
Abstract. The status of string theory is reviewed, and major
recent developmentsÐ especially those in going beyond pertur-
bation theory in the string theory and quantum field theory
frameworks Ð are analyzed. This analysis helps better under-
stand the role and place of string theory in the modern picture of
the physical world. Even though quantum field theory describes
a wide range of experimental phenomena, it is emphasized that
there are some insurmountable problems inherent in it Ð nota-
bly the impossibility to formulate the quantum theory of gravity
on its basis Ð which prevent it from being a fundamental
physical theory of the world of microscopic distances. It is this
task, the creation of such a theory, which string theory, cur-
rently far from completion, is expected to solve. In spite of its
somewhat vague current form, string theory has already led to a

number of serious results and greatly contributed to progress in
the understanding of quantum field theory. It is these develop-
ments which are our concern in this review.

1. Introduction

The 20th century may be considered as a century of success
for physics. Absolutely new physical ideas about the world
which surrounds us have greatly affected every human being
and indeed the whole of mankind, especially those people in
power. This is shown by the wide spread use of radio and
television, man going into space, andÐ perhaps chiefly Ð by
explosions of atomic and hydrogen bombs. Thus, originally
found `with pen and paper', electrodynamics, the theories of
relativity and quantum mechanics have completely proved
their worth.

Probing further into the `deep secrets of the world' in an
attempt to understand the very small Ð subatomic and
subnuclear Ð structure of our world, has not proved
straightforward. The absence of an experimental base, or at
the very least, big problems with experiments directed to
check any statement about energies more than 100 GeV, has
led to the situation where theoretical physics has relied more
and more upon its `internal beauty'. In other words, it
develops, in a fashion similar to mathematics, mostly based
on its own logic. As a result of such developments, one had by
the end of the 20th century a situation quite rare for physics
before. This search for `internal harmony' among theoretical
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physicists distanced them quite far from the desires of
experimentalists, at least in the field of elementary particle
physics.

The so called Standard Model (unifying theory of
electromagnetic and weak interaction based on the Wein-
berg ± Salam model and chromodynamics) appears to be
almost completely satisfactory1 from the point of view of all
known experiments. Already for about thirty years theoreti-
cians look for a `nice fundamental' theory, which reproduce
the StandardModel at large distances or energies of the order
of W-boson mass (roughly, the same 100 GeV). Despite
obvious weaknesses of the arguments about `beauty' as a
foundation for theoretical physics, the majority of interested
people including the author of this review can say that the
Standard Model is not satisfactory only from the point of
view of this principle.

Moreover, already within the framework of the Standard
Model a few ideas were used (spontaneous breaking of the
gauge symmetry or the Higgs effect), which are not yet
confirmed by experiment but were rather chosen among all
possible options only due to their beauty and simplicity. In
this way, the StandardModel W-bosons become massive due
to interaction with the condensating scalar field, in complete
analogy with the Landau ±Ginzburg mechanism in the
condensed matter physics, though the excitations of this
scalar field have never been seen in nature.

Hence, in this review we will try to discuss the theory,
which cannot be verified by experimental particle physics. In
this sense this hypothetical theory is somehow more close to
gravity than to elementary particle physics, where after the
appearance of General Relativity (GR) `internal beauty'
plays the role of the main physical principle. In the theory of
gravity, which is responsible mainly for the physics of the
macroworld, the separation from experiment (or, better to
say, lack of experimental base for fixing the parameters of the
theory) has always allowed the possibility of using some extra
purely `internal' theoretical principles. It turns out, that such
a situation permeates also more and more into the physics of
the microworld.

A natural requirement to such a hypothetical theory
would be an explanation of `everything' including gravity
(which is definitely beyond the Standard Model), i.e. the
formulation of all four interactions Ð electromagnetic,
strong, weak and gravitational Ð starting from some unique
principles. This review contains an attempt to formulate these
general principles and to demonstrate that they could lead to
some progress not only in understanding of quantum theory
of gravity, but also to some absolutely new perspective on the
well-known problems in gauge theories, being the base of the
Standard Model. It is certainly clear that there cannot be any
`uniqueness theorem' for such hypothetical fundamental
physical theory and therefore everything to be said below,
especially without direct experimental confirmation, can be
considered as pure fantasy. We will try to show nevertheless
that it is this particular variant of such a `fantasy' which is
based on relatively simple and clear physical principles

(though not always clearly formulated), which become
especially attractive when taking into account that all
alternative attempts to achieve any progress at least in
qualitative understanding of microworld physics, have up to
now been totally unsatisfactory.

Mostly for historical reasons the fundamental theory at
small distances of the Planck scale

�������������
gN=�hc

p � 10ÿ33 cm (�h and
c denote the Planck constant and vacuum speed of light 2,
while gN is the Newton gravitational constant), where it is
necessary to take into account effects of quantum gravity or,
stated alternatively, gravity becomes comparable with the
other interactions, is called String Theory 3. This name can be
considered not ideal and other suggestions for different
names show up from time to time (say, M-theory 4 etc). In
what follows we will use the `traditional' name, since though
being not completely full or exact term, it `catches' in the best
way one of the main principles of this theory Ð a natural
`geometric' regularization of small distances by introducing
of the extended objects of non-zero length (mainly of the
Planck scale). The appearance of strings in the role of such
extended objects immediately leads to the theory containing
massless gauge bosons and gravitons (whose consistence
though has yet to be proven).

Let us point out separately that the widely used (especially
in popular literature) word `superstrings', seems to be much
more unacceptable because, first, it literally corresponds only
to the narrow class of stringmodels and, second, since itmixes
two absolutely different and mutually independent physical
ideas. It couples the concept of strings with the very different
idea of supersymmetry (or symmetry between bosons and
fermions). As we will see below, the role of such symmetry is
especially important in quantum field theory, where super-
symmetry allows even to spread the horizon of applications of
the Standard Model. In contrast to typically field-theoretical
role of supersymmetry aimed at the cancellation of ultraviolet
divergencies, for string theory of main importance is (and this
is already founded in its name) that fundamental theory at
small distances is not a local quantum field theory.

Let us specially stop at this point. On one hand, string
theory does not contradict to the existence of quantum field
theory as a reasonable effective theory at energies much less
than Planckian (1019 GeV), which naturally describes the
physical processes at weak coupling. Within its range of
validity, quantum field theory automatically takes into
account the contribution of anti-particles and suggests the
values for the amplitudes and cross-sections which are in nice
coincidence with the experiment. Moreover (and this will be
discussed below in detail), when studying processes where the
contribution of gravity is inessential at energies much less
than planckian string theory often reduces to the quantum

1 Precise checks of the predictions of the Standard Model have not found

any contradictions between the theory and experiment, coming out of

three standard deviations, which is quite satisfactory since, as L Okun

reminded me, Landau and Fermi suggested always multiplying the errors

of experiment by p. The latest data can be found in the report by

M GruÈ newald (Talk at LEP Physics Jamboree, CERN, July 10, 2001)

available at http://www.cern/ch/LEPEWWG.

2 In what follows, if not specially noted, these constants will be formally

put equal to unity, i.e. in relativistic physics ofmicroworld velocities will be

measured in units of speed of light c, while actions in units of the Planck

constant �h.
3 There exists already vast literature on string theory: few books by people

who found the string theory [1 ± 3] and several reviews, including the

reviews inPhysics Uspekhi, e.g. the reviews [9, 10] etc. However this branch

of science is still developing so quickly that re-understanding even of the

basic notions and concepts happens quite often. Say, relatively new

reviews [14 ± 21] are quite useful from the point of view of the author,

though this is certainly the list far from being complete. More detailed

analysis of the literature can be found in the Appendix 8.2.
4 The words typed in this font except for the main text are discussed in

Appendix 8.1.
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field theoryÐnamely to the theory of gauge vector fields. It is
exactly in this sense that the field theory is often called an
effective theory for strings at large distances. Roughly
speaking, field theory arises in the low-energy limit of string
theory, similar to the non-relativistic limit of the field theory
giving rise to quantummechanics, which in its turn reduces to
classical mechanics as �h! 0.

On the other hand, one should immediately notice that
historically the step towards the string theory from quantum
field theory is nothing else but change of the paradigm, and
within the frames of new paradigm quantum field theory can
no longer pretend to be fundamental physical theory. Below
we are going to discuss this point applying rather simple
physical principles, which lead to an understanding that any
attempts to construct theory of quantum gravity in the
framework of quantum field theory are almost absurd.

However, here one should definitely and honestly point
out that the situation within string theory itself is far from
being perfect. Pretending to be the fundamental theory of
microworld and unifying theory of all interactions, string
theory not only has not been formulated in closed form, but
even does not have any well-studied `sample example',
demonstrating more or less all its main ingredients, like in
the case of simplest quantummechanical models (a harmonic
oscillator or an atom of hydrogen) or quantum field theory
(say, scalar field theories with lf 3 or lf 4 potentials, or
quantum electrodynamics). In fact, at present only some
`pieces' of string theory, rather chaotically placed among
other `pieces', are available to be understood and partially
formalized. Nevertheless, during recent years some definite
progress has been detected (and is still taking place!) in the
area of string theory, which certainly distinguishes it among
other, practically dead-end directions.

Themain purpose of this review is to discuss basic physical
principles forming the base of string theory and try to
demonstrate their attractive features, reviewing some (in
particular recent) achievements in this sphere. Notice imme-
diately, that these achievements are not at all obvious to
everybody and do not explain (yet?!) observable physical
phenomena. It seems nevertheless very important that only
in the framework of string theory at least the possibility to
raise several new problems of principal importance arose, one
of the most well-known of them being the problem of space-
time dimension, supposed to be solved dynamically instead of
usual fixing of the dimension `by hand'. This approach is
totally new in comparison with traditional point of view
accepted in quantum field theory, where space-time belongs
to a few initial basic ingredients.

The dynamical nature of space-time is a direct conse-
quence of definition of string theory already at perturbative
level by the Polyakov path integral where the sum over all
physically different configurations of the system is repre-
sented by the sum over all geometries on two-dimensional
string world-sheets. The `geometrization' of string theory
arising already at the perturbative level also plays an
essential role in the attempts to go beyond the perturbation
theory where recent mostly striking achievements are indeed
related with the ideas to identify parameters of physical
theory (masses, condensates, coupling constants) with the
parameters or moduli of certain (complex) manifolds arising
as `compact parts' of the full space-time, dynamically chosen
by string theory.

To finish this introduction let us also point out that this
particular situation around string theory, quite atypical for

physics, also leads to a large amount of `social' problems,
which are quite interesting in themselves but their discussion
goes beyond the scope of this review. For example, string
theory very often (and at least from the point of view of the
author very unfair) is claimed to be `pure mathematics' in
contrast to many other, more traditional spheres of activity in
theoretical physics considered to be `physics by definition'. In
particular, many physicists got used to the more traditional
paradigm of quantum field theory often call all problems of
string theory `mathematics' only because they arose in this
particular context, while any technical problem of the
formalism of quantum field theory is considered as `physics'.

It is certainly true that string theory as any other
interesting sphere in theoretical physics raised lots of new
mathematical problems and requires the application of
branches of mathematics previously not widely used in
physics, moreover certain problems of string theory would
play the role of `locomotive' for some directions of research in
mathematics. However, it seems to be completely wrong to
stress this particular aspect of the new theory and in what
follows we will try to discuss mostly simple and natural
physical aspects of string theory.

Another social effect which is quite often (and again
unfairly) associated only with string theory is the widespread
invasion of `marketing' principles into modern science.
Caused by purely social problems, continuous advertisement
of the string theory as a theory which has already solved all
possible problems of natural science (especially on the
background of absence of any strict arguments supporting
this point of view) does great harm to anybody willing to
understand seriously this interesting direction in modern
science. Together with a lack of relations with experiment,
existing for more traditional directions in theoretical physics,
the wide advertising of string theory brought only negative
attention to this field of science especially among quite
conservative physicists. However, it is also necessary to stress
that the development of string theory in present conditions
would be simply impossible without bright and striking new
ideas (e.g. many ideas of A Polyakov [1]), which only
partially, and mostly many years after they had been
pronounced, were turned into more or less strict formula-
tions. It is natural to get a lot of `garbage' on this way and one
of the main difficulties is the opportunity to be `killed' by the
huge stream of literature which often does not contain any
useful information. Without pretending to being objective,
especially in such a delicate question, I have put some very
personal comments about the existing literature on string
theory into Appendix 8.2.

Content of the review. We start in Section 2 with the
discussion of the Standard Model of gauge interactions
(electromagnetic, weak and strong) of elementary particles
and (classical) theory of gravity Ð General Relativity. The
main aim of this discussion Ð to fix once more the status of
quantum field theory as absolutely satisfactory and experi-
mentally verified model of observable interactions of elemen-
tary particles, which however runs into serious difficulties in
the strong coupling regime and, mainly, which is absolutely
useless as a theory of quantum gravity.

In Section 3, wewill try to formulate themain principles of
string theory, coming mostly from the geometric formulation
of string perturbation theory in terms of the Polyakov path
integral. The main message of this section is that it is two-
dimensional geometry Ð the basic point of the Polyakov
formulation Ð which is responsible for the new string
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approach to the dynamical nature of space-time and here is
the principle difference between the string theory and
standard quantum field theory. We will also discuss super-
symmetry as an origin for the appearance of fermions and the
Fradkin ±Tse|̄tlin effective actions, being the most conveni-
ent `bridge' between string theory and effective quantum field
theories.

Section 4 is devoted to recent attempts in string theory to
go beyond the perturbative regime. The main purpose of this
section is to explain the basic ideas of these attempts: the idea
of duality between the theories at strong and weak coupling
and also classical extended objects necessarily appearing in
non-perturbative string theory. As an illustration of the
progress in studying the non-perturbative effects which is an
outcome of applying new stringy methods, we will discuss the
Seiberg ±Witten theory which allows in particular to make a
new step in understanding of the mechanism of confinement.

Section 5 is totally devoted to one of the most interesting
new problems in string theory Ð an attempt of dual
description of the non-Abelian gauge theories at strong
coupling in terms of gravity (or theory of closed strings).
Finally, in Section 6, we review a few other modern directions
coming out of string theory, this section being written for the
most advanced reader (the same is true for the Section 4.6).
Paragraphs containing technical issues and therefore being
more difficult for understanding, are typed with a smaller
font.

2. Physics of elementary particles.
Gauge theories and gravity

There have been no essential changes in elementary particle
theory during the last decades. Still two main problems are at
the center of interest: these are confinement (or keeping
quarks locked inside the hadrons) and the quantum theory
of gravity 5, while all the rest can be almost completely
explained in the framework of the Standard Model. Mostly
probable, the solution of these two problems is impossible
without progress in understanding of the properties of gauge
theory and general relativity at strong coupling, i.e. exactly
where the standard field-theoretical methods being the basic
ones for the Weinberg ± Salam model of electroweak interac-
tions and quantum chromodynamics (QCD) at high energies
become useless.

The Standard Model in its main features can be
considered as a non-Abelian gauge theory with the gauge
group SU�2� �U�1� � SU�3� (the last factor corresponds to
`color' and strong interaction) and matter fields of `three
generations' [5] (see also, e.g., Ref. [6]). The computations are
performed using the technique of the gauge field theory [4] at
small coupling constants Ð i.e. by perturbation theory, and
the results of such computations 6 are nicely consistent with
experiment (see, for example, Ref. [45]). From pure theore-
tical or kind of aesthetic point of view the StandardModel is a
little bit `ugly' due to presence of `external' parameters Ð
such as the Weinberg angle, as well as due to absence of
completeness in some questions like spontaneous symmetry
breaking or the Higgs effect, which is responsible for masses
of non-Abelian W and Z bosons. Nevertheless, the Standard

Model is an absolutely consistent quantum field theory. It is a
renormalizable quantum field theory, which was already
pointed out by the corresponding Nobel Prize in physics [39].

If speaking about gravity, its `observable part' is still
negligible in the sense of the possible influence on this or
that possible choice of the theory of quantum gravity. At least
to my knowledge by now there is no direct experimental
evidence of the existence of gravitons as well as clear and
unambiguous data concerning the problems of dark matter
and cosmological constant (see, for example, Ref. [38]). All
experts agree only that dark matter seems to exist and the
cosmological constant looks like being different from zero.
Despite of growing precision of experimental methods in
astrophysics, the existing data are too scarce in order to put
at least some framework onto the set of existing theoretical
models. Moreover, the very idea of applicability of present
physical theories to themodel of Universe as a whole seems to
be rather voluntaristic, while the attempts to formulate the
model of Universe in terms of microworld physics, i.e. in the
language of quantum mechanics or quantum field theory do
not have any real physical background and can be considered
almost absurd. Thus, when discussing the problems of
quantum gravity one has to use only pure theoretical and
aesthetic criteria.

2.1 Gauge field theories
Gauge theories or theories of massless vector fields describe
all interactions except for gravity. The theory of gauge fields
or the Yang ±Mills fields can be formulated without even
using stringy principles and can be considered as a closed
physical theory within some range of energies. Nevertheless
the viewpoint onto the theory of gauge fields as being
`derivative' of string theory leads to its much deeper under-
standing and already brought new interesting results.

In gauge theories matter interacts due to exchange of
massless vector fields. In case of electrodynamics or Abelian
theory the gauge group is U�1�, i.e. the only vector field is
Am�x� (photons), if the theory is non-Abelian (or equivalently
the Yang ±Mills gauge theory [4]) the fields can be con-
veniently represented by matrices from the Lie algebra of
the corresponding gauge groupAm�x� � kAi j

m k (gluons), in the
SU�N� case, for example, by the N�N (anti)Hermitian
traceless matrices.

The minimal interaction is introduced by the `long'
derivative

qm ! Dm � qm � Am �2:1�
or

Di j
m � qmd

i j � Ai j
m ;

if the gauge field interacts withmatter from the representation
of the gauge group whose elements are labeled by index i. The
gauge-invariant Lagrangian of the Yang ±Mills fields has the
form

LYM � 1

2g 2
TrF 2

mn ; �2:2�

where

Fmn � qmAn ÿ qnAm � �Am;An� : �2:3�

In the case of electrodynamics matrix-valued fields turn into
numbers and therefore formula (2.3) does not contain

5 More strictly these are the problems of elementary particle physics `in a

wide sense'. From a more `narrow' point of view one may in principle be

sceptical about the existence of the problem of quantum gravity.
6 Apart from neutrino oscillations (see, for example, the review [37]).
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commutators [leading to the self-interaction in (2.2)] and one
may not write the trace over matrices Tr.

For the Standard Model the gauge group is
SU�3� � SU�2� �U�1� and one should add to Lagrangian
(2.2) the Lagrangian of matter fields (electrons, quarks, etc)
with the `long' derivative (2.1). After that one can perform the
standard field-theoretical computations developing the per-
turbation theory in coupling constant g. Such a theory will no
more be fundamental at the level of field-theoretical perturba-
tion theories, since it contains the Abelian factor U�1� with
coupling constant growing at small distances, while the
theory with `controlled' behavior at small distances `should
be' non-Abelian. In what follows we will restrict ourselves to
the compact (to have integer charges!) non-Abelian SU�N�
groups, considering all other gauge groups as `pure exotic'.

The reason of the `non fundamental' nature of theAbelian
theories is famous `zero-charge' or `Moscow zero' in electro-
dynamics. In quantum field theory slang this means the
growth of charge at small distances. The physical origin of
such behavior comes from the screening of charge by virtual
electron-positron pairs, while the gauge U�1� fields them-
selves are not charged. Technically this means that one-loop
corrections lead to the following dependence of effective
charge on the energy scale m

dg

d ln m
� b�g� � b0g

3 � . . . ; �2:4�

where the coefficient

b0 / NF ÿNV �2:5�

is the difference of the contributions NF of matter fields and
NV of the gauge fields, propagating along the loop in the
diagram from Fig. 1. In electrodynamics the self-interaction
of photons is absent, hence NV � 0, and the coefficient b0 is
positive. This means the growth of charge with m, or
approaching small distances, and as a consequence electro-
dynamics at small distances is not well-defined, i.e. cannot be
a fundamental theory. Simultaneously electrodynamics con-
tinues to be nice effective theory at large distances, where
gQED � e is small 7.

The situation changes drastically for the case of non-
Abelian gauge theories where extra antiscreening of charges
by charged (in color) gauged fields exists so that NV 6� 0 due
to self-interaction of gluons. This leads to the possibility of
`asymptotic freedom' [67], when interaction becomes weak at
small distances for NF < NV. The difference is demonstrated

in Fig. 2, where the difference between zero-charge and
asymptotically free theories can be clearly seen.

A natural way out from such situation is to consider
electrodynamics as a `part' of some non-Abelian theory from
which is `splits' at some scale when non-Abelian symmetry is
violated. In such a case the non-Abelian gauge theory
(especially in the supersymmetric case) can be considered as
`fundamental', at least in some energy range where the effects
of gravity have not yet become necessarily taken into account.
From this perspective renormalizability of gauge theories has
a quite simple meaning Ð the Lagrangian (2.2) is useful for
the description of physics over rather a large energy range if
for the coupling g one would substitute its corresponding
effective value at given energy. With this substitution the
general form of the Lagrangian remains intact (and it does
not require additional terms when passing from one energy to
another).

2.2 Spontaneous breaking of gauge symmetry
Let us now discuss how at some energy scale the gauge group
can (partially) turn into Abelian. In the most natural way it
happens if the theory contains the scalar fields in the adjoint
representation of the gauge group, for example, as a
consequence of supersymmetry. Suppose the scalar potential
has minima such that condensates or vacuum expectation
values of scalars do not vanish. For the field in adjoint
representation of the gauge group SU�N� it means that
vacuum values ffmay be chosen in diagonal form

ff �
f1

f2 � � �
fN

0B@
1CA

Trff �
P

fj � 0

; �2:6�

using gauge invariance. For the convenient choice of gauge-
invariant quantities one may take parameters like Trff k or
their `generating functions'

PN�l� � det �lÿ ff� �
YN
i�1
�lÿ fi� : �2:7�

The total number of algebraically independent parameters
ffig is equal to the rank of the group, in the mostly well-
known case this is rank

�
SU�N�� � Nÿ 1. It is customary to

Am An

Figure 1.One-loop diagram arising in the calculation of corrections to the

effective charge. In electrodynamics, as follows from Ward identities, the

computation may be restricted to only this diagram.

7 This is true in the elementary particle physics, but not in condensed

matter theory, where instead of e 2=mc � 1=137 the parameter of pertur-

bative expansion is e 2=mvF � 1.

1

g2

lnE

Abelian theory

Non-Abelian theory

Figure 2. Dependence of effective couplings upon energy in Abelian and

non-Abelian gauge theories. The top curve corresponds to `zero charge'

while the bottom curve corresponds to asymptotic freedom.
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say that these parameters are co-ordinates in the parameter
space or moduli space of gauge theory.

Due to the Higgs effect the off-diagonal part of the gauge
field matrix Am for ff 6� 0 becomes massive, since the
interaction

�ff;Am�i j � �fi ÿ fj�Ai j
m �2:8�

literally turns into the mass termsX
�fi ÿ fj�2�Ai j

m �2 �
X
�mi j

W�2�Ai j
m �2 ; �2:9�

in the Lagrangian. At the same time the diagonal part, as
follows from (2.9), remains massless, i.e. the gauge group
G � SU�N� is broken by Higgs mechanism 8 to
U�1�rankG � U�1�Nÿ1.

Thus, in the generic situation at the scaleff (the scalar field
has a dimension of mass) non-Abelian gauge group is broken
down to Abelian which in the simplest SU�2� case is exactly
that of electrodynamics. In what follows, even in general
U�1�Nÿ1 case we would call such an Abelian theory (general-
ized) electrodynamics and refer to the corresponding charges
as electric charges.

2.3 Nonperturbative effects: instantons and monopoles
In contrast to electrodynamics the non-Abelian gauge
theories are essentially nonlinear since the Lagrangian (2.2)
contains cubic and quartic terms in the Yang ±Mills fields. It
means that equations of motion are nonlinear even without
the matter fields. Nonlinear equations typically do have lots
of nontrivial solutions, related in the case of non-Abelian
gauge theories to nontrivial topological properties of the
gauge groups.

Do these solutions affect elementary particle physics? The
exact answer to this question is still only hypothetical, but
from general arguments it is clear that the influence can be
essential in the strong coupling regime. Indeed, from general
properties of quantum theory we know that the main
contribution of a classical trajectory to quantum amplitude
(the Feynman path integral) is nothing but exp �ÿS=�h�, where
S is the classical action on given configuration. For the theory
of non-Abelian gauge fields the corresponding action, or
Lagrangian (2.2) integrated over space-time, will give rise to
the contributions of the form exp �ÿconst=g 2�, which are
exponentially suppressed at weak coupling. However, by the
same logic it is quite possible, that the same contribution
would be much more essential at strong coupling, i.e. exactly
there, where the main and yet unclear phenomena are
`hidden'. Hence, the classical solutions look like being very
important for studying the strong-coupling phase.

At present among all classical solutions in non-Abelian
gauge theories the most essential role belongs to instantons or
pseudoparticles [71, 72, 34]. By instanton one usually means
the configuration of fields `localized' in four-dimensional
Euclidean space, which satisfies the (anti) self-duality equa-
tions

F � ��F or Fmn � � 1

2
EmnlrFlr � �eFmn �2:10�

(m; n � 1; 2; 3; 4).

Any solution to the self-duality equations (2.10) is
automatically a solution to the Yang ±Mills equations of
motion DmFmn � 0 (the opposite is incorrect!) due to the
Bianchi identities DmeFmn � EmnlrDnFlr � 0 (i.e. relations, true
for any fields). For the instantons

S � 1

2g 2

�
d4x TrF2

mn �
1

2g 2

�
d4x TrFmneFmn � 8p2n

g 2
; �2:11�

where n is the topological charge, counting how many times
the three-dimensional sphere of large radius in four-dimen-
sional space-time `winds' around the compact gauge group (in
fact around its SU�2� subgroup). We will see below that in
certain important examples the nonperturbative configura-
tions in some sense are exhausted by instanton configurations.

The simplest one-instanton solution [72] to the self-duality
equations (2.10) has the `bell-shaped' form

Am / gmn
xn

x 2 � r 2
; Fmn / gmn

r 2

�x 2 � r 2�2 �2:12�

in four-dimensional space-time with the center, chosen in
(2.12), to be at the point x0 � 0. In Eqn (2.12) we have
introduced gmn Ð the 'tHooft C-number matrices (see, for
example, Ref. [34]). Solution (2.12) corresponds to the
topological charge of the instanton n � 1.

Another important nonperturbative effect is themonopole
or a particle with magnetic charge. In the Abelian theory
monopoles can arise only as external sources, but in the
framework of non-Abelian theory they can be identified
with certain configurations of extra (scalar or Higgs) fields
[69]. The simplest monopole configuration arises as a result of
reduction of the self-duality equation (2.10), when fields do
not depend on time and A0 � U is considered as an extra
scalar. Under such reduction the self-duality equations (2.10)
turn into the Bogomolny equations

DiU � 1

2
Ei j kFjk �2:13�

(i; j � 1; 2; 3).
As in the instanton case the topological configuration of

monopoles is nontrivial Ð they cannot be obtained by
continuous deformation of configurations with trivial
(vanishing) fields. The obstacle is topological charge. The
monopole masses are similar to the actions of instanton
configurations. For the so called BPS-monopoles (the mono-
poles of Bogomolny, Prasad and Sommerfield [73]), being
exactly the solutions to equations (2.13), the masses are equal
to

mi j
mon �

4p
g 2

mi j
W �

4p
g 2
�fi ÿ fj� : �2:14�

It follows from this formula that at weak coupling the
monopoles are very heavy particles. However, the situation
can again change after passing to the strong coupling area,
though the formula (2.14) is literally incorrect. However, at
strong coupling the monopoles might become even more light
than ordinary, i.e. electrically charged particles. In such
circumstances the condensation of light monopoles can
bring us to confinement of electric charges similar to the
Meissner effect in superconductivity.

Thus, the nonperturbative effects related to nontrivial
classical configurations may play an important role when
describing the theory at strong coupling. On of the attendant

8 In the situation of `general position', i.e. when fi 6� fj for i 6� j. If the

eigenvalues (2.6) partially coincide, the broken group still contains non-

Abelian factor SU�K� with K < N.
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technical problem is that these effects are usually `screened' by
the perturbative corrections. In order to get a clearer picture
of the nonperturbative effects one should pass to super-
symmetric theories [65, 78, 68] (see also the papers [51, 52,
77], the books [7, 2] and reviews [33, 41, 42, 44]).

2.4 Supersymmetric gauge theories
The main distinguishing feature of the supersymmetric
theories is that they contain an equal number of bosonic and
fermionic excitations. Therefore, due to the different signs of
the bosonic and fermionic contributions to loop diagrams one
gets essential cancellation of divergences. This effect is easily
seen, say, directly in the formula (2.5), if one putsNF to be the
contribution of fermionic loops, whileNV Ðthe contribution
of bosonic loops.

Adding to the corresponding Lagrangians the super-
partners of the vector and matter fields one may consider
non-Abelian gauge theories as quite satisfactory for the
description of all interactions (except for gravity) in some
vast range of energies. Renormalizability still means that
theory is described by (supersymmetric) Lagrangian of the
Yang ±Mills fields with matter terms added in some range of
scales and the only thing to be added to such Lagrangian is
prescription how the coupling g � g�m� depends on the scale
m. This is governed by the renormalization group equation
(2.4), which looks much simpler in supersymmetric theories
due to cancellation of loop corrections in perturbation
theory.

One of the main `phenomenological' problems of super-
symmetric gauge theories 9 is the presence of scalar fields in
their spectra. The scalar fields are necessary superpartners for
the matter fermions and even for the Yang ±Mills fields in the
case of extended supersymmetry, i.e. when each field hasmore
than a single superpartner. Due to supersymmetry the
excitations of the scalar fields should have the same masses
as the excitations of fermions (and vector fields) which totally
contradicts to the observable spectrum in nature. It means
that in our world supersymmetry is broken at least at some
scale and the dynamical derivation of such a scale is one of the
main problems of the theory. However, if we believe that this
problems will be solved, beyond this scale (at small distances)
the supersymmetric theory is a good object for study since it is
not so `polluted' by loop corrections.

In contrast to nonvanishing vacuum expectation values of
the other fields the scalar condensates hffAi 6� 0 do not violate
the space-time symmetry. Then in low-energy effective theory
all parameters of the effective Lagrangian (masses, couplings)
become in general nontrivial functions of these condensates.
As we already mentioned such functions are usually called
functions on the moduli space of supersymmetric gauge
theories. In gauge theories with extended supersymmetry
(when number of supersymmetry generators in terms of
Majorana spinors is N � 2 and higher) one cannot write
down the potential energy for Abelian fields not violating
supersymmetry. In non-Abelian theories the only choice for
such a potential term, not violating extended supersymmetry,

is to take the sum of commutators of the matrix-valued fields
fffAg of the form

P
A<B Tr �ffA;ffB�2. In theories with such

potential energy only the light Abelian fields `survive' at large
distances, i.e. one gets electrodynamics [see (2.9)] together
with massless scalars or moduli Ð the fields whose vacuum
values can be arbitrary.

Hence, in gauge theories with extended supersymmetry
there exists an infinite number (parametric family!) of vacua
and the problem of the theory is to find the spectrum and
effective couplings of the low-energy effective theory as
functions of the vacuum condensates. An important circum-
stance is that supersymmetry imposes extra requirements on
the space of condensates, in particular this space should be
complex (and sometimes moreover KaÈ hler, special KaÈ hler or
hyper-KaÈ hler) so that the class of available functions is
essentially restricted. All these general arguments are applic-
able only in the case when supersymmetry (or any other
symmetry) is the exact symmetry of quantum theory, i.e. is
not violated by quantization.

In the theories with `minimal' N � 1 supersymmetry the
Abelian superpotential is generated and moduli, in general,
become massive and acquire fixed vacuum expectation
values. In complex co-ordinates on moduli space the super-
potential is a holomorphic function W�fA�, and vacua are
defined by the equation dW � 0, since potential V�f; �f� /P

A jqW=qfAj2. The geometrical meaning of the appearance
of the complex manifolds in field theory is absolutely unclear,
but, as we will see below, it is rather natural to consider this
phenomenon as an `artefact' of string theory. It is very
nontrivial that complex geometry sometimes allows one to
predict the exact form of the low-energy effective Lagran-
gians which already account for the nonperturbative effects
(see Section 4.5).

2.5 General relativity as effective theory
The discovery of instantons and other nonperturbative
solutions essentially extended the behavior of the theory of
strong interactions. It has been demonstrated that the
elementary particle physics does not reduce to perturbation
theory, valid in QCD at high energies (the asymptotic
freedom regime), where the standard formulation of the
gauge field theory based on perturbation theory works quite
well [4]. Nevertheless, the instantonic computations appeared
to be only the next approximation in QCD far not enough to
describe confinement and other effects of strong coupling.

As for quantization of gravity, even supersymmetry [68, 7]
as a mechanism for cancellation of divergencies does not
allow any dreamabout the possibility of a consistent theory of
quantum gravity in the framework of quantum field theory
(see, for example, Ref. [44]). Despite many attempts to
construct a theory of quantum gravity, say, as a field theory
with infinite-dimensional group of gauge symmetry, such an
approach seems to be based on nothing for a few quite simple
reasons.Wewill try to discuss these reasons in this section and
will come back to them many times below when speaking
about string theory.

Let us first notice that by quantum field theory, if nothing
opposite is stated directly, we will understand the local
quantum field theory, satisfying the renormalizability criter-
ion. The local quantum field theory (with Lagrangian
depending upon not higher than second derivatives) guaran-
tees a well-defined procedure of quantization of a free fieldÐ
an infinite system of particles and anti-particles, correspond-
ing to the quadratic in fields part of the Lagrangian. The

9 The phenomenology of supersymmetric quantum field theories goes

beyond the scope of this review (see, for example, recent review [41]). This

is a quite interesting and fashionable topic, whose only weak point is the

absence of experimental confirmation of supersymmetric particles. From

our point of view it is much more important that supersymmetric theories

play the role of a nice `theoretical laboratory' for studying nonperturba-

tive effects in realistic gauge theories.
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interaction in such a theory is introduced by terms of higher
degree in the fields and in the weak coupling approximation
relativistic quantum field theory nicely describes the scatter-
ing of particles. It automatically takes into account the
contribution of antiparticles into the physical processes,
which can be considered at present as its main achievement.

A much more delicate aspect is renormalizability Ð the
dependence of coupling constants upon the energy scale. In a
renormalizable quantum field theory the interaction can be
described by a finite set of couplings (often even a single
coupling, as in gauge theories, see Section 2.1), whose
dependence of scale is rather weak. In reality this `weak
dependence' means logarithmic dependence of the dimen-
sionless coupling constants, like in gauge theories or lf 4

theory in four dimensions. Renormalizability means that in
some wide range of energies the theory is described by a single
Lagrangian Ð new interaction vertices should not be added
and the corresponding couplings weakly depend on the scale.

In the theories with dimensional coupling constants and/
or an infinite set of interaction vertices these features lose any
sense. The dimension of the coupling constant, more exactly
`negative mass' dimension like the dimension of the Newton
gravitational constant gN � 1=M 2 in four dimensions [in
D-dimensional space-time g �D�N �M 2ÿD] leads to unbounded
growth of the perturbative corrections of the form

1� gNL
Dÿ2 � . . . �2:15�

when one removes the cutoff L!1. This means that the
theory at any finite scale depends on what happens at small
distances. This completely contradicts the idea of renormaliz-
ability, i.e. the idea that after introducing scale-dependence of
the couplings one may completely forget about small
distances.

Such a concept appears to be totally acceptable for
renormalizable (supersymmetric) gauge theories, but is
absolutely useless for the theory of gravity. Gravity [with
dimensional coupling and infinitely many interaction vertices
of gravitons hmn�x� � Gmn�x� ÿ dmn] `remembers' small dis-
tances and is not a renormalizable field theory. The same
conclusion follows from the study of `lattice' or discretized
gravity (except for two-dimensional case [62, 99 ± 101],
directly related to string theory), where the continuum limit
is not well-defined, in contrast to, say, lattice gauge theories.

The difference between gravity and quantum field theory
is in fact far deeper. Quantum field theory computes only the
`relative' but not `absolute' value of a physical quantity, i.e.
only the difference between the value of some quantity at
given scale m and its value at some `normalising point' Ð at
some fixed scale m0. Of course, in renormalizable quantum
field theories (for example in gauge theories) it is enough to fix
only a fixed (and usually small) set of quantities at the
`normalising point', then the theory is capable of predicting
any cross-sections. However, this circumstance does not
abolish this principle feature of quantum field theory,
especially transparent in condensed matter physics, where a
natural `cutoff' exists (say the scale of elementary atomic
lattice) and it is possible to distinguish clearly the `macro-
scopic' quantities, which do not depend upon this scale and
the `microscopic' ones.

The simplest example is energy of any state, which is
defined already in free field theory not as an absolute
quantity, but compared to, say, `vacuum energy'. Naively
the `vacuum energy' gets a contribution from the infinitely

many vacuum energies of harmonic oscillators

Evac / �h

2

�
dpo�p� � �h

2

�
dp

�����������������
p 2 �m 2

p
: �2:16�

In field theory without gravity this quantity is not observable
and can be considered as a reference point, i.e. one may put,
say Evac � 0. When including gravity, according to the
principle of equivalence the vacuum energy is a source for
gravitational field.

The field theoretical expression (2.16) gives a value
absolutely uncomparable to the value of the cosmological
constant with any cutoff (or, better, with any scale of
supersymmetry breaking). The fundamental theory contain-
ing gravity must know how to compute `absolute' values, and
this means that such theory in principle cannot be quantum
field theory. The problem of vacuum energy or the cosmolo-
gical constant is one of the principle unsolved problems of
modern physics and we will come back to the question not
once below.

From the structure of corrections (2.15) it is clear that at
small distances lÿ1 �MPl � g 1=�2ÿD�N gravity, generally
speaking, becomes strong. The problems of strong gravita-
tion interaction and related issues of strong gravitational
fields, say, in black holes, are even less studied that the
problems of strongly coupled gauge theories. One of the
well-known effects from the theory of black holes is the
linear relation S � Area=4gN between the number of states
or entropy S and area of the horizon (Area) of a black hole
[66]. This statement cardinally contradicts the expectations of
quantum field theory, where the number of states is always
proportional to the volume (but not to the area). This is a kind
of indirect argument in favor of the point of view that in
strong gravitational fields one may find some fundamental
one-dimensional structures; for a detailed discussion of this
issue see [29]. Of course, not being decisive, this is one of the
indirect arguments in favor of string theory.

3. Main principles of string theory

In order to get a consistent theory of quantum gravity one
should crucially change the theory at Planckian scales and
replace the pointlike objects by one dimensional extended
objects Ð strings. String theory by definition possesses a
dimensioned constant, which for historical reasons [see
formula (3.7)] is denoted as a 0. This constant has a dimension
of the square of length. In `fundamental' string theory,
pretending to be the theory of quantum gravity, this
parameter can be nothing else but the Planck length, i.e.�����
a 0
p � 10ÿ33 cm. However, more generally, its value may be
chosen depending on the problem under consideration. For
example, in string theory applied to the theory of strong
interaction at large distances this parameter should be of the
order of the hadron size 10ÿ13 cm.

Let us point out that a 0 is the only constant, put `by hand'
into string theory. It has a clear sense of the scale where
stringy effects become essential. There are no other constants
in string theory, even the dimensionless string coupling gstr, as
we will see below, is not really a parameter, but is rather
related to the vacuum condensate of a background fieldÐ the
so called dilaton. In other words, this constant is a dynamical
parameter of the theory.

String theory drastically differs from quantum field
theory. We will be coming back to the discussion of this
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issue many times, so let us now briefly formulate the main
points. In field and string theory:

there is a different `counting in loops', i.e. in field theory
and string theory the intermediate state propagating along the
loops are counted with different weight factors;

there is an essential difference in how dimensional
reduction appears, moreover, these theories are especially
different in space-times with compact directions;

space-time shows up in field theory and string theory in
totally different ways; string theory is characterized by a
`dynamical' nature of space-time. In particular there exist,
say, `mirror pairs', i.e. themanifolds which are not distinguish-
able by string theory;

locality and causality also appear differently.
As was first noticed by Scherk and Schwarz [53], string

theory naturally leads to unification of gauge fields and
gravity into one single theory, since in the spectrum of string
one automatically gets massless vector fields together with
massless fields of spin two.

3.1 Gauge fields and gravitons
Let us start the discussion of the foundations of string theory
from an old observation that the theory of one-dimensional
extended objects naturally contains vector fields and grav-
itons. The simplest (though not themost strict) way to see this
is to consider a string field or a functional of string contour
F
�
Xm�s�

�
and its expansion in string harmonics (with the

Fourier coefficients am
n )

Xm�s� � xm �
X
n 6� 0

1

n
am
ÿn exp �ins� : �3:1�

This expansion obviously has the following form

F
�
Xm�s�

� � f�x� � Am�x�am
ÿ1 � . . . �3:2�

After quantization �am
n ; a

n
m� � ndn�m; 0dmn the Fourier

coefficients turn into the creation and annihilation operators
of string excitations. Then formula (3.2) can be better thought
of as the action of the operatorF

�
Xm�s�

�
on the Fock vacuum

j0i in the space of states of an open string. The first term
means that vacuum corresponds to the wave function of a
scalar field f�x�, the next neighbor state am

ÿ1j0i is related to
the vector field Am�x�. In expansion (3.2) one may take into
account only the coefficients of decomposition (3.1) or string
harmonics am

n , with n < 0 (creation operators), since
am
n j0i � 0 when n > 0.

String quantummechanics and requirement of invariance
under reparameterizations of `internal' co-ordinates on the
world-sheet immediately leads to the condition that the vector
field Am�x� should be massless. The simplest explanation of
this fact is that reparameterizations of co-ordinates on world-
sheet have `eaten up' two degrees of freedom, so that physical
degrees of freedom are only the transverse excitations, say a i

ÿ1
�i � 1; . . . ;Dÿ 2�, if speaking about the vector field. Hence,
the vector has onlyDÿ 2 physical components, whereD is the
space-time dimension. This automatically means that the
vector field is massless (gauge field), since a massive vector
must haveDÿ 1 physical components. More strictly it can be
demonstrated considering the operator of string mass or
energy of string excitations

M 2 � 1

a 0

�X1
n� 1

a i
na

i
ÿn ÿ 1

�
; �3:3�

which shows that the string spectrum contains the massless
gauge field. However, this spectrum starts from the
tachyon f�x�, resulting in additional problems; one of the
most effective tools to overcome this problem is super-
symmetry.

In order to make vector field Am�x� non-Abelian one
should assign extra indices to the ends of string [76] (for
example, of the quark- or antiquark-fundamental representa-
tions). Then the vector field becomes matrix kAi jk transform-
ing under adjoint representation of the corresponding gauge
group (Fig. 3). For quite a long period of time this procedure
was performed `by hand' (amplitudes were simply assigned by
the Chan ±Paton factors), until it finally has become clear
that a non-Abelian theory naturally arises if one allows
existence of so called D-branes (see Section 4.4). Since it is
massless vector field which appears in string spectrum, one
gets exactly gauge quantum field theories in the field theory
limit a 0 ! 0, when masses (3.3) of all other string harmonics
M 2 � N=a 0 [with N being the eigenvalue of the operatorP

a i
na

i
ÿn of the `number of particles' Ð string harmonics in

formula (3.3)] become very large and their excitations in low-
energy effective theory, i.e. at distances much larger than

�����
a 0
p

can be neglected.

In supersymmetric string theory the massless sector contains

vector supermultiplets, where the rest of the states are constructed

by supersymmetry. In the low-energy limit this leads to a super-

symmetric theory of the Yang ±Mills fields as an effective theory of

massless modes over the possible vacuum of string theory.

According to modern general philosophy quantum field theories

(in particular, supersymmetric gauge theories got in this way) can be

considered as an effective description of physics near different

vacua of string theory. These vacua can be related to each other

by duality transformations Ð some discrete transformations,

exchanging different vacua of string theory and, therefore,

different quantum field theories.

The expansion over modes of a closed string is similar to
formula (3.2) but since the interaction (say with the back-
ground fields) in the closed sector takes place over the whole
world-sheet, one should consider two sets of string harmonics
corresponding to left and right waves independently propa-
gating on the string world sheet. These waves are solutions to
the equations of motion of free string: am

n exp
�
in�t� s�� and

~am
n exp

�
in�tÿ s��. The spectrum again starts from the

tachyon (the different one with the modulus of mass squared
twice that of the tachyon of open string spectrum). Massless
fields correspond to the states am

ÿ1~a
n
ÿ1j0i, or, more exactly to

their linear combination.

i

j

X�s�
Ai j�x�

Figure 3. Massless non-Abelian vector field as a string with quarks at the

ends.
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Dividing the second rank tensor into irreducible repre-
sentations of the Lorentz group, it is easy to see that the
corresponding fields consist of, firstÿ

am
ÿ1~a

n
ÿ1 ÿ �m$ n��j0iBmn�x� ; �3:4�

or the antisymmetric tensor field Bmn, and second

dmna
m
ÿ1~a

n
ÿ1j0ij�x� ; �3:5�

i.e. the massless scalar usually called a dilaton. It is the
vacuum value of the dilaton which gives the value of string
coupling constant. Finally, the rest of the components form
the massless and traceless symmetric tensor�

am
ÿ1~a

n
ÿ1 ÿ

1

D
dmnal

ÿ1~a
l
ÿ1

�
j0iGmn�x� ; �3:6�

or the graviton.
All considerations of this section are based by now on the

simplest quantum mechanics of the free string. Switching on
the interaction (Fig. 4), one may easily verify the two
following important properties of the theory.

� Tree amplitudes of scattering of massless states of open
strings in the limit a 0 ! 0 turn into the scattering amplitudes
of vector gauge bosons, and similar the scattering amplitudes
of the states (3.6) of the closed sector turn into the amplitudes
of graviton scattering [53].
� Interaction of two open strings leads to closed strings
(Fig. 5). Together with the previous remark this means that
gauge fields theories, constructed in the framework of string
theory, necessarily lead to the appearance of gravity.

3.2 Massive fields and ultraviolet cutoff
Let us turn now to massive fields of string spectrum, Their
masses M [see (3.3)] are measured in units of the (inverse)
string length or the Planck mass

����������
n=a 0

p
, where n is the

number of corresponding string harmonics or excitation
levels. It is easy to understand that this number is linearly
related to the (maximal possible) spin of the excitation J. The

exact relation can be written in the form of so called Regge
trajectory Ð the linear function10

J � a�M 2� � a0 � a 0M 2 ; �3:7�

and from (3.3) it immediately follows that a0 � 1 for an open
string. The relation between spin and mass (3.7) was known
long ago in the theory of strong interactions, which after the
works of Veneziano [49], Nambu and Goto [50] became a
`parent' of string theory. Notice immediately that all excita-
tions with higher spins in string theory do have masses of the
order of the Planck mass. Therefore their absence in visible
spectrum does not contradict to their presence in the theory,
unlike of the non-removable well-known defect of the
quantum field theories with higher spins.

In the limit a 0 ! 0 string theory reproduces the theory of
pointlike particles. From the whole `tower' of fields only the
massless fields survive (under assumption that the tachyon
problem is solved; this problem will be discussed in detail in
Sections 3.5 and 6.3). The size of a string can be estimated, for
example, computing the correlator

h0j
�
ds
ÿ
X�s� ÿ x

�2j0i � a 0
X
n> 0

1

n 2
h0janaÿnj0i

/ a 0
X
n> 0

1

n
/ a 0 ln nmax � a 0 ln

ÿ �����
a 0
p

Emax

�
; �3:8�

where nmax and Emax are the number and energy of maximal
excited string harmonic. This formula shows that the size of
string is of the order of

�����
a 0
p

(it grows very slowly with energy),
which justifies the interpretation of the only dimensional
parameter of string theory a 0 as a square of string length.

Notice finally, that the number of quantum states in the
string spectrum grows rapidly with the energy of excitations.
At large energies the spectral density behaves as 11

r�M� / exp
ÿ
2p

�����
a 0
p

M
�
: �3:9�

This behavior leads to absolutely unusual (and different from
quantum field theory) properties of string theory at small
distances or large energies Ð i.e. at the Planck scale.
� One of the ways to see this already in the theory of non-
interacting strings is to consider the thermodynamics of string
states. Neglecting interaction the free energy has the form

F �b� �
�
dE r�E � exp �ÿbE � ; �3:10�

and for the density of string states (3.9) this integral (3.10)
converges only at b > bH � 2p

�����
a 0
p

or at the temperatures less

a b

Figure 4. Interaction vertices of open (a) and closed (b) strings.

Figure 5. Interaction of open strings leads to closed strings.

10 Let us stress once again that dimensional parameter a 0 characterizes the
scale when string effects become to be essential. Therefore the exact value

of this quantity is different for strings, arising as effective description of

strong interactions at large distances and `fundamental' strings, corre-

sponding to quantum gravity. Using the notation originally introduced in

the context of hadron physics, we will consider however, if the opposite is

not stated directly, this parameter to be equal to square of the Planck

length.
11 The numerical coefficient in front of

�����
a 0
p

M in the formula (3.9),

generally speaking, depends on the particular string model. Literally in

(3.9) it is written as in the theory of closed strings, where it is maximally

universal. One of the simplest methods known to the author to derive this

coefficient for any string model is to consider the singularities of string

propagators [97].
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than the Hagedorn temperature 12 TH � 1=bH � 1=2p
�����
a 0
p

. It
means that at the Hagedorn temperature the phase transition
is possible [91]. Simple calculations show that at high
temperatures the number of (gauge-invariant) states in string
theory is much less than in quantum field theory. For the
`normalised' free energy in string theory independently of
space-time dimension D one has

F

VT
/

T!1
T

instead of

F

VT
/

T!1
T Dÿ1

in field theory. Not being yet finally understood, this property
demonstrates the qualitative agreement between the high-
energy properties of string theories with corresponding
(hypothetical) properties of gravity.
� Another manifestation of the same effect is violation of
`microlocality' in string theory, related to the growth of
spectral density according to (3.9). Computing the Green
function or propagator of string between `pointlike' initial
and final states (Fig. 6), and studying its singularities it is easy
to see that they look like singularities of nonlocalizable theory,
i.e. lie within some hyperboloid penetrating inside the space-
like region at a distance of the order of

�����
a 0
p

[92] (Fig. 7).

� Scattering amplitudes in string theory at large energies
crucially differ from the corresponding amplitudes in quan-
tum field theory by softer behavior; this can be seen already at
the level of the Veneziano amplitude (see, for example,
Ref. [2]). Due to summing over infinitely many states in the
intermediate channels, the amplitudes of string theory
contain a `cutting' factor at high energies.

Notice finally, that the opposite limit to field theory
a 0 ! 1 (the so called `nill-strings') is very singular. Being a
complicated technical problem, this limit is most likely
senseless from the physical point of view. It corresponds to
the theory at the energies much more than Planckian, i.e. in
the region where neither field theory nor even string theory
are literally applicable and taking such limit is similar to an
attempt to use field theory beyond the scale of the ultraviolet
cutoff.

3.3 String perturbation theory Ð
sum over two-dimensional geometries
The perturbative structure of string theory can be defined by
the `loop expansion' (Fig. 8),

F �
X1
g� 0

g2gÿ2str Fg ; �3:11�

or by expansion over topologies or genera of the world sheets
being two-dimensional Riemann surfaces. The role of
expansion parameter is played by gstr Ð the string coupling
constant. Notice immediately that expansion (3.11) is written
for the free energy or the logarithm of the partition function
(in contrast to quantum field theory) since it includes
summation only over `connected diagrams'. Literally the
loop expansion in Fig. 8 is valid for the theories with only
closed strings. These theories include the closed bosonic
strings as well as so called superstrings of type II 13, on which
we will mostly concentrate below. If the theory contains open
strings together with closed one should also add the world-
sheets with boundaries.

Let us also note that the normalization in (3.11) as well as
in Fig. 8 is chosen in such way that the contribution of any
genus is proportional to the particular power of string
coupling gstr, which is equal, up to a sign, to the Euler
characteristic of the corresponding world-sheet. Due to this
normalization the expansion starts with gÿ2str and includes for
closed strings only even powers of string coupling. In the
theory of open strings for the world-sheets with boundaries
one would also get the odd degrees of the coupling constant.
This means that the string coupling in the closed sector is in
fact proportional to the square of the open string coupling
and this fact will be important below when discussing the
nonperturbative theory.12 The Hagedorn temperature coincides with the Hawking temperature of

the black hole whose gravitational radius is equal to string length

MgN �
�����
a 0
p

.

Xi

Xj

Figure 6. Propagator of closed string with fixed boundary contours.

Choosing these contours as points the propagator becomes a function of

two variables G�Xf;Xi�, and can be compared to a similar object in

quantum field theory.

t

xls

Figure 7. The singularities of propagator in string theory. In contrast to

local quantum field theory they are located inside the hyperboloid,

penetrating into space-like domain at distances of ls � 2p
�����
a 0
p

.

1

g2str
� � g2str � ...

Figure 8. String `Feynman diagrams' corresponding to the first three terms

of the perturbative expansion (3.11) for closed strings. The tree contribu-

tion (of the order of 1=g2
str in `string normalization') corresponds to the

sphere, the one loop contribution is given by the torus, the two-loop by the

figure of eight, etc.

13 When D-branes are absent (see Sections 4.3 and 4.4).
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The contribution of each genus is computed by the
Polyakov path integral [55] over the string co-ordinates and
two-dimensional geometries or metrics on the world-sheet 14

Fg �
�
Dhab DX exp

�
ÿ
�
Sg

qX �qX
�
; �3:12�

where X are the co-ordinates of the string, being at the same
time from the point of view of two-dimensional world sheet
theory the fields of a free field theory, and hab denote metrics
on Riemann surface Sg of genus g. The summation over two-
dimensional geometries in (3.12) was originally formulated by
Polyakov as an integration over metrics. If, however, one
takes into account the invariance under reparameterizations
on world sheets, the sum is really taken over the equivalence
classes of metrics (with respect to changes of co-ordinates or
reparameterizations) and it is these equivalence classes which
correspond to physically different configurations.

On the first glance the action
�
Sg
qX �qX in formula (3.12)

does not at all depend on two-dimensional metric hab. Two
out of three of its components may be immediately `killed' by
two reparameterizations of the world-sheet co-ordinates, say,
the metric can be brought by reparameterizations to the
conformal form hab � dab exp j, when it is determined by a
single functionj on string world-sheet. It is easy to check that
the free action (3.12) does not at all depend upon the
conformal factor j and the integral over metrics in (3.12)
looks like being trivial. However, this is not true. The reason is
that two-dimensional theory (3.12) is a simple quantum
mechanics but with infinitely many degrees of freedom and
therefore the integral in (3.12) should be regularized.

If we require that the regularized theory should be
independent of the choice of co-ordinates on string world-
sheet (and such requirement is absolutely necessary from
physical point of viewÐ the sensible physical theorymust not
depend on co-ordinates on unobservable world-sheet of the
Planckian size) the regularization (for example, cutoff)
should be introduced covariantly. This means that quantum
theory (3.12) in general does depend on metric hab or at least
on its conformal class. Such a phenomenon is called an
anomaly (see, for example, the review [36] and references
therein), and in our case we deal with a two-dimensional
conformal or gravitational anomaly. Calculating this anom-
aly in Ref. [55], Polyakov has demonstrated that two-
dimensional geometry essentially restricts the properties of
space-time which is a target-space for string theory.

The origin of these restrictions is that contribution to
anomaly of `physical degrees of freedom' should be compen-
sated by the contribution of two-dimensional geometry
(supergeometry) itself. And it is this constraint which leads
to the well-known critical dimensions D � 26 (or D � 10)
`fixed by God'. Such restrictions are not as strong as one had
thought at the beginning of the string era, but nevertheless
string theory in some sense chooses the space-time `itself'. The
space-time in string theory should be essentially multidimen-
sional, though partially these dimensions can be `small' Ð i.e.

responsible for the `internal' degrees of freedom in spirit of the
Kaluza ±Klein models [64].

The computation of anomaly [55] shows that in quantum
theory the conformal factor j `revives' and acquires the
meaning of an extra (singled out) co-ordinate of the space-
time. The anomaly adds the kinetic term for the field j to the
action (3.12), so that (in flat space-time) the total action
acquires the form�

S
�qX �qX� qj �qj� . . .� ; �3:13�

where in some natural normalization the field j should be
regarded as imaginary. In other words formula (3.13) is
naturally interpreted as a free action in Minkowski space.
The interpretation of time as `scale factor' arising in the
framework of string theory is a bit similar to analogous
interpretation in general context of gravity and cosmology.

Let us return to the properties of the Polyakov path
integral over two-dimensional geometries. In the case of
pointlike particles this integral is reduced to the finite-
dimensional integral over the Feynman parameters, which
have the meaning of invariant lengths of the trajectories of
particles. In such a way the Feynman diagrams (say, in the
f 3-theory) arise directly at the first-quantized level. The main
physical problem coming out of the integrals over Feynman
parameters (and hence from the integral over one-dimen-
sional geometries) is the appearance of ultraviolet divergen-
cies due to contributions of trajectories of infinitely small
lengths. In string theory these singularities are naturally
regularized when one passes from world-lines intersecting at
some points to smooth world sheets (this immediately leads to
the fact that only cubic interaction is possible in string
theory).

A more delicate effect is that two-dimensional geometry
regularizes the contribution of small distances since this
contribution is geometrically equivalent to the contribution
of trajectories of large lengths. According to the main
principle of quantum physics the summation should be
taken only over the independent configurations. One should
immediately conclude that in order to avoid `double counting'
the contribution of the trajectories with small lengths should
not be counted at all, if all equivalent `infrared' configurations
are already taken into account. As a result of this logic we get
a striking consequence that in string theory by definition the
ultraviolet problems of the quantum field theory are absent,
more strictly there are no ultraviolet divergencies if there are
no infrared15. This statement follows from the analysis of
finite-dimensional part of the integral over two-dimensional
geometries given by the integral over moduli spaces of
complex structures of Riemann surfaces (this issue is in the
center of discussion in the main part of review [9]).

According to the Belavin ±Knizhnik theorem [61] the integral

over metrics (3.12) is reduced to the integral over the moduli space

of complex structures of the Riemann surfaces

Fg �
�
Mg

dm�y� �� f �y���2 ; �3:14�

where Mg is the (finite-dimensional) moduli space of complex

structures of the Riemann surface Sg. The concrete choice of the

integration measure depends on particular choice of a string model,

14 Since string theory by definition contains an integral over two-dimen-

sional metrics it is often identified with two-dimensional quantum gravity.

Indeed the parallels between string theory and quantum gravity in two

dimensions are very useful for studying both theories. However, one

should remember the principle difference in space-time interpretation,

which for string theory is multidimensional and the observables in string

theory are defined in multidimensional space-time. 15 This is not the case for many string models due to presence of tachyons.
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for the bosonic string this is the Mumford measure [61]. It is the

modular invariance of the integrand in (3.14) leading to the fact that

contributions of the trajectories of small lengths and the trajectories

of large lengths are physically equivalent. The formulation (3.12),

(3.14) allows one in principle to use the symmetry properties in

order to get some nonperturbative information, though by its own

definition this is just a perturbative expansion around some vacuum

and the integral (3.12) computes only the g-loop correction of the

expansion of string perturbation theory.

3.4 Dynamical nature of space-time
and two-dimensional conformal theories
Let us come back to the fact that the contribution of the new
co-ordinate coming from two-dimensional metric allows to
cancel the conformal anomaly. This condition is not empty
(in the sense that it does not take place everywhere) and leads
to dynamical restrictions on the properties of physical space-
time. The basic restrictions look as follows.
� In flat space-times string theory exists only in some
distinguished or critical dimensions. The simplest bosonic
string (3.12), (3.13) demands the total number of dimensions
to be D � 26 (including time), and the theory of fermionic or
supersymmetric strings (two-dimensional supergravity) fixes
the critical dimension to be D � 10.
� In nontrivial background fields, say, when metric is not
flat, the background fields should satisfy the classical
equations of motion, in particular the Einstein equations

RMN�G� ÿ 1

2
GMN R�G� ÿ TMN � O�a 0� �3:15�

up to the string corrections. In Eqn (3.15) GMN � GMN�X� is
the space-time metric, RMN�G� is its Ricci tensor and TMN is
the stress-energy tensor of the other background fields.
Moreover, in the presence of nontrivial background fields
the anomaly cancellation condition is changed. In such a case
the critical dimension (D � 26 or D � 10) `moves', i.e.
changes due to contribution of corrections in a 0 to the
anomaly Ð the terms, starting with a 0R�G�.

Generally speaking, the space-time should not be necessa-
rily Minkowski space or the Euclidean flat space 16, say R 4, it
may have a nontrivial metric (satisfying the Einstein equa-
tions due to the two-dimensional symmetries [60]). It can be
even a nontrivial compact manifold (or, more exactly has a
compact part), corresponding, as already mentioned above,
to the internal (gauge) degrees of freedom in spirit of the
Kaluza ±Klein models. The Polyakov path integral (3.12)
should be then understood in `generalized' sense when instead
of free infinite-dimensional quantum mechanics (or two-
dimensional field theory (3.12) with the fields X, to be
interpreted as space-time co-ordinates) one should deal with
some generic sigma-model�

S

ÿ
GMN�X� qXM �qXN �R�2�F�X� � . . .

�
; �3:16�

where R�2� � R�2��h� is the curvature of a two-dimensional
metric, while GMN�X� and F�X� are nontrivial background
fields for the space-time metric and dilaton.

A principal newmoment in string theory is that the theory
`adjusts' the space-time where it exists to itself. More strictly,
it imposes essential constraints on the characteristics of the
target space-time and forces the background fields to be
solutions to the equations of motion. Let us also point out
that comparing Eqns (3.16) and (3.11) and using the Gauss ±
Bonnet theorem�

S
R�2��h� � 2ÿ 2g

(where g � g�S� is genus of the Riemann surface S) one gets
the relation between the `zero mode' F0 of the dilaton field
F�X� (more exactly of its vacuum expectation value) and the
string coupling constant gstr � hexpF0i.

Considering string theory in the external background
fields, including nontrivial metric of the space-time (such
theories for historical reasons are usually called two-dimen-
sional sigma-models), it is necessary all the time to look after
the condition of conformal invariance, which is reminiscent of
the reparameterization invariance after the metric hab has
been chosen in conformal form, see (3.12), (3.13) and (3.16).

In other words, nontrivial background fields should
necessarily correspond to the two-dimensional conformal
sigma-models, or, more directly to the two-dimensional
conformal theories [56]. The difference between these two
notions is only in that themajority of known two-dimensional
conformal theories have only an approximate description in
sigma-model terms. Usually, an explicitly known nontrivial
sigma-model can correspond only to `bare' values of the
background fields, while the exact background fields, which
hypothetically describe the exact conformal theory are not
really known. In such a case the conformal field theory can
nevertheless be formulated axiomatically [56] or, in terms of
free field theories [82, 83, 98], corresponding to the simplest
dilaton background17.

Two-dimensional conformal field theories [56] are the theories

with invariance under the action of the infinite-dimensional (only in

two-dimensions!) group of conformal symmetry. This group if

formed by holomorphic reparameterizations on world sheets,

keeping metric in conformal form hab � dab expj. The generators
of such transformations form the Virasoro algebra

�Ln;Lm� � �nÿm�Ln�m � c

12
dn�m; 0 �3:17�

and in the `classical' case (at c � 0) may be represented as

Ln � ÿzn�1 d=dz, i.e. form the basis of holomorphic vector fields

on the world-sheetS, parameterized by complex co-ordinates �z; �z�.
Implying that conformal symmetry is an exact symmetry of

quantum theory (and this is again a natural requirement of the

independence of physics of the choice of co-ordinates on the world-

sheet of the Planckian size), one gets immediately an infinite

number of constraints (the Ward identities) on the correlation

functions in two-dimensional theory [56]. This allows one in

principle to calculate any two-dimensional correlator, being the

`building blocks' for string amplitudes.

16 The problems of signature of space-time are still beyond the framework

of string theory and we will not discuss it here. Let us only point out that

we imply everywhere a possibility of smooth analytic continuation of the

theory in Minkowski space to the Euclidean space and we will not

distinguish these two formulations below.

17 A nice exception consists of two-dimensional sigma-models on group

manifolds and conformal theories corresponding to them [57]. However,

even in this case it is simpler and more natural to construct the conformal

theory just to require that conformal symmetry is an exact quantum

symmetry consistent with the current algebra, always existing on the group

manifold [58].

September, 2002 String theory or éeld theory? 927



It turns out that the same statement can be formulated

alternatively: despite all conformal theories corresponding to

nontrivial manifolds in space-time not being free theories (3.13) in

the literal sense, for any conformal theory there exists a representa-

tion in terms of free fields or so called bosonization [82, 83, 98]. This

means that in any nontrivial space-time, consistent with two-

dimensional conformal invariance, string theory is in principal

defined perturbatively and the integrals (3.12) and (3.14) can be

calculated.

Bosonization effectively reduces the computations in nontrivial

conformal theories to the calculation (of quite complicated

correlation functions) in the theories with quadratic action

SCFT�j� �
�
S
�qj �qj� a0R�2�j� ; �3:18�

where the constant a0 (or constant vector in case of many fields) is

related to the central charge cCFT � 1ÿ 12a 2
0 . This is the way how

non-integer central charges of nontrivial theories arise from the free

theories with central charges just equal to the number of fields,

c � D. It is also useful, as follows from comparison with (3.16), to

interpret action (3.18) as the action of a string in the external linear

dilaton background F�j� � a0j. We will see below that such a

background is also distinguished in string theory from other points

of view.

Besides, for generic conformal theories one should specially

notice that a single conformal theory may correspond in general to

strings on differentmanifoldsX 1 andX2. Suchmanifolds are called

mirror manifolds [23, 24]. The simplest example is a free theory of a

field, taking values on a circle Ð the theories on circles X1 � SR of

radius R and X2 � Sa 0=R with the radius a 0=R are equivalent (see

Section 4.2).

Let us recall once more that the amplitudes in string
theory are built from the correlation functions of two-
dimensional conformal field theory. More exactly, the
scattering amplitudes of, say, massless excitations above
some vacuum do correspond to the particular correlators in
two-dimensional conformal field theory corresponding to
this vacuum. These operators are fixed by the set of
corresponding quantum numbers and by condition of
conformal invariance Ð the consequence of reparameteriza-
tion invariance on the world-sheet. It is remarkable that
conformal invariance immediately leads to all the physical
requirements on the operators of physical particles.

Let us demonstrate this on the example of the operator of
emission or absorbtion of a photon (in a flat space-time)

E qX exp �ipX� �3:19�
with momentum p and polarization vector E. First, conformal
invariance says that a `physical operator' must have unit
dimension, then and only then the result of integration over
the boundary of the world-sheet (in case of open strings, or
over the whole world-sheet in case of closed strings) will not
depend on the choice of co-ordinates. For the operator of
photon (3.19) this means (due to unit dimension of pre-
exponent) that p 2 � 0, or, alternatively, that the (anomalous
in the sense of two-dimensional conformal field theory)
dimension of the exponent in (3.19) vanishes. Thus, from the
condition of two-dimensional conformal invariance one imme-
diately obtains that the photon is massless. In fact this
derivation is just a little bit more strict variant of the
argumentation from the beginning of Section 3.1.

Slightly more detailed analysis of the conformal invar-
iance leads rapidly to the transversality of physical photon

Ep � 0, or to gauge invariance. Indeed, decomposing the
polarization vector into the transverse and longitudinal
parts EM � E?M � E kM, so that E?p � 0 and E kM / pM, one easily
finds that

E kqX exp �ipX� / p qX exp �ipX� / q
ÿ
exp �ipX��

� Lÿ1 exp �ipX� ; �3:20�
i.e. the contribution of the longitudinal part is the total
derivative and disappears after the integration over the
boundary of the world sheet. In other words, using the last
equality in (3.20), one may say that the operators or states
corresponding to physical particles are defined in the
language of two-dimensional conformal theories up to the
`gauge' states of the form Lÿ1jCi and with the vanishing
norm. Thus, the `ghost-free' requirement of two-dimensional
theory leads to the gauge invariance in physical string
spectrum.

3.5 Supersymmetry and fermions
Let us now briefly discuss the extra world-sheet fields and
related internal degrees of freedom. One of the important
properties of string theory is that by introducing super-
symmetry on world-sheet one immediately obtains the
space-time fermions 18.

Already in the degenerate example of a string Ð the
relativistic particle Ð it is enough to introduce the world-
line supersymmetry [79], to get the space-time fermions. The
world-line action can be defined requiring the invariance
under the (one-dimensional!) supersymmetry with the Grass-
mann parameter E

dX � EC ; dC � ÿE
�

_X� 1

2
wC
�
eÿ1 ; �3:21�

dw � ÿ2_E ; de � ÿEw :

The corresponding invariant action

1

2

�
dt

�
1

e
_X 2 �C _C� w

e
C _X�m 2

�
e� 1

4
wdÿ1t w

��
�3:22�

includes in addition to co-ordinates XM and one-dimensional
metric e the Grassmann `gravitino' w and fermionic variables
CM with the first-order kinetic term, such that these variables
coincide with their own momenta CM � dS=d _CM. After
quantization one gets the relations �CM;CN�� � dMN, i.e.
the Grassmann variables CM turn into the Dirac gamma-
matrices and the wave function carries now also the space-
time spinor index, since it becomes a vector of a certain
representation of the Clifford algebra. The corresponding
representation in terms of the (one-dimensional analog) of the
Polyakov path integral with the action (3.22) which allows to
compute Green functions in the theory of Dirac fermion.

Notice that the world-line supersymmetry (3.21) (as well
as its direct generalizationÐ the supersymmetry on the string
world-sheet) is practically identical to the well-known super-

18 Here one should make a few extra comments. This property in fact can

be detected already at the level of pointlike particles. Moreover, in some

sense (without using the notion of supersymmetry) it was known long

before the string theory appeared. Nevertheless, it seems to be extremely

important that only in string theory or on two-dimensional world-sheets,

this property arises naturally and without the `pathologies' of the one-

dimensional case.
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symmetry in quantum mechanics. The simplest example of
supersymmetry in quantum mechanics is a particle in a
magnetic field, which can be considered as a quantum
mechanical system with the Hamiltonian H � �rP�2 (with
the Pauli matrices r being the simplest representatives of the
Dirac matrices). The role of supergenerator is played by the
Dirac operator rP, and this exactly corresponds to the
interpretation of supersymmetry transformations as `square
roots' of the energy-momentum operators. The essential
feature of supersymmetry in quantum mechanics [in particu-
lar that of (3.21)] is that the related `fermionic number' is not
really `fermionic' from the point of view of space-time.

Indeed, when the role of the Hamiltonian is played by the
square of the Dirac operator, the `fermionic number' is
nothing but the direction of spin. Therefore from the
perspective of physical space-time the supersymmetric
`bosons' and `fermions' just correspond to different direc-
tions of spin of a `true space-time' fermion, whose wave
function satisfies the Dirac equation. As we will see below
the world-sheet supersymmetry in string theory reminds one a
lot of the supersymmetry in quantum mechanics apart from
details with the boundary conditions due to a extra co-
ordinate on the world-sheet. It is quite nontrivial that this
`auxiliary' supersymmetry of a quantum-mechanical type
leads to the `real' space-time supersymmetry in string
spectrum.

Hence, things are much more interesting for the fermionic
string Ð the first-quantized theory with the world-sheet
action

1

2pa 0

�
S

�
qX �qX�C �qC� �C q �C� wC �qX

� �w �C qX� 1

2
�ww �CC

�
; �3:23�

invariant under the transformations of two-dimensional
supergravity [80]. The first three terms in the expression
(3.23) (at w � �w � 0) correspond to the action, invariant
under the global two-dimensional supersymmetry transfor-
mations on the world-sheet [77]. Depending on the boundary
conditions (periodicity or antiperiodicity or their analogs in
the open string case) the fermionic fieldsC either do or do not
contain the `zero mode' Ð the constant component C �0�M ,
which in complete analogy with the example of fermionic
particle may turn into the set of Dirac matrices after
quantization �C �0�M ;C �0�N �� � dMN.

Thus, depending on the choice of boundary conditions,
there are two sectors in fermionic string. The wave functions
of one sector possess an index of a representation of the
Clifford algebra and correspond to the space-time fermions,
while the wave functions of another sector do not have such
indices and correspond to the space-time bosons. The
corresponding two-dimensional conformal theory [86, 89]
allows one to compute the correlation functions, correspond-
ing to arbitrary scattering amplitudes in the fermionic string.

After all that it is natural to ask how the states of the
fermionic string spectrum corresponding to space-time
bosons and space-time fermions are related to each other.
At first glance these two sectors Ð bosonic and fermionic Ð
differ too much from each other, for example, the bosonic
sector (or the Neveu ± Schwarz sector [51]) contains the
tachyon, while the fermionic sector (or the Ramond sector
[52]) is tachyon free. Nevertheless, there exists a natural
GSO-projection (i.e. procedure leaving only half of the states

in the spectrum) [54], which results in leaving in the
spectrum the equal number of states from both sectors in
such a way that the full spectrum (after projection) becomes
space-time supersymmetric!

Moreover, at the level of the one-loop partition function
this projection arises naturally after summing over all possible
boundary conditions of fermionic fields [87]. All this means
that supersymmetry on the world-sheets of fermionic strings
leads to the supersymmetry in (ten-dimensional) space-time.
The resulting theory Ð the `reduced' fermionic string with
ten-dimensional supersymmetry, after J Schwarz is often
called superstring.

In the open string sector the GSO-projection leaves in the
Neveu ± Schwarz sector the subsector with odd `fermionic
number' (in the sense of world-sheet fermions), for example
the massless vector Cm

ÿ1j0iNS is left in the spectrum of open
superstring while the naive `vacuum' or the Neveu ± Schwarz
tachyon j0iNS is `killed' by the GSO-projection. In the
Ramond sector the GSO projection leaves only the space-
time fermions with fixed chirality [the eigenvalue of the
operator �1� `G5'�=2, `G5'/

Q10
M� 1 GM, acting on the ten-

dimensional Majorana spinors], the number of such fermio-
nic states (at eachmass level) is exactly equal to the number of
states in the Neveu ± Schwarz sector with the odd `fermionic
number'. Hence in the theory of closed strings one may have
two different superstring theories. One would contain the
fermions of different chiralities while the other Ð the
fermions of the same chirality; the first is called a type IIA
theory while the second Ð a theory of type IIB.

It turns out that superstrings can be reformulated without
two-dimensional world-sheet Neveu ± Schwarz ±Ramond
type fermions. There exists an alternative Green ± Schwarz
formulation [81], using the extra Grassmann fields ya�s; t�
[spinors in ten-dimensional space-time in contrast to the ten-
dimensional vectors Cm�s; t�] explicitly invariant under the
ten-dimensional supersymmetry transformations. However,
the variables ya�s; t� behave as scalars with respect to two-
dimensional reparameterizations of co-ordinates and two-
dimensional supersymmetry is not a symmetry of the Green ±
Schwarz superstrings.

The investigation of anomalies, started in Ref. [59], has
brought us to the following list of anomaly-free superstring
models: type IIA and type IIB theories (closed string non-
chiral and chiral theories with N � 2 in ten dimensions),
type I theory (which includes open strings) and theories of
heterotic strings [84] (the string models where, say, left or
holomorphic part corresponds to the twenty-six-dimensional
bosonic string with extra compactification while the right or
antiholomorphic part Ð to the ten-dimensional superstring)
with the gauge groups SO�32� and E8 � E8.

Unfortunately the ten-dimensional superstring pretending to be

the most successful among existing string models is strictly defined,

in general, only at tree and one-loop levels. Starting from the two-

loop corrections (the last diagram depicted at Fig. 8) to the

scattering amplitudes all expressions in the perturbative super-

string theory are really not defined. The reason for that comes

from the well-known problems with supergeometry or integration

over the `superpartners' of the moduli of complex structures.

In contrast to the bosonic case (3.14), where the integration

measure is fixed by the Belavin ±Knizhnik theorem, the definition

of the integration measure over supermoduli (or, more strictly, the

odd moduli of super-complex structures) is still an unsolved

problem [90, 22]. The moduli spaces of the complex structures of
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Riemann surfaces are noncompact, and the integration over such

space requires special care and additional definitions. In the

bosonic case, when the integrals over moduli spaces diverge, the

result of integration in (3.14) is defined only up to certain

`boundary terms' Ð the contributions of degenerate Riemann

surfaces or the surfaces of lower genera (with less `handles', see

Fig. 8).

In the superstring case one runs into more serious problems

since the very notion of the `boundary of moduli space' is not

defined. Indeed the integral over the Grassmann odd variables does

not `know' what is the boundary term. This is the fundamental

reason why the integration measure in fermionic string is not well-

defined and depends on the `gauge choice' or the particular choice

of the `zero modes' w in the action (3.23). For two-loop contribu-

tions this problem can be solved `empirically' (see Refs [90, 22]), but

in the general setup the superstring perturbation theory is not

mathematically well-defined. Moreover, these are not problems of

the formalism; the same obstacles arise in the less geometrical

approach of Green and Schwarz [93].

3.6 Effective actions for background fields
By analogy with the generating functionals for particles in
external fields one may introduce the interaction of strings
with background fields. The integration over the string
degrees of freedom will give rise to certain effective func-
tionals, depending now only upon the local fields in space-
time. Such functionals are called Fradkin ±Tse|̄tlin effective
actions [60], and can be considered as the most efficient way
for getting effective field theories from string theory.

Such an approach looks very transparent and clear from
an ideological point of view. Indeed, at observable energies
massive string modes are not excited and only the massless
local fields `fly out' into our low-energy world. The interac-
tion of string with local fields can be easily written down from
certain symmetry requirements, say adding an exponential of
the interaction term with the gauge field 19�

qS
dt

�
_XM�t�AM

ÿ
X�t��� 1

2
e�t�FMN

ÿ
X�t��CM�t�CN�t�

�
�3:24�

(the ordered P-exponent in the non-Abelian case). The
procedure here is the same as for a relativistic particle, one
should only remember that an integration in (3.24) is taken
over the boundary of the world-sheet qS, while in the case of a
particle the integration was taken along the whole world-line.
This means that only the open strings interact with the vector
fields. In the closed string sector the situation is similar, and
the action is defined by the terms like (3.16), where the
integration is performed over the whole surface of the
world-sheet.

In the quadratic approximation the effective string actions
must coincide with quadratic terms in the Lagrangians of the
corresponding field theories for the background fields. The
direct derivation of this correspondence is impossible due to
vanishing of the two-point correlators on the world-sheets of
the simplest topology (this is again a direct consequence of
two-dimensional geometry). An indirect argument in favor of
such a coincidence is the self-consistency of the theory.
Indeed, two-dimensional conformal invariance requires that

background fields satisfy equations of motion, which in their
turn would require the appropriate kinetic terms in the
effective Lagrangians. The higher terms in background fields
and derivatives in the effective actions follow straightfor-
wardly from the calculation of string amplitudes.

One of the most interesting (and one of the few
computable) examples of the non-local effective actions,
arising for strings in the external gauge fields is the Dirac ±
Born ± Infeld action (in any even-dimensional space-time)

SDBI �
�
dDx

h
det
MN
�GMN � 2pa 0FMN�

i1=2
: �3:25�

It comes out directly from the calculation of the effective
string action for external electro-magnetic field, interacting
with the string world-sheets of the open strings having the
simplest possible topology of a disk [85].

This is a rather nontrivial fact Ð all the corrections in a 0,
or loop corrections from the point of view of two-dimensional
field theory (let us recall here that from the point of view of
string theory any computation on disk counts only the `tree-
level' contributions) sum up to the compact formula (3.25).
This formula is really valid at large fields FMN � a 0 ÿ1 of the
order of string tension. The action (3.25) has supersymmetric
and even non-Abelian analogs which are rather interesting for
the investigation of effective actions in nonperturbative string
theory.

In the closed string sector one gets an effective action for
the Einstein gravity�

dDx
����
G
p

exp �ÿ2F�
�
R�G� � 1

2
�HF�2 � . . .

�
; �3:26�

G � det
MN

GMN ;

with the only difference that the scale or normalization of the
`string' metric differs from the `scale' or normalization of the
Einstein metric by (exponent of the ) vacuum value of the
dilaton field F. It leads in particular to the fact that the `real'
Newton constant or the Planck mass in ten-dimensional
theory is connected to the string tension via

g �10�N � �M �10�
Pl �ÿ8 � g2

stra
0 4 ; gstr � hexpFi ; �3:27�

This relation will be essentially used below in discussion of the
nonperturbative string theory.

4. Strings without strings.
Non-perturbative theory

4.1 M-theory
Let us turn now to some achievements in string theory of the
last ten years, related mostly with the attempts to go beyond
the perturbation theory. As we already discussed in the
context of quantum field theory, one immediately loses any
`solid background' since this is the field where there is no
reliable formalism. All possible statements can be based on a
few `semi-qualitative' considerations20. Nevertheless, these

19 Notice that the operator (3.19) literally corresponds to the first term in

formula (3.24), if one takes for the gauge field the solution to the equations

of motion in the form of plane wave AM�X� / EM exp �ipX�.

20 An exception can be found, if any, in the framework of so called

`discretized' versions of quantum field theory, for example, in the so called

`lattice' theories which are beyond the scope of this review. Note also that

the progress in understanding of non-perturbative effects in lattice gauge

theories is seriously `screened' by additional problems of the correspon-

dence between the lattice theory and its continuum limit.
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attempts can have some success and there still exists a hope
that they will be mostly successful in the framework of string
theory. This hope is based on the existence of certain deeply
`hidden' symmetries which may manifest themselves at
nonperturbative level.

Note here that in contrast to the widely spread opinion
about the pure mathematical character of the problems of
string theory (which is not too far frombeing true if we restrict
ourselves to the string perturbation theory), the problems of
nonperturbative string theory have a more fundamental and
physical character. Let us repeat that themain problem is that
nonperturbative string theory (as well as nonperturbative
quantum field theory) does not exist in adequate physical
form, i.e. does not exist in the form of any reasonable
formalism. What is called nonperturbative string theory or
M-theory is just a set of purely `philological' postulates
reminding, one say, of the `Butlerov theory', well-known
from the high-school course of organic chemistry.

The main hypothesis formulated at present in this or that
way implies the existence of some unique nonperturbative
string theory orM-theory [111, 112] (see also the reviews [19 ±
21]) which has a large set of vacua understood in the sense of
perturbative string theory. In other words, the perturbation
theory around these vacua corresponds to (different!) two-
dimensional conformal field theories considered above,
interacting via anomaly with two-dimensional gravity. The
fact that different perturbative expansions describe different
phases of the same theory is encoded in the so called dualityÐ
not very well-defined and often only intuitively understood
similarity of certain objects from the different phases of
M-theory.

In the limiting case it means that there exist duality
transformations, relating different quantities in quantum
field theories. These relations can be established even
between the quantities in absolutely different regimes, for
example the particle-like states in one theory may be related
to the soliton-like states in the dual one and vice versa. This is
the reason why such duality cannot in practice be verified by
standard methods of quantum field theory (except maybe in
the two-dimensional theories, where, for example, the well-
known duality between the sine-Gordon and Thirring models
exists). On the other hand it allows one to consider the well-
known problems from an absolutely new perspective and
sometimes leads to surprising new results.

The hypothetical properties of M-theory make it a little
bit similar to the field theory which contains together with
`particle-like' states the collective nontrivial excitations like
solitons, monopoles etc. However, in contrast to conven-
tional quantum field theory, depending on the values of
parameters or moduli of M-theory (for example the vacuum
condensates of the scalar fields) the same observable objects
(say electrically and/or magnetically charged particles) may
be described equally as elementary and/or soliton-like
particles with different field-theoretical Lagrangians.

Speaking about M-theory we will still use the term `string
theory' despite the fact that in nonperturbative theory the
very concept of fundamental one-dimensional extended
objects acquires much more `hidden' form. In various
considerations of M-theory a huge amount of hypersurfaces
of arbitrary dimension (or, better to say, of arbitrary co-
dimension) take part. From the naive point of view the one-
dimensional extended objects are not at all singled out among
other, and strings are just particular case of so called p-branes
(number p measures the dimension of brane). For example,

particle corresponds to p � 0, string Ð to p � 1, the
membrane (from which the word brane is derived), Ð to
p � 2 and so forth.

However, the special role of strings is still caused by the
fact that only strings can pretend to be the fundamental
objects. We cannot really add anything here to the arguments
of Section 3.1, with the only difference being that now one
should discuss separately the particular domains of moduli
space of nonperturbative theory. In different domains there
can exist (and do exist) different theories of fundamental
strings. In such a situation the fundamental string of one of
the perturbative theories can be, generally, the heavy
`composite object' in another perturbative theory. More-
over, only strings are naturally charged with respect to vector
fields which leads, on one hand, to the non-Abelian theories,
and on the other hand the gauge invariance of the theories of
vector fields (and gravity) allows an opportunity for the
existence of light strings (more strictly light excitations of
strings) while light membranes etc are absent.

The notion of duality, at least in the sense to be used below
has a mostly stringy origin and is related to the properties of
complex manifolds often arising already in perturbative
string theory. In perturbative string theory these properties
belong to the `unobservable' geometry of world-sheets, but,
quite unexpectedly, analogous properties arise in the context
of complex manifolds, being the `auxiliary' nontrivial part of
the multidimensional space-time.

The dualism between the structures on world-sheets and
in target-space is a rather surprising and not yet well-studied
phenomenon in string theory, a manifestation of this intrinsic
connection Ð the relation between world-sheet and space-
time supersymmetries was already discussed in Section 3.5.
The simplest example of duality between anomaly free string
models Ð the so called T-duality relating IIA and IIB
superstring theories Ð is a direct consequence of the famous
R$ a 0=R duality, to be considered in detail in Section 4.2.
Other duality transformations typically relate to each other
two theories with at least one of them being in strong coupling
phase. Thus, their verification is an absolutely nontrivial
problem.

Let us now try to list the main postulates of M-theory:
M-theory and eleven-dimensional supergravity. The low-

energy limit of M-theory is supergravity in a space-time of
D � 11 dimensions21 [74]. This is the maximal possible
supergravity and, thus, maybe the only distinguished and
nice theory from all supergravity models. Its bosonic sector
contains only the metric GMN and antisymmetric tensor field
(the 3-form) CMNK. The only (dimensional) parameter in this
theory is the eleven-dimensional Planck mass MPl �M

�11�
Pl .

Under dimensional reduction of eleven-dimensional super-
gravity one gets the ten-dimensional supergravity of the type
IIAÐ the field theory limit of IIA string theory. This leads to
the relation between the square of string length (or inverse
string tension) a 0, radius of the compact dimension R and

21 Dimension D � 11 is singled out (by slightly strained arguments)

already directly from geometric interpretation of the Standard Model

with the gauge group U�1� � SU�2� � SU�3� (see, for example, Ref. [1],

p. 275). If we consider that the group of Standard Model naturally acts

on some manifold of compactification, then the natural dimension of

such a manifold can be determined as a sum of unity for the U�1�-factor,
two �dimS 2 � dim �CP 1� � 2� for the SU�2�-factor and four

�dim �CP 2� � 4�, if it is implied that group acts on complex manifold)

for the SU�3�-factor. Together with four `visible' dimensions this gives

D � 1� 2� 4� 4 � 11.
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eleven-dimensional Planck massMPl, which reads

a 0RM 3
Pl � 1 : �4:1�

The relation between ten-dimensional and eleven-dimen-
sional Planck masses

M 9
PlR � �M �10�

Pl �8 �
1

g2
stra 0 4

�4:2�

can be obtained directly from the reduction of the Einstein
action of supergravity [the first equality in formula (4.2)]. The
connection between ten-dimensional Planck mass and string
coupling constant [the second equality in (4.2)] is a conse-
quence of the difference between the string and gravitational
`definitions' of metric, differing by



exp �ÿ2F�� � 1=g2

str,
where F is the dilaton field [see (3.26), (3.27)]. Altogether
this leads to the equality

R � gstr
�����
a 0
p

; �4:3�

demonstrating that with the growth of the string coupling
constant gstr the radius of a hidden compact dimension R
blows up. This leads to a possible interpretation of M-theory
as a string theory in a strong coupling regime.

M-theory as type IIA string theory at strong coupling. M-
theory is not a theory of fundamental strings in the sense of
Section 3.3, already because there are no anomaly free
perturbative string theories with the space-time dimension
D � 11. Nevertheless, the arguments presented above allow
one to considerM-theory as a type IIA string theory at strong
coupling, where the extra compact dimension shows up and
the size of this dimension is related to the strong coupling
constant by Eqn (4.3).

Strings and extended objects in M-theory. The analysis of
extended objects being solutions to the equations ofmotion in
M-theory (in reality Ð the equations of motion of eleven-
dimensional supergravity) and their dimensional reduction to
D � 10 leads to rather natural parallels between branes in
M-theory and branes in string theory. Say, the hypothetical
membrane of M-theory winding along the compact dimen-
sion becomes a string. One more similar relation will be
discussed below in Section 4.4 when we are going to discuss
the exact nonperturbative results in supersymmetric gauge
theories. It turns out that it is the M-theory's 5-brane which
plays the main role in the geometric formulation of these
results.

As well as ten-dimensional perturbative string theory, the
eleven-dimensional M-theory may manifest itself in a four-
dimensional world only after some `compactification'. One of
the differences between perturbative and non-perturbative
theories in this context is that the presence of the extended
objects leads to some new nontrivial effects after compactifi-
cation. A remarkable property of supersymmetry is its
relation to the complex geometry of (especially nontrivial
part of) space-time. It is reflected in the fact that the nontrivial
complex manifolds of string compactification correspond to
effective supersymmetric quantum field theories. Parameters
of such theories (coupling constants, vacuum condensates,
masses etc) are parameters or moduli of the complex
manifolds of the corresponding string compactification, for
example of the Calabi ±Yau manifolds [2]. The duality
transformations in this case can be identified with action of
the corresponding modular group.

In order to get a macroscopic four-dimensional gauge theory,

one should find some four-dimensional reduction. There is a

standard way in string theory coming back to the old Kaluza ±

Klein idea: the full space time can be presented as a direct product of

four-dimensional Euclidean space and some complex manifold K.

The `internal' space K determines the `color' properties of the

theory, the number of four-dimensional supercharges etc. Super-

symmetry requires the compact manifold K to be the three-

dimensional complex manifold in the ten-dimensional picture (or,

say, to be the product of the three-dimensional complex manifold

with a circle from the eleven-dimensional point of view).

Moreover, it turns out that sometimes the nontrivial part of this

three-dimensional complex (or six-dimensional real) manifold can

be presented by a one-dimensional complex curve (or two-dimen-

sional Riemann surface S ). Starting from eleven-dimensional M-

theory one should choose some particular compactification scheme

down to four dimensions, such that the resulting theory would get

an appropriate four-dimensional supersymmetry, the required

gauge group [SU�N� in majority of real situations] and an

appropriate set of matter multiplets. According to Ref. [118],

there exists a compactification scenario when the complex geo-

metry can be formulated in terms of Riemann surfaces and this

scenario leads exactly to the Seiberg ±Witten effective theories [75].

It is the (complex) analytic structures which distinguish a class

of theories where the exact nonperturbative results can be

formulated. These results are formulated using the technique of

holomorphic (meromorphic) functions. The idea to use holomorp-

hic objects goes back to the application of complex analysis to the

theory of instantons and the Belavin ±Knizhnik theorem [61, 9] of

perturbative string theory (see Section 3.3). In the simplest class of

problems under discussion the moduli of physical theories may be

identified exactly with the moduli of one-dimensional complex

manifolds Ð the (space-time!) complex curves or Riemann

surfaces S, which a priori have no relation to the world-sheets of

string theory. However, to study these objects one may successfully

use the same technical tools which were used when studying the

perturbative string theory (see Section 3). An analogous picture

may be expected for the theories where physical moduli spaces are

identified with the moduli spaces of higher-dimensional complex

manifolds (two-dimensional complex manifolds K3, Calabi ±Yau

three-folds etc, see details, e.g. in Ref. [2]). Moreover, there exists a

unifying picture of string compactification which implies that

complex curves can be considered as degenerate cases of more

general compactification manifolds, for example when the Calabi ±

Yau manifold effectively degenerates into one-dimensional com-

plex curve S [114]. A nontrivial topological structure of the curve S
is essentially nonperturbative information, since in the perturbation

theory this curve arises only `locally' as a scale parameter. This

means, in particular, that the string effects play an essential role in

the structure of the exact nonperturbative solutions of gauge

theories and the topological degrees of freedom, playing a decisive

role for the construction of an effective theory, are directly related

with `windings' of strings around nontrivial cycles in the manifolds

of string compactifications.

4.2 Strings in compact dimensions
In the brightest form the difference between string theory and
quantum field theory appears in the case of topologically non-
trivial space-time, and the simplest example of such a space-
time is a space-time with compact dimensions or just a `box'
with periodic boundary conditions at the ends. The structure
of such `compactified' string theories implies the existence of a
very nontrivial symmetry (duality) relating different string
models. In particular, these models can be related in such a
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way that the perturbative regime in one of the models allows
one to propose some reasonable hypothesis about nonper-
turbative effects in another. In other words, duality transfor-
mations allow one to consider string models as perturbative
expansions (3.12) as expansions around different vacua of the
same theory. The only weak point (at present) of this concept
is the absence of any reliable or strict (in the mathematical
sense) statements.

The main example of duality is symmetry in the theory of
closed strings in a space-time with compact dimensions (in the
simplest case Ð with the only co-ordinate taking values on a
circle f � f� 2pRn, with n 2 Z being any integer). The
spectrum of such a theory and one-loop partition function
are invariant under discrete transformation R$ a 0=R [94].
This invariance follows from the fact that in addition to the
standard discrete spectrum of a particle on a circle with the
quantized momentum p / n=R, n 2 Z (also existing certainly
in ordinary quantum field theory with compact dimensions)
there also exists another type of string excitation: a string can
wind around a circle and the energy of such a windingmode is
mR=a 0, also with m 2 Z.

In the `decompactification' limit R!1, the first part of
the spectrum will become continuous (again, as in ordinary
quantum field theory), while the string winding excitations
would become infinitely heavy and their contribution to the
partition function can be neglected. However, the full
spectrum

M 2
n;m �

�
n

R

�2

�
�
mR

a 0

�2

8 n;m ; �4:4�

is obviously invariant under the change R$ a 0=R. The
presence of the second term, or the spectrum of string
winding modes in Eqn (4.4) is sometimes interpreted as a
stringy modification of the uncertainty principle. Indeed,
expression (4.4) allows to think that the uncertainty principle
DX � 1=E is valid literally up to scales of the order of

�����
a 0
p

,
while beyond this scale the formula should rather be replaced
by something like DX � 1=E� a 0E.

It is relatively easy to see that the duality transformation
R! a 0=R leaves invariant the holomorphic quantities [say
the current qfL�z� ! qfL�z�], but changes the sign of the
anti-holomorphic ones: �qfR��z� ! ÿ�qfR��z�. It means, for
example, that the operators of emission and absorbtion of
`particles' of the form

Vp / exp
ÿ
ipf�z; �z�� � exp

ÿ
ipfL�z� � ipfR��z�

� �4:5�
become non-local [from the point of view of the field
f�z; �z� � fL�z� � fR��z�] operators of the world-sheet `vor-
tices'

exp
ÿ
ipfL�z� ÿ ipfR��z�

�
; �4:6�

and vice versa.
The same is true for the action of the duality transforma-

tions R! a 0=R on the holomorphic and/or anti-holo-
morphic (on the equations of motion) world-sheet fermions:
CL�z� ! CL�z�, but, at the same timeCR��z� ! ÿCR��z�. This
immediately leads to nontrivial consequences for the type II
superstrings in ten-dimensional space-time R9 � S1 with one
compact dimension. One can forget for a moment about the
nine non-compact co-ordinates and consider what happens in
such a theory under the transformation R! a 0=R.

In the bosonic sector the winding modes still replace the
Kaluza ±Klein modes and vice versa, but the components of

the two-dimensional fermionic fields C along the compact
direction corresponding to the left- and right- movers behave
differently: one preserves the sign while the other one changes
it. It follows then that the `G5'-matrix, and therefore the
operator of chirality projection changes the sign only in one of
the sectors. Hence, the non-chiral IIA theory under the
transformation R! a 0=R turns into the chiral IIB theory
and vice versa. The transformationR! a 0=R in multidimen-
sional space-time with a single compact direction, exchanging
the type IIA and type IIB theories is usually called T-duality.
This is the only duality of string theory which can really be
verified, since it relates the theories which can be both
considered at weak coupling. In a similar way T-duality
relates the heterotic string models with the gauge groups
SO�32� and E8 � E8.

Now, if we consider an effective action for string theory,
say, in D� 1 dimensions and reduce it to D dimensions, the
size of the compact dimension arises as factor in front of the
(D-dimensional) action, and can be further interpreted as a
coupling constant. It allows one to turn R$ a 0=R-duality
into a relation between the effective theories such that one of
these theories is at strong coupling while the other is weakly
coupled. As a result of such reasoning one gets a hypothesis
that some quantum field theory on a given manifold and at
weak coupling is equivalent 22 to a different theory, generally
on a different manifold and in the strong-coupling regime. It
is quite surprising that applying this sort of argument to
particular supersymmetric gauge theories, it is possible
sometimes to make explicit predictions about the exact
spectra and exact form of low-energy effective actions.

To finish this section let us stop once more at so called `mirror

symmetry' in string theory [23 ± 26]. We are not going to discuss the

mathematical issues of this problem, related with the fact that string

theory allows one hypothetically to establish certain relations

between the complex and KaÈ hler structures of some manifolds.

For us it is more important that string theory in principle possesses

the possibility of `non-distinction' of the space time, in the sense

that for a given string model the space-time may not be determined

uniquely. The simplest example of such a phenomenon is discussed

above Ð string models on the circles with the radii R and a 0=R are

not distinguished at least at the level of the spectrum23. Passing

from circles to tori it is easy to see that the same symmetry is

preserved. Under such a process the type A theory on a two-

dimensional torus T � S 1
R1
� S 1

R2
would become equivalent to the

type B theory on the torus ~T � S 1
R1
� S 1

1=R2
and vice versa. Notice

now that the area of the torus Area �T� � R1R2 and the modulus of

complex structure t�T� � iR1=R2 are up to imaginary unity, in

different order, correspondingly the modulus t�~T� and area

Area �~T� of the `mirror torus' ~T. Thus, we come to the statement

of `mirror symmetry' about the equivalence of the A and B theories

on mirror manifolds Ð the manifolds for which the moduli of

complex and KaÈ hler structures replace each other.

The physical nature of the mirror symmetry is rather trans-

parent, though it contains a paradox at first glance. Replacement of

momentum by the energy of the winding mode roughly speaking

corresponds to the replacement of momentum by co-ordinate, and

22 In the above sense. Such equivalence usually implies (partial) coin-

cidence of spectra and certain correlation functions in dual theories.
23 Let us recall once more that identifying different string models by

duality transformations one should strictly fix what is exactly identified

and in what sense. Typically only the spectrum and some correlation

functions are borne in mind.
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therefore the mirror symmetry is in some sense the symmetry

between co-ordinates and momenta. It is clear that our world does

not have such a symmetry, since we can always single out the space

of co-ordinates or configuration space and the phase space is its

cotangent bundle.

Hence, what should we do with mirror symmetry in string

theory? The resolution of this puzzle is in the simple fact that such

symmetry is possible only at the scales of order of
�����
a 0
p

, for example

from dimensional requirement p$ x=a 0. Therefore, the mirror

manifolds identified by string theory are in principle unobservable

in the `macroworld'! Moreover, at such scales the phase space may

not necessarily be a cotangent bundle. Say, the quantummechanics

of spin, formulated in adequate terms (see, for example, Refs [95,

96]), corresponds to the phase space, having configuration of

sphere, which is not at all a cotangent bundle. Another, maybe

even more simple example from quantum mechanics is a particle in

magnetic field. In this example there is a `natural replacement' of the

configuration plane transversal to the direction of magnetic field by

the `phase plane' on the distances of the order of magnetic length

l � �������������
�hc=eB

p
.

4.3 Dimensional reduction in string theory and D-branes
Formula (4.4) leads to rather nontrivial conclusions about
dimensional reduction in string theory. In field theory or the
theory of pointlike particles the second term on the right hand
size of (4.4), proportional to �a 0�ÿ2, can be omitted and we
obtain the conventional Kaluza ±Klein spectrum. For the
compactified quantum field theory it means that reducing the
field theory from D to �Dÿ 1� dimensions via the compacti-
fication of one dimension into a circle of radiusRwith further
limit R! 0, the D-dimensional field can be conveniently
written in terms of the Fourier series (not the Fourier integral)
with respect to compact co-ordinate x0

f�x; x0� �
X
n

exp

�
ipn

x0
R

�
fn�x� : �4:7�

After substitution of this expansion into the action�
dDÿ1x dx0

XD
M� 1

�qMf�2

�
�
dDÿ1x

X
n

�XDÿ1
m� 1

qmfn qmfÿn �
n 2

R 2
fnfÿn

�
�4:8�

one gets the sum over �Dÿ 1�-dimensional fields fn�x� with
the masses, exactly corresponding to the first term in (4.4). At
R! 0 all fields with n 6� 0 become infinitely heavy and at
distances much more than R one may forget about them.
Thus, after compactification and dimensional reduction we
obtain from D-dimensional field theory the field theory in
�Dÿ 1� dimensions.

This rather natural conclusion remains intact even in the
case of the open string theory, where the nontrivial winding
modes corresponding to the second term in Eqn (4.4) are
absent. However, for the theory of a closed string one comes
to a different conclusion. In the limit R! 0 the Kaluza ±
Kleinmodes with themasses n=R still would become infinitely
heavy, i.e. inessential for the limiting spectrum, but, in
contrast to them, masses of all states corresponding to
windings vanish! This means that at such reduction from D
dimensions to �Dÿ 1� dimensions, the Kaluza ±Klein `tower'
corresponding to an extra dimension disappears as in field
theory ... but in the same procedure the equivalent `tower of
fields' reappears due to light at R! 0 modes of the closed

string winding around the compact direction. Thus, the extra
tower of fields remains in the spectrum of closed string, i.e. no
reduction to �Dÿ 1� dimensions really happened and the
theory remains D-dimensional!

Now, consider the same procedure in the theory with
both closed and open strings. The conclusion is a bit of
paradox: as R! 0 closed strings would be still propagating
inD-dimensional space-time, while the theory of open strings
will be �Dÿ 1�-dimensional. Alternatively, if we require
consistency and `smooth' behavior of string theory under
the change of parameter or moduli R Ð the size of a
compactified dimension, one has to allow the existence of
absolutely new nontrivial vacua, containing some certain
distinguished hypersurfaces (the example considered above
contained a hypersurface of unit codimension, however, it is
easy to see that compactifying several dimensions the
codimension can be made arbitrary). These hypersurfaces
are characterized by the fact that only there the open strings
can keep their ends. In modern terminology such hypersur-
faces are called the Dirichlet or D-branes, and the volume
between branes is called the bulk.

Let us now list the main properties of D-branes, essential
for the study of nonperturbative string theory.
� Since vector fields arise in the open string sector (see
Section 3.1), in the theory (or, better to say in the vacuum)
with D-branes the vector fields are localized on the D-brane's
hypersurfaces. Hence, D-branes proposed a new, purely
string mechanism of the localization of vector fields, which
is absent in quantum field theory. Notice also, that the theory
with open strings in all D-dimensional space-time can be
interpreted as a vacuum with the Dirichlet brane (or several
Dirichlet branes in the case of nontrivial Chan ± Paton
factors) of dimension p � Dÿ 1 (Fig. 9); see Section 4.4).
� In the theories with space-time supersymmetry D-branes
are the BPS states, invariant under the action of half of the
supersymmetry generators. This is due the fact that in the
open string sector there are twice fewer supersymmetry
generators than in the closed sector, since the fields on the
boundary of the world-sheet are constrained by the boundary
conditions. The BPS nature of D-branes is also related
directly to the fact that they are charged with respect to
antisymmetric tensor fields of the Ramond ±Ramond sector.
Namely, the Dp-brane is charged with respect to the � p� 1�-
form, which can be integrated over the world-volume of the
Dp-brane as

�
C � p�1�, and the corresponding charge arises as

k

j

i

Ai k�x�

Figure 9. D-branes. The interaction is carried by strings attached by their

ends to different D-branes or parts of the same D-brane. In the back-

ground of several D-branes one naturally gets non-Abelian vector fields in

the spectrum of strings since the fields become labeled by the numbers of

D-branes they are attached to.
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a central extension of the supersymmetry algebra. This
central extension breaks, however, the D-dimensional
Lorentz-invariance as well as the very existence of the
hypersurface of D-brane.
� The D-brane tension is proportional to the first power of
the string coupling constant. One of the arguments suppor-
ting this relation is interaction of D-brane with the open
strings, whose perturbation theory contains the expansion
in gstr, and not in g2

str (see Section 3.3). This distinguishes
D-branes from so called solitonic branes, interacting only
with closed strings. The corresponding effective action of the
background fields (see Section 3.6) can be roughly written as�

dDx
����
G
p �

exp �ÿ2F�ÿR�G� ÿH 2
�ÿ �dC �2� ; �4:9�

where F is a dilaton,


exp�ÿ2F�� � gÿ2str ; R�G� is the

curvature of D-dimensional metric, G � detMN GMN,
H � dB is the field-strength of antisymmetric tensor field,
related to the solitonic branes while dC is the field-strength of
the Ramond ±Ramond � p� 1�-forms. It is the different
dependence on dilaton of the terms �dB�2 and �dC�2 in
Eqn (4.9) that leads to the fact that the `thickness' of the
solitonic brane does not depend on gstr (for constant dilaton
equations obtained from variation of the terms����
G
p ÿ

R�G� ÿH 2
�
in formula (4.9) and their solutions do not

depend on gstr), and its mass or tension is proportional to gÿ2str ,
while the `thickness' of the D-brane [solution to the equations
following from variation of the terms����
G
p ÿ

exp �ÿ2F�R�G� ÿ �dC �2� in (4.9)] is proportional to
gstr, and its tension is proportional to gÿ1str . This means that
at weak coupling the D-brane can indeed be considered as a
very thin hypersurface `glued' to the ends of the open strings.

Note, that due to the absence of `normal' nonperturbative
theory these properties are established only with the help of
certain mostly qualitative arguments (see, for example,
Refs [3, 17]). In what follows we will restrict ourselves to a
`minimal use' of these properties, i.e. we will use them only
where the D-brane picture leads to more or less clear physical
consequences.

4.4 D-branes and non-Abelian gauge fields
Let us now discuss in detail how the (four-dimensional)
supersymmetric gauge theories arise in the context of string
theory. One should start with any supersymmetric string
theory without anomalies. There exist several examples of
such theories (defined originally as perturbative expansions in
terms of the Polyakov path integral) and their basic feature is
that they live in D � 10 and have at least N � 1 ten-
dimensional space-time supersymmetry (see the end of
Section 3.5).

One of themain ingredients of the relation between strings
and gauge theories are the above mentioned D-brane
configurations in non-perturbative string theory [63, 115].
D-branes are classical (`heavy') objects which can be thought
of as certain hypersurfaces in a target space and whose basic
feature is the possibility of interaction via emission and
absorption of open strings (see Fig. 9) Ð even in the theories
with no `bulk' open string interactions (for simplicity we will
restrict ourselves only to such theories, called as type II
theories, see Section 3.5). As we already discussed in
Section 4.3, such hypersurfaces naturally arise in compacti-
fied string theory, implying that it behaves `smoothly' under
the change of parameters of the compact manifold.

It is easy to see that the configuration of N parallel
D-branes on Fig. 9 leads naturally to the SU�N� gauge group
(more strictly to the group U�N� � SU�N� 
U�1� with
inessential for the fields in the adjoint representation U�1�
factor), broken down generally to U�1�Nÿ1. Indeed, consider
N parallel D-branes, then the (oriented) open string stretched
between ith and jth brane (i; j � 1; . . . ;N) contains a vector
field Ai j in its spectrum. The mass of this vector field is
proportional to the length of the string (since the energy or
mass of a string is proportional to its length), i.e. to the
distance between the ith and jth branes.

Thus, the U�1�Nÿ1 massless gauge fields will come out of
the strings with both ends glued to the same D-brane, while
the fields Ai j with i 6� j will acquire the `Higgs' masses (2.9),
proportional to the vacuum condensates of scalar fields (more
strictly to the differences of these condensates for the
corresponding components). These vacuum values are deter-
mined by the `transverse' co-ordinates of the D-brane
f /

������
x 2
?

p
=a 0. Thus if the open strings themselves naturally

lead to the appearance of massless vector gauge fields, the
open strings in D-brane vacua rather naturally correspond to
the theories with (in general broken) non-Abelian gauge
symmetry 24.

The next step is Ð again looking at Fig. 9 Ð to see how
from ten-dimensional string theory one gets for such a
configuration a theory in a much fewer number of dimen-
sions (an ideal result would be to get four-dimensional
theory). Indeed, it is easy to understand that the gauge
theory `localizes' to the D-brane world-volume, i.e. the real
number of vector indices is equal to the dimension of this
world-volume. The D-brane hypersurface breaks full ten-
dimensional Lorentz-invariance, therefore only the compo-
nents corresponding to the directions `along' the world-
volume form a true vector. The rest of the components,
from the point of view of unbroken space-time theory on the
D-brane world volume look like set of scalars, which is in
complete analogy with the dimensional reduction of the
theory of a vector field (see, for example, Ref. [44]).

The Dirichlet p-brane world-volume25 has dimension
p� 1 (including time!), i.e. naively in order to get four-
dimensional gauge theory one should consider parallel
D3-branes. This scenario is quite possible but gives rise to
N � 4 supersymmetry in four dimensions; in order to get less
trivialN � 2 (or evenN � 1) theory it is better to use another
option, the Diaconescu ±Hanany ±Witten `ladder' brane
configuration [116, 118] with N parallel D4-branes stretched
between two vertical walls (Fig. 10), so that naive five-
dimensional D4 world-volume theory becomes macroscopi-
cally (in the light sector) four-dimensional by the famous

24 Let us recall that before this fact was understood, non-Abelian gauge

theories were constructed `by hand', `gluing' quarks to the ends of open

strings (see Fig. 3), or introducing the non-Abelian Chan ±Paton factors

[76] directly into string amplitudes.
25 To avoid misunderstanding let us again point out the accepted

terminology. D-brane is short for `Dirichlet brane' and has no relation

with the dimension of this hypersurface, which is conventionally noted by

the letter p. Sometimes even the notation Dp-brane is used, i.e. the

p-dimensional Dirichlet brane with the world-volume of dimension

�p� 1�. Let us repeat once more that p � 2 corresponds to a membrane

(the origin of the word `brane'), one can often meet in the literature also

D1-branes, or D-strings, D0-branes or Dirichlet particles or even

D�ÿ1�-branes or D-instantons, as well as branes of dimensions

2 < p4Dÿ 1, where in the last inequality D means already the

dimension of space-time and does not come from the word Dirichlet

(see Appendix 8.1).
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Kaluza ±Klein argument for a system compactified on a circle
or put into a box. Certainly there are many other construc-
tions based on discrete symmetries, orientifolds etc, however
the `brane zoology' is beyond the scope of this review (see, for
example, Refs [30 ± 32]) and we will discuss only the simplest
`ladder' example, especially since it is this example that
corresponds to one of the strongest statements about non-
perturbative supersymmetric gauge theories.

The role of vertical walls should be, best of all, played by
5-branes [118], then dimensional arguments lead to the
logarithmic behavior of the macroscopic coupling constant
1=g 2 � ln m [cf. with formula (2.4)]. In the leading approx-
imation this comes up since the corresponding `compact' co-
ordinate, which turns into a coefficient in front of the action
(2.2), has logarithmic behavior as a function of `transverse'
directions, i.e. satisfies the two-dimensional Laplace equa-
tion, where the effective two dimensions are formed by the
ends of D4-branes on 5-branes. More generally the fact that
the logarithm (of the complex argument) is the Green
function of the two-dimensional Laplace operator is one of
the `foundations' for the D-brane constructions of super-
symmetric gauge theories.

This picture of 4- and 5-branes in ten dimensions is
certainly very rough and true only in the quasiclassical
approximation. In particular it is naively singular at the
points where 4-branes meet 5-branes. These singularities
were resolved in a nice way in Ref. [118] where it was
proposed to `raise' the whole picture into an eleven-dimen-
sional target space of M-theory and to consider D4-branes as
M-theory 5-branes compactified onto the eleventh dimension
with x10 being the corresponding extra compact co-ordinate.
Then the picture in Fig. 10 turns into the surface of a `swedish
ladder' and apart from macroscopic directions x 0; . . . ; x 3

looks like a (non-compact) Riemann surface with rather
special properties (Fig. 11).

In other words, as a result of `resolution' of singularities
one gets a unique smooth 5-brane, which leaving aside four
flat dimensions (x 0; x 1; x 2; x 3) looks like N cylinders R� S 1

embedded into the target space along, say, �x 6; x 10� dimen-
sions (and which can be parameterized by complex co-
ordinate z � x 6 � ix 10). The cylinders are separated in the
`orthogonal' space V? � �x 4; x 5; x 7; x 8�, but they are all
glued together (see Fig. 11) by vertical walls, and the

`effective' two-dimensional subspace of V? can be described
by the complex coordinate l � x 4 � ix 5.

Let us try to establish the relation between the brane

configurations and complex manifolds. The simplest way to

describe the nontrivial complex manifold is an analytic one, i.e. by

certain (polynomial) equations in multidimensional complex space

C n. Let us demonstrate nowhow the pictures in Figs 9 and 11 can be

rewritten in terms of algebraic equations on complex variables.

Introducing the co-ordinatew � exp z to describe a cylinder, we

see that the system of non-interacting branes (see Fig. 9) is given by

the z-independent equation

PN�l� �
YN
i� 1

�lÿ fi� � 0 ; �4:10�

while their bound state (see Fig. 11) is described by a complex curve

S (a single equation on two complex variables)

w� L2N

w
� PN�l� : �4:11�

In the weak-coupling limit L! 0 [i.e. 1=g 2 � ln �1=L� ! 1] one

comes back to the set of disjoint branes (4.10). Equation (4.11)

presents an analytic formulation of Fig. 11 Ð 5-brane of topology

R 3 � S embedded holomorphically into a subspace R 5 � S 1 (say,

spanned by x 1; . . . ; x 6; x 10) of the full space-time.

A somewhat more transparent way to get the same equations

is related to the theory of integrable systems [121] and uses the

fact that in vacuum state the scalar fields satisfy the BPS-like

condition Ð the first-order equation [cf. with (2.13)]

DMF � qMF� �AM;F� � 0 ; FMN � 0 ; �4:12�

It acquires exactly the formof Eqn (4.12) when only one of the fields

F �4�; . . . ;F �8� is nonvanishing Ð otherwise it would also contain

the scalar interaction terms. This is essentially the case of the

configuration depicted in Fig. 11, which implies that some scalar

field, say F � F �4� � iF �5�, develops a nonvanishing z-dependent

vacuum expectation value.

In order to explain or `derive' Fig. 11, it is necessary to

demonstrate that Eqn (4.12) has a non-trivial solution

F�z� 6� const and the reason for this is that non-trivial boundary

conditions are imposed on F at z! �1. This procedure is

considered in detail in Ref. [121] and results in the so called Lax

representations for the algebraic equations of nontrivial complex

x6

1

2

3

N

Figure 10. 4-branes restricted by 5-branes to a finite volume (in the

horizontal x 6-direction) give rise to macroscopically 4-dimensional

theory.

l
�

x
4
�
ix

5

z � x6 � ix10

Figure 11. Brane configuration, represented as a result of `resolution' the

previous picture Ð the `thin' ladder turns into a `swedish ladder' Ð the

hyperelliptic Riemann surface being at the same time N-fold covering of

the horizontal cylinder.
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manifolds Ð in this case for the complex curves. Under such

procedure Eqn (4.12) turns, for example, into

�qF i j � �qi ÿ qj�F i j � m�1ÿ d i j� d�zÿ z0� �4:13�

with the solution

F i j�z� � pid
i j �m�1ÿ d i j� y�

ÿ
zÿ z0 � pÿ1 Im t �qi ÿ qj�

�
y 0��0�

y��zÿ z0� y�pÿ1 Im t �qi ÿ qj�
� exp

ÿ�qi ÿ qj��zÿ �z�� ; �4:14�

where y��z� is the odd Jacobi theta-function. Equation

det
ÿ
lÿ F�z�� � 0 (literally corresponding to the theory with

broken N � 4 supersymmetry) in the limit m!1 and t! �i1
with mN exp �ipt� � LN turns exactly into Eqn (4.11), the details

and references can be found in Refs [8, 27].

In this way one can derive the analytic representation of the

complex curve (4.11) `from first principles'. The next step is to

derive the effective action of the low-energy four-dimensional

theory. According to Ref. [118], this problem can be solved starting

from the effective action on the 5-brane world-volume or the theory

of self-dual two-form C � fCMNg, dC ��dC. Roughly speaking it

means that instead of open strings, as in Fig. 9, the interaction is

effectively performed by `open membranes'. The theory of two-

forms is essentially Abelian. Even if one introduces the matrices

Ci j
MN in the adjoint representation of SU�N� associated with the

membranes attached between ith and jth cylinders, the non-

Abelian interacting theory cannot arise since such interaction is

inconsistent with the gauge invariance. Such a theory may contain

only a non-linear interaction of non-minimal typeÐ like Tr �dC �4,
expressed in terms of the tension of C. These terms, however,

contain higher derivatives (powers of momentum) and they are

irrelevant in the low-energy effective actions.

The `Abelian' nature of the theory of two-forms makes the

description of the Lax operator (vacuum expectation value of the

scalars of the supermultiplet which describe the transverse

fluctuations of the 5-brane), and thus the derivation of the shape

of the curveS in the type IIA picture, a nontrivial problem. Instead,

exactly due to the fact that the action on (flat) world-volume is

essentially quadratic�
d6x jdCj2 � supersymmetric terms �4:15�

there are no corrections to the form of the effective four-dimen-

sional action in this picture, once the curveS is given. It is enough to

consider the dimensional reduction of (4.15) from six to four

dimensions [118], implying that the two-form C can be decompo-

sed as

Cmz �
XNÿ1
i� 1

ÿ
Ai

m�x�doi�z� � ~Ai
m�x�d�oi��z�

�
; �4:16�

where doi are canonical holomorphic one-differentials on S, d�oi Ð

their complex conjugate, and the fields Ai
m�x� and ~Ai

m�x� depend
only on the four co-ordinates x � fx 0; x 1; x 2; x 3g.

Choosing the metric on S to be such that �doi � ÿdoi,
�d�oi � �d�oi, the self-duality of C implies that the one-forms A

and �A in (4.16) correspond to the anti-selfdual and selfdual

components of the four-dimensional gauge field with the curvature

(tension) F � fFmng:

dAi � F i ÿ �F i ; d ~Ai � F i � �F i : �4:17�

It remains to substitute this into (4.15) to get Ti j Ð the period

matrix ofS [which depends on the vacuum expectation values of the

transverse scalar fields once the shape of the curve S or its

embedding into the �x 4; x 5; x 6; x 10�-space is already fixed].
The result for the four-dimensional effective action reads�
d4x �ImTi j�F i

mnF
j
mn � supersymmetric terms ; �4:18�

where effective couplings are expressed through (the imaginary part

of) the period matrix

ImTi j �
�
S
doi ^ d�oj

of the auxiliary Riemann surface (4.11). The action (4.18) coincides

with the result of the Seiberg ±Witten theory [75], up to the

topological y-term, which can be restored by slightly more delicate

operating with the action of a self-dual two-form.

4.5 Seiberg ±Witten theory
Here, by Seiberg ±Witten theory we mean the construction of
the exact nonperturbative effective actions for the low-energy
N � 2 supersymmetric gauge theories [75]. The exact non-
perturbative formulas [75] contain the information about the
spectrum of the BPS excitations (`W-bosons' and monopoles,
see Section 2.3) and theWilsonian effective action of the light
fields (see, for example, Refs [43, 88]).

As we already pointed out in Section 2.4, supersymme-
try leads to strong requirements on the form of the effective
action. In the case of N � 1 supersymmetry in four
dimensions the `classical' form of the superpotential W is
not renormalized (and this allows us to study the set of
vacua of the theory Ð the critical points of the super-
potential dW � 0) while the kinetic terms are governed by
the KaÈ hler metric or the KaÈ hler potential. For the extended
supersymmetry the situation is even more restrictive Ð
there are no Abelian potential terms (and it means that
instead of distinct vacuum `points' one gets the continuous
set of vacua described by parametric families or moduli) and
the effective action, say for the vector multiplets, can be
written in terms of a single holomorphic function of several
complex variables [108, 75] Ð a prepotential. In other words
the geometry of moduli space is special KaÈ hler.

Let us turn now to the Seiberg ±Witten theory for the
N � 2 supersymmetric Yang ±Mills theory without mat-
ter 26. The scalar potential in N � 2 supersymmetric gauge
theory is essentially `non-Abelian' and has the form
V�ff� � Tr �ff;ffy�2. Its minima after factorization over the
gauge group correspond to the diagonal ��ff;ffy� � 0�, and in
the theory with the SU�N� gauge group to traceless matrices
(2.6). Due to spontaneous breaking of the gauge group this
results (in the general position case) in the effective N � 2
Abelian gauge theory with the effective Lagrangian Leff�Fi�,
which can bewritten, say, in terms of the superfieldsFi, whose
vacuum values hFii � fi coincide with the diagonal elements
of (2.6). Therefore the function of complex variables

F�a� � F�ff�
���P

fi�0

26 In supersymmetric gauge theories one usually means by `matter' only

the multiplets of the fermionic and scalar fields in the fundamental

representations of the gauge group Ð the analogs of quarks in usual

(non-supersymmetric) QCD. In theories with extended supersymmetry

there are also fermions and scalars in the adjoint representation Ð the

superpartners of the gauge fields.
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(where in perturbation theory ai can be chosen, for example,
as ai � fi ÿ fN, i � 1; . . . ;Nÿ 1) indeed determines the
Wilsonian effective action for the massless fields by means
of the following substitution

Leff / Im

�
d4#F�fi ! Fi�

�
�
Im

q2F
qai qaj

�
F i
mnF

j
mn � supersymmetric terms :

�4:19�
Notice immediately that the effective action (4.19) exactly
coincides with (4.18), after identifying the matrix elements of
the period matrix Ti j � q2F=qai qaj with the second deriva-
tives of the prepotential.

In N � 2 perturbation theory formula (4.19) can be
checked by explicit computation of quantum corrections,
which in conventional N � 2 supersymmetric gauge theory
are reduced to the one-loop diagram (see Fig. 1). Integrating
over momenta propagating along the loop one comes to the
result

T1- loop /
X
masses

ln
�mass�2

L2
; �4:20�

where L � LQCD is a scale parameter of the theory and the
sum in (4.20) is taken over the masses of fields propagating in
the loop. In the easiest form this result can be written in terms
of the `Coleman ±Weinberg' formula for the prepotential

F 1- loop � 1

4

X
masses

�mass�2 ln �mass�2
L2

: �4:21�

In pure supersymmetric Yang ±Mills theory all masses in
(4.21) are generated by the Higgs effect (2.9), so finally the
perturbative result (4.21) acquires the form

F pert � F 1- loop � 1

4
Tr

�
ff2 ln

ff2

L2

�
: �4:22�

The same computation can be performed in the general
case: one should take the sum of the terms like (4.22)
corresponding to the contribution of each multiplet; the
trace for each term Tr � TrR should be taken in the
corresponding representation and the sign of each contribu-
tion depends of the type of the multiplet (it is `�' for the
vector and `ÿ' for the hypermultiplet). As for the massive
excitations, it turns out that at least the BPS massive
spectrum

M / jn � a�m � aDj �4:23�

is related to the prepotential F by the formulas [75]

aD � qF
qa

: �4:24�

The integer-valued vectors n and m in Eqn (4.23) correspond
respectively to `electric' and `magnetic' charges of `surviving'
U�1�Nÿ1 gauge group.

With the instantonic contributions things are not so
simple. The well-known part contains the generic structure
of the effective action which implies that prepotential has an
asymptotic expansion for large values of the condensates

hFi4L

F � F pert � F inst � 1

4

X
fI g

a 2
fI g ln

a 2
fI g
L2

�
X
fI g

a 2
fI g
X1
k� 1

FfI g; k
�

L
afI g

�2Nk

�4:25�

with some unknown coefficients FfI g; k, where the multiindex
I corresponds to different components of the vector a. The
terms with fixed k in the r.h.s. of (4.25) corresponds to the
sector with fixed instantonic number k in the SU�N� Yang ±
Mills theory. For example, in the SU�2� case the integral over
the size of each instanton has the form

�
dr rÿ5 giving rise to

the L 4k scale dependence for k instantons.
However, all coefficients FfI g; k in principle cannot be

computed by standard field-theoretical methods. Each of
them can be written in the form of some integral over the
(each time different) moduli space of an instanton configura-
tion, therefore their `relative normalization' simply cannot be
defined. On the other hand, such normalization can be fixed
in some `natural way', and all performed instantonic calcula-
tions [mostly with the SU�2� gauge group] confirm the
Seiberg ±Witten hypothesis.

According to the Seiberg ±Witten hypothesis the BPS
masses a and aD can be expressed through the periods of a
meromorphic differential dS on auxiliary Riemann surface S
and depend on the vacuum expectation values of scalar fields,
as upon certain co-ordinates on the moduli space of complex
structures ofS. In particular, in these specific co-ordinates the
matrix of effective chargesTi j�a� � q2F=qai qaj plays the role
of the period matrix of Riemann surface S. For example, in
the case of pure gauge theory with the SU�N� gauge group the
auxiliary Riemann surface has exactly the form (4.11) [109],
where the coefficients of the polynomial PN�l� are expressed
through the vacuum values of the scalar fields (2.7). The exact
quantum values of the BPS masses are related to the vacuum
condensates through the periods over the so called A-cycles
(Fig. 12)

a �
�
A

dS �4:26�

for the W-bosons, and the B-cycles for the monopoles

aD �
�
B

dS �4:27�

of the meromorphic differential

dS � l
dw

w
: �4:28�

B1
B2

B3

A1 A2 A3

Figure 12. Compact two-dimensional Riemann surface of genus g � 3.

The canonical basis of A- and B-cycles has the intersection form

Ai � Bj � di j. An analogous picture arises in Fig. 11 if one adds `by hand'

both `infinity points' l � 1.
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whose properties ensure (see the details, say, in Refs [8, 27]),
that the period matrix of the Riemann surface (4.11) can be
expressed in terms of the derivatives

Ti j � qaD
i

qaj
� q2F

qai qaj
: �4:29�

Equation (4.11) can be explained (but not derived!) in the
following way. Perturbatively, the masses of `particles' Ð the
W-bosons and their superpartners are proportional to the
differences of fi's or the roots of the `generating' polynomial
(2.7). Thus they can be `extracted' from the polynomial (2.7)
via the residue formula

mi j /
�
Ci j

l d lnPN�l� ; �4:30�

which for a particular contour Ci j Ð a `figure-of-eight',
drawn around the points l � fi and l � fj (Fig. 13) Ð
gives rise directly to (2.9). The contour integral (4.30) can be
viewed as defined on degenerate Riemann surface Ð a
(`double') l-plane with N removed points which are the
roots of the polynomial (2.7). Then the formula (4.11) can
be interpreted in the following way. The only non-perturba-
tive effect in terms of this Riemann surface is blowing up its
singularities by the simplest possible procedure Ð replacing
the marked points at l � fi by the `handles':

w� L2N

w
/ lÿ fi ;

and passing in this way from the l-plane with marked points
to a smooth Riemann surface (see Fig. 11).

A degenerate Riemann surface Ð `two copies' of the
l-plane withNmarked points is depicted at the top of Fig. 14.
This degenerate limit, already mentioned before, corresponds
to weak coupling inN � 2 supersymmetric gauge theory and,
therefore, can be computed straightforwardly using one-loop
perturbation theory. The opposite degenerate limit is much
more interesting and corresponds to the degenerate Riemann
surface in the bottom of Fig. 14. This limit is stable when the

extended supersymmetry is broken down to N � 1 (the
corresponding values of moduli of this degenerate curve are
exactly in the minima of N � 1 potential). It is this limit,
when the periods (4.27) vanish (the B-cycles correspond to
small circles on Fig. 14 while the differential (4.28) does not
have any singularities at corresponding points) and it means
that the corresponding masses of magnetic monopoles also
vanish in this limit.

The effective N � 1 superpotential acquires the form

W � ~QaD�u�Q� mu ; �4:31�

where u � hTrff2i, Q and ~Q are the vacuum values of the
monopole supermultiplets and m is the scale of violation of
N � 2 down to N � 1. The function aD�u� is defined by the
integral (4.27). It follows then that in theminimum h ~QQi � m,
or the monopoles inN � 1 theory condense and this leads to
the (dual to well-known in superconductivity) effect when the
electric field is `forced out', i.e. to (Abelian) confinement.
Thus, the supersymmetric Seiberg ±Witten theory becomes a
nice `exactly solvable' laboratory for study of the properties
of real QCD [46, 46].

4.6 Exact nonperturbative results and integrable systems
The fact that string theory possesses an extremely high
symmetry allows one in practice for the first time to raise
a question about the possibility to compute the exact
correlation functions in absolutely nontrivial theories,
moreover not belonging formally to the class of quantum
integrable models at least in a canonical sense. The main
idea of getting exact answers from symmetry considerations
is based on deriving the relations, which correlation

i

l

j

Figure 13. `Figure-of-eight' contour drawn around the points l � fi and

l � fj in l-plane, which is an analog of theA-cycle on the Seiberg ±Witten

curve.

Figure 14. Two degenerate limits of the smooth curve from Fig. 11.
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functions should obey. If the symmetry is high enough these
relations may lead to the exact solution. It was in the
framework of string theory (more strictly in the framework
of its simplest models) that such program was completely
carried out and it turned to be possible to get exact (in
particular nonperturbative) information about the correla-
tion functions.

First, some progress was achieved in theories `without matter'

or in theories of two-dimensional gravity interacting with `minimal'

(c4 1) matter (let us recall that the central charge c counts the

number of degrees of freedom). It turned out that such theories can

be effectively described in terms of the matrix models of two-

dimensional gravity, i.e. in terms of the finite-dimensional matrix

integrals of the form

Z �
�
DM exp

ÿÿV�M�� ; �4:32�

where DM / Qi; j dMij denotes the simplest integration measure

over the space of finite-dimensional matrices.

The loop expansion or the expansion over topologies of the

matrix graphs [70] of the integral (4.32) reproduces the (discretized

version) of the loop expansion (3.11) of c4 1 string models. The

double-scaling limit of the formula (4.32) [62] allows one to identify

F / lnZ directly with the generating function of string theory

correlators

hOi1 . . .Oini �
q nF

qTi1 . . . qTin

�4:33�

and/or with the effective action. The information about the

function F can be encoded in the set of nonlinear integrable

equations.

The generating function depends on variables of two types. The

first type of variable is the set of sources for physical operators

F�gstr;T� �
X1
g� 0

g2gÿ2str F g�T�

�
X1
g� 0

g2gÿ2str

�
Dhab DX exp

�
ÿSCFT�X; hab� �

X
TkOk

�
; �4:34�

and the derivatives of (4.34) over these sources determine the

correlation functions in the theory. Expression (4.34) does depend

upon the choice of basis of the operators Ok or parameters Tk, and

only in some fixed basis (not necessarily convenient from the point

of view of the world-sheet theory) can it be elegantly described in

terms of non-linear partial differential equations or unitarity-like

relations for the correlators.

In general, such relations are well-known in traditional

quantum field theory (the Ward identities, the Schwinger ±Dyson

equations etc) but the situation in string theory is singled out by the

fact that these equations can be written in the form of closed system

of integrable equations completely fixing the generating function

(4.34). As a function of parameters T, the generating function

(4.33), (4.34) can be defined only in the sense of a formal series,

whose coefficients are identified with the correlation functions, but

the series itself has a vanishing radius of convergency. This fact

reflects the well-known properties of the perturbative expansions in

string theory and quantum field theory andmoreover it is consistent

with the existing explicit formulas for the exact nonperturbative

solutions. If they exist these formulas are usually known in the form

of integral representations and may sometimes be written in terms

of the matrix integrals (4.32). However, the particular terms of the

series for (4.34), for example for F�T� � F 0�T� can be found and

written in terms of well-defined functions.

Another set of parameters, which the partition functions or

generating functions depend on, are the physical or space-time

moduli of the theory. The space of these parameters is usually finite-

dimensional, and in the considered cases it is also often complex and

may be interpreted as moduli space of complex manifolds. I repeat

that complex curves or Riemann surfaces arising in this context

have the `space-time origin' (say come out of the string compacti-

fication) and are not related to the world-sheets of string theory!

As a function of moduli the generating function is a normal

(say, meromorphic) function of many complex variables and can

often be computed more or less effectively. The moduli parameters

can be interpreted as the low-energy values of the background fields

(the Higgs scalar condensates, moduli of physical metric Ð the

KaÈ hler and complex structures etc) and as a function of moduli the

function F has usually the sense of an effective action. The existing

relation between the geometry of complex manifolds and integrable

systems allows one to identify the functions F with solutions to

nonlinear integrable equations.

In general the dependence upon the generating parameters and

moduli is rather different 27 and both functions are independently

interesting problems. For example, in the Seiberg ±Witten theory

there now exists a reasonable answer only to the first question28,

and it is very important that the Wilsonian effective action in the

massless sector can be expressed (4.19) via a function of several

complex variables. Thus, it is the knowledge of the function F as a

function ofmoduli and all its derivatives, say the expansion over the

sources T, which gives the most complete information about the

theory.

The effective theory can be formulated in terms of (a classical)

integrable system. This formulation is universal in the sense that it

does not depend on many properties of the `bare' theory. For

example, it does not really depend even on the dimension of a bare

theory: two-dimensional, four-dimensional, and even five-dimen-

sional theories look absolutely similar from this point of view.

Moreover, so obtained effective theories remind one a lot of the

topological field theories. They possess many properties of two-

dimensional topological field theories, though the `bare' theories

are essentially multidimensional and, which is especially important,

contain massless propagating particles.

Let us now list themain types of differential equations arising in

nonperturbative string theory.

The `Virasoro constraints' (more strictly Ð the Virasoro-like

constraints) [103 ± 105]. This is one more manifestation of the not

yet clear duality between the world-sheet and space-time structures.

The `Virasoro constraints' arising in matrix models of two-dimen-

sional gravity and topological theories have the general form

Ln expF � 0 ; �4:35�
whereLn are the differential operators in parameters fTng, forming

theVirasoro algebra (3.17). Note that equations of this type already

arise in some effective space-time formulations of string theory. In

contrast to Virasoro generators of the world-sheet reparameteriza-

tions, the operators Ln in this context have a purely space-time

interpretation.

The solution to the constraints (4.35), can usually be expressed

through the tau-functions of the hierarchies of integrable equations.

Sometimes these tau-functions can be written in terms of the matrix

27 In topological two-dimensional gravity and in some topological string

models (of theAp-type), the dependences on themoduli t and the sourcesT

almost coincide (the �t� T�-formula [106]).
28 Something about the dependence on generating parameters and an

analog of the t� T-formula in Seiberg ±Witten theory can be found in

Ref. [122].
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integrals (about appearance of the Virasoro constraints in matrix

models and the relation between the matrix models and integrable

systems see, for example, the review in Physics ±Uspekhi [11]). For

the generating functions, written in the form of matrix integrals

(4.32), the Virasoro constraints follow from the loop equations or

Ward identities hdVi � 0 [the average is understood in the sense of

partition function (4.32)], which are basically the simplest analogs

of the Ward identities in gauge field theory.

The associativity equations. This is a nontrivial over-determined

system of differential equations for the generating function F ,
containing its third derivatives [102]. Collecting the third derivati-

ves into the matrices

kFF ik j k �
q3F

qTi qTj qTk
;

the associativity equations can be written in compact form [113]

FF i FF ÿ1j FF k � FF k FF ÿ1j FF i 8 i; j; k : �4:36�

The associativity equations were first found in topological string

models (where they follow from the crossing relations) but later it

turned out that they show up in much more vast class of effective

theories, for example in the Seiberg ±Witten theory.

`Quasiclassical' integrable hierarchies. These hierarchies usually

arise on attempts to find exactly the tree-level or spherical

contributions F�T� � F 0�T�. They are usually reduced to well-

known dispersionless analogs of the hierarchies of Kadomtsev ±

Petviashvili or Toda lattice types. In a wider sense the quasiclassical

hierarchies are applicable, say, to the description of the Seiberg ±

Witten theory: the prepotential F is logarithm of the tau-function

of some nontrivial solution to quasiclassical hierarchy. The known

solutions to quasiclassical hierarchies are related mostly to

geometry of complex manifolds. One of the consequences of such

a relation is the existence of so called `localization' or the residue

formulas of the form

q3F
qTi qTj qTk

� res

�
dHi dHj dHk

O

�
; �4:37�

where dHi are one-forms related to the variables Ti, and O is some

`symplectic' two-form. One of the possible consequences of the

residue formulas is the existence of associativity equations (4.36).

5. Strings and duality between gauge theories
and gravity

5.1 Holography and strings
One of the most interesting recent physical ideas in string
theory is applying the `holographic principle' which allows to
describe theory in full D-dimensional space-time (or in some
part of this space-time) Ð in the so called bulkÐ in terms of
the information encoded on its boundary. Such a possibility
exists far from everywhere, since the bulk theory contains, in
general, much more information than the theory on the
boundary Ð the number of degrees of freedom of the bulk
theory is much larger. Roughly speaking, the ratio of the
number of degrees of freedom in the bulk of dimensionD and
on the boundary of co-dimension d (usually d � 1) grows as
LD=LDÿd � Ld with the characteristic size of the system L.
Besides this fact, in traditional quantum field theory the
theory `inside' (say, the Green functions) is completely
determined by the boundary theory only in quadratic (free)
case.

In contrast to quantum field theory, string theory
necessarily contains gravity, in which the relation between
the bulk and boundary theories seems to be completely
different. One of the manifestations of this fact is the well-
known linear connection between the entropy of the black
hole and the area of the horizon, demonstrating that the
number of degrees of freedom in gravity is proportional not to
the volume, as one would expect from quantum field theory.
Another side of the same phenomenon is known as the
't Hooft holographic principle [107]. According to this
principle due to deviation of rays in gravitational field any
point from the bulk can be `independently' projected to the
boundary (Fig. 15).

String theory unifies `matter' (open strings) and gravity
(closed strings). Moreover, as was already discussed in
Section 4.4, there are natural vacua in string theory where
matter is localized on some hypersurfaces in space-time, while
gravitons or closed strings can propagate everywhere in bulk.
A necessary production of closed strings in the theory of open
strings (see Fig. 5) leads to the possibility of establishing some
holographic (in the above sense) analogy between the theory
of matter or open strings on a D-brane (on the `boundary')
and the theory of closed strings or gravity in the bulk.

In other words, the same effects can be formulated both
in terms of open strings or the Yang ±Mills theory as well
as in the language of the closed string theory or gravity.
In this chapter we will try to discuss some consequences
of this duality, in the modern parlance usually called the
`AdS/CFT-correspondence', since the most well-known
example of this phenomenon is the duality between N � 4
supersymmetric conformal field theory of the Yang ±Mills
fields (conformal field theory Ð `CFT') and gravity in five-
dimensional anti-de-Sitter space (`AdS') [123] (see Sec-
tion 5.4). The most physically interesting effect which can
hopefully be better understood in the framework of such a
correspondence is the parallel between two very important
phenomena in modern theoretical physics proposed by
Polyakov [119] Ð the confinement of quarks in non-Abelian
gauge theories and the confinement of matter under the
horizon of the black hole.

Another interesting aspect of this picture is adding to the
physical picture of the world so called `extra dimensions'. In
contrast to the already traditional Kaluza ±Klein ideas [64]

Figure 15.Holographic 't Hooft principle. A point which cannot be naively

projected to the boundary due to the presence of some material `screen', is

nevertheless projected due to deviation of rays by the gravitational field

induced by this `screen'.
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(see, also, Ref. [44]) about additional small dimensions,
responsible for the internal symmetries in the theory, in the
new proposed physical picture the extra dimensions should
not necessarily be small (and can, in general, even be non-
compact). The problems of the theories with extra dimensions
(although not in the context of string theory) were considered
recently in a review in Physics ±Uspekhi [40].

5.2 Duality of open and closed strings
As we already discussed in Section 3.1, string theory is the
only reasonable candidate for the role of the unifying theory
of the vector fields and gravity since it naturally unifies the
carriers of these interactions as excitations of open and closed
strings. One of the consequences of this relation is the possible
interpretation of closed strings as bound states in the theory
of open strings (see Fig. 5). Another rather natural conclusion
comes out if one considers the one-loop diagram in the open
string theory corresponding to the world-sheet with topology
of a cylinder (Fig. 16). Looking at the same diagram from the
perspective of closed string theory, it is clear that it
corresponds just to a tree-level propagator (cf. with Fig. 6).
Thus, it shows that the one-loop (i.e. quantum) effects in the
open string theory may have a dual formulation in terms of
tree-level (i.e. classical) gravity Ð the massless part of the
closed string spectrum.

This purely string duality can in principle be realized as a
duality between the gauge theories and gravity and this leads
to the already mentioned parallels between the confinement
of quarks inside hadrons and keeping matter inside the
horizon of black holes. This idea has become very popular
due to the more or less explicit example of the `holographic'
duality between theN � 4 supersymmetric gauge theory and
geometry AdS5 � S 5, or the direct product of five-dimen-
sional Lobachevsky or anti-de-Sitter space and five-dimen-
sional sphere, see Section 5.4. Such duality is often called
`holographic' since from the point of view of nonperturbative
string theory one may consider it as a consequence of the
holographic principle or, inmore simple terms, of the fact that
bulk gravity can be described in terms of some effective theory
on the boundary of its volume.

In more detail, the hypothetical scenario of such duality is
based on the following assumptions:
� Matter, described in terms of gauge fields and their
superpartners, or, generally, by open strings is confined to
certain hypersurfaces in multidimensional (e.g. D � 10 or
D � 11) space-time, since open strings are allowed to have
their ends only on these Dirichlet or D-branes 29 (see Fig. 9).

� In contrast to matter, gravity corresponding to the
massless excitations of closed strings, is allowed to propagate
everywhere in the bulk of ten-dimensional space-time, i.e. is
indeed (at least) ten-dimensional theory, as any consistent
quantum gravity should be.
� The matter branes (D-branes) themselves induce a
gravitational field, which, at the level of the classical
(a 0 ! 0) approximation could be considered just as a
solution of the bulk equations of motion with the boundary
terms arising from effective theories on branes. Hence, on the
one hand one may view the boundary terms induced by
matter as the (localized) sources for gravitational field, on
the other hand the deeper correspondence implies that
gravitational boundary action may play the role of a
generating function for the correlators in matter theory on a
brane.
� In nowadays most popular concrete models, the bulk
geometry is `reducible' i.e. has the form of a direct product
like AdS5 � S 5, where the compact S 5 part is kept to be
`fixed' while the real physics takes place within the other part,
so that four co-ordinates fxmg play the role of `visible' space-
time, while the rest, the fifth co-ordinate y (which the
background metric nontrivially depends on), serves as a
scale of observable space-time30. In other words the metric
can be written in the distinguished in string theory form of the
`Friedman universe'

ds 2 � dy 2 � a�y� dx 2
m : �5:1�

� The scale factor of matter theory or the position of the
matter brane in the auxiliary (fifth) dimension can be found as
the solution to the five-dimensional equations of motion (on
the `gravitational side'), or by the renormalization group
equations (on the `matter' or gauge theory side). Since
equations of motion are differential equations of the second
order (while conventional renormalization group contains
only the first order equations in scale parameter), the relation
between them is rather nontrivial. An interesting existing
proposal is that of Ref. [127] Ð to use the Hamiltonian
formalism [35] in five-dimensional gravity theory. Going
along this way one should come to a direct description of
the effective boundary action in terms of a tau-function of
some integrable system (see Section 4.6).

Most of these ideas about the relations between the gauge
theories and theory of gravity arose [119] as a direct general-
ization of the well-studied correspondence between zero-
dimensional (or one-dimensional) gauge theories Ð the so
called matrix models (4.32) (or matrix quantum mechanics)
and theory of two-dimensional gravity or c4 1 string models
[62, 99 ± 101].

5.3 Confinement and black holes
One of the oldest problems in string theory,moreover being in
a sense its main origin is the description of one-dimensional
extended objects in the theory of strong interactions.Multiple
attempts to formulate a string theory adequate for the
description of the Wilson loops in gauge theories and QCD
has led to the idea [119] that such a theory should be
necessarily noncritical in the sense that the effective tension
must depend on auxiliary string co-ordinates playing the role

Open string

Closed string

Figure 16.One-loop diagram in the theory of open strings is equivalent to a

tree diagram in the theory of closed strings.

29 At least in the context of type II string theory.

30 In this context the five-dimensional geometry plays the role of the five-

dimensional gravitational `bulk', restricted by `boundary' branes of

codimension d � 1.
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of the scale factor and at some point this tension should
vanish or become infinite. All this means that the string action
in such a model should have the general form�

S

ÿ
qj �qj� a�j� qX �qX� . . .

�
; �5:2�

in order to be able to coincide with the gauge field theory at
the critical point.

The main problem then is to identify the action (5.2) with
some exactly solvable two-dimensional conformal field
theory with the necessary spectrum and other properties. In
its main features the `gravitational picture' of confinement is
depicted in Fig. 17. The action (5.2) in gravitational
approximation corresponds to the `Friedman metric' (5.1),
the co-ordinates fxmg are the zero modes of `two-dimensional
fields'

�
Xm�s; t�

	
, while the co-ordinate y is the zero mode of

the `two-dimensional field' j�s; t�. The function a�y� qualita-
tively behaves in the following way: on one side of the y-axis it
grows and the space-time becomes the macroscopic five-
dimensional space. On the other side of the y-axis, contrarily
a�y� ! 0, and one gets a `throat' with a strong gravitational
field confining the matter.

The essential part of this picture is the `nonstandard'
nature of gravity, compared to `ordinary' gravity of the
observable (macroscopic) space-time. First, the effects of
this `hadronic' gravity [119] should become essential not at
the Planck scale but already at the scale of strong interaction
of the order of 103 MeV. Second, metric (5.1) is not
observable at least in the sense that the co-ordinate y is not a
real co-ordinate or co-ordinate of `visible' space-time, but
rather plays the role of a scale in the theory. Moreover, it is
necessary to point out that the gravitational description is
applicable only in the situation when string corrections are
suppressed. It happens, for example, in the planar limit
N!1 [70], which corresponds to the tree-level Feynman
diagrams of spherical topology or the spherical (i.e. tree-level)
limit in dual closed string theory.

Thus, the existing examples of duality between gauge
theory and gravity are implied to be correct at least in the
phase where N4 1 and g 2

YMN > 1. The first requirement is
the well-known largeN limit [70] and this means that in gauge
theory only the planar diagrams survive, or that the loop
corrections of the closed strings are suppressed. In contrast to
this transparent limit of large N (which literally means
N!1 for the properly normalised quantities), the second
constraint on the coupling constant is absolutely nontrivial. It
means that in order to compare the gauge theory with the
boundary action in the theory of gravity one should first sum
up the contribution of all loops in the gauge theory or theory
of open strings. Hence, the theory of gravity should predict
the nonperturbative results in gauge theories which are not
analytic in coupling constant. It is especially necessary to
stress this circumstance in order to avoid mixing between the
nontrivial string duality, relating the classical bulk theory
with the boundary theory at strong coupling and rather trivial
`continuation' of the (free) Green functions from the
boundary. Such `continuation' is well-defined for conformal
theory at the boundary and metric of constant negative
curvature in the bulk.

5.4 AdS/CFT correspondence
The most well-known example of duality between the gauge
theory and gravity is the so called AdS/CFT correspon-
dence Ð the correspondence of gravity in anti-de-Sitter
space and the conformal field theory, or more exactly the
N � 4 supersymmetric Yang ±Mills theory which is the
four-dimensional (do not mix with two-dimensional) con-
formal field theory with the vanishing beta-function (2.4),
(2.5) (at least in the perturbation theory). Such a gauge
theory can be represented directly by the picture in Fig. 9,
i.e. by a `stack' of N (completely coinciding!) D3-branes for
the SU�N� gauge theory. The dual gravitational picture can
be constructed as a solution to supergravity equations with
corresponding boundary conditions. Such a solution is well-
known (see, for example, Ref. [123]), and its metric has the
form

ds 2 � Uÿ1=2�dxm�2 �U 1=2�dr 2 � r 2 dO 2� : �5:3�

while the source of this metric is the Ramond ±Ramond
4-form

Cmnlr � Emnlr

�
1

U
ÿ 1

�
; �5:4�

with the D3-branes being charged with respect to this form.
In formulas (5.3) and (5.4) the functionU depends only on

the distance r from the `stack' of branes

U�r� � 1� g 2Na 0 2

r 4
; �5:5�

where N is the number of D-branes and g is the coupling of
N � 4 gauge theory. Metric (5.3) is a metric of manifold
consisting of the five-dimensional sphere [the second term in
the r.h.s. of (5.3)] and some five-dimensional manifold with
the metric similar to (5.1), where the role of distinguished co-
ordinate y is played by the distance r to D-branes. Since

U�r� �
r! 0

g 2Na 0 2

r 4
�5:6�

y

Figure 17.Gravitational analog of confinementÐ themetric similar to the

metric of a `black hole', which is almost flat far from the `horizon' and near

the horizon turns into a narrow throat with strong gravitational fields,

confining `quarks'.
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in the vicinity of the horizon r! 0, the first term in the r.h.s.
of (5.3) turns into the anti-de-Sitter metric

ds 2 � a 0
���������
g 2N

p �
1

r 2
dr 2 � a�r� dx 2

m � dO 2

�
; �5:7�

a�r� � a 0

g 2N

�
r

a 0

�2

: �5:8�

From (5.7) it follows that the squared radius of the five-
dimensional sphereR 2

sphere � a 0
���������
g 2N

p
is equal to the so called

't Hooft constant in units of a 0. As is was mentioned above,
the string corrections are suppressed as N!1, besides this
requirement, metric (5.7) is close to the exact solution at large
't Hooft coupling, i.e. when g 2N4 1.

This example is in fact the only explicit example of a
relation between the gauge theory and gravity, which allows
in particular to study the correlation functions and anom-
alous dimensions of composite operators [124]. Unfortu-
nately this example cannot really be `deformed' into more
sensible physical theories, i.e. all the construction is rather
rigid. Some attempts at the dual gravitational description of
the gauge theories with less supersymmetry were made in
Ref. [128], though without any striking success.

From the more general point of view the AdS/CFT
correspondence in the framework of string theory can be
divided into two, generally speaking, different parts

ln

�
DAm exp

�
ÿSYM�Am;f0� �

X�
d4xfiO

YM
i �Fmn�

�
�
X�

DjDX exp

�
ÿ
�
S

�
GMN qXM �qXN � R �2�F�X �

�
X

fi�X �Vi�X �
��
�
�
dx

����
G
p

exp �ÿ2F�

�
�
R�G� � V�fi� �

1

2
�HF�2 � 1

2
�Hfi�2 � . . .

�
; �5:9�

which are `labeled' by two different equality signs in this
formula.

Formula (5.9) deserves further explanations which are
now in order:
� The l.h.s. contains the logarithm of the generating
function of the (supersymmetric, omitted for simplicity)
Yang ±Mills matrix field theory, which is considered in the
sense of 't Hooft 1=N-expansion, reproducing the perturba-
tive expansion in string theory with both holes (open string
loops) and handles (closed string loops, see Fig. 8). One adds
in this part the sum of the gauge-invariant operators
OYM

i �Fmn� [124] to the Yang ±Mills action, depending on the
(covariant derivatives of the) Yang ±Mills field-strength with
the external sources fi�x�.
� The middle part is literally the string theory generating
functional. As it should be in the first-quantized theory, it
contains the sum over topologies and number of `holes' (the
Yang ±Mills expansion we noted above). The integration is
performed over all embeddings XM � �X m;j� of a two-
dimensional world-sheet parameterized by �s1; s2� into the
`bulk' space-time. By definition, the world-sheets may have
holes only `attached' to the boundary in space-time, i.e. the
Dirichlet boundary conditions have to be imposed on j. The
gauge invariant operators coupled to fi are now represented
by the closed-string background fields fi�X �, interacting with
the string over the whole world-sheet surface.

� The requirement of two-dimensional conformal inva-
riance (see Section 3.4) is equivalent to the condition that
external background fields fi�X � [including the specially
singled out background metric GMN�X � and dilaton F�X �]
should be on amass-shell, i.e. satisfy the equations of motion.
This is an important point, because the equations of motion
should be `supplemented' by boundary conditions, which are
not explicitly mentioned in (5.9); nevertheless one should
remember them and add to the `middle' part of (5.9) that the
boundary conditions are imposed at j

��
0
� y � y� and the

couplings in the Yang ±Mills part (the l.h.s.) are exactly the
boundary values of the string couplings 31 fi�x� /
fi�X

��
0
;j
��
0
� y��.

� The equality between the middle part and the r.h.s.
requires even more additional detailed explanations. The
r.h.s. contains what is called the string theory effective
action [see Section 3.6; in particular Eqn (3.26)]. Literally
as is written in (5.9) it looks like an ordinary low-energy
effective action in quantum field theory. However, things
are not so simple since one should remember that the
middle part of the equality and, thus, the r.h.s. is defined
only on the mass shell. In fact the last part of formula (5.9)
contains a non-local expression, arising if one substitutes
into the action solutions to the equations of motion as
functionals of the boundary conditions! Thus, through it
seems that formula (5.9) reformulates the quantum problem
of computation of the generating function (taking into
account all loop contributions) as some classical problem,
the last one Ð the classical problem of finding the effective
action as a functional of the boundary conditions Ð is not
in fact simpler. An exception is the case of dilaton field with
vanishing potential, where the comparison between the
gauge theory and gravity was indeed performed in
Ref. [124].

5.5 Life on a brane
Interpretation of the scale factor as an auxiliary co-ordinate
of space-time allows one to consider the problems of
confinement in the theory of elementary particles and the
problems of gravity and cosmology on equal footing. In
analogy to the previous section in the theory of gravity
already at the level of simplest classical consideration it is
easy to demonstrate that
� it is easy to get a vanishing effective cosmological constant
of the four-dimensional matter theory;
� it is also easy to get a massless four-dimensional graviton,
non-propagating to the bulk at least in the linear appro-
ximation.

These two statements arise without any additional
information from solving the Einstein equations of motion
for bulk gravity with certain boundary conditions, induced by
brane sources.

Themost general classical action in this approach includes
only two terms (the rest of the contributions to the action are

31 We are now discussing this correspondence at a relatively `rough' level,

forgetting more delicate questions, like the relation of the basis of gauge-

invariant operators in the Yang ±Mills theory and the basis of the

corresponding vertex operator in string theory. This is a nontrivial issue,

since there is no way to adjust these basises a priori in the first and second

part of equality in the formula (5.9). This can be seen already for the

simplest example of the AdS/CFT correspondence Ð the matrix model

(4.32) and the dual theory of two-dimensional gravity.
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marked by dots)�
d5x

������
G5

p �
R5

2g �5�N

� L5

�
�
�
d4x

������
G4

p
L4 � . . . ; �5:10�

where, according to the accepted rules, we consider only the
nontrivial five-dimensional part ofD-dimensional theory and
write down two terms corresponding to the bulk five-
dimensional contribution (with metric G

�5�
MN � GMN and its

curvature R5 � R5�G�; g �5�N is the five-dimensional Newton
constant) and the boundary four-dimensional contribution
(where G4 denotes the determinant of metric on the brane
world volume, induced by the five-dimensional metric with
the determinant G5 � G). The terms omitted in (5.10), are
generally nonlocal or contain higher derivatives; they how-
ever should necessarily be taken into account in an exact
string formulation of the problem.

It is remarkable that the action (5.10), written in the
simplest approximation, does not really depend on any
details of the model. In the simplest case, the second term
can be chosen as a d-function along the distinguished fifth co-
ordinate x5 � y and the `potentials' L5 and L4 can be
considered as constants Ð the five-dimensional bulk cosmo-
logical constant and `bare' four-dimensional cosmological
constants or tension of the correspondent brane. Nobody
forbids, however, considering them as nontrivial functions of
co-ordinates, being, say, the values of the matter (scalar)
fields potentials Ð then the simplest picture is easily general-
ized to the case of several thin branes or a thick brane. The
analysis in any case does not differ from the simplest example
[129], when the second term represents the only thin brane
placed at y � 0 with no other sources, or, better to say, the
contribution of all other sources is encoded in the non-
vanishing five-dimensional cosmological constant L5 �
const < 0 giving rise to the anti-de-Sitter AdS5 geometry far
outside the brane.

The appropriate solutions to the equations of motion,
following from (5.10),

1

g�5�N

�
R
�5�
MN ÿ

1

2
GMNR5

�
� 1

2
L5GMN � T

�4�
MN ; �5:11�

(in this section large indices run over five values
M;N � 1; . . . ; 5 while the small indices run over the four
values m; n � 1; . . . ; 4) can be found in a very simple way,
using the symmetries of the problem. Since
T
�4�
MN / d�y�t �4�mn �x� dm

Mdn
N one can first solve Eqns (5.11) for

y 6� 0, which naturally suggest the anzatz of the `Friedman
universe' (5.1). Substitution of (5.1) into (5.11) gives

a 00�y� � L5g
�5�
N

3
a�y� � 0 ; y 6� 0 ; �5:12�

with the solution

a�y� � A exp �ky� � B exp �ÿky� ; �5:13�
L5g

�5�
N � ÿ3k2 < 0

(the cosmological constant of five-dimensional space is
negative). A natural choice would be A � 0 for y > 0 and
B � 0 for y < 0, then we have an AdS horizon as jyj ! 1.

On the brane surface at y � 0 one has to `glue' two
exponents with different signs, then a�y� � exp �ÿkj yj�, but
this would bring us to an extra contribution into (5.11) at
y � 0, i.e. proportional to d�y�. However, tuning L4g

�5�
N � 3k

one exactly cancels this term by the contribution of the
variation of the second term in (5.10) so that (5.11) also

holds at y � 0. Thus, the solution is finally

ds 2 � exp �ÿkjyj� �dxm�2 � dy 2 ; �5:14�
so that the effective cosmological constant in four-dimen-
sional theory

L eff
4 � L4 �

�
dy

������
G5

p
L5 � L4 � L5

k
� 0 �5:15�

vanishes. Thus, in this scenario the `observable' cosmological
constant L eff

4 classically vanishes independently of any
particular details of the model in a given class.

One of the very important immediate consequences we got
in this context is that the boundary conditions (hereÐ gluing
on the brane) remove exactly half of the bulk modes existing
in the theory. In a more general context this condition could
be different if speaking about its exact form, but in (5.13) one
may always express B as a function of A or vice versa.

The next question to study is the spectrum of small
fluctuations of the (linearized) action (5.10) in the vicinity of
the background (5.14). It is easy to see that for the
perturbation

gmn � a�y� Zmn � hmn�x; y� � a�y� Zmn � c �p�mn �y� exp �ipx�
one gets an equation�
ÿ q2

qy 2
� p 2

m exp �kj yj� ÿ 2kd�y� � k 2

�
c�p��y� � 0 ; �5:16�

rather similar to the SchroÈ dinger equation in a d-function well
with a coefficientÿ2k. From elementary quantummechanics
it is well-known that there always exists a single level,
localized in this well (here at y � 0) with the energy
E � ÿk2. This immediately gives rise to p 2

m � 0 in (5.16), or
to the four-dimensional massless graviton which is forbidden
to propagate into the fifth direction (to the bulk) by the
exponential wave function c�p

2 � 0� / exp �ÿkj yj�.
This is, in fact, a generic phenomenonÐ for anymetric of

the form (5.1) with a�y� � exp
ÿÿa�y�� with suitable

a�y� !
j yj!1

0

there exists a solution to (5.11) with nonconstant bulk
`potential' L5�y� and L4�y�, corresponding in general to
some thick brane, satisfying32

L5�y� � ÿ3a 0�y�2 ; L4�y� � 3

2
a 00�y� ;

L5�y� � L4�y� � 3

�
ÿa 0�y�2 � a 00�y�

2

�
;�

dy �L5 � L4� exp
ÿÿ2a�y�� �5:17�

� 3

2

�
dy

d

dy

�
a 0 exp

ÿÿ2a�y���
� ÿ 3

4

�
dy

d2

dy 2
exp

ÿÿ2a�y�� � 0 :

32Notice that the expression T �y� � L5�y� � L4�y� has exactly the formof

the Miura stress-energy tensor, widely appearing in two-dimensional

conformal theories, in particular in the bosonization procedure or in the

Liouville theory. Such `Virasoro' properties of the conformal mode of the

space-time metric may serve as a possible origin for the target-space

Virasoro symmetries (4.35), often appearing when describing the effective

string theory actions in terms of integrable systems.
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Of course, the `gravity description' presented above
answers almost all simple questions but cannot pretend to
be complete33. The massive modes c�y� can be expressed in
terms of the Bessel functions and their contribution to the
deviation from the Newton law in a four-dimensional world
seems to be consistent with any one-loop contribution to the
graviton propagator



hmn�x� hab�0�

� � � d4q exp �iqx� q 4 ln
q 2

m 2
;

giving rise to 1=r 3 correction to the potential of four-
dimensional gravity.

Now, let us recall that gravity arises only as an effective
description of string theory and in the string theory picture
the previous formulas can be understood in the following
way. Consider the generating functional of string theory in
the background (5.1), (5.2)�

DjDX exp

�
ÿ
�
S
a�j� qXm

�qXm � qj �qj

�R�2�F�j� � . . .

�
; �5:18�

so that the zero modes ofXm�s; t�
��
0
� xm play the role of four-

dimensional co-ordinates in (5.1) while the zero mode of the
Liouville field j�s; t���

0
� y is a distinguished bulk co-

ordinate.
The action (5.18) should be consistent in the sense of

string theory, in particular after the integration over co-
ordinates Xm, the arising correction�

DX exp

�
ÿ
�
S
a�j� qXm

�qXm

�
� det

ÿ
�qa�j� q�ÿD=2

� exp

�
ÿ
�
S
qa �qa�R�2�a� . . .

�
�5:19�

should not break the conformal invariance (independence of
the macroscopic theory of the choice of the world-sheet co-
ordinates). In the last formula, which is a particular case of a
general anomaly formula from Ref. [93], a � a�j� � ln a�j�,
and the anomaly contributions depending only on metric are
marked by dots.

We see, that, identifying the Liouville or dilaton field with
the fifth co-ordinate, Eqn (5.19) gives rise to a reparameter-
ization in the fifth dimension j! j� a�j� and
F�j� ! F�j� � a�j�. For the particular background (5.14)
one gets just a trivial renormalization of the string action for
the Liouville component. In particular, this means that the
background (5.4) is stable against string corrections. The
integration over Xm-coordinates is effectively equivalent to
the study of nontrivial dependence only upon fifth coordinate
in the bulk theory, taking four-dimensional branes as
effective boundary sources and this is quite similar to what
we have considered above in the classical gravity approxima-
tion. Moreover, the solution a � a�j� � ln a�j� is only
naively consistent with the requirement of world-sheet
conformal invariance.

6. Some new directions in string theory

Finally in this review let us say a few words about the
directions which have begun development only in recent
years. We will discuss only few such directions and let us
note immediately that the understanding of most of the
problems considered in this chapter deserves to be better.

6.1 M(atrix) theory
M(atrix) theory [120] is one of the most interesting (though
not very successful, at least from the point of view of the
author) attempts to construct an alternative to the string
formalism. For the role of such a formalism some particular
matrix quantummechanics is proposed and the distinguished
first letter can be considered as a rather transparent hint that
this letter should be identified with `M' in M-theory while the
rest of the word `matrix' can be omitted.

As a building blocks m(atrix) theory uses the N�N
matrices Xi (i � 1; . . . ; 9), whose diagonal elements can be
interpreted as the transverse co-ordinates of the D0-branes
(their number is equal to N) in the light-cone co-ordinates in
the eleven-dimensional compactified M-theory. The Lagran-
gian of such a theory can be written in the form�

dt Tr

�
1

2R
_X
2

i �M 6
PlR
X
i< j

�Xi;Xj�2 � . . .

�
; �6:1�

where the dots correspond to omitted fermionic terms.
Equation (6.1) explicitly contains the eleven-dimensional
Planck mass MPl [cf. with formulas (4.1) and (4.2)], together
with the radius of the compact dimension R, which in the
formalism ofmatrix theory somewhat artificially corresponds
to the light-cone co-ordinate Xÿ. Hence, nine transverse co-
ordinates and two light-cone co-ordinates Ð time and
compactified Xÿ, corresponding to the trace over matrices
in (6.1), together form the eleven-dimensional target space of
M-theory.

The quantum mechanical action (6.1) can be interpreted
in the following way. IfN � 1, action (6.1) corresponds to the
HamiltonianH � P 2 and the ground state is degenerate with
respect to all auxiliary [absent explicitly in (6.1)] Grassmann
variables ya. Simple counting of all states shows (see, for
example, Ref. [28]), that their total number is 28 � 256, so
that half of them are bosonic: 9�9� 1�=2ÿ 1 � 44 gravitons
and 84 of the antisymmetric tensor field, and half of them
fermionic.

Thus, the `vacuum' of m(atrix) theory corresponds to the
supergraviton, or, better to say, the supergraviton multiplet
of eleven-dimensional supergravity [74], in which the only
bosonic fields are metric and three-form. It is also claimed
that nontrivial solutions to the equations of motion in
m(atrix) theory can be identified with a membrane, fivebrane
etc. For example, in the `quasiclassical' limit N!1 action
(6.1) can be rewritten, replacing the commutator with the
Poisson bracket in auxiliary variables �s1; s2��

dt

�
d2s

�
1

2R
_X�s1; s2�2i

�M 6
PlR
X
i< j

�
X�s1; s2�i;X�s1; s2�j

	2
PB
� . . .

�
: �6:2�

This action can be identified with the action of the membrane
in the light-cone gauge.

33 For example, within pure gravity theory it is not clear why the classical

vanishing of cosmological constant is not violated by quantum effects, say,

by contribution of graviton tadpoles etc. This is just one more manifesta-

tion of themain concept of this review: the only way to `quantize' gravity is

to consider it as low-energy limit of string theory.
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The hope for amatrix formalism in nonperturbative string
theory has not been justified in the sense that the new
formalism appeared to be not very effective in solving
essential problems. Nevertheless, it can be already consid-
ered as a `relative success' that at least some properties of
string theory and eleven-dimensional M-theory can be
extracted from this at first glance totally absurd concept. To
finish this section let us note, that some problems of the
m(atrix) formalism were discussed in a recent review in
Physics ±Uspekhi [12].

6.2 Non-commutative field theories
Non-commuting co-ordinates. The fact that the co-ordinates
of the `stack' of D-branes from the point of view of effective
field theory become eigenvalues of the matrix of scalar field in
the adjoint representation is sometimes interpreted as the
appearance of non-commuting coordinates. In the first-
quantized formalism one may consider this as a relatively
simple and formal representation for the effective theories in
terms of D0-branes, D-strings etc, studying the correspond-
ing matrix quantum mechanics or two-dimensional non-
Abelian gauge theory.

Non-vanishing background B-field.Another manifestation
of non-commutativity shows up if we consider string theory in
the nontrivial background B-field (3.4), for example,

Bmn � BEmn ; B � const : �6:3�

This case can be clearly understood by analogy with the well-
known example of a charged particle in a constant magnetic
field.

Indeed, the interaction, say, with the constant B-field
(6.3), is performed over the whole surface of the world sheet�

S
Bmn dX

m ^ dX n �
�
qS

BmnX
m dX n ; �6:4�

and by the Stocks formula it can be rewritten as a boundary
term, equivalent to the interaction of a string with the vector-
potential Am�X� � BmnX

n, corresponding to the constant
magnetic field. If the value of the B-field is large enough the
contribution of the term (6.4) to the two-dimensional
correlator of the fields X�t� � X

��
qS dominates


Xm�t�Xn�t 0�
� / Emn sign �tÿ t 0� ; �6:5�

and in the field-theory limit this corresponds to non-
commuting coordinates

�Xm;Xn� � zEmn ; z � 1

B
: �6:6�

This reasoning is in fact a rather rough illustration of the well-
known effect when the role of non-commuting variables is
played by the centers of (small) circles Ð the trajectories of
particles in a magnetic field.

The corresponding effective field theory can be described
by a Lagrangian, where all the products are replaced with the
so called Moyal products

f �x� � g�x� � exp

�
Emn

q
qxm

q
qyn

�
f �x� g�y�

����
x�y

� f �x� g�y� � � f �x�; g�x�	�O�q2� ; �6:7�

where f and g are any two functions (local functionals) of
`ordinary' fields f�x�, and�

f �x�; g�x�	 � Emn
qf
qxm

qg
qxn

�6:8�

is the Poisson bracket, corresponding to the `quasiclassical'
limit of the commutator (6.6). The Lagrangians where the
fields are multiplied according to the rule (6.7), obviously
contain infinitely many derivatives 34.

Examples of non-commutative field theories usually
include the theories of scalar fields

S �
�
dx

�
1

2
qmf � qmf� V�f�

�
�
�
dx

�
1

2
qmf qmf� V�f�

�
�6:9�

where �-multiplication (6.7) is essential only in the interaction
terms, and the gauge theories

Fmn � qmAn ÿ qnAm � Am � An ÿ An � Am ;
�6:10�

S � 1

g 2

�
dxFmn � Fmn ;

which are a rather natural generalization of the Yang ±Mills
theories. Notice, that in contrast to the commutative case
even the Abelian variant of (6.10) is a nontrivial interacting
theory. Practically without any changes [just considering
Am�x� as matrix-valued functions of non-commuting vari-
ables and adding the trace over matrix indices] formula (6.10)
also defines the noncommutative Yang ±Mills theories.

Themost interesting applications of the non-commutative
field theories are their classical solutions.

Solitons and instantons in non-commutative theories. In
contrast to common scalar field theories where the existence
of localized classical solutions is forbidden by scaling
arguments in almost all dimensions (starting with D5 2),
such solutions can arise in non-commutative field theories
where the scaling is much less trivial due to an extra
dimensional parameter [z in the formula (6.6)] [130]. The
simplest is the two-dimensional case. After the scale transfor-
mation of co-ordinatesX! ���

z
p

X in the action (6.9), one gets
for the two-dimensional (or static three-dimensional) case

E �
�
d2x

�
1

2
�qf�2 � zV�f�

�
�6:11�

and as z!1 the solution and its energy is completely
determined by potential terms. The stationarity equation,
for example, for the potential

V�f� � m 2

2
f2 � l

3
f3

is reduced in such a case to

m 2f� lf � f � 0 : �6:12�

With common multiplication, the solutions to (6.12)
would be `maps into the set of points' f�x� � 0 and

34 Despite this, their ultraviolet properties are not better than the

corresponding properties of ordinary, i.e. commutative quantum field

theories.
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f�x� � ÿm 2=l, however non-commutativity `washes away'
these points in the space of fields. Indeed, formally a solution
to (6.23) can be written as

f � ÿm 2

l
P̂ ;

where P̂ is the projector, i.e., generally, any operator with
the property P̂ 2 � P̂. In two-dimensional non-commutative
space (isomorphic to the phase space of quantum mechanics
with only one degree of freedom) projectors can easily be
constructed in terms of, say, the Fock space operators. For
example, one can take P̂n � jnihnj, where jni is the state of
nth energy level of harmonic oscillator. One can write
correspondingly their representation in (non-commutative)
x-space, the simplest `bell-shaped' solution being

f0�x� � ÿ
2m 2

l
exp

ÿÿ�x 2
1 � x 2

2 �
�
:

In the non-commutative gauge theories the main interest
is caused by the instanton solutions [125]. In contrast to
commutative theory, the nontrivial solutions to the self-
duality equations arise already in the case of Abelian
(noncommutative) group U�1�. From the physical point of
view their main attraction is that they do not contain
singularities of `zero-size' 1=x 4 [for example, in the expres-
sion for the field-strength at r � 0 in formula (2.12)], the
parameter of non-commutativity turns the non-integrable
singularity in four dimensions 1=x 4 into the integrable
expression 1=

�
x 2�x 2 � z��. Construction of the solutions is

almost the same as in the commutative case with the only
distinction being the replacement, as much as possible, of
ordinary multiplication by the Moyal �-multiplication (6.7).

The detailed discussion of different aspects of the non-
commutative theories can be found, for example, in the
review [48].

6.3 Tachyon potential
One of the main problems of many well-known string models
is the presence of tachyons or states with negative squared
masses. The tachyons lead, in particular, to infrared diver-
gences in string amplitudes and since the infrared and
ultraviolet regions are identified by two-dimensional geome-
try this problem `screens' the ultraviolet finiteness of string
theory.

The interpretation of negativemasses is absolutely clear in
field theory (in particular, in the effective field theories for
string models with tachyons) and it causes the instability of
the corresponding vacuum. Indeed, drawing the effective
potential with the requirement m 2 � V 00�f0� < 0, we imme-
diately see (Fig. 18), that the corresponding point (in the space

of fields) is a local extremum but not a minimum, and under
any perturbation the theory `rolls down' into the `true'
vacuum at f � f�.

Unfortunately, string theory by now does not have any
self-consistent second-quantized formalism or string field
theory35 at least in the form, like the second-quantized
approach existing in quantum field theory. Say, any field
theoretical Lagrangian with the potential depicted on Fig. 18,
allows one immediately to see both stable f � f�, and
unstable f � f0 vacua. This effect cannot be really seen in
string theory since there is no formalism (yet?), which would
allow one to consider the points f � f0 and f � f�
simultaneously.

In the bosonic string theory the existing formalism allows
one to compute amplitudes in the vicinity of a vacuum of
f � f0 type, generally with two tachyons Ð from the open
and closed string spectrum. A Sen [126] has proposed a nice
D-brane interpretation, which allows one partially to get rid
of the tachyon of the open spectrum. It is based on the fact
that the bosonic open string theory may be interpreted as
D25-brane (the Dirichlet brane of dimension p � 25), whose
world volume fills in the whole twenty-six-dimensional space-
time. Equally the ten-dimensional superstring can be seen as a
D9-brane. The standard way to get rid of the tachyon in a ten-
dimensional superstring Ð the GSO-projection [54], which
was already discussed in Section 3.5 Ð in fact corresponds to
Fig. 9 with parallel BPS D-branes. From some perspective
this may even be considered as a definition of what is drawn
on Fig. 9.

Sen proposed interpreting the tachyon as a ground state of
string, stretched between the Dirichlet and anti-Dirichlet
branes, defining such a configuration as corresponding to
the `opposite sign' in the GSO projection. It should be noted
here that it corresponds only to the `non-diagonal' or `non-
Abelian' tachyon of the open-string spectrum, since it
corresponds to a string stretched between two different
branes. Such a situation, in contrast to non-interacting
parallel D-branes, is unstable. The Dirichlet and anti-
Dirichlet branes tend towards each other and want to
annihilate. From the energy conservation it follows that (see
Fig. 18)

V�f0� ÿ V�f�� � 2TD ; �6:13�

where TD Ð is the D-brane or anti-D-brane tension.
Moreover, since it is possible to stretch two strings of

different orientation between the D-brane and the anti-
D-brane, the corresponding tachyon field becomes complex,
and the potential from Fig. 18 should be `complexified' by
rotation around the vertical axis. Then it becomes similar to

V�f�

f0 � 0 f� f

Figure 18. Effective potential with minimum at f � f� and extremum at

f � f0 � 0. The value f0 � 0 is an extremum point for the potential

V 0�f0� � 0, but the second derivative is negative V 00�f0� < 0, which

corresponds to the presence of a tachyon in the vicinity of this point.

35 The problems of constructing string field theory go beyond the scope of

this review. Notice only that there exists a huge amount of literature,

devoted to this problem, whose total volume can be easily comparable

with amount of literature devoted to all other problems of string theory,

taken altogether. From the point of view of the author the possibility of

construction of string field theory is seriously restricted at least by the

absence of `universal variables' which allow one to see all (and not a

single!) string vacua, since the first-quantized string theory is described in

terms of different variablesÐ two dimensional conformal field theoriesÐ

in the vicinity of different vacua. Another problem is that at least in the

closed string theory the counting of states in the loops is different for a

different number of loops (or for Riemann surfaces of different genera)

and therefore, in contrast to quantum field theory, it is very hard (if

possible!?) to write down a Lagrangian, taking into account this obstacle.
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`Mexican hat' potential well-known in the framework of the
Standard Model. The effective theory in such a potential
possesses `kink'-like solutions depending on some space-time
co-ordinate x. For such a solution one may take

f�x� !
x!�1 jf�j exp �iy1� ; f�x� !

x!ÿ1 jf�j exp �iy2� ;

with y1 6� y2.
Hence, if the tachyon under discussion corresponds to the

pair of Dp- and anti-Dp-branes, the arising kink is very
similar to an extended object of a dimension less by unity,
i.e. to a D� pÿ 1�-brane. This kink is also unstable and it
exists together with an `anti-kink'Ð a solution running along
the co-ordinate x to the opposite direction. It is natural to
interpret the anti-kink as an anti-D� pÿ 1�-brane, and
continue this procedure by induction. Such qualitative
reasoning leads to the idea, that `rolling down' along the
tachyon potential depicted in Fig. 18, from the point f0 � 0
to the point f � f�, and starting with a pair of Dp- and anti-
Dp-branes, where p � Dÿ 1 is the dimension of our space
(without time), we will find on our way many local extrema
corresponding to the branes of smaller dimensions and finally
will arrive at the `true' vacuum f � f�, where the open string
excitations are simply absent.

Unfortunately this sort of reasoning does not allow one to
compute the exact tachyon potential, even for a restricted
class of tachyonic fields. The only way to calculate such
quantities is to use the effective actions which were discussed
in Section 3.6. Literally this method can be applied only in the
vicinity of a `false' vacuum f0 � 0 of the tachyon potential,
where the corresponding two-dimensional conformal theory
is a theory of free fields. However, there have been many
attempts to `extrapolate' the results of such computations
towards the direction of `real vacuum' f � f� (see, for
example, [131]). Moreover, one can even find claims that the
tachyon potential in the tree-level approximation can be
computed exactly [132], and equals the rather simple
expression

V�~f� � ÿ 1

2
~f 2 ln ~f ; �6:14�

with ~f � exp �ÿf�. Despite the arguments in favor of this
formula needing to be more strict, qualitatively it means that
in `true vacuum' ~f � 0 or f!1 the mass of tachyon field
becomes infinite, and it is consistent with the Sen hypothesis
about the disappearance of all excitations of the open string
spectrum.

7. Conclusion. String theory or field theory?

In this review we have tried to discuss the main aspects of
string theory in the form, as it exists at present. Certainly, as
any physical theory detached from experiment it looks like it
is `flying in the air' and the only excuse for such a theory may
come from new ideas, which have shown up inside string
theory and, very slowly, affect themodern scientific paradigm
of what is quantum field theory.

It becomes more and more evident that microworld
physics cannot be simply reduced to an infinite set or
`media' made of harmonic oscillators. Such theories arise
only as a low-energy effective description of phenomena in
the weak-coupling regime, which however finds lots of
applications both in elementary particle and condensed
matter physics. However, the main physical problems, which

are not now understood, are contrarily related to the strong-
coupling phase or strong field regime, exactly where the
traditional quantum field theory or `theory of oscillator'
does not have new successes. The very popular attempts
thirty or even twenty years ago to develop a `correct' or
`general' formalism in quantum field theory, such that its
computations can be `prolonged' towards the strong coupling
look less and less promising. String theory in contrast implies
(and originally implied) the existence of a principally new
perspective on the problems of strong coupling.

Appearing almost phenomenologically in the theory of
strong interactions, the theory of one-dimensional extended
objects gained huge popularity because, at variance with
many other languages, it proposed a reformulation of many
problems in terms of extremely simple two-dimensional
conformal field theory, where the structure of computations
is under the rigid control of infinite-dimensional symmetry
and complex geometry, in particular by the language of
complex analytic functions. Despite the observable world
being multidimensional, the string scattering amplitudes are
expressed through the correlation functions in two-dimen-
sional conformal theories with well-defined operator product
expansions etc. Moreover, the majority of target-space
multidimensional symmetries are in this or that way related
to the two-dimensional symmetries of the world-sheet
theories.

In string theory the approach based on a dual description
of the strong coupling effects was proposed and developed.
Rather soon, this approach led to a certain hypothesis about
nonperturbative results in supersymmetric gauge theories.
These results are beyond the framework of traditional field-
theoretical methods and allow one to get a deeper under-
standing of the problem of quark confinement.

String theory seems to be the only natural continuation of
General Relativity to the region of strong fields and small
distances. The (almost obvious) idea that there can be no
quantum gravity in the framework of quantum field theory
since these are two totally different theories is becoming more
and more widespread. The appearance of time as a scale
factor together with the distinguished role of solutions similar
to the `Friedman universe' demonstrate deep internal rela-
tions between gravity and string theory.

Thus, the experience of development of string theory
brought lots of rich new ideas into modern science. The only
trouble is that string theory now does not possess a well-
developed, fixed formalism, allowing one to perform compu-
tations of physical effects without applying `intuition'. All
these problems exist on the background of enforced develop-
ment of connections with different spheres of mathematics
and mathematical physics, and it allows one to think that
these problems have a temporary and mathematical, but not
physical character. On the other hand, it is very nice to believe
that it is a necessity to apply the continuously physical
intuition called Theoretical Physics.
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8. Appendices

8.1 Some new terminology
Anomaly Ð violation of classical symmetry by quantum
effects which is related to the fact that sometimes it is
impossible to find a regularization without breaking classical
symmetries (see details, e.g. in Ref. [36]). It is the anomaly of
the world-sheet theory which essentially restricts the target-
space properties of string theories.

Bulk Ð a new string parlance. Speaking about `bulk'
theory usually implies the theory in `maximal volume' space-
time of the particular stringmodel in the casewhen this theory
possesses extended objects Ð branes, and part of the fields is
localized on these branes. It is this case, when it is accepted to
distinguish the bulk theory (or the theory in the whole space-
time) and the `boundary' theory or the theory in the world-
volume of the brane.

BPS states or the Bogomol'ny|̄ ± Prasad ± Sommerfield
states correspond to the part of spectrum of supersymmetric
theory, belonging to so called `short' multiplets. Their masses
are proportional to the central charges of a super-algebra. If
we believe that supersymmetry is an exact quantum symmetry
of the theory, the BPS masses cannot have quantum
corrections, and therefore their classical values are exact.
Since the eigenvalues of the Hamiltonian in supersymmetric
theories are bound frombelow by the central charges, the BPS
states are the lightest states from the whole spectrum, being
therefore of particular interest for the low-energy effective
theories. The BPS states of the `short multiplets' are invariant
under the action of some supersymmetry generators, and
therefore they are often associated with the solutions to first-
order differential equations. in Seiberg ±Witten theory (see
Section 4.5) analysis of the BPS spectrum allows one to come
to absolutely nontrivial conclusions about the exact form of
the low-energy effective action.

Brane Ð the second part of the word `membrane',
denoting simply an extended object, generally of arbitrary
dimension p; in such a case it is usually called a p-brane,
where p is the number of only space co-ordinates of the
brane. This definition does not in fact contain any
additional information except for dimension. A particle is
a 0-brane, a string is a 1-brane, a membrane is a 2-brane,
etc. Also, the localized in (Euclidean) space-time instantons
are identified with �ÿ1�-branes.

Vacua of string theory.These are the vacua of hypothetical
second-quantized string theory such that the perturbation
theory in the vicinity of each vacuum would be given by the
Polyakov path intgral with the corresponding two-dimen-
sional conformal field theory. This concept is based on a
rather simple analogy with quantum field theory, whose
vacua are identified with different minima (or even with
different extrema) of the potential (see Fig. 18), with
different, in general, perturbative expansions. Since the
second-quantized string theory does not exist, and two-
dimensional conformal field theories exactly correspond to
solutions to the classical equations of motion for the back-
ground fields [see, for example, (3.15)], it is accepted by

definition to identify different perturbative string theories
(i.e. different two-dimensional conformal theories) with
string vacua. The massless sector of these theories, described
by the effective quantum field theories for the massless fields,
corresponds within this concept to effective field-theoretic
description of string vacua.

Virasoro algebra, Virasoro constraints. Originally this is
the algebra of generators of reparameterizations of a circle, or
more exactly its central extension by the Gelfand ±Fuchs
cocycle. In string theory the Virasoro algebra arises from the
natural requirement of the independence of a theory from the
choice of co-ordinates on world sheets. Reparameterization
invariance first reduces the dependence of two-dimensional
conformal theory on the metric to its dependence only upon
conformal class, and the residual invariance is exactly given
by holomorphic changes of variables (more strictly by direct
product of holomorphic and antiholomorphic changes),
which are nothing but an analytic continuation to the
complex plane of reparameterizations of a circle. The central
extension of this algebra of reparameterizations (3.17) is a
consequence of the conformal anomaly in two-dimensional
quantum field theory, in the `full' world-sheet conformal
theory this anomaly should be canceled. A very interesting
and not yet understood consequence of this symmetry on
string world sheets is appearance of the Virasoro algebra in
the effective differential equations in coupling constants of
string theory in target space.

D-branes (Dirichlet branes) Ð hypersurfaces (see branes),
where (and only where) the ends of open strings can be placed.
Along the directions `inside' the D-brane these ends canmove
freely, but in the `transverse' directions they are rigidly `glued'
to the D-brane, i.e. the corresponding co-ordinates must
satisfy the Dirichlet boundary conditions, and this is a source
for the name. The Dirichlet branes can have more or less
arbitrary dimensions p in different models, then sometimes a
somewhat misleading terminology Dp-brane is used.

Duality Ð one of the main heuristic concepts of non-
perturbative string theory. Themain idea of duality is that the
same physical processes can have a different description in
terms of mutually complementary or dual languages. For
example, it is supposed that ordinary gauge theory at strong
coupling may have dual magnetic description, where `funda-
mental' objects are magnetically charged fields (and particles)
while electrically-charged objects are complicated compound
objects like monopoles in standard gauge theories. The word
`duality' itself has a pure string origin, being related on the
one hand to the properties of moduli spaces of complex
manifolds and the identity arising from these properties
between infrared and ultraviolet divergences in perturbative
string theory. On the other hand this notion follows from
the only exact example of `dual formulations' of the same
string theory in space-time with compact dimensions (see
Section 4.2).

Confinement or keeping quarks locked inside hadrons.
One of the main challenges to modern theoretical physics
due to the absence of a quantitative theory describing this
mechanism, mostly because the effect is based on strong
coupling between quarks. The problem of confinement was
one of the starting points for string theory, since the
potential growing with separation of quarks is best of all
understood in terms of a string stretched between them. The
quantitative theory of confinement has not yet been
constructed. Nevertheless, a few recent achievements com-
ing out of string theory Ð mostly the Seiberg ±Witten
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theory (Section 4.5) and so called AdS/CFT-duality
(Section 5.3) allow one to hope for certain progress in
understanding of this phenomenon.

Conformal theories. Two-dimensional conformal theories
on string world-sheets are the essential ingredient of the
perturbative string theory. In a quite nontrivial way the
space-time properties of string theory appear to be encoded
in the properties of rather simple two-dimensional theories
with infinite-dimensional symmetry groups (the Virasoro
algebras), which allow one to compute exactly any correla-
tion functions directly related to string amplitudes.

Critical dimension. The stringy effect meaning that string
theory itself `adjusts' the space-time dimension. The most
well-known critical dimensions are D � 26 in bosonic string
theory and D � 10 in the theory of fermionic string or
superstring. The critical dimension appears from the
requirement of anomaly cancellation in two-dimensional
conformal theory, i.e., finally, is a consequence of indepen-
dence of the theory from the choice of world-sheet co-
ordinates. This property of string theory first opened the
possibility to determine the nature of space-time dynami-
cally, in particular to determine the space-time dimension in
this way.

Liouville field, Liouville action, Liouville theory. A two-
dimensional scalar field theory with an exponential potential.
As was shown by Polyakov in Ref. [55], the Liouville theory
arises as a theory of induced gravity in two dimensions. In the
case when the Liouville field makes a nontrivial contribution
to the string correlation functions (the so called non-critical
strings) their computation is a rather nontrivial and yet
unsolved problem.

M-theory Ð a modern name for the hypothetical non-
perturbative string theory (see Section 4.1).

Prepotential Ð the potential in a special KaÈ hler
geometry. If the metric is KaÈ hler, it can be expressed in
complex co-ordinates in terms of second derivatives of some
real function Ð the KaÈ hler potential G�{ j � q2K�z;�z�=q�z�{ qzj.
In the more restricted case of so called special KaÈ hler
geometry (or its analogs) the KaÈ hler potential itself can be
expressed in terms of a single holomorphic function (which is
much stronger condition!) of the complex co-ordinates
K�z;�z� � Im

P
i �zi qF=qzi, which is called a prepotential.

The prepotentials naturally appear in the context of four-
dimensional gauge theories with N � 2 extended supersym-
metry, which requires the geometry of moduli spaces (or
sigma models for the scalar fields from vector supermulti-
plets in effective theory) to be special KaÈ hler.

Moduli space Ð the space of parameters of the theory (in
the most rough sense, which is more and more often used
recently). More delicate properties of the moduli spaces
usually arise when identifying the parameters of physical
theories with parameters of complex manifolds, arising as
manifolds of string compactifications. The most well-studied
examples of such manifolds are Riemann surfaces. The
distinguishing properties of such moduli spaces are their
global properties, in particular the impossibility to choose
well-defined global co-ordinates. This comes from the fact
that moduli spaces of complex manifolds usually have the
form of some manifolds factorized over the action of a
discrete group, i.e. the moduli spaces themselves are not
smooth manifolds. These discrete group transformations are
typically identified with hypothetical duality transformations
relating different physical theories describing the same
phenomena.

Riemann surfaces Ð two-dimensional real or one-
dimensional complex (compact) manifolds, whose topology
can be characterized by a single integer non-negative
number Ð genus (see Fig. 12). In perturbative string theory
they arise as world-sheets corresponding to string loop
corrections (see Fig. 8), and as a result of such identifica-
tion one gets expressions for the string amplitudes in terms
of the integrals over moduli spaces of complex structures of
Riemann surfaces [61]. Moreover, Riemann surfaces can
appear as the simplest manifolds of string compactification.
In this role they show up, say, in the Seiberg ±Witten
theory, see Section 4.5. The well-developed formalism in
the theory of meromorphic functions and differentials on
Riemann surfaces allows one in both cases to obtain exact
quantitative results.

Supersymmetry Ð a symmetry between bosons and
fermions, which allows one to simplify essentially the
problem of ultraviolet divergences in quantum field theory
due to cancellations between the bosonic and fermionic loops.
In string theory supersymmetry arises in two ways: the world-
sheet supersymmetry, which is a direct generalization of
supersymmetry in quantum mechanics or the Dirac equa-
tion, leading to the appearance of the space-time fermions,
and, moreover, string theory may have a `common' super-
symmetry in observable space-time.

Superstrings Ð in the wide sense a not very adequate, at
least from the point of view of the author, but very popular
name for string theory. In the more narrow sense Ð that
introduced by J Schwarz term for ten-dimensional anomaly-
free string models with space-time supersymmetry in the
spectrum.

8.2 Comments on reference list
There is a huge amount of literature on string theory which
not only cannot be read, but is even very hard to find any
route within it. We will try to make few comments on the
reference list for this review (which is certainly very personal)
and say a few words about the works most influencing the
point of view of the author. Let us immediately note that there
is no `regular' textbook on string theory, mainly because
string theory is still in such a phase of its development when it
is rather hard to write any `textbooks'.

The whole list of references can be divided into a few
groups.

Books [1 ± 8]
This starts from three books by the `founding fathers' of

string theory [1 ± 3]. String theory in its present form arose in
many respects due to ideas of A Polyakov [1], though this
book is not easy readable for an unprepared reader. The
classical two volumes of Ref. [2] contain a rather detailed
description of the `old' string theory. They are written by
three different authors and not very homogeneously: from the
point of view of the author its most useful part at present is the
second half of the second volume. Finally the book of
J Polchinski [3] can be added to this list since this is the only
book containing an attempt to say something about non-
perturbative string theory.

Then there are books, whose content is related more or
less to the different questions discussed in this review; this is of
course not a complete list which reflects mostly the degree of
acquaintance of the author with a particular source. This list
contains classical monograms on gauge field theory [4] and
elementary particle physics [5]. The book by I VAndreev [6] is
devoted to the theory of strong interactions at high energies,
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and the book of P West [7] is one of the few books on
supersymmetry and supergravity published in Russian.
Finally [8] is the only book known to me containing a
discussion of the problems of Sections 4.4 ± 4.6.

Reviews [9 ± 48]
The list of reviews starts from those published inPhysics ±

Uspekhi. The review ofVGKnizhnik [9] is a course of lectures
on perturbative string theory by the author who made a
dominant contribution to this field. In Ref. [10] the first
attempt was made (around ten years ago) to consider string
theory from the perspective of its role and place in modern
theoretical physics. The remaining three reviews in Physics ±
Uspekhi [11 ± 13] are devoted to three particular `sub-fields' of
string theory.

Then we list a set of reviews from different journals on
string theory [14 ± 18] andM-theory [19 ± 21], which are quite
useful from the point of view of the author and directed
mostly to the modern `state of affairs' in this field. References
[22] are devoted to the fermionic string perturbation theory,
the reviews [23 ± 26] Ð to mirror symmetry and mirror
manifolds. In the reviews from Theoretical and Mathematical
Physics [27] the Seiberg ±Witten theory and its relation to
integrable systems is discussed. Then we list the lectures of
L Susskind [28, 29] on M(atrix) theory and the holographic
principle. The final three reviews in this part [30 ± 32] are
about `brane zoology', i.e. on geometric interpretation of
various gauge theories in terms of branes.

Then we put a list of review articles in Physics ±Uspekhi
(in chronological order) devoted to the problems arising
`around' string theory. Paper [33] is the first review on
supersymmetry, [34] is a brilliant review about instantons,
[35] is devoted to Hamiltonian formalism in the theory of
gravity and [36] to the anomalies in quantum field theory.
Then we list the reviews on neutrino oscillations [37],
problems of elementary particle physics and cosmology [38],
the Nobel lectures of G 't Hooft and M Veltman [39] about
renormalizability of Standard Model, the review by
V A Rubakov on `extra dimensions' [40], the paper devoted
to phenomenological aspects of supersymmetry in the role of
symmetry of real physical world [41] and, finally, the
historical paper [42] devoted to the discovery of super-
symmetry.

This part of the list is finished by the reviews onWilsonian
renormalization group [43], a remarkable paper on extended
supersymmetry [44], the reviews on Standard Model physics
[45], on the problems of confinement in supersymmetric
gauge theories [46, 47] and non-commutative field theory [48].

Classical papers on string theory [49 ± 63]
Certainly the division into the `classical' papers and the

rest is not strict and shows, again, only some preferences of
the author. In papers [50] the theory of relativistic strings has
shown up as the origin of the Veneziano amplitude [49], in
papers [51, 52] the extra fermionic variables on string world-
sheets were introduced in order to describe the `internal'
degrees of freedom. Paper [53] is a key-point in string
theory, it was first shown there that strings may serve not
only as an effective description for strong interactions but
also play the role of a unifying theory of all interactions. In
Ref. [54] it was demonstrated that the theory of fermionic
strings naturally possesses the space-time supersymmetry.

In Ref. [55] the perturbative formulation of string theory
as a sum over two-dimensional geometries was proposed, in
the paper [56] Ð the formalism of two-dimensional con-
formal field theories was originated, the papers [57, 58]

contain formulation of conformal theories for group target-
spaces. Paper [59] showed that superstring theory in ten
dimensions is anomaly free and can be considered as a main
candidate for the role of a fundamental physical theory. In
Ref. [60] a bridge between string theory and effective
quantum field theories was built, in Ref. [61] the nice
connection between the perturbative string theory and
complex geometry of moduli spaces of Riemann surfaces
was established. Finally, in Ref. [62] the double-scaling limit
in matrix models of two-dimensional gravity was proposed,
which allows one to get nonperturbative results in the
simplest string models and in Ref. [63] D-branes were
introduced which became one of the main ingredients in the
modern picture of nonperturbative string theory.

Classical works on the subject of the review [64 ± 75]
In classical papers [64] the first time an idea arose that

internal degrees of freedom (electric charge, color etc) may
appear as `hidden manifestation' of the extra (small!)
dimensions of space-time. Paper [65] is the first paper on
supersymmetry, in Ref. [66] the relation between the entropy
of a black hole and the area of the horizon was proposed. In
Ref. [67] the asymptotic freedomwas discovered, and in paper
[68] it was shown that supersymmetric field theory should
possess essential cancellations of the loop contributions of
bosons and fermions in perturbation theory.

In Ref. [69] the monopoles as solutions to classical
equations of motion in non-Abelian theories were discov-
ered. In paper [70] the properties of the 1=N-expansion in
gauge theories were investigated. Later on this expansion got
a very natural interpretation from the point of view of string
theory. In papers [71] instantons were proposed, in Ref. [72]
the first instanton solution in the Yang ±Mills theory was
constructed. In papers [73] the BPS states were introduced,
corresponding to the first-order equations. In Ref. [74] the
`maximal' eleven-dimensional supergravity was constructed
and, finally, papers [75] contain in fact the first exact
nonperturbative solution in supersymmetric gauge theory
and the analysis of possible confinement in these theories.

Additional literature [76 ± 132]
From the rest of the list [76 ± 132] we would like to point

out the papers on the first-quantized string formulation [79,
80], which were the first step towards [55], as well as the free
field representation of two-dimensional conformal theories
[83, 86] and the fermionic string perturbation theory [90]. The
following papers also deserve attention: Refs [95, 96]Ðon the
quantization of classical spin, Ref. [129] Ð on localization
and extra dimensions and especially the last lectures by
Polyakov [119] on the connection between gauge theories
and strings and gravity.
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