
1. Introduction

In the context of the renewed discussion about the founda-
tions of quantum mechanics (see, for example, Refs [1 ± 5]),
we would like to defend the well-established experimenter's
outlook, which ought to be credited primarily to Feynman [6],
who does not always get his deserts in this discussion. The
term `experimenter' here means `materialist' Ð vulgar rather
than dialectical.

So, particles are the particles Ð they are corpuscles but
not waves [7, p. 35]. It is true that an amplitude (alias the wave
function) of the particle bears a resemblance (purely mathe-
matically) to the wave, but this (one and the same) mathe-
matics describes a different physics (which is often the case
with mathematics). The wave function is not something
material (possessing energy), but is only responsible for the
probability of, say, the particle position.

Quantummechanics is a statistical theory: it only predicts
the probabilities of various final states of the objects under
investigation, and this statement does not yet contain any-
thing surprising for the experimenter, unless there is an
implication that the amplitude (i.e. the probability!) behaves
in a deterministic fashion.

The surprise comes only when it turns out that the
probability theory does not always hold in quantum
mechanics (see papers [8, 9] and the monograph [10, 1st
paragraph]). If a process may take different paths that lead
to one and the same final state of all the participants in the
process (and theUniverse on thewhole), thenwemust add the
probability amplitudes of different paths (and not the
probabilities by themselves).

If the final states are different, then the classical prob-
ability theory is good Ð we add up the probabilities and not
their amplitudes, and there is nothing interesting to observe.

Of course, we are not speaking of refuting the axiomatic
probability theorywhich certainly is an entirely self-consistent
chapter of pure mathematics. This mathematics, however,
bears no relation to the experiment: here the mathematical
term `probability' does not mean the relative rate of occur-
rence of a given event. However, the probability theory
applied to the experiment (if only for calculating the experi-

mental errors)Ð that is, aspiring to describe the experimental
data Ð must certainly admit the possibility of experimental
refutation (the principle of falsifiability, see Ref. [9]).

Apart from the outlook, the experimenter also has the
professional duty that obliges him almost always to measure
simultaneously the momenta and the coordinates of the
particles. Of course, this is done within an accuracy of
measurement that does not contradict the uncertainty
relations. The experimenter deals with approximate measure-
ments [11, p. 396].

2. SchroÈ dinger's cat

``Never add up the amplitudes of different final states, states
that are not the same'' [6, Section 3.2]. For example, one must
not add up the amplitudes of the entire atom and the decayed
atom or, which is the same, of the alive and dead cats.
Superposition of amplitudes may only exist while the two
states occur simultaneously Ð for example, if the atom
continually disintegrates and rejoins again Ð which is
probably what it keeps on doing virtually before decaying
irreversibly.

For example, a K0 meson may decay into p mesons that
means transforming into a �K0 meson (and returning back)
through virtual decay into p mesons and their subsequent
fusion. This leads to the emergence of two other states Ð K0

S

and K0
L mesons which are the superpositions of the former [6,

Section 11.5]. After the actual decay into free p mesons,
however, the K meson disappears. The disappearance of the
K meson (like the disappearance of the nondisintegrating
atom) is the cause of the appearance of the decay products.
These states are incompatible.

To be on the safe side, let us add that the superposition of
the entire and the decayed atoms implies the superposition of
the one-particle (entire atom) and the many-particle (free
particles resulting from the atomic decay) states. This is a
superposition of Feynman diagrams, where even the number
of outgoing lines is not the same. An ampule with poison and
cat cannot make this `paradox' more paradoxical!

According to a more elegant approach to quantum
mechanics, we have to add up the amplitudes of all the final
states, square this sum, and diligently write out all the
interference terms. Then it should be declared that the
amplitudes of the different final states are orthogonal, and
therefore their interference terms vanish. Here we also are left
with a sum of probabilities, but the use of the mathematical
term `orthogonal' adds convincingness to the argument.

One can further complicate the treatment by saying that
the amplitudes must be added up for the atom, and the
probabilities for the cat, since the cat is a macroscopic object
and is described by classical mechanics. The interference
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(superposition) in the atom will break down only when the
measuring instrument is tripped that determines the atomic
state. An example of such an instrument may be the
macroscopic cat that dies when the atom disintegrates.

Further sophistication is also curious: the amplitudes
must be added up for the cat as well, and the interference
will disappear when the experimenter looks at the cat. Yet
another improvement of the theory with the aid of the many-
world interpretation is so far beyond the imagination of the
experimenter that we dare not discuss it.

``Repeat: do not add up the amplitudes of different final
states'' [6, Section 3.2].

3. Macroscopic behavior of the device

Various interpretations of quantum mechanics often state
that the breaking of superposition requires a macroscopic
device that has the property of instability or amplification
sufficient for converting the fact of the particle interaction
with the device into a macroscopic event which either falls
beyond the domain of quantum mechanics, or is within the
reach of the experimenter senses. For instance, a macroscopic
ball must fall as a result of such interaction. Or an electron
avalanche must develop in the photomultiplier (gas-filled
detector), producing a loud sound (click).

It turns out that the change of the state of a photon having
knocked out an electron from the photocathode of a
photomultiplier (or from the gas atom) depends on whether
the voltage is applied to the photomultiplier (spark chamber).
And that the test photon cares whether it has knocked out an
electron from the cathode or from the stand under the
photomultiplier. It would seem quite sufficient that a change
has occurred in the world Ð an electron has escaped Ð
whereupon it is no longer possible to add the amplitude (the
wave function) of the photon, and of the whole world for that
matter, to their amplitudes that do not contain this electron.

For example, in the case of Bragg neutron scattering by
a crystal one must add up the amplitudes for neutron
scattering from each atomic nucleus if the neutron scatter-
ing has taken place without spin flipping. If, however, the
spin has flipped, then the interference disappears Ð one
has to add up the probabilities of scattering by each
nucleus, since the spin exchange in scattering takes place
with some particular nucleus whose state (spin) ought to
have changed [6, Section 3.3]. And even though this
spectator is almost impossible to be identified even in a
`gedanken experiment', it is sufficient that it has to exist.

When the scattering occurs without the spin flipping, the
absence of such a spectator is related to the rigid fixation of
atoms in the crystal Ð the momentum exchange takes place
instantaneously with the entire crystal rather than with a
single nucleus [12].

In the experiment on the interference of electrons in two
slits, the interference disappears when the electrons behind
the screen are illuminated with photons whose wavelength is
shorter than the distance between the slits [6, Section 3.2]. The
presence of photon detectors is completely unnecessary.

It is true that the experimenter requires the amplification
of the detector for studying the microscopic phenomena, but
this is entirely human fault. A very low sound from the
avalanche is sufficient for the cat. And it is quite possible
that a cat is capable of seeing a single photon (the human
threshold measures several photons). But this has nothing to
do with the Nature of Things.

4. Wave function reduction

The term `reduction' was quite apt in the early SchroÈ dinger
interpretation of quantum mechanics, in which the electron
was truly endowed with wave properties, i.e. it could spread
out to infinity together with its wave packet, with which it was
actually identified. Or, which is essentially the same, the
electron could be disintegrated in two to pass through two
holes at once. When detected, however, it turned out to be a
small corpuscle (corpuscle ±wave dualism) localized at one
point. In such an event, its mass and charge, smeared out all
over the space, immediately contracted into that point. This
wonderful property certainly called for the introduction of
the new term Ð the wave packet reduction.

With the advent of Born's statistical interpretation of
quantum mechanics, the wave function (amplitude) lost its
materiality, and the term `reduction' its esoteric meaning. It
simply became synonymous to the word `detection'. If
someone is sighted in Moscow, then the chance for him to
be seen in Leningrad is immediately reduced to zero [11,
p. 372].

The classical probability theory and the quantum theory
of probability amplitudes give different predictions for the
probability of detection. Let us assume that a classical particle
escapes from a fixed source in an unknown direction. The
probability of a certain take-off angle is realized when this
particle is detected, for example, upon collision with another
particle. Assume that the surrounding space is filled with a
very dilute gas of another particles. The probability of
collision of our particle with the gas particle will propagate
outside at a certain speed (not exceeding the speed of light)
until it reaches the gas particle located at the angle at which
our particle had taken off the source.

For a quantum particle, before it is detected, there is no
probability of a certain take-off angle. In this case the
probability amplitude will spread out (see Fig. 9 in the review
[9]) and soon reach the nearest gas particle, with which our
particle will interact with a certain probability. The gas
particles that are farther away stand a poorer chance of
detecting the take-off angle. In other words, the quantum
particle with the highest probability will be detected in the
direction of the nearest detector.

Now about the partial reduction in the case of entangled
states. Let us imagine that two classical billiard balls collide in
space (in their center-of-mass system, and with a random
impact parameter). Each of them has some probability to fly
after the collision in any direction. If, however, after a long
long time one of them is found at the distance of 1 parsec
exactly to the left from the collision point, then the other at
the same time will be found undoubtedly at the same distance
to the right.

If, owing to the interaction being not completely elastic,
one of the balls is found spinning, then the other will, of
course, be rotating with the same speed in the opposite
direction. In quantum mechanics, where the laws of con-
servation are also valid, such correlations of particles are
known as quantum correlations, the state of these particles is
`entangled', and the possibility of inferring the state of one
particle from the state of the other is referred to as quantum
nonlocality or teleportation.

Each of these correlated quantum particles cannot have
an amplitude that is independent of the other particle, which
is a superposition of the probability amplitudes of different
take-off angles or spin projections, because they lead to
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different final states of the second `spectator particle', which
in our case has equal in magnitude and oppositely directed
momentum and spin projection.

However, both these particles together are still described
by the superposition of probability amplitudes of different
take-off angles and spin projections. The superposition of
different angles is broken down when one of the particles
interacts with a third particle. The superposition of spin
projections vanishes if this interaction depends on the spin
projection, for example, in the event of spin exchange with a
third particle.

The classical probability theory and quantum theory of
probability amplitudes give different predictions for the
numerical value of spin correlations. The experiments on the
validation of the Einstein ± Podolsky ±Rosen gedanken
experiment in Bohm's formulation, and various versions of
Bell's inequalities confirm the quantum theory [13].

5. Interference of p mesons

Many experiments concerned with measuring the generation
volume of p mesons make use of the phenomenon that is
sometimes referred to as the intensity interference, although
in quantum mechanics it is only the amplitudes that can
interfere, and the interference can only be observed through
the probabilities (intensities).

In the case of interaction, for instance, of two nuclei, when
the energy of interaction is large, pÿ mesons, i.e. bosons with
spin zero, escape from the collision region among other
particles. These pions are generated practically indepen-
dently of one another by different `sources' Ð that is, in
different nucleon ± nucleon reactions Ð in different space ±
time points of the nuclear collision region.

The probability amplitude for a random pion to have the
4-momentum p � �E; p� and be emitted from 4-point
r � �t; r� is j�p� exp�ÿipr� [14], where j�p� is the amplitude
of probability that the momentum equals p, and exp�ÿipr� is
the amplitude of the conditional probability that if the
momentum is p, then at the moment of time t the pion was
located at the point r [10, Section 5.1].

The probability density for the pion to have the momen-
tum p is equal to the modulus squared of this amplitude:
W�p� � j��p�j�p�.

The amplitude of probability that of the two random
pions the first one (with the momentum p1) is emitted at the
point ra, and the second (with the momentum p2) is emitted at
the point rb, is equal to the product of one-particle
amplitudes, since by assumption the pions are generated
independently from one another:

Aab � j�p1�j�p2� exp
�ÿ i�p1ra � p2rb�

�
: �1�

Similarly, the amplitude of probability that the first pion is
emitted at rb , and the second at ra, is given by

Aba � j�p1�j�p2� exp
�ÿ i�p1rb � p2ra�

�
: �2�

If these two possibilities are indistinguishable Ð that is, lead
to the same final state of all the particles participating in the
reaction Ð then the probability density of selecting two pÿ

mesons with momenta p1 and p2, being emitted by these
sources, is found as (see Ref. [14]):

2W�p1; p2��jAab � Abaj2�jAabj2 � jAbaj2�2Re �A�abAba�:
�3�

A similar result is obtained in the case of scattering of one
electron by two holes [10, Section 1.1] or atoms [15, Section
XIX.25]. In the same way, if these two possibilities are for
some reason distinguishable, wemust add up the probabilities
rather than the amplitudes:

2Woff�p1; p2� � jAabj2 � jAbaj2 : �4�

Such a background spectrum with the switched-off correla-
tions is usually obtained in the experiment from mixed pairs
of pions, each of which is randomly selected from different
nuclear collisions. Constructed in a similar way is the
background in the case of one-particle interference, when
only one of the holes is opened alternately [10, Section 1.1].

The correlation function for our two pions is equal to the
ratio between probabilities (3) and (4):

Cab�p1; p2� � 1� cos
��p1 ÿ p2��ra ÿ rb�

�
: �5�

This correlation function is not equal to 1, although it has
been obtained under the assumption of independent emission
of pions. The quantum probability theory is non-Laplacian
[10, paragraph 1], and non-Kolmogorovian [9].

In the description of the Brown ±Twiss experiment on the
measurement of angular dimensions of stars, it is sufficient to
replace the words about emission of two pions from the
sources located at the points ra and rb by the words about
absorption of two photons by the detectors located at ra and
rb (see Ref. [14] and references cited therein).

The correlation function for the scattering of one electron
by two holes (atoms) located at ra and rb looks similar:

Cab�k0; k� � 1� cos
��k0 ÿ k��ra ÿ rb�

�
; �6�

where k and k0 are the initial and final electron momenta [15,
Section XIX.25].

Let us average the function (5) over the shape of the
generation volume r�r� Ð that is, over all positions of the
sources of pions (q � p1 ÿ p2):

C�q� � 1�
��

r�ra�r�rb� cos
�
q�ra ÿ rb�� d4ra d4rb : �7�

This procedure, i.e. the averaging of probabilities rather than
amplitudes, assumes that different positions of the point ra
(and/or rb) lead to different final states of the particles that
participate in the reaction.

Given that

cos
�
q�ra ÿ rb�

� � Re
�
exp�iqra� exp�ÿiqrb�

�
;

we arrive at

C�q� � 1�
���� � r�r� exp�iqr� d4r����2: �8�

Specifying some form of the function r�r�, and fitting the
experimental correlation function with its Fourier transform
(8), we can find the free parameters of the function r�r�: the
size of the pion generation volume, the duration of their
emission, and the speed of movement of this volume. The
result exhibits little dependence on the particular form of
r�r�.
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6. Clarification

In formula (3) we added up the amplitudes of two possible
ways of emitting a pair of pions on the assumption that these
ways are indistinguishable. However, apart from the two
selected pÿ mesons, many other free spectator particles are
emitted from different points of the collision region. Measur-
ing their coordinates and momenta immediately after their
escaping, we may try to find out which of the ways has been
realized in this particular case without disturbing our chosen
pions. Of course, this can only be done with the accuracy
permitted by the uncertainty relation.

It is not necessary, however, to actually perform these
measurements Ð the spectator particles themselves are
detectors which after the permutation of pions may occur in
a different quantum state.

A striking example which does not differ from ours in any
substantial respect is the case when the two pions are emitted
not from the distinct regions of one collision, but from two
different collisions of nuclei. If the distance in space or time
between the collisions is large, then the momentum conserva-
tion law holds separately for each collision, which precludes
the possibility of pion permutation (for p1 6� p2). If, however,
this distance is small enough (� �h=�p1 ÿ p2�), then only the
sum of momenta for the two collisions is conserved.

A qualitative estimate can be obtained using the concept
of a quantum state for the system occurring in the continuous
part of the momentum spectrum [10, Section 4.3]. The
quantum state of the free particle (system of particles) of
any kind corresponds to the elementary cell in the phase space
with the dimension of 2p�h per each degree of freedom, which
is ``equivalent to one discrete state'' [16, Section 62] and [17,
Section 7].

When the pions are permuted, the recoil moment is
redistributed between the spectator particles. Those that
leave the collision region near the point ra increase their
momentum by q � p1 ÿ p2, and those that leave near rb
decrease their momentum by the same amount. In other
words, the change takes place in the system of all spectator
particles: the 4-momentum q is transferred to the 4-vector
s � ra ÿ rb. The position of this system in the phase space with
respect to each coordinate �i� is also changed by qi si. If this
change is considerably greater than 2p�h, then the system of
spectator particles moves to a different quantum state.

This means that the direct and the crossover paths of the
reaction are indistinguishable only if qi si < 2p�h. Then,
however, our two pions must be emitted in the same state
qi si < 2p�h, and the entire effect becomes equivalent to the
phenomenon of induced radiation [6, Sections 4.4, 4.5].

In the intermediate case of qi si � 2p�h, amplitudes (1) and
(2) must obviously be averaged in Eqn (3) with different
weights, which is analogous to the case of one-particle
interference, when the electrons beyond the screen are
illuminated with photons whose wavelength is of the same
order as the distance between the slits [6, Section 3.2]. This
leads to smearing of the boundaries of elementary cells.

Thus, the indistinguishability of the paths can only be
guaranteed within one cosine period (5). This distinguishes
our case from the cosine (6) for the one-particle interference.
As a matter of fact, the condition of applicability of formula
(6) is the infinite mass or, which is the same, the rigid fixation
of the two atoms [15, Section XIX.24], the mirrors [16,
Section 3], or the holes [12], which precludes the possibility
of finding out (by the recoil momentum) which of the two

targets has participated in the scattering. If the electrons are
scattered by free atoms or by the unfixed halves of the screen
with holes, then only the central interference peak of the
cosine (6) will be also left.

This clarification does not lead to any considerable
corrections when formula (8) is used in the experiment.
However, it makes the assumption about the absence of
recoil of the spectator particles superfluous, and may also
serve as the basis for supposing the distinguishability of
different points when the probabilities are averaged in
formula (7).
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