r� at the same point r in space. The latter fact, as is known
from the Hilbert ± Chapman ± Enskog approach to the
derivation of gas hydrodynamic equations from the kinetic
Boltzmann theory, arises from the smallness of departure of
the particle distribution from the localMaxwellian one, which
is due to the smallness of the particle mean free path in
comparison with the characteristic scale of spatial inhomo-
geneity of gas hydrodynamic quantities. That is why in the
case of a weakly collisional plasma, when the mean free path
of a thermal electron proves to be long in comparison with the
scale of temperature nonuniformity, the local spatial relation
between the electron heat flux density and the electron
temperature inherent in the Fourier ± Fick law does not
appear to be natural.

On the other hand, even in 1974 when interpreting
experimental data obtained in the execution of a laser fusion
program at the Los Alamos Laboratory, R L Morse found
the electron heat flux to be much smaller than that
corresponding to the Fourier ±Fick law (1.21) (see Ref. [32]
on this issue). Notice that as early as 1973 Bickerton [33]
regarded the ion-acoustic instability as a possible limitation
for electron heat transfer. However, the last-named question
falls outside the scope of our paper and deserves special
consideration, despite the fact that it is also related to the
notion of nonlocal heat transport. This notion, in particular,
corresponds to the so-called Knudsen collisionless heat
transfer mode, which in turn corresponds to D Bernoulli's
ideas of a free collisionless motion of gas particles. These
particles, which travel from a hot wall with a temperatureT to
a cold wall with a negligibly low temperature, produce, in
particular, an electron heat flux density

q � fneVTekBT ; �1:22�

where ne is the particle number density, VTe is the thermal
velocity of particles, and f is a numerical factor which
appears to be of the order of unity for a Maxwellian particle
distribution. This formula for the heat flux density at a given
point is characterized by the temperature corresponding to
the temperature of the hot wall (or, in the more general case,
of a hot region). Since the heat flux density at the given point
is defined by the temperature of the hot region an appreciable
distance away, the law of heat transfer (1.22) is nonlocal. The
heat flux (1.22) is, in accordance with the concept of the hot-
region temperature, determined only by those particles which
arrive from this hot region. We note here that this is merely
one `portion' of the Maxwellian particle distribution which
comprises particles having a velocity component directed
from the hot region to the region of heat transfer. In this
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sense the Knudsen collisionless transfer is characterized by a
particle distribution strongly different from the Maxwellian
one, which is one of the reasons why the laws (1.21) and (1.22)
are qualitatively different.

However, an analysis of experiments on laser-produced
plasmas revealed that the use of the law (1.22) in conditions
where the Fourier ±Fick law (1.21) is inapplicable leads to
reasonable results only when the f coefficient in formula
(1.22) is small, i.e.

f5 1 : �1:23�

This property of electron heat transfer in laser-produced
plasma was given the name `electron heat transport inhibi-
tion' [34]. In the pioneering work of Malone, McCrory, and
Morse, the f coefficient, which is referred to as the heat
transport inhibition coefficient, was assumed to lie in the
range between 0.01 and 0.03 [34].

Under the conditions of interest to us, when small, though
nonlocal, i.e. varying sharply in space, deviations (for
instance, dTe) from spatially uniform equilibrium state are
of significance for the description of parametric instabilities,
the following interpolation formula is written down (see, for
instance, Ref. [35]):

q � ÿwHdTe

1� wjHdTej=fneVTekBTe
: �1:24�

In the limiting case when the collisional transfer is very small
due to the weakness of the spatial gradient, the denominator
in the right-hand side of formula (1.24) differs little from
unity. Then, formula (1.24) goes over into formula (1.21). By
contrast, when the spatial gradient is strong, the denominator
in formula (1.24) is large in comparison with unity. Accord-
ingly, the heat flux density proves to bemuch smaller than the
value given by the Fourier ±Fick law. However, the existence
of a small heat transport inhibition coefficient f leads, in
accordance with formula (1.24), to formula (1.22) which
gives, in view of the condition (1.23), a heat flow which is
much weaker than the conventional free molecular flow
corresponding to f � 1. Such are the properties of electron
heat transport inhibition characterized by formula (1.24).

For temperature perturbations with a spatial dependence
dTe exp �ikr�, use is made, in lieu of interpolation formula
(1.24), of the expression

q � ÿikw�k� dT ; �1:25�

where w�k� is the nonlocal electron thermal conductivity
coefficient. In the subsequent discussion we set k � jkj. In
the case of formula (1.24), one finds

w�k� � wSH
1� wSHk dTe=fnekB dTe VTe

� wSH
1� �128=3pf�klei�VTe� : �1:26�

From this point on, wSH is the conventional local electron
thermal conductivity coefficient which, under the condition
(1.3), according to Refs [36, 37] is given in the form

wSH �
128

3p
nekBV 2

Te

nei�VTe� : �1:27�

The values of electron heat transport inhibition coefficient
now are assumed to lie in the 0.1 ± 0.03 range (see, for
instance, Ref. [38]). In this case, the effective nonlocal
electron thermal conductivity coefficient turns out to be
significantly smaller than the local coefficient wSH, when the
product klei�VTe� runs into 0.0074 ± 0.0022, respectively.

Formula (1.26) is the interpolation consequence of
experimental indications. On the other hand, in works [38,
40] there arose a proposal to describe the nonlocal electron
heat transfer by employing the results of collisional kinetic
theory of gases, based on the Hilbert ±Chapman ±Enskog
technique. To clarify the approach elaborated in papers [38 ±
40] we point out that the inclusion of higher derivatives of the
temperature in the determination of electron heat flux density
gives [41]

q � ÿ13:6
�
1ÿ 4:20

Zeff

�
nekBVTelei�VTe�

� �HTe � 264�Zeff ÿ 6:47�l 2ei�VTe�H�DTe�
	
: �1:28�

In the limit Zeff 4 10, this formula leads to the relationship

w�k� � wSH
�
1ÿ 264Zeff

ÿ
klei�VTe�

�2�
: �1:29�

In Refs [38, 39], the authors made use of the PadeÂ ± Borel
approximation which suggests that recourse should be made
to the formula

w�k� � wSH
1� 264Zeff

ÿ
klei�VTe�

�2 �1:30�

in lieu of formula (1.29). The second term in the denominator
of formula (1.30) becomes comparable to unity when
klei�VTe� � 0:06Z

ÿ1=2
eff . Like in the experimental case (1.26),

the parameter klei�VTe� results in the suppression of conven-
tional collisional heat transfer even when its value is quite
small. However, the similarity extends no further, since the
functional dependences of formulas (1.26) and (1.30) on the
argument klei�VTe� prove to be significantly different. Note
that the appearance of a large coefficient of the higher
derivative in expression (1.28) is caused by the contribution
made by electrons with high velocities V, which is due to their
related long mean free paths. It is pertinent to note here that a
conventional kinetic consideration in the context of the
Hilbert ±Chapman ±Enskog method shows the contribution
to heat transfer from higher-derivative terms to be made by
particles with progressively higher velocities, i.e. progres-
sively longer mean free paths. That is why, as shown by
Gurevich and Istomin [42], the employment of the conven-
tional Hilbert ±Chapman ±Enskog method becomes inade-
quate even for a moderately high temperature gradient. It is
for rather high temperature gradients that the heat transfer is
not determined by heat conduction, but becomes convective
and kinetically described. Accordingly, the heat flux is
defined by the particle temperature in the hot region,
allowing the heat transfer in work [42] to be regarded as
nonlocal.

The understanding of collisional phenomena on the basis
of the notion of nonlocal heat conduction in the theory of
parametric instabilities was proposed by Epperlein [1] in the
course of theoretical investigation of such a parametric
plasma instability as the filamentation instability. The
difficulties of this approach will be discussed below.

958 V P Silin Physics ±Uspekhi 45 (9)



On the other hand, the authors of Refs [43, 16] suggested
the use of a system of moment equations to describe the
phenomena in a highly tenuous collisionless and weakly
collisional plasmas. In so doing, this system of equations,
unlike that arising in the Grad moments method, contains
expressions for flows describing nonlocal transfer and, there-
fore, integrally related to the thermodynamic forces that
cause these flows. These equations bear, among other
things, an integral relation between the electron heat flux
density and the temperature gradient. This seemingly highly
attractive possibility for plasma description, as will be seen
from the material outlined below, does not prove to be
consistent with the implications of the kinetic theory of a
weakly collisional plasma. Moreover, this kind of description
may lead to incorrect conclusions.

We dwell briefly on the contents of subsequent sections of
the review. Section 2 states the conditions wherein the
damping of ion-acoustic plasma waves occurs through a
competition between the collisionless Landau damping due
to the Cherenkov effect on thermal electrons and the
collisional damping due to slow subthermal electrons.
Section 3 is concerned with an issue principal to several
parametric plasma instabilities Ð the theory of nonlinear
electron density perturbation by the electromagnetic field of
pump radiation. It is shown how in the course of formation of
this nonlinear perturbation the competition occurs between
the ponderomotive force effect defined by collisionless
thermal electrons and the collisional effect of subthermal
electrons. Section 4 explains how a relatively weak high-
frequency electromagnetic field changes the velocity distribu-
tion of subthermal cold electrons. As shown in Section 5, the
resultant nonlinear influence of the pump field on slow
electrons gives rise to a nonlinear modification of the
nonlinear density perturbation. First, this modification
shows up as a peculiar, fractional-power dependence of the
nonlinearity of electron density perturbation on the pump
intensity. Second, this modification makes it possible to see
how the effect of collisions is nonlinearly suppressed with
increasing pump intensity and the effect of ponderomotive
force becomes dominant. The effect of a nonlinear change of
the electron distribution on the collisional absorption of ion-
acoustic waves by electrons is considered in Section 6 on the
basis of the analytical theory. Sections 7 and 8 serve to
illustrate the application of the results of the analytical
kinetic theory of a weakly collisional plasma to the descrip-
tion of such parametric instabilities as filamentation and
stimulated Mandelstam ±Brillouin scattering. Finally, the
last Section 9 outlines conclusions.

2. Ion-acoustic wave damping

In this section we begin to concretize the notion of a weakly
collisional plasma with a treatment of the phenomenon of
ion-acoustic wave damping. We consider the competition
between the collisionless Landau damping related to the
Cherenkov interaction of thermal electrons with ion-acous-
tic waves, on the one hand, and the collisional damping
caused by subthermal slow electrons, on the other hand.
Our theoretical treatment will follow the analytical theory
[10, 11] in the context of the ideas developed in Ref. [12]
concerning the possibility of inclusion of the additive
contributions from both the thermal collisionless electrons
and collisional subthermal electrons. This consideration
proceeds from the kinetic Boltzmann equation for the

electron distribution function f :

q f
qt
� V

q f
qr
ÿ e

qj
qr

q f
qp
� Jei� f � � Jee� f; f � : �2:1�

Here, j is the electric field potential; the electron collision
integral Jei� f � is given by formula (1.14), and for the
electron ± electron collision integral we have a conventional
expression in the Fokker ± Planck ±Landau form (see, for
instance, monograph [31]):

Jee� f; f � � 2pe 4L
m 2

q
qVk

�
dV 0

� �Vÿ V 0�2dk j ÿ �Vkÿ V 0k��Vjÿ V 0j �
jVÿ V 0j3

�
q
qp
ÿ q
qp 0

�
j

f �p� f �p 0�:

�2:2�
The simplest is the situation wherein electrons, in the absence
of an electric potential, obey the Maxwellian velocity
distribution, which is independent of the time and the spatial
coordinates. Then, assuming the plasma-perturbing potential
to be of the form

j�r; t� � j exp �ÿiot� ikr� ; �2:3�

the perturbed electron distribution function can be repre-
sented as

f �p; r; t� � fM� p� � d f �p� exp �ÿiot� ikr� : �2:4�

We linearize Eqn (2.1), as applied to the problem of plasma
waves, to obtain

ÿ i�oÿ kV� d fÿ iejk
q fM
qp

� Jei�d f � � Jee� fM; d f � � Jee�d f; fM� : �2:5�

For our purposes, d f �p� is conveniently represented in the
following form

d f �p� � ÿ ej
kBTe

fM � d �f : �2:6�

The first term in the right-hand side of formula (2.6) makes
the following contribution to the electron density perturba-
tion caused by the perturbing electric potential:

d1ne � ÿ enej
kBTe

: �2:7�

Accordingly, there arises the following static electron con-
tribution to the longitudinal plasma permittivity:

d1el; e � ÿ 4ped1ne
k 2j

� 4pe 2ne
kBTek 2

� 1

k 2r 2De

: �2:8�

Since the first term in the right-hand side of formula (2.6)
nullifies the right-hand side of Eqn (2.5), for the d �f function
we obtain the equation

ÿ i�oÿ kV� d �f� io
ej
kBTe

fM

� Jei�d �f � � Jee� fM; d �f � � Jee�d �f; fM� : �2:9�
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Furthermore, since the ion sound velocity is low in compar-
ison with the thermal electron velocity, viz.

Vs 5VTe ; �2:10�

expression (2.8) represents, to a high accuracy, the total
electron contribution to the real part of the longitudinal
plasma permittivity. The corresponding ion contribution is
[44]

del; i � ÿ
P

i o
2
Li

o2
� ÿ �o2

Li

o2
� ÿ 4pe 2neZeff

o2Meff
; �2:11�

where oLi � �4pe 2i ni=Mi�1=2 is the ion Langmuir frequency.
For ion-acoustic frequencies lower than the ion Langmuir
frequency, from the equation

el�o; k� � 1� d1el; e � del; i � 0 �2:12�

we obtain o � kVs � k�oLirDe.
The ion-acoustic wave damping is described by Eqn (2.9).

Neglecting collisions completely, from Eqn (2.9) we have the
following conventional solution for thermal electrons:

d �fT �
�

P

oÿ kV
ÿ ipd�oÿ kV�

�
oej
kBTe

fM : �2:13�

Here, division by zero corresponds to the result of solution of
the initial problem, which verifies the fact of occurrence of the
collisionless Landau damping. Formula (2.13), with the
condition (2.10), permits one to write down the following
expressions for the imaginary contributions to the electron
density perturbation and the complex longitudinal plasma
permittivity caused by thermal electrons:

dTne � ÿi enejkBTe
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kVTe
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Formulas (2.8) and (2.15) describe the conventional collision-
less electron contribution to the longitudinal permittivity (see,
for instance, a set of lectures [44]).

It is now an appropriate time to turn to the consideration
of collisional effects in conditions where inequality (1.1),
which is commonly used to neglect collisions, is satisfied.
Our treatment is reliant on a relatively small number of
subthermal electrons whose collisions with the bulk of
thermal electrons are described by the collision integral
(1.17). Let d �fc denote the contribution from cold electrons
to the perturbation d �f of the electron distribution function.
Then, Eqn (2.9) may be written as follows

ÿi�oÿ kV� d �fc � io
ej
kBTe

fM � Jei�d �fc� � Jee�d �fc� : �2:16�

For subthermal electrons with velocities lower than V�, the
collisions are the crucial factor. Moreover, collisions have the
effect that d �fc is only slightly different from the distribution
isotropic in the velocity space. Under these conditions, the
solution of the kinetic equation (2.16) can be written as the
sum of a symmetric component and a small antisymmetric
component:

d �fc � d �fc; s � d �fc; a : �2:17�

In this case, the latter is defined by the condition that its
average over the angles of the electron velocity vector goes to
zero:

hd �fc; ai �
�
don
4p

d �fc; a � 0 :

Furthermore, the significance of the part played by collisions
is represented by the inequality

d �fc; s 4 d �fc; a : �2:18�

Averaging Eqn (2.16) over the angles gives

ÿio d �fc; s � hikV d �fc; ai � io
ej
kBTe

fM � Jee�d �fc; s� : �2:19�

We subtract this equation from Eqn (2.16) and invoke
inequality (2.18) to find

ÿio d �fc; a � ikV d �fc; s � Jei�d �fc; a� : �2:20�

In the right-hand side of Eqn (2.20) we neglected the
contribution from electron ± electron collisions in compar-
ison with that of the electron ± ion ones, because the inequal-
ity �

lei�VTe�
l�

�1=4

Zeff 4 1 �2:21�

is assumed to be satisfied.
The exact solution of Eqn (2.20) is written down in the

following simple form

d �fc; a � ÿ ikV d �fc; s�V �
nei�VTe�3

��������
p=2

p �V 3
Te=V

3� ÿ io
: �2:22�

On the strength of condition (1.10), which in our case (when
l�� 1=k) is of the form

V <
VTeÿ

klei�VTe�
�1=4 � V�5VTe ; �2:23�

the frequency o in the denominator in the right-hand side of
expression (2.22) can be neglected provided that

klei�VTe� <
�
9p
2

�2�
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� 7� 108
�
Aeff
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�2
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where Aeff �Meff=MH, andMH is the proton mass. The last-
named condition is easy to fulfill. Assuming it to be satisfied,
it is readily seen that, in accordance with expression (2.22),
condition (2.18) is met for subthermal particles with velocities
lower than V�. This makes it possible to derive from
Eqn (2.19) the following equation for the symmetric part of
the distribution function perturbation:�

ÿio� k 2V 5lei�VTe�
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Being concerned with the effect of electron ± ion collisions, we
assume that the contribution from the frequencyo to the first
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term in the left-hand side of Eqn (2.25) is small. This imposes
the following restriction on the velocity of subthermal
electrons:

V > VTe

�
Vs

VTe
9

����
p
2

r
1

klei�VTe�
�1=5

� Vo : �2:26�

For the electrons with such velocities to be subthermal and
collisional, the following inequality should be satisfied:

V� � VTe
1ÿ

klei�VTe�
�1=4 4Vo : �2:27�

This inequality reduces to the condition

1

klei�VTe� 4 4:57� 10ÿ3
Z 2

eff

A2
eff

: �2:28�

Since the left-hand side of this inequality is, in accordance
with inequality (1.1), small in comparison with unity, the
condition (2.27) can be met for a small Zeff=Aeff ratio.

Assuming condition (2.23) to be fulfilled, we introduce the
dimensionless variable

x � V 2

2V 2
Te

N 2=7 ; with N � 4Zeff
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and also make use of the relationship
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Then, Eqn (2.25) reduces to
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The latter equation has the following exact solution [10]
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From this point on,Kn�z� and In�z� are the Bessel functions of
an imaginary argument. This solution enables one to write
down the following expression for the electron density
perturbation due to subthermal collisional electrons, which
is induced by the electric potential [10]:
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In accordance with formulas (2.29) ± (2.33), the inequality
(2.26) may be written as

Vc �
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2
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VTe

N 1=7
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which is equivalent to the following condition
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The condition Vc < V� is reduced to the easily feasible
inequality

1ÿ
klei�VTe�

�1=4 5
Zeff

45
: �2:37�

The simultaneous fulfillment of the conditions (2.36) and
(2.37) requires that the following inequality should be
satisfied:

ZeffAeff 4 2200 : �2:38�

In the special case that the plasma ions are ions of gold
�Aeff � 197�, the last-mentioned condition reduces to the
inequality Zeff 4 12.

Relation (2.33) leads us to the following contribution
from subthermal electrons to the imaginary part of the
longitudinal plasma permittivity [10]:
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We sum up expressions (2.8), (2.15), and (2.38) to obtain the
following total electron contribution to the longitudinal
plasma permittivity [11]:
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Employing formulas (2.11), (2.12), and (2.40), we arrive at the
following expression for the ion-acoustic damping constant
due to electrons [11]:
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The first term in square brackets on the right-hand side of
formula (2.41) proves to be no greater than the second
collisional term provided that

1 >
1ÿ

klei�VTe�
� > 0:27

Z
2=3
eff

: �2:42�

In particular, for Zeff > 27, the right-hand side of inequality
(2.42) turns out to be less than 0.03. This signifies that the
collisional and collisionless effects may well compete in the
course of determination of the strength of ion-acoustic wave
damping in the conditions of the so-called collisionless
plasma (1.1), when the wavelength of ion-sound waves is
short in comparison with the mean free path of a thermal
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electron. The analytical results of this section will be
compared with numerical data below.

3. Nonlinear electron density perturbation
by a nonuniform pump field intensity.
Weak-field case

In this section we turn to the theoretical treatment of the
phenomena caused by the action of a high-frequency
electromagnetic field on a plasma. In doing so, it is assumed
that the frequencyo0 of this field is not onlymuch higher than
the effective collision frequency of thermal electrons with
ions, as is commonly assumed (see, for instance, books [31,
44]), namely

o0 4 nei�VTe� ;

but is also much higher than the corresponding collision
frequency of subthermal electrons having a characteristic
velocity Vc:

o0 4 nei�VTe�
�
VTe

Vc

�3

� nei�VTe�
ÿ
klee�VTe�klei�VTe�

�3=7
: �3:1�

Under conditions of interest to us, the right-hand side of
relationship (3.1) is considerably greater than nei�VTe�. In this
case, the theory of action of a high-frequency electromagnetic
field on a fully ionized plasma allows us to represent the
electron distribution function as the sum

f� ~f ;

where f is a component of the distribution function varying
only slightly over the period 2p=o0, and ~f is the high-
frequency component.

We write down the high-frequency electric field intensity
as

E � 1

2

�
E�r; t� exp �ÿio0t� � E ��r; t� exp �io0t�

�
; �3:2�

where E�r; t� varies slowly in time in comparison with
exp �ÿio0t�. Let VE � jeE=mo0j denote the characteristic
amplitude of the electron quiver velocity in the electromag-
netic field. In this case, we shall assume that the high-
frequency field is relatively weak to satisfy the inequality

VE 5VTe : �3:3�
Then, to describe the distribution function f varying only
slightly over the period of a high-frequency field, it is possible
to resort to the approach elaborated in papers [45, 41] to
obtain the following kinetic equation
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where E0 is a slowly varying (low-frequency) electric field.

Equation (3.4) is somewhat more complicated than the
kinetic equation (2.1) which underlay our consideration in
Section 2. Accordingly, some more interesting consequences
arise fromEqn (3.4). In this section we restrict ourselves to the
case where E0 � 0 and consider that nonlinear effect of the
high-frequency field on the electron distribution which
distinguishes this distribution from the coordinate- and
time-independent Maxwellian distribution in the approxima-
tion quadratic in intensity of the high-frequency field, when
one has

f �p; r; t� � fM� p� � d f �p� exp �ikr� ;
�3:5�
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Under these conditions, we neglect the variation of Ei and
d f �p� with time. Then, from Eqn (3.4) follows the equation
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Here, we took into account the fact that
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� 0 :

We first consider the contribution of thermal electrons
with velocities � VTe to the perturbation of electron density,
like we did in Section 2. Bearing in mind the condition (1.1) of
the so-called collisionlessness, we neglect in Eqn (3.6) all the
terms containing collision integrals. Then, Eqn (3.6) reduces
to the relationship

dT f � e 2fM
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ÿdjEj2k �

1
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�
ÿdrs �mVrVs

kBTe
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� d�ErE
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: �3:7�

This relationship enables one to write down the formula

dn
e;T
� ÿ e 2ne djEj2k

4o2
0V

2
Te

�3:8�

describing the nonlinear perturbation of electron number
density, caused by thermal electrons. Formula (3.8) defines
the nonlinear perturbation caused by the ponderomotive
force, or the Miller force [46].

We now address ourselves to the consideration of the
corresponding contribution caused by subthermal electrons
with velocities of the order of Vc (2.35). In this case, first, it is
possible to neglect all the terms on the right-hand side of
Eqn (3.6), with the exception of the term containing the
contribution from electron ± ion collisions. Retention of this
term corresponds, in particular, to the description of electron
heating due to the inverse bremsstrahlung absorption of the
high-frequency field. Second, it would suffice to use the
electron ± electron collision integral in the form of expression
(1.17) to describe subthermal electrons in Eqn (3.6). We then
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obtain

ikV d fc ÿ Jei�d fc� ÿ Jee�d fc�
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In the solution of Eqn (3.9), first, we once again assume the
condition (1.3) to be fulfilled, likewe did in solving Eqn (2.19).
Second, representing the distribution function perturbation
as the sum of symmetric and antisymmetric parts

d fc � d fc; s � d fc; a ; �3:10�

we suppose that
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Then, from Eqn (3.9) follows
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Equation (3.13) is immediately solved, yielding
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The first term on the right-hand side of expression (3.14) is
small in comparison with d fc; s. The smallness of the second
term will be analyzed later. We only note that this term does
not make a contribution to Eqn (3.12), which can now be
written in the following form�
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This equation differs from Eqn (2.25), in particular, in its
inhomogeneous part. Like the solution of Eqn (2.25), the
solution of Eqn (3.15) is therefore represented as
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We are led to the following relationship defining the electron
density perturbation:
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Accordingly, for the function Fd�x� from Eqn (3.15) follows
the equation
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We take advantage of a change of variable (2.29) and avail
ourselves of the substitution

Fd�x� � N 8=7Cd�x� ; �3:19�
to come up with
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The second term in formula (3.14) can now be compared with
d fc; s�V �. As is easily seen, from expressions (3.16) and (3.19)
it follows that d fc;s�V � turns out to be greater than
ZeffN

1=7 4 1. This substantiates the correctness of equation
(3.15) and, hence, of expression (3.20).

The right-hand side of Eqn (3.20) corresponds to the
boundary condition
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This boundary condition is satisfied with the following
solution bounded at infinity:
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The latter expression, if formulas (3.19) and (3.16) are
accounted for, finally makes it possible to find the sought-
for electron density perturbation due to subthermal electrons
[7]:
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Summing up the contributions from thermal (3.8) and
subthermal (3.23) electrons we arrive at the following
expression for the total nonlinear electron density perturba-
tion [7]:
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where
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The first term on the right-hand side of formula (3.24)
corresponds to the ponderomotive pushing out of electrons
by the electromagnetic field, caused by the Miller force [46].
This collisionless contribution proves to be smaller than the
collisional contribution due to inverse bremsstrahlung
absorption when

15 klei�VTe� < 2:6Z
5=4
eff : �3:26�

This relation is valid over a wide range under conditions
specified by inequality (1.3). It is thereby shown that electron
collisions can well compete with the action of theMiller force
on electrons when determining the nonlinear electron
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perturbation by a nonuniform electromagnetic field under
conditions specified by the inequality (1.1), whereby the
plasma is conventionally assumed to be collisionless.

4. Variation of the subthermal plasma electron
distribution in a weak heating
electromagnetic field, caused by inverse
bremsstrahlung absorption

This section is concerned with that departure from the
electron Maxwellian distribution function which is exhibited
by slow subthermal electrons exposed to the electromagnetic
field that heats the plasma. Our prime interest here is the
conditions wherein the intensity of radiation heating the
plasma is moderate to the extent that, apart from condition
(3.3), the condition

ZeffV
2
E 5V 2

Te �4:1�

is also fulfilled. When the inequality (3.3) and the condition
opposite to inequality (4.1) are met, the velocity distribution
of electrons heated due to inverse bremsstrahlung absorption
is known to be qualitatively different from the Maxwellian
distribution over almost all the velocity phase space. Then,
the Langdon distribution [47 ± 50] is realized in lieu of the
Maxwell one. In the limit (4.1) of the sufficiently weak heating
field under consideration, as will be seen below, only a
relatively small group of subthermal electrons departs from
the Maxwellian distribution. However, this exerts, as one
might guess from the material of the previous sections, a
significant effect on those plasma properties which are
determined by slow subthermal electrons.

In this section our main concern is with the plasmas
exposed to a heating high-frequency field with a spatially
uniform intensity, when Eqn (3.4) subject to the conditions
(1.3) and (3.3) in the absence of the field E0 allows the use of
the following equation
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The nonstationary and velocity-anisotropic electron distribu-
tion described by equation (4.2) becomes isotropic in a time
� nÿ1ei �VTe� for thermal electrons. The isotropization of the
distribution of subthermal electrons (significant for our
consideration) with a velocity V sets in an even shorter time
�V=VTe�3nÿ1ei �VTe�. The isotropic distribution arising in this
case obeys the equation
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Equation (4.3) results from averaging Eqn (4.2) over the
angles of the electron velocity vector.

In the context of a weak pump field (4.1) and assuming a
slow electron heating, Eqn (4.3) reduces to the equation

Jee� f0s; f0s� � 0 ;

to which the Maxwellian electron velocity distribution
corresponds. Assuming this distribution to be realized for at
least the thermal electrons, for the temporal variation of the
electron thermal velocity (and hence the temperature) we
obtain from Eqn (4.3) the following equation
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Hence it follows, in particular, that the characteristic heating
time for thermal electrons, viz.

tHT � V 2
Te
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is substantially longer than their isotropization time nÿ1ei �VTe�
in conditions when inequality (3.3) is satisfied. Of special
interest to us is the velocity distribution of a relatively small
fraction of subthermal electrons which experience a pro-
nounced action of the pump field owing to their low velocity
and whose distribution proves to be different from Maxwel-
lian. In this case, the electron ± electron collision integral
describes, according to expression (1.17), the collisions of
subthermal electrons with the bulk of thermal particles. Then,
for the cold-electron distribution function from Eqn (4.3) we
have [27]
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When the temporal variation of the electron distribution
function is determined by electron heating with a character-
istic time (4.6), the time derivative of the distribution function
in Eqn (4.7) is small in comparisonwith the second term.With
the inequality (4.1) being satisfied, the contribution from the
right-hand side of Eqn (4.7) to the temporal variation is also
small. Accordingly, our consideration reduces to a quasi-
stationary treatment, in which case from Eqn (4.7) we have
the following ordinary differential equation

1

V 2

d

dV

�
V 3

�
1

V

d f0; sc
dV

� f0; sc

V 2
Te

�
� V 3

L

V

d f0; sc
dV

�
� 0 ; �4:8�

where

VL �
� ����

p
8

r
ZeffV

2
EVTe

�1=3

�4:9�

is referred to as the Langdon velocity [47]. The condition that
there is no electron source at the zero velocity corresponds to
the boundary condition

1

V

d f0; sc
dV

� 0 :

The solution of Eqn (4.8), complying with the last boundary
condition, takes the form

f0; sc�V � � f0; sc�0� exp
�
ÿ 1

V 2
Te

� V

0

u 4 du

u 3 � V 3
L

�
: �4:10�

Considering that, according to condition (4.1), the inequality

V 2
L 5V 2

Te �4:11�
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is satisfied, it is possible to take advantage of the expression
[25 ± 27]

f0; sc�V � � ne

�2p�3=2V 3
Te

exp

�
ÿ 1

V 2
Te

� V

0

u 4 du

u 3 � V 3
L

�
�4:12�

as that electron velocity distribution function which corre-
sponds to the Maxwellian distribution for velocities much
higher than the Langdon velocity (4.9), and describes the
distribution

f0; sc�V � � ne

�2p�3=2V 3
Te

�
1ÿ V 5

5V 2
TeV

3
L

�
�4:13�

for velocities lower than the Langdon one. Below we also
resort to a somewhat more complicated velocity distribution
for subthermal electrons when, according to expression
(4.12), we have

f0; sc�V � � ne

�2p�3=2V 3
Te

�
1ÿ 1

V 2
Te

� V

0

u 4 du

u 3 � V 3
L

�
: �4:14�

One can see directly from formulas (4.13) and (4.14) that they
apply to a narrow domain of the subthermal-electron
distribution.

The material outlined in this section allows us to make an
important remark concerning the scope of the results of
Sections 2 and 3, as applied to the description of a plasma
exposed to the heating high-frequency field. The character-
istic velocity of the subthermal electrons responsible for the
weakly collisional effects considered in the previous sections
is given by

Vc � VTe

�
9
������
8p
p

Zeff

ÿ
klei�VTe�

�2 �1=7 : �4:15�

In our treatment this velocity is much lower than the thermal
velocity. Meanwhile, one can see from the distribution (4.14)
that, with the heating radiation, subthermal electrons obey
the Maxwellian electron velocity distribution employed in
Sections 2 and 3 only for velocities much higher than the
Langdon one. In other words, the results of these sections are
valid, naturally, in the absence of a field heating the plasma
and, with this field, only for relatively low intensities of the
radiation field which heats the plasma, when the velocity
(4.15) can be supposed to far exceed the Langdon one. This
corresponds to the following inequality which restricts the
heating field intensity:

V 2
E

V 2
Te

5
8

Z
10=7
eff

ÿ
klei�VTe�

�6=7 5 1 : �4:16�

The smallness of the right-hand side of the last inequality
suggests that new nonlinear effects can show up in a plasma
for very weak heating fields, when the condition (4.16) is
violated, i.e. when the difference of the distribution (4.14)
from the Maxwellian one should be taken into account and
when the Langdon velocity is not negligibly low, namely

VL > Vc : �4:17�

The next two sections contain the consideration appropriate
in this case, which extends the theory of Sections 2 and 3 to the
case of such a heating field that the modification of

subthermal-electron velocity distribution due to heating
through the inverse bremsstrahlung absorption is significant.

5. Nonlinear electron density perturbation
by a nonuniform pump field intensity.
Nonlinear case of not-too-weak fields

The subthermal-electron distribution (4.13) obtained in the
previous section will now be employed to analyze the
corresponding variation of the nonlinear electron density
perturbation caused by a spatially nonuniform perturbation
of the high-frequency field. In addition to the spatially
uniform perturbation considered in the previous section we
therefore include a spatially nonuniform component

EkE
�
j � E �kEj ! EkE

�
j � E �kEj � d�EkE

�
j � E �kEj�k exp �ikr� :

�5:1�

Accordingly, for the electron distribution function we have
[see formula (3.5)]

f �p; r; t� � f0s� p� � d f �p� exp �ikr� : �5:2�

By analogy with Eqn (3.6) we now can write

ikV d fÿ Jei�d f � ÿ Jee�d f � � e 2
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0

(
ik
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��

ÿ �EkE
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qVk
Jei

�
qd f
qVj

�)
: �5:3�

Since the equilibrium distribution function for thermal
electrons is hardly different from the Maxwellian distribu-
tion, there follows relation (3.7) from expression (5.1) and,
accordingly, formula (3.8) for the electron density perturba-
tion.

For subthermal electrons whose velocity is assumed to be
small in comparison with the Langdon one, viz.

V5VL ; �5:4�
advantage can be taken of the distribution function (4.13).
This gives, in particular, the equation

e 2
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TeV
3
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2p
: �5:5�

With the proviso that inequality (5.4) is satisfied, the
electron ± electron collision integral on the left-hand side of
Eqn (5.3) turns out to be small in comparison with the last
term in the right-hand side of this equation. For collisional
subthermal electrons, it therefore follows from equation (5.3)
that

ikV d fc ÿ Jei�d fc� � e 2

4m 2o2
0

�EkE
�
j � E �kEj� q

qVk
Jei
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nenei�VTe�
V 2

TeV
3
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2p
: �5:6�
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We substitute d fc as a sum of symmetric and asymmetric
functions [see formula (3.10)] and also invoke the assumption
of smallness of the asymmetric function to derive the
following system of two equations from Eqn (5.6):

ihkV d fc; ai ÿ nee�VTe�
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8
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TeV
2
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; �5:7�
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�
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The solution of the last equation takes the form
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The second term on the right-hand side of formula (5.9)
proves to be small in comparison with d fc; s, provided that

VE < V : �5:10�
This term makes no contribution to equation (5.7). As a
result, Eqn (5.7) assumes the form (compare with Ref. [27])�
k 2V 5l 2ei�VTe�
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On changing the variables

V � V2x
1=5 � VTe

�
VE

VTe

1

klei�VTe�
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���
p
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d fc; s�V � � x 1=5F �1��x� 9ne djVEj2k
10p3=2klei�VTe�V 3

EV
2
Te

; �5:12�

we obtain the following simple differential equation [27]:

x 2F �1�xx

00 � xF �1�x

0 ÿ
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25
� x 2

�
F �1��x� � x 4=5 : �5:13�

The regular at infinity solution to this equation is of the form

F �1��x� � C1K1=5�x� ÿ I1=5�x�
�1
x

dz

z 1=5
K1=5�z�

ÿ K1=5�x�
� x

0

dz

z 1=5
I1=5�z� : �5:14�

The boundary condition Vÿ1 dd fc; s=dV � 0, which corre-
sponds to the absence of a particle flux source in the velocity
space at V � 0, enables determination of the constant C1 for

which the following expression is obtained:

C1 � ÿ 1

21=5
���
p
p G

�
3

10

�
sin

p
5
: �5:15�

Formulas (5.12) ± (5.15) allow one to find the electron density
perturbation which is due to cold subthermal particles:

dnc � ÿ djVEj2k
4V 2

Te

�
VTe

VE

�12=5
C0

klee�VTe�
ÿ
klei�VTe�

�3=5 ; �5:16�
where

C0 � ÿ 36

5

�
108

25p

�1=5 �1
0

dx

x 1=5
F �1��x� � 44 :

It is now time to define more exactly the conditions wherein
the resultant solution (5.14) of Eqn (5.11) and formula (5.16)
are valid. We first address ourselves to the assumption that
the asymmetric part of the perturbation of subthermal-
electron distribution function is small in comparison with
the symmetric one. In this case, advantage is taken of the fact
that the characteristic electron velocities which appear in
expression (5.16) prove to be close to V2. Then, the condition
(5.10) is written as

V 2
E

V 2
Te

5

�
15

���
p
p
2

�1=2
1ÿ

klei�VTe�
�1=2 � 3;6ÿ

klei�VTe�
�1=2 : �5:17�

The fulfilment of this condition underlies the possibility of
considering the second term in Eqn (5.9) to be small in
comparison with the symmetric part d fc; s. The first term in
the right-hand side of expression (5.9) is relatively small, viz.

� kV 4

3
��������
p=2

p
nei�VTe�V 3

Te

;

at V � V2, when the following condition is fulfilled:

V 2
E

V 2
Te

5
0:05ÿ

klei�VTe�
�1=2 : �5:18�

The latter condition is more rigorous as compared to the
condition (5.17). It is the meeting of precisely the condition
(5.18) that should be borne in mind, for the fulfilment of this
condition automatically implies the satisfaction of the
inequality (5.17).

Furthermore, when considering the conditions wherein
expression (5.16) is valid, it is well to also bear inmind that the
characteristic velocity of the electron distribution should be
lower than the Langdon velocity, which permits the use of the
distribution (4.14). Accordingly, from the condition

V2 < VL �5:19�

follows that

V 2
E

V 2
Te

4
18

Z
10=7
eff

ÿ
klei�VTe�

�6=7 : �5:20�

Thus, the two conditions (5.18) and (5.20) restrict on either
side those values of the intensity of the plasma-heating field at
which the relation (5.16) holds true. Meanwhile, the simulta-
neous fulfilment of these two conditions is possible only when
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the following relationship is recognized:

Zeff >
62ÿ

klei�VTe�
�1=4 : �5:21�

In other words, for expression (5.16) to be realized the
condition (1.1) specifying the collisionlessness of thermal
electrons should be fulfilled and, in addition, the ion charge
should be high enough.

The total contribution to the electron density perturba-
tion brought about by a spatially nonuniform high-frequency
electromagnetic field, which is due to the ponderomotive
contribution from thermal electrons (3.8) and the collisional
contribution from subthermal electrons considered in this
section, is given by the following formula [25 ± 27]

dne � ÿne e 2 djE j2k
4m 2o2

0V
2
Te

�
(
1� 44

klee�VTe�
ÿ
klei�VTe�

�3=5 �VTe

VE

�12=5
)
: �5:22�

Second, the term in braces in the right-hand side of this
equation, which is due to subthermal collisional electrons,
proves to be greater than unity (the case corresponding to the
ponderomotive effect) only for a relatively weak heating field,
when the following relation is met:

V 2
E

V 2
Te

<
V 2

E;d

V 2
Te

� 23

Z
5=6
eff

ÿ
klei�VTe�

�4=3 : �5:23�

Bearing in mind the restriction (5.20) on the intensity of
plasma-heating radiation from below, it is easily seen that the
condition (5.23), which defines the possibility of neglecting
the ponderomotive effect, is possible only when

Zeff > 0:7
ÿ
klei�VTe�

�4=5
: �5:24�

This inequality is, naturally, more rigorous than the con-
straint (5.21).

We now give the formula for the nonlinear electron
density perturbation by a nonuniform high-frequency field,
which unifies the result of our consideration in this section
with that in Section 3:

dne � ÿne e 2 djE j2k
4m 2o2

0V
2
Te

�
�
1� 1:73Z

5=7
eff =

ÿ
klei�VTe�

�4=7
1� 0:04Z

12=7
eff �VE=VTe�12=5

ÿ
klei�VTe�

�36=35�: �5:25�
According to this formula, the nonlinear modification of the
electron distribution function of low-velocity electrons being
heated, which was considered in Section 4 and is due to
inverse bremsstrahlung absorption of a spatially uniform
radiation field, defines the nonlinear electron density pertur-
bation brought about by a spatially nonuniform radiation
field, when the inequalities (5.23) and (5.24) are satisfied.

It is evident from formula (5.25) that strengthening of the
weak heating radiation field reduces (suppresses) the colli-
sional influence on the nonlinear electron density perturba-
tion in plasma. In this case, when the heating field intensity
attains a value defined by the relationVE � VE; d [see formula
(5.23)], the collisional influence becomes weaker than the

ponderomotive one.With this heating field, the characteristic
velocity V2 is given by

�V2�d �
2:3

Z
1=12
eff

ÿ
klei�VTe�

�1=3 VTe : �5:26�

This value is significantly higher than the amplitude of the
electron quiver velocity in the heating field, because

�V2�d
VE; d

� 0:5Z 1=3
ÿ
klei�VTe�

�1=3
4 1 : �5:27�

That is why the complete suppression of the contribution
from subthermal collisional electrons to the nonlinear
electron density perturbation, described by relationship
(5.25), takes place in conditions wherein the expansion of
the collisional Boltzmann integral in a power series of the
high-frequency pump field intensity is appropriate. In other
words, this suppression occurs when Eqns (4.1) and (5.3),
which underlie our consideration, are applicable.

6. Effect of a heating high-frequency field
on the weakly collisional dissipation
of ion-acoustic waves

In the previous section we saw how a relatively weak high-
frequency heating electromagnetic field in the conditions
(5.19) ± (5.21) brings about a nonlinear modification of the
collisional contribution to the electron density perturbation,
which arises due to the nonuniform pump field intensity. This
effect, which is caused by collisional subthermal electrons,
emerges under conditions (1.1) which commonly permit the
plasma to be spoken of as collisionless. In our consideration,
subthermal electrons are collisional and the low-intensity
heating field is, in accordance with formula (4.14), respon-
sible for a nonlinear modification of the functional depen-
dence of the subthermal-electron velocity distribution. The
influence of this nonlinear modification of the electron
distribution on the collisional absorption of ion-acoustic
waves by electrons is considered in this section on the basis
of an analytical theory [25 ± 27].

Since the effect discussed in this section is only caused by
subthermal electrons, the contribution to the longitudinal
plasma permittivity made by thermal collisionless electrons,
whose distribution is hardly influenced by the weak heating
field, does not experience a nonlinear modification. The
contribution from thermal electrons will therefore be
described by formulas (2.10) and (2.15).

For subthermal electrons, from Eqn (3.3) with E0 �
ÿgradj we have

ÿ i�oÿ kV�d fc ÿ Jee�d fc� ÿ Jei�d fc�

� ÿ e 2

4m 2o2
0

�EkE
�
j � E �kEj� q

qVk
Jei

�
qd f
qVj

�
� iejkV

mV

d f0s�V �
dV

: �6:1�

Here, f0s is described by formula (4.14). Furthermore, the
right-hand side of Eqn (6.1) contains a term nonlinear in the
electric field intensity of the radiation that heats the plasma.

To describe the subthermal collisional electrons con-
cerned, we resort to the expansion

d fc � d fc; s � d fc; a �6:2�
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of the distribution function perturbation into symmetric and
antisymmetric components, which is routinely used in our
treatment. In this case, it will be assumed that

d fa; s 5 d fc; s ÿ ej
mV

d fs; c
dV

: �6:3�

Then we obtain from Eqn (6.1) that
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The solution of Eqn (6.5) can be written directly as
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The second term in formula (6.6), first, is small in comparison
with d fc; s due to the smallness of �V 2

E=V
2� and, second,makes

no contribution to Eqn (6.4). Therefore, from Eqn (6.4) we
now have
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To reveal, with the aid of Eqn (6.7), the role played by
subthermal electrons with velocities of the order of and
smaller than the Langdon velocity, we change the variable:

z � V

VL
; d fc; s�V � � FL�z� : �6:8�

Then, Eqn (6.7) can be rewritten as
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where
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When seeking an approximate solution to Eqn (6.9), we first
of all assume that
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This permits us to neglect the expression proportional to the
frequency o in the denominator of the second term of
Eqn (6.9). Furthermore, it will be recalled that the effect of
inverse bremsstrahlung absorption on the distribution mod-
ification under consideration can, according to the condition
(4.17), manifest itself only when the left-hand side of the
inequality (4.16) is violated, which corresponds to m4 1. That
is why, endeavoring to consider the opposite limit, we
suppose that

m5 1 : �6:12�

In this limit, the differential operator in Eqn (6.9) can be
neglected, making it possible to immediately write down the
solution of the elementary equation arising in this case. The
solution sought has the following simple form

FL�z� � ÿ ejne
kBTe

1

�2p�3=2V 3
Te

�
(

z 3

1� z 3
� 1

z 2�1� z 3�
io

kVTe

9
��������
p=2

p
klei�VTe�

�
VTe

VL

�5
)

�6:13�

subject to the inequality
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5 1 : �6:14�

Upon integration of the real part of formula (6.13) over the
subthermal-electron velocity region, it makes a contribution
to the real part of the density perturbation, which is negligible
in comparison with the collisionless contribution (2.7) of
thermal electrons. By contrast, the imaginary part of formula
(6.13) gives the collisional dissipative contribution
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which is due to subthermal electrons and is of interest to us. It
describes the competition between the effect of collisions and
the Cherenkov effect, the latter corresponding to the
collisionless contribution to the density perturbation (2.14).

Formula (6.15) in combination with formulas (2.7) and
(2.14) now allows us to write down the following expression
for the electron contribution from thermal and subthermal
electrons to the longitudinal plasma permittivity [25, 27]:
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The collisional dissipation proves to be more significant than
the Cherenkov dissipation only at moderate field intensities
of the radiation that heats the plasma, when the inequality

V 2
E

V 2
Te

<
41

Zeff

ÿ
klei�VTe�

�3=2 �6:17�

is satisfied. Since the right-hand side of this inequality is quite
small, the collisional dissipation becomes insignificant when
the plasma is exposed to the heating field with a very low
intensity.

When inequality (6.17) is fulfilled, the right-hand side of
Eqn (6.11) proves to be smaller than

0:016

�
Zeff

Aeff

�1=2
1�����������������

klei�VTe�
p ;

making the inequality (6.11) always satisfiable in the condi-
tions specified by Eqn (1.1).

We must ascertain the feasibility of the above assumption
(6.14). To this end we note that a comparison of formulas
(6.16) and (2.40) testifies to the fact that the nonlinear
collisional contribution in formula (6.16) overrides the linear
collisional contribution in formula (2.40), i.e. advantage
should be taken of formula (6.16) in lieu of formula (2.40)
when the heating field intensity becomes high enough:

V 2
E

V 2
Te

>
18

Z
10=7
eff

ÿ
klei�VTe�

�6=7 : �6:18�

Then, the left-hand side of inequality (6.14) proves to be
smaller than

5� 10ÿ3
���������
Zeff

Aeff

r
Z

10=7
eff

ÿ
klei�VTe�

�3=7
: �6:19�

On the other hand, the simultaneous satisfaction of inequal-
ities (6.17) and (6.18) imposes the condition

klei�VTe�5 3:6Z
2=3
eff :

Then, expression (6.19) and hence the left-hand side of
inequality (6.14) prove to be much smaller than the following
expression:

0:0086

���������
Zeff

Aeff

r
Zeff <

Zeff

166
:

This condition ensures the fulfilment of the condition (6.14)
and substantiates the solution (6.13), and therefore the
validity of the relations (6.15) and (6.16).

We employ formulas (2.11), (2.12), and (6.16) to obtain
the following expression for the electron contribution to the
damping decrement of ion-acoustic waves [25, 26]:

g � kV 2
s

VTe

( ����
p
8

r
� 2

���
3
p

p2=3

klei�VTe�
1

Z
2=3
eff

�
VTe

VE

�4=3
)
: �6:20�

The qualitative distinction between this expression and
formula (2.41) arises from its nonlinear dependence on the
heating field.

To summarize this section we give the formula conclusive
for Sections 2 and 6, which describes the weakly collisional
electron contribution to the longitudinal plasma permittivity

for o5 kVTe:

del; e�o; k� � 1

k 2r 2De
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1� i

o
kVTe

 ����
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2

r
� 2;17
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eff
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1� 2:17

�
Z 2

eff

k 3l 3ei�VTe�
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4
���
3
p
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Z
2=3
eff klei�VTe�

�
VTe

VE

�4=3
#ÿ1)ÿ1!#

: �6:21�

For very low intensities of the heating electromagnetic field,
formula (6.21) goes over into formula (2.40). When the
intensity of the heating field deliberately satisfies the condi-
tion (6.18), formula (6.21) goes over into formula (6.16).

7. Filamentation instability
of a weakly collisional plasma

This section is concerned with the filamentation instability of
electromagnetic radiation in fully ionized, weakly collisional
plasma. The material of Sections 3 and 5 underlies the
presentation of the theory of this instability. When consider-
ing this instability by way of illustration in a spatially uniform
plasma, our concern will be with the instability of the plasma-
heating radiation, to which we put in correspondence in
formula (3.2) the following dependence

E�r; t� ! E exp �ik0r� : �7:1�
In this case, the heating field frequency o0 and the wave
vector k0 are related as

o2
0 � o2

Le � c 2k 2
0 ; �7:2�

where oLe �
������������������������
4pe 2ne0=me

p
is the Langmuir electron fre-

quency, and c is the velocity of light.
The filamentation instability corresponds to the occur-

rence, along with the field (7.1) heating the plasma, of the
perturbation field corresponding to

E�r; t� ! E exp �ik0r� �
�
dE��r� exp �ikr�

� dEÿ�r� exp �ÿikr�
�
exp �ik0r� : �7:3�

The dependence of dE� on the coordinates only relates to the
stationary formulation of the problem on filamentation
instability, when the instability development is considered in
space. The instability corresponds to the growth of filamen-
tary perturbations in space. We retain only the terms linear in
the perturbation field to obtain��E�r; t���2 ! jE0j2 � djEj2k exp �ikr� � djEj2ÿk exp �ÿikr�

� jE0j2 � �E �0 dE� � E0 dE �ÿ� exp �ikr�
� �E0 dE �� � E �0 dEÿ� exp �ÿikr� : �7:4�

Bearing in mind the consequence of the Maxwell equations

DE� o2
0

c 2

(
1ÿ o2

Le

o2
0

�
1� dn�r�

ne0

�)
E � 0 ; �7:5�

where

dn�r� � dnk exp �ikr� � dnÿk exp �ÿikr� ;
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we next assume that the vector k0 is aligned with the z-axis
and the vector k is orthogonal to this direction. Then,
supposing the variation of dE� over a distance l�0 � 1=k0 to
be small, we obtain from Eqn (7.5) the following reduced
equations�

2ik0
d

dz
ÿ k 2

�
dE� � o2

Le dn�k
c 2ne0

E : �7:6�

In accordance with the results of Sections 3 and 5, we have

dn�k
ne0
� ÿ e 2 djEj2�k

4m 2
0o

2
0V

2
Te

�
1� F �k�� ; �7:7�

where

F �k�

� 1:73Z
5=7
effÿ

klei�VTe�
�4=7�

1� 0:04Z
12=7
eff �VE=VTe�12=5

ÿ
klei�VTe�

�36=35� :
�7:8�

Employing formula (7.4), we obtain from Eqn (7.6) a system
of two equations�

2ik0
d

dz
ÿ k 2

�
�E � dE��

� ÿo2
LeV

2
E�1� F �

4c 2V 2
Te

�E � dE� � E dE �ÿ� ; �7:9��
ÿ2ik0 d

dz
ÿ k 2

�
�E dE �ÿ�

� ÿo2
LeV

2
E�1� F �

4c 2V 2
Te

�E � dE� � E dE �ÿ� ;

where VE is the amplitude modulus of the electron quiver
velocity in the pump field. The solution of this system bears
the following functional dependence on the coordinate:

expGz : �7:10�

Here, the spatial gain coefficient G is defined by the relation

G 2 � 1

4k 2
0

�
ÿk 4 � o2

LeV
2
Ek

2

2c 2V 2
Te

�
1� F �k��� : �7:11�

It is advantageous to rewrite formula (7.11) using a somewhat
different notation, which will simplify its comparison with the
theoretical results obtained in several papers. However, prior
to doing this, there is a good reason to violate the sequence of
our exposition. We are reminded that earlier it was general
practice to consider two qualitatively different reasons for the
emergence of radiation filamentation in a fully ionized plasma
[51, 52]. One of them lies with the ponderomotive force (or the
Miller force), which forces out the plasma electrons from the
domain of strong electromagnetic field, resulting in the
increase in field intensity in the rarefaction domain origi-
nated. The other reason is identified with the thermal
mechanism and consists in the following. Owing to the
inverse bremsstrahlung absorption of radiation, the plasma
temperature increases. In circumstances where the pressure is
approximately constant, this is responsible for a lowering of
electron density, with a consequent increase in field intensity

once again. In this case, in the context of the thermal
mechanism, the rise in temperature of the electrons being
heated is proportional to the high-frequency conductivity

shf � e 2ne

meo2
0

nei�VTe� �7:12�

and inversely proportional to the electron thermal conductiv-
ity coefficient, which assumes the form (1.27) in the limit
Zeff 4 1. The analogue of formula (7.11), which arises when
the ponderomotive and thermal mechanisms are included, is
written down as

G 2 � 1

4k 2
0

�
ÿk 4 � o2

Le

c 2

�
k 2V 2

E

2V 2
Te

� shfjEj2
wSHTe

��
: �7:13�

For several years, the studies of the filamentation theory in
conditions (1.1) were pursued in the expectation of describing
the macroscopic motion in a weakly collisional plasma on the
basis of the notion of nonlocal heat transfer, with the aid of
which the generalized Fourier ± Fick law for the spatial
dependence of temperature perturbation � dT exp �ikr� is
written in the form of expression (1.25). In accord with this
formula we arrive at the following generalization of the
relationship (7.13):

G 2 � 1

4k 2
0

�
ÿk 4 � o2

Le

c 2

�
k 2V 2

E

2V 2
Te

� shfjEj2
w�k�Te

��
: �7:14�

Relating the result (7.11) to the notion of nonlocal heat
transfer, one can rewrite expression (7.11) in the form (7.14)
if the electron thermal conductivity coefficient is taken as

w�k� � wSH
3p

64k 2
ÿ
lei�VTe�

�2
F �k�

: �7:15�

The generalization of the formulas (1.21) and (7.15), which
bears the interpolation dependence on the magnitude of the
wave vector k when passing from the weakly collisional
conditions (1.1) to the strongly collisional conditions
klei�VTe�5 1, is the relationship

w�k� � wSH
X�k� ; �7:16�

where

X�k� � 1� 64

3p

ÿ
klei�VTe�

�2
F �k�

� 1� 12
ÿ
klei�VTe�

�10=7
1� 0:04Z

12=7
eff �VE=VTe�12=5

ÿ
klei�VTe�

�36=35 : �7:17�

Prior to the work [7] concerned with an analytical theory of
radiation filamentation in a weakly collisional plasma, a
series of foreign theoretical studies in this field had been
known, which were based on the numerical solution of the
kinetic Boltzmann equation. These papers considered only
the linear theory, in which the nonlinear dependence (7.17) on
the intensity of the heating field subject to filamentation was
not revealed. In other words, the results of the foreign papers
only apply to low-intensity plasma-heating radiation, when
we adopt

Zeff
V 2

E

V 2
Te

<
15

Z
3=7
eff �klei�6=7

5 1 : �7:18�
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For such weak fields being the case, formula (7.17) assumes
the form

X0�k� � 1� a
ÿ ��������

Zeff

p
klei�VTe�

�a
: �7:19�

Then, according to formula (7.17), the following result of the
analytical theory holds: a � 12, a � 10=7 � 1:43 [7].

In the foreign papers proceeded from the solution of the
Boltzmann equation, different values of the a index of a
power were given. The first value of two, given in Ref. [38], is
related to the PadeÂ ± Borel approximation (1.30) which
corresponds to the emergence of corrections to the thermal
conductivity coefficient of order

ÿ
klei�VTe�

�2
, when the

Hilbert ±Chapman ±Enskog method is taken advantage of
(see, for instance, Refs [38, 39]). Furthermore, here we give
the values of the a power derived in the special studies on the
numerical solution of the Boltzmann equation: a � 4=3 [1],
a � 1 [2], a � 1:148 [15], a � 1:15 [16], and, finally, a � 1:44
and a � 12 in Ref. [6]. The numerical finding of Ref. [6] is
closest to the analytical result of Ref. [7]. After the advent of
the analytical theory of filamentation instability [7], the work
on numerical simulation of the solutions of the Boltzmann
equation, as applied to this problem, no longer appeared to be
quite indispensable. This, in particular, accounts for the
absence of numerical investigations for plasma-heating
radiation intensities violating the inequality (7.18), i.e. in the
case when the Langdon velocity is small in comparison with
the electron thermal velocity. In this sense we can state with
assurance that the analogues of the nonlinear dependence
(7.8) which describes the suppression of collisional influence
on the filamentation phenomenon due to relatively weak
pump fields cannot be found in the world scientific
literature.

We next consider the regularities for those values of the
pump field intensity, which correspond to the filamentation
instability threshold. Let L denote the dimension of the
plasma domain in which filamentary perturbations build up
along the z-axis. As usual we define the threshold sought by
the condition

GmaxL � 2p : �7:20�
For comparison with a conventional theory we first

consider the implications of the approach which does not
take into account the weakly collisional effects of interest,
when relation (7.13) holds true. Then, for the wave vector at
which the spatial gain coefficient is the highest we have

k 2
max �

o2
LeV

2
E

4c 2V 2
Te

; �7:21�

and the peak gain coefficient takes the form

G 2
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2
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2
Te
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LeV
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Te

� 3p

8
ÿ
lei�VTe�

�2� : �7:22�

In accordance with formula (7.22), the thermal mechanism in
a strongly collisional plasma is commonly assumed to be the
decisive one when

3p
8

c 2

o2
Le

4
V 2

E

V 2
Te

ÿ
lei�VTe�

�2 �7:23�

for sufficiently short mean free paths. In this case, according
to formula (7.20), for the filamentation instability threshold

we have

V 2
E; th

V 2
Te

� 2048pc 2k 2
0
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�2
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LeL
2

: �7:24�

In this case, the inequality (7.23) takes on the form

L >
128

3
k0
ÿ
lei�VTe�

�2
: �7:25�

In the limit opposite to the inequality (7.23), when radiation
filamentation is believed to be determined by the ponder-
omotive mechanism, for the filamentation instability thresh-
old we find

V 2
E; th
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Te

� 16pc 2k 2
0

o2
Le�Lk0�

: �7:26�

We now address ourselves to those implications of the
theory of a weakly collisional plasma, which correspond to
the radiation filamentation effect and permit us to describe
the passage from the ponderomotive mechanism to the
thermal one with greater consistency in comparison with
relationship (7.14) which indicates only the two correspond-
ing limits. To this end we employ formulas (7.14) ± (7.17)
which allow us to write down the following relation for the
spatial gain coefficient of filamentation instability:

G 2 � 1

4k 2
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LeV
2
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2

2c 2V 2
Te

�
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�7:27�

In the limit of a low-intensity pump field (7.18) and with the
condition (1.1), i.e. the weakly collisional plasma condition,
formula (7.27) transforms to

G 2 � 1
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LeV
2
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2
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Te
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The weakly collisional effect under description prevails over
the ponderomotive one (as well as over the conventional
thermal effect) provided that

2:6Z
5=4
eff > klei�VTe�4 1 : �7:29�

Then, the increment is at its maximum for

kmax � 0:66Z
5=18
effÿ

lei�VTe�
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LeV
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when
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In accord with formulas (7.31) and (7.20), for the filamenta-
tion instability threshold in the linear weak-field mode (7.18)
we obtain

V 2
E; th

V 2
Te

� 50c 2k 2
0

ÿ
lei�VTe�=L

�4=7
Z

5=7
eff o

2
Le�Lk0�5=7

: �7:32�

A comparison of formulas (7.26), (7.24), and (7.32) shows
that a low filamentation threshold in the limit, when the
ponderomotive mechanism is prevalent, is ensured by the
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large length L of the filament amplification region, as
compared to the pump field wavelength l�0 � 1=k0. In the
opposite limit, when the thermal mechanism is the principal
one, a low filamentation threshold is ensured by the large
length L of the filament amplification region, as compared to
the mean free path lei�VTe� of a thermal electron,. In the
intermediate range, to which formula (7.32) corresponds and
where the weakly collisional mechanism manifests itself, the
filament amplification region L may be small in comparison
with the mean free path. However, in this case the filamenta-
tion threshold proves to be low anew due to the large effective
ion charge and the large, in comparison with the pump field
wavelength, length of the filament amplification region.

We now consider, unlike the case (7.28), the nonlinear
effect of the pump field on the weakly collisional thermal
mechanism of filamentation. This effect manifests itself in the
suppression of this thermal mechanism in conditions of a
relatively weak pump field, when the following condition is
fulfilled:

1 > Zeff
V 2

E

V 2
Te

>
15

Z
3=7
eff �klei�6=7

: �7:33�

In this case we have

F �k� � 44

Zeff

ÿ
klei�VTe�

�8=5 �VTe

VE

�12=5

; �7:34�

and the function X�k� characterizing the nonlocal electron
heat conduction assumes the form [29]

X1�k� � 1� 2816
ÿ
klei�VTe�

�2=5
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�
VTe

VE

�12=5

: �7:35�

Accordingly, the filament spatial gain increment is defined by
the formula

G 2�k� � 1
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: �7:36�

This formula describes the competition between the ponder-
omotive filamentation mechanism and the weakly collisional
thermal mechanism, when the latter endures suppression by
the pump field in the conditions specified by Eqn (7.33).
However, when the inequality

10:6

Z
5=8
eff

�
VTe

VE

�3=2

4 klei�VTe�4 1 �7:37�

is satisfied, the weakly collisional thermal mechanism would
remain more significant than the ponderomotive one. In this
case, the filamentation increment peaks for [29]

k � kmax � 1:24
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VE
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When the ponderomotive contribution is neglected, formula
(7.36) can be represented as

G 2�k� � k 4
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On appropriate substitution, one arrives at [29]

G 2�kmax� � 9k 4
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The last formula and relation (7.22) lead to the following
expression for the filamentation instability threshold:
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: �7:41�

On the instability threshold, the weakly collisional mechan-
ism is more significant than the ponderomotive one provided
that

4Z
1=2
eff 5

�
o2

Le

c 2k 2
0

�3=5
Lk0ÿ

k0lei�VTe�
�4=5 :

8. Stimulated Mandelstam ±Brillouin scattering
in a weakly collisional plasma

For simplicity of presentation we shall consider a spatially
uniform plasma. The plasma-heating radiation of the pump
field described, like in the previous section, by formulas (7.1)
and (7.2) propagates through the medium under discussion.
Unlike the description of the filamentation instability
perturbation field with the aid of expression (7.3), in the case
of SMBS we consider, along with the plasma-heating field, a
perturbation with the frequency shift

o1 � o0 ÿ o : �8:1�
Such a situation would occur if we adopt in formula (3.2)
that

E�r; t� ! E exp �ikr�� dE�r; t� exp �ÿi�o0ÿ o�t� i�k0ÿ k�r�:
�8:2�

This signifies that the perturbed field of the scattered
radiation has a frequency (8.1) and a wave vector

k1 � k0 ÿ k : �8:3�
The perturbation field amplitude varies slowly in time and
space.

In the linear theory of the SMBS instability we proceed
from the following linear approximation��E�r; t���2 ! jEj2 � E � dE exp

�
i�otÿ kr��

� E dE � exp
�ÿi�otÿ kr�� : �8:4�

This formula allows us to take advantage of the results of the
nonlinear theory of electron density perturbation outlined in
Sections 3 and 5, in which the following relationships are
valid:

djEj2k � E dE � exp
�ÿi�otÿ kr�� ; �8:5�

djEj2ÿk � E � dE exp
�
i�otÿ kr�� :

The frequency shifto and the wave vector shift k, which occur
in the SMBS in the scattered wave field, is due to the
transverse pump wave decomposition into the transverse
scattered wave and the low-frequency longitudinal ion-
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acoustic wave:

t! t 0 � l : �8:6�
The longitudinal wave field is potential, viz. E � ÿgradj �
ÿikjk exp

�ÿi�otÿ kr��, and obeys the equation

ÿk 2el�o; k�jk � 4pe dnk ; �8:7�
where the right-hand side is the electron density perturbation
by the perturbed nonuniform pump field, which according to
expressions (8.5) and (5.25) is defined by the perturbation
djEj2k. In other words, relationships (5.25), (8.5), and (8.7) give
one equation which describes how the forcing action of the
pump field in the presence of the scattered field gives rise to a
low-frequency plasma perturbation Ð the induced ion-
acoustic wave.

The other equation, which couples the pump and
scattered wave fields with the low-frequency sound wave,
owes its origin to the fact that the scattered wave field emerges
from the pump field due to that electron density perturbation
which is defined by the sound-wave potential field. This
corresponds to the fact that the following expression for the
electron density in the Maxwell equations should be taken
into consideration:

ne ! ne0 � dn � ne0 � k 2 del; e�o; k�
4pe

jÿk exp
�
i�otÿ kr�� :

�8:8�
Accordingly, from the Maxwell equations we obtain
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jÿkE : �8:9�

Here, unlike Eqn (7.5), account was taken of the weak
collisional absorption � nei�VTe� of the scattered wave.
Taking advantage of the fact that the amplitude of the
scattered wave changes only slightly over a distance equal to
its wavelength, we neglect the second derivative in Eqn (8.9).
This allows the following reduced equation to be obtained:
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jÿkE : �8:10�

When writing down the right-hand side of Eqn (8.10),
account was taken of relation (8.9). Formula (7.7), the
second relationship in Eqn (8.5), as well as relationship (7.2)
with allowance for

o5o0 �8:11�
permit the representation of the reduced field equation (8.10)
in the form
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The last equation for the amplitude of the scattered wave
makes it possible to consider the spatial amplification of the
scattered field, arising from the SMBS instability. For
simplicity of presentation we assume the scattered field and
pump field polarizations to coincide, and will consider the
variation of the scattered field along the direction of the
vector k0 ÿ k, the z-axis being aligned with this vector. Then,
equation (8.12) can be represented as�
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�8:13�
The solution of this equation is proportional to

exp gz ; �8:14�
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Le

nei�VTe�
o0

�
ÿ o2

LejVEj2
4V 2

Te

del; e�o; k�
el�o; k�

�
1� F �k��� : �8:15�

We consider the implications of Eqn (8.15) in circum-
stances when the following resonance relation holds good:

c 2�2k0kÿ k 2� ÿ 2o0o � 0 : �8:16�
At the same time, the low-frequency wave is assumed to relate
to the ion sound, when o � kVs. This, according to expres-
sions (2.8) and (2.11), corresponds to the condition

Re el�o; k� � �krDe�ÿ2 ÿ �o 2
Li

o2
� 0 : �8:17�

Then, in the denominator of the last term on the right-hand
side of formula (8.15) there remains only a small imaginary
part which is defined by the imaginary part of the longitudinal
plasma permittivity:

Im �del; e � del; i� :
In the foregoing we were concerned with the electron
contribution to the imaginary part and omitted the ion
contribution. For our purposes it would suffice to employ
the relationship

Im �del; e � del; i� � 1

k 2r 2De

2�ge � gi�
kVs

; �8:18�

where gi is the ion contribution to the ion-acoustic damping
decrement, and ge is the corresponding electron contribution.
The latter, according to formula (6.21), is expressible as

ge �
kV 2

s

2VTe

� ����
p
2

r
� F1�k�

�
: �8:19�

Here, the following notation is adopted:

F1�k� � 2:17

�
Z 2

eff

k 3l 3ei�VTe�
�1=7

�
(
1� 2:17

�
Z 2

eff

k 3l 3ei�VTe�
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"
4
���
3
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klei�VTe�
1

Z
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eff

�
VTe

VE
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:

�8:20�
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All this permits us to write down the following expression
for the SMBS spatial gain coefficient

g � o2
Le

2o0c 2k0

� jVEj2
8V 2

Te

�
1� F �k��o0 kVs

ge � gi
ÿ nei

�
: �8:21�

To the threshold of an absolute SMBS instability there
corresponds the vanishing of the right-hand side of expres-
sion (8.21), when one has

jVEj2abs: th
V 2

Te

� 8nei�VTe�
o0

�
1� F �k��

�
Vs

2VTe

� ����
p
2

r
� F1�k�

�
� gi
kVs

�
:

�8:22�

The threshold of convective SMBS plasma instability in a
layer of thickness L corresponds, similarly to expression
(7.22), to the condition

gL � 2p : �8:23�
Accordingly, the convective SMBS instability threshold is
given by the relation

jVEj2conv: th
V 2

Te

� 8�ge � gi�nei�VTe�
o0kVs

�
1� F �k��

�
1� 4pc 2

Lo2
Le

o0

nei�VTe�
�
: �8:24�

Hence it follows that the convective SMBS instability thresh-
old is as much higher than the absolute SMBS instability
threshold as the last term (inversely proportional to the
SMBS region dimension L) in the braces in the right-hand
side of formula (8.24) is greater than unity. Since the spatial
attenuation of the pump field intensity due to inverse
bremsstrahlung absorption is described by the exponential
relationship

exp

�
ÿz o2

Lenei�VTe�
c 2k0o0

�
; �8:25�

it is evident that the convective threshold is significantly
higher than the absolute SMBS instability threshold when-
ever the absorption of the pump radiation is relatively small:

L
o2

Lenei�VTe�
c 2k0o0

5 4p : �8:26�

Then, from formula (8.24) follows that

jVEj2conv: th
V 2

Te

� 32p�ge � gi�c 2k0
o2

LeLkVs

�
1� F �k�� 4 jVEj2abs: th

V 2
Te

: �8:27�

The above-determined dependences of the functions F1�k�
andF �k� on the wave vector allow us to specify the conditions
in which the weakly collisional electron contribution to the
SMBS instability increment is significant. In the simplest case
of backscattering, one has k � 2k0.

Here we note that the theory of SMBS instability in a
weakly collisional plasma was outlined in Refs [3, 4, 6, 14, 17,
28]. In paper [37], the SMBS-determining nonlinearity
corresponding to the electron density perturbation was
considered in the context of the notion of nonlocal heat
transfer. In this case, in accord with relationship (7.19), it
was believed that the values a � 1:44 and a � 12 are
admissible for using. The employment of these parameter
values in Ref. [3] was subject to criticism in work [4], which
stated that it would be appropriate to employ the a � 4=3 and

a � 16 values. Furthermore, the parameters determining the
nonlinearity of nonlocal thermal conduction were taken to be
a � 1:44 and a � 12 [compare with relationship (7.19)], which
is closest to those parameter values which correspond to the
analytical theory of a weakly collisional plasma. The ion-
acoustic wave damping was considered in Ref. [6] without
including weakly collisional effects. Furthermore, in Ref. [14]
the effect of weak collisions on the absorption of ion-acoustic
waves was not taken into account either, while the function
F �k� was treated in the linear approximation which neglects
the nonlinear modification of the subthermal-electron dis-
tribution. In Ref. [17], the SMBS instability was treated in the
same linear approximation, but with the inclusion of the
effect of weak collisions on ion-acoustic wave damping. From
the viewpoint of an analytical theory, all these results refer to
a linear treatment, i.e. to the case when the pump field is so
weak that condition (4.16) is fulfilled. Finally, the theory of
SMBS in a weakly collisional plasma was considered with the
inclusion of the nonlinear redistribution of subthermal
electrons [28], when increasing the pump intensity is accom-
panied by a reduction of F �k� and a decrease of the SMBS
instability increment.

9. Conclusions

The previous sections were devoted to the consideration of
the effect of collisions of slow subthermal electrons in
conditions when a fully ionized plasma is commonly
assumed to be collisionless on the strength of inequality
(1.1). In this case, the subthermal electrons with velocities
satisfying inequalities (1.9) and (1.1) should be thought to
experience frequent collisions. In the foregoing we verified
that there exist conditions wherein the contributions from
frequent subthermal-electron collisions in so-called collision-
less plasmas prove to be competitive or even exceeding the
collisionless contributions to the quantities like the ion-
acoustic damping decrement and the nonlinear electron
density perturbation by a spatially nonuniform electromag-
netic pump field. The perturbation mentioned determines
that nonlinearity which characterizes parametric instabilities
like the plasma radiation filamentation and SMBS. Apart
from the analytical theory considered in detail in the fore-
going, the problems considered in our review are also treated
in the literature employing the numerical solution of the
Boltzmann kinetic equation with the collision integral in the
Fokker ± Planck ±Landau form, as discussed above.

It is believed that the numerical investigation of the
phenomena related to nonlinear electron density perturba-
tion was carried out most carefully. With reference to the
discussion in the text following formula (7.19) as well as at the
end of Section 8, the results of such a numerical solution to the
Boltzmann equation are rather close to the results of the
analytical theory concerned with the description of nonlinear
density perturbation. However, all this pertains only to the
case of relatively low intensity of the plasma-heating electro-
magnetic radiation of the pump field, when condition (4.16) is
fulfilled. This condition is violated for a moderate pump
intensity, when the following inequality is satisfied:

�q �
�

q

1014 W cmÿ2

��
l

1 mm

�2�
Te

1 eV
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0:2

Z
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eff

ÿ
klei�VTe�
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It is noteworthy that the idea of nonlinear influence of the
plasma-heating radiation on the nonlinear density perturba-
tion was advanced in Ref. [3], and in the comment to it [4]. It
was precisely the authors of work [3] who were prone to
believe that the exponent value a � 1 in formula (7.19) is
preferred to a � 4=3, the datum of Ref. [1]. The authors of
Ref. [4] indicated that the numerical investigation of the
Boltzmann kinetic equation was performed under conditions
wherein the Langdon velocity was low in comparisonwith the
electron thermal velocity. According to contemporary views,
this should not have resulted in a nonlinear variation of the
index of a power in formula (7.19).

Following the discussion [3, 4], paper [21] made its
appearance. It outlined the results of numerical solution of
the Boltzmann equation in the conditions wherein the
Langdon velocity was not assumed to be low in comparison
with the electron thermal velocity. To this end, instead of the
Maxwell electron velocity distribution function advantage
was taken of interpolation distribution functions from
Ref. [53], which transformed from the Maxwell distribution
to the Langdon distribution with increasing intensity of the
heating field. Work [21] revealed a significant modification of
nonlocal heat conduction which characterizes the nonlinear
electron density perturbation. The numerical results of
Ref. [21] were followed by the analytical solution of the
Boltzmann kinetic equation in Ref. [22], which established
the fact of suppressing the electron heat transport inhibition
by a relatively strong pump field. In Refs [21, 22], however,
this suppression was considered for pump intensities much
higher than those corresponding to a small right-hand side of
inequality (9.1).

The step made in papers [25 ± 27] and reflected in the
fourth and subsequent sections of our review proved to be
more interesting for the weakly collisional plasma kinetic
theory nonlinear in the pump intensity, which we consider. In
these papers the phenomenon of nonlinear suppression of
weakly collisional effects was revealed at a significantly lower
level of heating radiation intensity than required in Refs [21,
22], specifically, at the intensity level characterized by
inequality (9.1). In this case, first, the a power assumed a
value of 2=5 in lieu of 10=7, as follows from formula (7.35).
Furthermore, the parameter a in formula (7.19) became a
decreasing function of the plasma-heating radiation intensity.
This corresponds to suppression of the weakly collisional
thermal mechanism of filamentation instability with increas-
ing pump intensity. However, in accord with inequality (7.37)
the thermal mechanism still remains more significant than the
ponderomotive one for a plasma-heating radiation intensity
satisfying the inequality

�q �
�

q

1014 W cmÿ2

��
l

1 mm

�2�
Te

1 eV

�ÿ1
<

0:62

Z
5=6
eff

ÿ
klei�VTe�

�4=3 : �9:2�

Inequalities (9.1) and (9.2) are simultaneously satisfied with
the proviso that

12Z
5=4
eff 4 klei�VTe� ; �9:3�

which is realized over a wide range of parameters for a high
degree of ionization.

We now address ourselves to a comparison of the above-
outlined results with the data of numerical investigations into
the weakly collisional dissipation of ion-sound waves. Here,
the numerical results admitting of a comparison with
analytical regularities are significantly fewer. As noted
above, the weakly collisional dissipation of ion-sound waves
in the theory of SMBS was taken into account only in an
analytical approach. Nevertheless, Ref. [18] was dedicated
specifically to the numerical solution of the Boltzmann
equation to determine the ion-acoustic wave damping.
When discussing Ref. [18], it might be well to recall that the
absorption of ion-sound waves under conditions of frequent
collisions is determined by electron heat conductivity. In
particular, the electron contribution to the longitudinal
plasma permittivity may be represented in the form (see, for
instance, Ref. [11])

dee�o; k� � 1

k 2r 2De

�
1� io

kVTe

�
nekBVTe

kw�k�
��
: �9:4�

Here, the dissipation corresponding to the imaginary term in
formula (9.4) is described by conventional electron heat
conductivity, when w � wSH. Formula (9.4) was written
under the assumption that the dissipation of ion-sound
waves in the case of weakly collisional plasma can also be
described by the electron heat conductivity coefficient which
now takes into account the nonlocal character of heat
transfer. This assumption arose in the approach made in
Refs [42, 16], when the use of a system of moment equations,
in which thermodynamic flows were nonlocally related to
thermodynamic forces, was proposed to describe the pro-
cesses in a fully ionized plasma. In particular, use wasmade of
nonlocal heat conductivity. Among the possible applications
of this, allegedly general, approach, according to Ref. [16] it
was suggested to employ the ion sound description equivalent
to formula (9.4). This approach was subject to criticism in
Ref. [19] which was devoted to the comparison of the then
known different nonlocal electron heat conductivities,
derived in Refs [1, 2, 7, 15, 16, 37], with the result of the
analytical theory [10]. In this case, at least two different heat
conductivities were established to actually emerge in the
approach to the nonlocal description of plasma processes,
advanced in Refs [42, 16].

The above digression was necessary for two reasons. First,
Epperlein [18] made a similar statement that nonlocal heat
conductivity cannot be used for the description of ion-
acoustic wave dissipation. This corresponds to the viewpoint
of Ref. [19]. Second, it is not seen that the functional
dependence of paper [18], which is employed in the context
of the approach to nonlocal electron heat conductivity [43,
16], coincides with the analytical result. Indeed, according to
Refs [10, 11, 17, 19] this nonlocal heat conductivity in the
asymptotic limit of large wave numbers behaves as � kÿ4=7.
In Ref. [18], contrastingly, the nonlocal heat conductivity was
found to be � kÿ1 in the same limit. Here, we note that the
latter result corresponds, in accord with expression (1.26), to
the formula for electron heat flow of the form (1.22) with a
small heat transport inhibition coefficient. By contrast,
recourse to the effective conductivity corresponding to the
results of Refs [10, 11, 17, 19] concerning the dissipation of
ion-sound waves does not lead to a relationship of the form
(1.22) (compare with Refs [9, 17]). We note that the effective
heat conductivity of the nonlocal approach to ion-acoustic
wave damping assumes an entirely local form, when the pump
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intensity satisfies the inequality (9.1):

wSH
1� 200�ZeffV

2
E=V

2
Te�2=3

:

The following should be evident from the above. Not only
does the theory of a weakly collisional plasma provide an
analytical description of ion-acoustic wave damping, plasma
nonlinearity corresponding to the nonlinear electron density
perturbation by a spatially nonuniform intensity of electro-
magnetic field, SMBS, and radiation filamentation, but it also
allows one to draw a general conclusion concerning the
rationality of nonlocal plasma hydrodynamics presented in
Refs [43, 16]. It is precisely the necessity of employing
different nonlocal heat conductivity coefficients for various
processes, which poses the general question of whether
unknown processes can be described by nonlocal hydrody-
namics, when a demand to introduce new nonlocal heat
conductivity coefficients will arise. The pressing demand for
gas hydrodynamic equations or their analogues has led to the
proposal [20] to take advantage of that system of moment
equations which, in particular, comprises two sets of
quantities of different genesis: two temperatures, two heat
flows, two stress tensors, etc. So far, this line of investigation
has not gathered force.

It remains to emphasize some formal originality of weakly
collisional plasma kinetics. In the case of a strongly collisional
plasma, in accordance with the Hilbert ±Chapman ±Enskog
method of solution of the Boltzmann equation, the occur-
rence of corrections corresponds to terms quadratic in powers
of k. This, in particular, manifested itself in formula (1.30)
which is a partial summation of higher-order Hilbert ±
Chapman ±Enskog approximations. Characteristic of the
case of a weakly collisional plasma is an expansion like the
Laurent series in inverse powers of k. In the case of a weakly
collisional plasma, we witnessed the occurrence of fractional-
power dependences whose asymptotic forms (2.40), (3.24),
and (5.16) were possible to determine with the aid of exactly
solvable differential equations. These exact analytical cor-
ollaries emerged in our treatment owing to the fact that the
use of linear equations proved to be sufficient for the
description of the problems involved. However, a demand
would arise to go over to a nonlinear description in the course
of development of the field of investigation, for instance, the
description of radiation filamentation and SMBS, and in this
case one would anticipate even more peculiar and interesting
results. The material of our review, brought to the reader's
notice, is merely a preliminary step toward this future
approach to the nonlinear theory of a weakly collisional
plasma.

This work was supported in part by the RFBR (grant
No. 99-02-180750), the ISTC (project No. 1253), the CRDF
(grant No. RP1-2268), and also the Program of Government
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96720).
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