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Abstract. The paper reviews the current progress in describing
quantum intramolecular dynamics using merely symmetry prin-
ciples as a basis. This closed qualitative approach is of particu-
lar interest because it is the only method currently available for
a broad class of topical problems in the internal dynamics of
molecules. Moreover, a molecule makes a physical system
whose collective internal motions are geometrically structured,
so that its description by perturbation methods requires a
symmetry analysis of this structure. The nature of the geome-
trical symmetry groups crucial for the closed formulation of the
qualitative approach is discussed. In particular, the point group
of a molecule is of this type.

1. Introduction

A molecule is a complex multiparticle system, and in an
isolated state its internal dynamics can, to a good approxima-
tion, be described with no regard for nuclear and electron
spins in the Hamiltonian. The symmetry properties of a
purely coordinate Hamiltonian are determined by the
symmetry properties of space and time (external symmetry)
and by the requirements specified to permutations of identical
particles (internal symmetry). However, as soon as we try to
solve the equations of motion with such a Hamiltonian by
perturbation methods (at present this is the only feasible
approach in the analytical or numerical treatment of the
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problem), it emerges surprisingly that we have to introduce an
additional intrinsic geometrical symmetry group that char-
acterizes the molecule. This is a matter of principle in the
approach, since otherwise there is no way in which we can
write out the approximate equations of motion, with the
Born—Oppenheimer (BO) approximation being the basic
operative approximation here [1—3]. It is in this approxima-
tion that one introduces the concept of the effective interac-
tion potential of nuclei in a given electronic state and, as a
result, the concept of a set of equilibrium configurations
corresponding to the minima of this potential.

From the qualitative point of view, molecules may be
classified as rigid or nonrigid. The effective potential with a
single minimum gives an adequate idea of nondegenerate
electronic states for the first type of molecules, while the
second one requires the presence of several such minima since
internal motion incorporates transitions between such states.
It has long been known that for rigid molecules one must
select as the additional geometrical group the point group of
their single equilibrium configuration, which, by definition,
incorporates all the geometrical symmetry elements of the
given structure as a whole [4, 5]. It is commonly assumed that
this group and the inferences that follow from its presence are
the corollaries of the BO approximation, i.e. only in this
approximation we can speak of a certain geometrical
structuring of the internal molecular motion. But even in
this simple case there is no clear idea of the range of
applicability of the point group, and the scientific literature
contains two very different answers to this problem. Accord-
ing to Landau and Lifshitz [4] and Kaplan [5], this group
characterizes the overall (electron - vibrational —rotational)
internal molecular motion when deviations from equilibrium
are small. However, the very definition of a sufficiently small
deviation is ambiguous, to say the least. At the same time,
Bunker [6] and Elliott and Dawber [7] have suggested that the
point group describes the symmetry of only the vibrational
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and electron motions in molecules but cannot be applied to
rotational motion and hence to the overall internal motion.
As a result, the analysis of the overall motion is done on the
basis of what is known as the complete nuclear permutation—
inversion (CNPI) group. Such contradictions in the status of
the empirically introduced geometrical groups that character-
ize the internal dynamics stem from the absence of a concrete
viewpoint on their nature. Hence an important aspect of the
present review is the statement that the empirically introduced
geometrical groups are the dynamical groups of the rigorous
problem of internal coordinate motion'. In particular, the
point groups of rigid molecules are dynamical invariant
groups. Despite the fact that today we know of no method
that would enable obtaining such a group through studies of
the equations of rigorous coordinate dynamics, the latter
statement can be logically substantiated by analyzing the
observable properties of the molecular system. It is intriguing
that one consequence of such a viewpoint is a change in our
general ideas about a molecular system proper and about
some other physical systems that also require a geometrical
group to describe their internal dynamics by perturbation
methods.

2. Why is it so important to analyze
the symmetry properties of quantum
intramolecular dynamics?

The point group of rigid molecules for a given electronic state
emerged as a symmetry group of their single equilibrium
configuration. It then became clear that this group must also
be used in describing the internal excitation spectrum.
However, bearing in mind its origin, it was inferred (see
Ref. [4]) that the given procedure finds justification only
when the deviations from the equilibrium position are small.
Such a justification of the range within which the point group
operates did not appear very convincing, since the existing
asymmetric displacements of nuclei from the equilibrium
position lower the geometrical symmetry of their configura-
tion. A much more obvious (and yet largely ignored) fact is
that the point group is subject to variation under changes in
the electron excitation and is sure to vary in passing from the
discrete spectrum to the continuous one. In other words,
different isomeric forms of the molecule may be realized in
various bound electronic states (see Section 7). As we pass
from the discrete spectrum to the continuum, the finite
degeneracy multiplicity of the levels changes to infinite one,
which is possible only if the type of geometrical symmetry
group changes, too. However, ordinary groups are indepen-
dent of excitations in the system (e.g., the group of permuta-
tions of identical particles in a molecule is always the same).
Such a change of symmetry is a clear indication of an implicit
dynamical group. On the one hand, this group is specified by
the dynamics of the system in question within a certain range
of excitations, while on the other hand it itself determines the

! At present there are two definitions of dynamical symmetry [7, 8]. In the
first definition, it is the presence of implicit (or hidden) symmetry in the
Hamiltonian that suggests our dealing with dynamical symmetry, while in
the second it is the presence of transformations that go beyond the scope of
the symmetry of the Hamiltonian. We will call such groups dynamical
invariant and dynamical noninvariant groups, respectively, thus empha-
sizing their relation to the Hamiltonian. Noninvariant groups play a
crucial role in forming the function space of observable nonrigid internal
motions in the cases when it is not enough to employ only the Hamiltonian
symmetry group (see Sections 6 and 7).

qualitative properties of the molecular dynamics. When the
limits of this range are surpassed, the dynamics of the system
change dramatically, which leads to a sudden change in the
dynamical group.

Let us assume that we are faced with a problem involving
an implicit symmetry group and that the problem admits of a
rigorous solution. Then there is no need for qualitative
analysis subject to this group. It is only desirable to do such
an analysis because on its basis one can explain the qualitative
features of the system’s behavior. A typical example is the
problem of the stationary states of the hydrogen atom (see
Section 3). The situation becomes quite a different if such an
analysis is ignored, since, when employing the perturbation
methods, we first must take care that all the correct symmetry
properties of the internal dynamics are transferred to the
approximate models. Hence, there emerges the problem of
empirically finding the implicit group in relation to which we
must correctly symmetrize the operators of physical quanti-
ties and the space of basis wave functions that allow for the
types of motion in question, i.e. it becomes necessary to
analyze the symmetry properties with allowance made for
the implicit group. Such an analysis must precede the solution
of the equations of motion (actually, without such an analysis
we are left without approximate equations of motion).

The above conclusion is important in explaining a number
of general qualitative properties of molecules but it changes
almost nothing in the methods and results of an analysis that
uses geometrical symmetry groups to characterize overall
internal motion. A unified procedure of applying such
methods to rigid molecules has been thoroughly developed
[4,5,9]. Moreover, strange as it may seem, even the symmetry
methods with what we believe to be a physically meaningless
interpretation of the range of applicability of point groups
produce equivalent results in the qualitative analysis touching
the internal motions of rigid molecules [6]. The point is that in
the case at hand we know « priori the qualitative properties of
the basis wave functions and, leaning upon the freedom to
select the procedure of applying symmetry groups, we can
correctly fit the result to this answer. There is simply no place
for error here. This, however, is a purely formal technique,
which does not even allow us to study rigid molecules from a
unified viewpoint, despite the fact that all such molecules
have the same types of internal motions (electron, vibrational,
and rotational). Even more importantly, this technique can
hardly be extended to nonrigid molecules, since in most cases
with such molecules the qualitative properties of the basis
wave functions are not known a priori. Thus, the requirement
that the symmetry methods be complete (or self-sufficient) is
highly important. In this connection, the conceptual differ-
ences in the interpretation of the range of applicability of a
geometrical symmetry group become quite important. Suffice
it to notice that the main reason for the emergence of an
analysis based on the CNPI group concept in Longuet-
Higgins’s pioneering work [10] was associated with the
impossibility of extending the methods that use geometrical
symmetry groups for describing overall internal molecular
motion to the case of nonrigid molecules. However, later, as a
result of developing the approach based on the concept of a
chain of symmetry groups [9, 11], it was found that this is not
true. Moreover, at present the given approach is the only one
in which the description is built solely on symmetry principles,
i.e. we can speak of a closed formulation of qualitative
quantum intramolecular dynamics in which geometrical
symmetry groups play a leading role.



July, 2002

Symmetry of quantum intramolecular dynamics 755

If the class of nonrigid molecules is considered, the
researcher can see that in addition to the electron, vibra-
tional, and rotational motions there are observed numerous
transitions between the different minima of the effective
nuclear interaction potential (what are known as nonrigid
transitions). Therefore, at least at this juncture, it is unclear
what must be done to establish a general procedure for
applying symmetry methods to describe their internal
dynamics. As a result, one is forced to extend the range of
applicability of symmetry methods to separate classes of
molecules with certain types of nonrigid motions. Although
this process appears to be limitless, its importance is
emphasized by the fact that there are a large number of
formulated topical problems for fairly simple molecules for
which no meaningful solution can be found due to the absence
of adequate methods of analyzing the symmetry properties.
Such is the problem of the internal dynamics in the PFs
molecule with allowance made for Berry pseudorotation, a
problem formulated nearly three decades ago [12].

The present review basically covers the applications to
such specific classes of molecules for which adequate methods
of symmetry analysis have been developed since the time the
previous review [11] was written. One more factor should be
kept in mind when estimating the practical importance of the
methods currently being discussed. The stage in the analysis
at which the symmetry properties of the basis functions for
the space of stationary states of the molecular system and the
symmetry properties of the physical quantity operators
specified in this space (including the system Hamiltonian)
are determined is called the stage of classifying the stationary
states. After the analysis has been completed, we can attempt
to write out the model equations of motion in terms of certain
internal coordinates of the molecule and solve them. How-
ever, for nonrigid molecules this approach to describing the
internal dynamics spectrum is most often too complicated.

At the same time, symmetry methods make it possible to
realize a highly effective (I would say, extremely effective)
alternative approach. The essence of this approach is as
follows. Any internal motion is specified by a certain
collection of symmetry transformations that determine the
complete set of basis wave functions for this motion. All the
transformations enter (often in a highly nontrivial manner
due to the noncommutativity of the transformations specify-
ing individual motions) the complete symmetry group of
intramolecular dynamics, which makes it possible to con-
struct, by purely algebraic methods, from the basis functions
of individual motions the basis functions of the overall
motion that transform according to the allowed types of
symmetry of the complete group. Similarly, the complete set
of self-adjoint operators specified in the subspaces of
individual motions is used to construct, in the form of
perturbation-theory series, what are known as the effective
operators of physical quantities (including the effective
Hamiltonian), which are defined in the complete function
space. Here, it is quite important to note that in calculating
the matrix elements of self-adjoint operators characterizing
individual types of motion we need not the explicit form of the
basis wave functions for these types of motion but only their
symmetry properties (see Section 5). As a result, only the
phenomenological constants acting as the coefficients of the
symmetry-allowed combinations of the self-adjoint operators
from the obtained complete set of them remain undefined in
the effective operators. The numerical values of these
functions are usually found by comparing the theoretical

results with the experimental data. In such an approach to
describing intramolecular dynamics there is simply no space
for a set of internal coordinates. Due to the profound
conceptual and technical differences from other approaches,
this approach is presently the only one that can be used to
solve any complex problems of the dynamics of nonrigid
molecules.

In discussing the current state of the closed qualitative
approach to describing quantum intramolecular dynamics,
the author will replace, where possible, all technical aspects
with references to the original works. However, in compar-
ison to such literature sources, the treatment in the present
review is more consistent and rigorous. In Section 8, I discuss
some of the typical qualitative mistakes related to the
incorrect usage of the symmetry properties of intramolecular
dynamics.

3. Geometrical symmetry groups
of rigid molecules

As pointed out above, when we are dealing with rigid
molecules, by a ‘dynamical group’ we always mean an
invariant group. A well-known example of the realization of
such a group is provided by the problem of motion of a
charged particle in a spherically symmetric Coulomb attrac-
tive field. The explicit symmetry shows its worth in any
spherically symmetric field, being specified by the group R;3
of rotational transformations which transfer a sphere into
itself?. This leads to conservation of the angular momentum
vector. But for a Coulomb field there is also another vector
that is conserved [4] (it is called the Runge— Lenz vector for
historical reasons [7, 8]). This fact can be interpreted in such a
way that the Hamiltonian has a broader implicit symmetry
[13]. What is important is that the appropriate symmetry
group not only pertains to a specific field but also depends on
the system’s energy. In the case at hand, for bound states this
is the group of rotations in a certain four-dimensional space,
while for the continuous spectrum this group coincides with
the Lorentz group [7].

Thus, is there any reason to believe that the effect,
determined by a point group, of some geometrical structur-
ing of the internal dynamics in the bound states of a rigid
molecule has no relation to the BO approximation? First we
note that the concepts of an electronic state, an effective
Hamiltonian pertinent to this state, and, respectively, an
effective nuclear interaction potential are all retained even if
we take nonadiabatic corrections into account (corrections to
the BO approximation) [14]. This is all the more important
because the formulation of the BO approximation is ambig-
uous and sometimes dissimilar variants of this approximation
even lead to different symmetries of the molecular equili-
brium configurations. For instance, according to Bersuker
[15], for the ammonia (NH3;) molecule in a formulation
corresponding to the simple adiabatic approximation, the
equilibrium configuration happens to be a planar configura-
tion with the point group Dj3,. Only nonadiabatic (or
vibronic) corrections make such a configuration unstable
and transform it into the actually observed shape of a regular
triangular pyramid with the point group Cs,. At the same
time, in the formulation corresponding to the adiabatic
approximation the equilibrium configuration of this mole-

2 Our use of standard symmetry notation is based on Refs [4, 5].
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cule has the symmetry group Cs, from the outset. In other
words, nonadiabatic correction may play an important role in
determining the correct symmetry of the equilibrium config-
uration; therefore, this symmetry should not, generally
speaking, be linked to the BO approximation.

Notice that there exists a consistent procedure for using a
point group to describe the complete internal dynamics [4, 5,
9]. Itisimportant here that comparison of the results obtained
by this procedure with the experimental data does not
indicate symmetry breaking with increasing displacement
from the equilibrium position. The Jahn —Teller effect merits
separate consideration. In 1934, L. Landau hypothesized that
the symmetric nuclear configuration of a nonlinear molecule
in an orbitally degenerate (due to this symmetry) electronic
state is unstable [4]. This idea formed the basis of a theorem
proved by Jahn and Teller [16]. The scientific literature
devoted to the corollaries of this theorem is vast, while two
dramatically different interpretations of the theorem being
known. In one of these interpretations, originating with the
authors of the theorem, it is stated that the instability of the
symmetric configuration breaks the symmetry of the system
and, as a result, the degeneracy of the electronic state is
completely removed. This, however, is true only of a static
system, while if the dynamics of the system is taken into
account, the physically meaningful interpretation is that of
Bersuker and Polinger [3, 15] (see also Ref.[17]) who found
that quite a few the energy-equivalent minima of the nuclear
interaction potential form a symmetric pattern in relation to
the instability point. Formally, the need to account for several
minima means the dynamics is that of a nonrigid molecule.
Since the minima are transferred into each other under the
transformations of the point group corresponding to the
instability point, the delocalization of the quantum system
over these minima do not break the symmetry and the
degeneracy is not removed, but the type of degeneracy
becomes electron —vibrational or vibronic.

Thus, it would be logical to assume that in the case of rigid
molecules a point group determines the geometrical structur-
ing of the internal motion for all discrete levels in each
electronic state. According to this viewpoint, the symmetry
of the equilibrium configuration is only an elementary
consequence of such structuring, but not vice versa. There
are also other physical systems that act similarly. An
interesting example is the motion of the nucleons in an
atomic nucleus. Conclusive data suggest that this motion in
heavy nuclei is structured [4, 7]. Such a structure behaves as an
integral whole (has a rotational spectrum) and is character-
ized by a point group for which D, is usually chosen due to
the large number of nucleons (~ 150). This all occurs in the
absence of an analog of a small parameter for the nucleus, a
parameter related to the large difference in nucleus and
electron masses and used in molecular dynamics to substanti-
ate the BO approximation. A crystal constitutes another
example of a similar but already macroscopic system. A
characteristic feature of all these systems is the execution of
essentially collective motions, i.e. motions that cannot be
interrupted within a finite energy range. In connection with
the concept of essentially collective motion we would like to
draw the reader’s attention to the fact that for systems that are
not structured (atoms and some nuclei) the description of the
motion of each separate particle in the averaged field of all the
other particles is a good zeroth approximation. When the
collective motion is executed, such a zeroth approximation is
entirely out of the question, which is quite understandable

since even a zeroth approximation must correctly reproduce
all the qualitative features of the system’s behavior.

Thus, there is every reason to believe that the point group
of a rigid molecule characterizes the rigorous problem of
internal coordinate motion. Because, as noted earlier, this
group depends on the type of electron excitation, this group
can be only the dynamical group of this problem. Unfortu-
nately, we know of no method that could help us to derive this
group from the rigorous equations of motion. And since
without this group any description of the internal dynamics
by perturbation methods is impossible, we are forced to add
this group by empirical means?. Naturally, the solution of the
group problem would yield much additional information, for
example, restrictions on the possible shape of the effective
potential of nuclear interaction in the molecule.

We can substantiate the assumed status of the point
group of a molecule by approaching from a somewhat
different angle. We begin by presenting the point of view
on this group, which was expressed by Elliott and Dawber
[7]. Tts basis is formed by the idea that the total coordinate
Hamiltonian possesses the symmetry group Rj, since it
depends only on the relative distances between the nuclei
and the electrons. As for the point group that corresponds
to the equilibrium arrangement of the nuclei and is a
subgroup of Rj, it can be used only to describe the
electron—vibrational motion. This fact is interpreted as
some spontaneous lowering (breaking) of the symmetry
from Rj to the point group due to exclusion of the system’s
rotation, i.e. molecular symmetry is restored if in addition
to the motion of the electrons and the vibrations of nuclei
we allow for rotation of the molecule.

Making an appropriate comment on the above reasoning
it must be first noted that if the point group contains improper
transformations (orthogonal transformations with a determi-
nant equal to —1), it is not a subgroup of R3. However, in
accordance with our desire we can, by additionally allowing
for inversion, introduce on the same grounds a group that is
broader than R;. What is more important, however, is that R3
cannot be used in the above sense as the symmetry group of
the total Hamiltonian. To be persuaded of this, let us consider
the well-known solution of the problem on the symmetry
group of the rotational motion of a solid. This problem is
directly related to the internal dynamics of rigid molecules,
since it is the physically meaningful initial approximation for
describing the rotational spectra of such molecules. The
sought group has a maximum of six independent infinitesi-
mal operators corresponding to the rotations about three axes
of the Cartesian laboratory (fixed) coordinate system (LCS)
and three axes of the Cartesian moving coordinate system
(MCS) attached to the solid. Since the infinitesimal operators
for LCS and MCS commute among themselves, the max-
imum symmetry group comes out as Rz x Rj. The rotational
group in LCS is sometimes called the extrinsic group, and that
in MCS the intrinsic group.

The states of physical systems are realized by only those
irreducible representations of the group R3; x Rz for which

3 Actually, the trivial group C; may serve as such a group. But even in this
case we must be sure that the dynamical group of the structured system has
an elementary form that makes it possible to achieve a meaningful
description by perturbation methods. It must also be noted that it is a
mistake to attempt a transition to a description with a higher symmetry
from the obtained description with a lower symmetry by imposing in the
latter the additional constraints on the parameters of the system (see
Section 8).
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the indices of the irreducible representations of the extrinsic
and intrinsic groups coincide (J—J representations). Since the
presence of an extrinsic group is related to the spatial
isotropy, its maximum variant Rj is realized for every solid.
The intrinsic group characterizes the symmetry of the solid
proper and incorporates only rotations with respect to which
the ellipsoid of inertia is invariant. Hence its maximum
variant characterizes the symmetry of rotational motion
executed by only solids of the symmetric-top type [8]. For
rigid bodies of the symmetric-top and asymmetric-top types
this symmetry is determined by the groups D, and D,,
respectively, while the group R; acts as the dynamical
noninvariant group. In this role Rj is also important, because
it determines the complete basis set of the rotational function
space in MCS. Actually, the presence of an extrinsic group
makes it possible to characterize the rotational states by the
use of a quantum number J of the total angular momentum.
However, the system-related symmetry and hence the specific
form of the Hamiltonian are determined by the intrinsic
group. Even in the limiting case of a rigid top model, this
latter group may not coincide with Rj.

Now let us discuss the passage from this limiting case to a
model that incorporates all internal motions and has a
Hamiltonian in which only the contributions caused by the
nuclear and electron spins are ignored. Clearly, the extrinsic
group does not change under this passage, but not all
rotational elements of the intrinsic group remain the same.
Indeed, by allowing for the nonadiabatic corrections (a
feature that sets this model apart from the BO approxima-
tion) we retain the concepts of an electronic state and the
effective Hamiltonian inherent in such a state. Hence, it may
be declared that the mapping transformation of the potential
onto itself is a necessary condition for the existence of a
geometrical symmetry element of the effective Hamiltonian.
Naturally, the equilibrium configuration is also transferred
into itself, i.e. only the rotational elements belonging to a
point group remain. If we now take into account the improper
symmetry elements of the potential, we obtain the point
group in its entirety. Then it is logical to assume that this
group is the symmetry group not only of the interaction
potential but also of the total effective Hamiltonian. This
statement is in good agreement with the procedure of using a
point group to describe the overall internal motion in a rigid
molecule, where to each element of the point group a
permutation of identical nuclei in a force field invariant with
respect to these elements is assigned. As a result, in the general
case a homomorphous mapping of the molecular point group
onto a subgroup of its identical-nuclei permutation group
emerges [9, 11].

The fundamental properties of symmetry imply that the
Hamiltonian of coordinate motion belongs to the completely
symmetric coordinate Young diagram of the permutation
group. The unit representation for the Hamiltonian in the
point group emerges as a corollary of this exact symmetry, i.e.
the point group is a dynamical invariant group. However, one
must bear in mind that the identical-nuclei permutation
group itself contains no information about the structuring
of the molecular dynamics, which is present in the case of
bound states. This fact manifests itself most vividly in a linear
molecule. Even when there are no identical nuclei, the point
group of such a molecule has the highly nontrivial form of the
continuous group Cy,.

The above explains such a fundamental property in the
behavior of a microsystem as the presence or absence of a

rotational spectrum. Generally speaking, the very fact that a
microsystem exhibits such a spectrum is remarkable, since in
this case the system must rotate as a whole or, in other words,
must have the properties of a solid. As a first step in
understanding such a behavior we note that in all descrip-
tions of the internal dynamics of the known microsystems
with a rotational spectrum there must necessarily be an
intrinsic geometrical symmetry group. Next, the character-
istic feature of a physically meaningful rigid-body model
presenting the initial approximation used to describe the
rotational motion of the microsystem is that it has an
intrinsic geometrical group determining the symmetry of the
structure of this body. Thus, it is the presence of geometrical
structuring in the internal dynamics of a microsystem that
leads to the appearance of its rotational spectrum, which is
caused by the rotation of the emerging dynamical structure as
a whole. For a given electronic state, the MCS attached to the
molecule is ‘frozen’ into the effective nuclear interaction
potential inherent in this state, which for a rigid nonlinear
molecule is equivalent to fixing the MCS with respect to the
equilibrium nuclear configuration. Finally, what is interesting
is that within this setting a molecule and an atom are
qualitatively different systems.

4. Effect of numerical methods
on the description of intramolecular dynamics

The modern numerical methods used in calculating the
quantum intramolecular dynamics change nothing in the
above picture, since they are also based on the BO approx-
imation [18]. Hence, the same problems emerge when
transferring the correct symmetry properties of rigorous
dynamics to the approximate model employed, i.e. we must
specify in advance the implicit geometrical symmetry group
with respect to which the wave functions allowing for the
types of molecular motion considered and the operators of
physical quantities defined in the space of these functions
have the correct symmetry. In other words, analysis of the
symmetry properties with allowance made for the implicit
group becomes basically important and should precede the
calculation of approximate solutions.

It must also be emphasized that in quantum mechanics
of bound states it is very important to choose the function
space correctly, since in this case one is forced to separate
the physically significant solutions against the background
of a huge number of formal solutions. Indeed, the discrete
spectrum corresponds to the states taken from the function
space L, (the space of square-integrable functions, because
only such functions can be normalized). An attempt to
solve the Schrodinger equation without first separating
such a space leads to a replacement of the discrete
spectrum by a continuous spectrum, i.e. the superposition
of the set of additional formal solutions with a power of
the continuum on the denumerable (or finite) set of the
physically significant solutions. When numerical methods
are applied, the above factor seriously complicates the
search for solutions even in the simplest problems. Since a
numerical solution of the problem of intramolecular
dynamics is based on perturbation methods, additional
problems associated with obligatory consideration for
symmetry emerge. Thus, the widely accepted idea that the
description of such dynamics can be achieved by purely
numerical methods (without the support of analytical
methods) is erroneous.
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5. Chains of symmetry groups

When perturbation theory is used, the passage to the zeroth
approximation is done by constructing a number of (increas-
ingly rough) models embedded in one another until the exact
solution of a given model problem becomes possible. Thus we
have a chain of models and a chain of symmetry groups
characterizing these models. For instance, if we ignore the
contributions from the nuclear and electron spins to the
Hamiltonian, the symmetry of the overall coordinate inter-
nal motion of a rigid molecule is specified by its point group,
and in the zeroth approximation the symmetry of the
rotational motion is related to the rigid-top type, etc.
Naturally, there emerges the problem of determining the
evolution of the symmetry properties of the intramolecular
motion (i.e. the evolution of the symmetry properties of the
wave functions and the operators of physical quantities) when
we go over from one model to its neighbor in the chain. No
conventional solution of this problem exists. Within the
symmetry-group chain concept, the problem is solved as
follows. In quantitative calculations the passage from one
model to its neighbor must be continuous, which means it is
possible to describe the distinction between the two models by
a power series in a small parameter*. However, the groups
representing these models may be different, i.e. the symmetry
changes abruptly. The reason is that an approximate model is
based on a certain physical idea and may contain information
about less exact types of symmetry of internal motion. But
this means that at least some information about the symmetry
of motion in the more rigorous model is lost. As a result, the
symmetry groups of all the models play a strikingly
independent role. Their join into a chain is determined by
the sewing conditions. More precisely, in the groups of
neighboring models one must identify equivalent elements in
relation to which the wave functions and the operators of
physical quantities transform in the same way. In other
words, the passage from one model to a neighboring model
is accompanied by the emergence of certain nontrivial
restrictions imposed on the correspondence in symmetry
types.

Toillustrate, let us examine the use of sewing procedure in
the conceptually interesting case of a linear molecule. To be
more specific, we follow paper [19] and select a molecule that
has no identical nuclei. As a result, the identical-nuclei
permutation group degenerates into 7;, and C, is the point
group. Naturally, in a given electronic state there are identical
permutations of the nuclei (the nuclei are transferred into
themselves) associated with all transformations of the point
group, i.e. there emerges a homomorphous mapping of the
Cooy group onto m; (see Table 1). Then for the quantities
characterizing the overall coordinate motion only those
representations of the point group are realized that behave
in the same way for elements homomorphically mapped onto
one element of the permutation group. Such exclusions are
called geometrical [9]. As a consequence, in the case at hand
only the identical representation A; is allowed for the
coordinate multiplets (for the representations of the com-
plete coordinate wave function).

4 Here we do not dwell on the extremely complicated problem of
substantiating the procedure of using such series. We only note that the
presence of a small parameter provides neither necessary nor sufficient test
for the convergence of the series.

Table 1. Homomorphous mapping of the point group C.., of a linear
molecule onto the identical-nuclei permutation group 7.

Cooy classes E 2C, o,

7, classes {1} {1} {1}

C, irreducible Ay Ay E, o E,
representations

7ty irreducible
representations

o - - -

The interactions of interest are also invariant with respect
to spatial inversion i of all the particles comprising the
molecule. Since this symmetry operation associated with the
properties of space commutes with all the operations specified
by the geometrical symmetry of the molecule, we can
introduce the group C., X C;. The presence of a direct
product in the latter group has profound physical meaning,
since otherwise not all the stationary states of such an isolated
system as a molecule would exhibit a definite behavior in
respect to i, which would violate one of the basic principles of
nonrelativistic quantum mechanics [4]. Thus, the multiplets
are characterized by their behavior with regard to 7, which will
be specified by the superscripts ‘+” or ‘—’. Next we must
indicate the relationship between the multiplets and the zero-
approximation solutions. In this approximation, electron
motion is determined for a fixed (equilibrium) configuration
of the nuclei, while nuclear motion is resolved into indepen-
dent vibrational and rotational components, which are
described using the harmonic oscillator and rigid top
models. The symmetry groups of the electron and vibrational
problems formally coincide with the point group, but their
elements act on the electron and vibrational coordinates,
respectively.

The situation with the symmetry group of the rotational
problem is more complicated in the case of a linear molecule.
The matter is that the zeroth approximation here corresponds
to the movement of a point over a spherical surface, which is
parametrized by only two polar angles. Hence, the symmetry
group consists only of the extrinsic group Rj, while the
internal structure of the molecule is completely ignored. To
correct this situation, we add the intrinsic group R3; with
allowance made for the rule of realization of only J—J
representations for a physical system. This group simply
determines the complete basis set of the rotational function
space in the MCS attached to the molecule. The sewing
together of the multiplets with the zero-approximation
solutions shows up as

(rmull)cm‘x(‘i = (FCI)Cocu X (r"ib)va X (Frol—inv)(fxuxcl . (])
T T

Here, I'y; and I'y;, are the irreducible representations of the
group Cy, for the zero-approximation wave functions of the
electron and rotational motions, respectively, and I'yo.iny are
the irreducible rotational-inversion representations of the
group Co, X C;. The possible types of these latter representa-
tions for a given rotational representation of the intrinsic
group R;3 are obtained using the correlation between the
groups R3 and C., x C; (see Table 2) through their common
subgroup D,.. The arrow in expression (1) indicates that the
behavior in respect to operation i characterizes only a
multiplet and has no physical meaning for the wave functions
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Table 2. Correlation between the groups R3; and C.., x C; for a linear
molecule with the point group Cy,.

R3 Dao Coov X Ci
J=0 4 A0, 4
I A+ E A9, 4D + EW

2 A+E+E
3 A+ E +E+ Es

AIH),Aé*) +El(i) _,’_Ez(i)
AT A+ EF B+ EY)

of separate types of motion [9]. Indeed, since otherwise a
purely formal agreement about the action of this operation on
the MCS attached to the molecule is needed, and there can be
an infinite number of variants of such an agreement. For
instance, Hougen [20] proposed a variant in which i does not
act on the MCS and, respectively >, one finds

iq)rot - q)rot . (2)

A frequently used idea comes to that of complete or partial
compensation for the changes in the equilibrium positions of
the nuclei in the MCS that occur as a result of the inversion
operation i via rotation of this coordinate system [6].
Complete compensation is possible only for the molecules
whose configurations are either linear or planar. For linear
molecules in this case we have the well-known relationship [4]

l.(prot = (_])J(prot ) (3)

where J is the quantum number of the square of the total
coordinate angular momentum.

Thus, referring to equation (1) with consideration for the
restrictions on the allowed multiplets furnishes a clue to the
classification of the rotational levels with a given value of Jin
an arbitrary vibronic state. Figure 1 illustrates this finding for
I'q=A,, I'iy =E, and I'q = I'yjp, = E,. The exclusion of
some of the levels with small values of J from the classification
is due to the well-known fact [4] that the projection of angular
momentum onto the symmetry axis of a linear molecule
depends only on electron—vibrational motion. Naturally,
the angular momentum vector cannot be shorter than its
projection which is finite in degenerate electron— vibrational
states and is taken into account by the symmetry types in
I x Tyip. It should also be noted that in the spectra of linear
and planar molecules there is no place for what is known as
inversion level doubling, since in the case at hand the
inversion transformation of the nuclear configuration is
equivalent to its rotation as a whole. In building the
classification scheme this is taken into account automatically
by the homomorphous mapping (which comes into being for
such molecules) of the point group onto the identical-nuclei
permutation group. Moreover, in rigid molecules of other
types the existing inversion doublets are not split. Hence, in
describing the real splitting of energy levels for any rigid
molecules, instead of the group I'poine X C; We must use its
rotational subgroup, or the D, subgroup in our case.

A linear molecule presents a striking example of the
conceptual difficulties associated with using the CNPI group
to analyze even the rigid molecules. Indeed, in the case under

5 We use the same notation for an operator in both the function and
configuration spaces.

Ty = E1, T'ea = 4; Ta =T =E
| R3 || Caoz,'x C1| C()(:'I‘X C,| | R? | | Ceoq,'x Cy| | Cx»pX Cz|
5 40 4 40
J—o A4 J=o A4

Figure 1. Energy level classification of a linear molecule with the point
group Cy, in the vibronic states I'qy = Ay, I'viy = Ej, and 'y = Iy, = Ej.
The chain (I'ro) g, — (Frotinv) e xe, — Tmui) e e, — (I)p,, is shown
for every multiplet.

consideration this group comes to n; x C;, which by defini-
tion must incorporate all the symmetry operations needful to
analyze the problem of the bound states in the molecule.
However, it does not allow us to describe even formally the
rich geometrical symmetry of a linear molecule. To overcome
this difficulty, Bunker and Papousek [21] introduced an
extremely artificial extension of the CNPI group, nj x C;,
continuous in the parameter . The zero-approximation wave
functions of the linear molecule are then written explicitly and
the action of the elements of this group on these functions is
specified. Generally speaking, the concepts of symmetry in
the CNPI approach are ‘secondary’, since their application is
based on the knowledge of the approximate solutions and
basically serves as a means for simplifying calculations.

The concept under discussion incorporates quite naturally
the important notion of the coordinate spin of a molecule [11],
on the basis of which a complete set of self-adjoint operators
for finite-dimensional function spaces is readily formed. Such
spaces correspond to essentially quantum types of motion
and appear, for example, in the description of configuration
degeneracy in nonrigid molecules and of vibrational and
orbital electron degeneracies already present in rigid mole-
cules. Similar spaces emerge in the description of quasi-
degeneracies. Notice that in the description of coordinate
motions the standard finite-dimensional spaces correspond to
integral values of the quantum number of the spin squared
and have an odd dimension [4]. The components of the
coordinate spin operator e in the LCS form what is known
as a three-dimensional Lie algebra of the kind

[ex, ep] = ieapyey s (4)
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where ¢,p, is the absolutely antisymmetric third-rank tensor.
Since spin is a coordinate physical quantity, for the commu-
tation relations between the components of the total
coordinate angular momentum J and the components of e
we obtain in the LCS the following result [4]

[Jas ep] = ieapye; - (5)

For the MCS unit vectors A; we have, respectively, the
relations

[‘196’ )”'ﬁ] = is“ﬁ"/;“f“/ ) [917 ’11'[3] =0. (6)
The second relationship in Eqn (6) implies that the introduced
coordinate spin operators do not rotate the MCS. Then
equations (4)—(6) lead to the following relationships for the
components in the MCS:

lei, ¢l = ieijrer,  [Ji,e] =0, (7)
i.e. the commutation relations for the components of e are
invariant with respect to passage from LCS to MCS. In this
regard the coordinate spin of a molecule behaves like the
ordinary nuclear and electron spin. At the same time, for the
components of J there is no such invariance [4]:

Vs Jg) = ity i i) = —iéijadc (8)
The change in sign in the commutation relations for the J
components in the MCS plays an important role and is related
to the fact that these components rotate the MCS. In
analyzing intramolecular motions it is also important to
bear in mind that equations (7) hold true for two types of
behavior of the spin components under time reversion: either
all three components are 7-odd or any two components are
t-even while the third component is t-odd. It should be
emphasized that in nonrelativistic quantum mechanics the
time-reversal operator is antiunitary and antilinear, and that
the consideration of the behavior with respect to this
operation has physical meaning only for operators and not
for wave functions [7].

To illustrate this approach, we again turn to a molecule
with the point group C,, and consider the energy levels with
I'q = I'yi, = E1. For the basis vectors of the electronic E|
representation we can take the unit vectors | + 1,) belonging
to such a pair of the complex-conjugate representations of
Coop that Cy| £ 1,) = exp (£ig)| £ 1.). The group C,, can be
written in the form C, A Cs, where the symbol A stands for a
semidirect product [7], which emerges due to the noncommu-
tativity of the operations of the invariant subgroup Cy, of the
group C,, and the operations of the factor group
Cs = (E,c0*)).® Owing to the properties of a semidirect
product, the elements of the group Cy also act in the basis of
the group C..:

et = | -1, )

i.e. the unit vectors |+ 1,) realize the two-dimensional
representation E; of the group Cy,.

6 The elements of the point group are specified in the MCS, with the z-axis
coinciding with the symmetry axis of an infinite order. Note that the x- and
y-axes are fixed in the vibronic problem.

The unit vectors | &+ 1,) of the vibrational E representa-
tion are introduced in a similar manner. The group D
specifying the pattern of rotational — vibronic (or rovibronic)
splittings can be written in the form C,, A U,. We select the
nontrivial element of the group Us in the form Uzm =g (9,
Then the symmetry properties of the vibronic quantities in
D, coincide with those in Cy, to within the substitution of
c™)i for ¢™2). Allowing for the well-known symmetry
properties of rotational functions in the intrinsic group R;
[4], we arrive at the following complete set of rovibronic basis
vectors of the 4| type in the group D.:

1
\/i ’
[52) = (/. 2)1e)[ 1) + olJ, =2)| = 1¢)| —

[0) = 12.0)(| = 1)11) + 0]1)] ~1,) w0
1

1b>) ﬁ ’

where = (—1)”. The complete set of basis vectors |ag) and
|az) of the A, type follows from formulas (10) if —w is
substituted for w. It is important here that the basis vectors
contain only products |/, k)|A4,)|/,), in which k = A, + 1, i.e.
the construction pattern allows for the fact that the projection
of angular momentum onto the z-axis is due to vibronic
motion (all four basis vectors for a given value of J are present
only if J > 2).

The electron parts of the operators of physical quantities
are built up around the coordinate spin operator A with the
quantum number of the spin squared equal to unity. Here, the
unit vectors |+ 1,) are related to the eigenvectors of the
operator A3 with eigenvalues +1. Inasmuch as the eigenvector
with a zero eigenvalue is excluded from our picture, of all the
spin operators admissible in the three-dimensional space only
the following four are independent:

I, A3, A2, A2 (11)
where I, is the unit operator, and AL = A; £i4, are the
raising (4) and lowering (—) operators, respectively. Know-
ing the properties of the eigenvectors under transformations
intrinsic in the group C,, and under time reversion 7, viz.

T‘Oé> = ‘O€>7 T|1(> = | 71(}> ) (12)
we can easily obtain the symmetry properties for the spin
operators (11). The coordinate spin operator 1 for building up
the vibrational parts of the operators of physical quantities is
introduced in a similar manner. For the effective electronic —
vibrational —rotational or rovibronic Hamiltonian only the
A 1<+) representation of the group C4,, x C;is possible, and, as
a result, the representation 4, of D.,. Employing the same
procedure as in building up the wave functions and allowing
for the fact that the Hamiltonian is f-even, we arrive at the
following general expression for this Hamiltonian in the state
with I'q = 'y, = E; [19]:

H=hy+ (A3 + 5 hy 4+ (A2 + 12420y
+ (12T 4+ T2 Vhy + (A2T2 + T2 A% )hs

F (AT + T2 A b

(13)
where h; = Z;ioa,gi>J2”, J+ =J, F1J, are the raising and
lowering rotational operators, whose definition is opposite to
that of similar spin operators due to the difference in the signs
in the commutation relations in the MCS, and ap(l) are real-
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valued phenomenological constants, usually called spectro-
scopic constants. Clearly, the action of the Hamiltonian on
the basis vectors does not violate the condition k = A, + /,.
When J > 2, due to the mixing of the basis vectors with
|k| = 0,2, there emerges a nonpolynomial dependence of the
energy on J(J+ 1), and k? ceases to be a good quantum
number. Naturally, such a description also allows for the
Renner effect [2], which the BO approximation does not
cover.

As noted in Section 2, we do not need to know the explicit
form of the wave functions (10) when calculating the matrix
elements of the Hamiltonian (13) — it is enough to know the
symmetry properties of these functions. As a simple illustra-
tion of this important statement, we shall calculate the matrix
elements of the projections J, of angular momentum onto the
LCS axes in the basis of the eigenfunctions |J, M) of the
square of angular momentum and its projection onto the
Zz-axis:

2
JNLMYy=JJ+1)|J,M), (14)
NI M) =M|J,M).

The solution of these equations [4] implies that the spherical
functions Y, are the eigenfunctions |J, M ). Furthermore,
the well-known result of action of the operators
J+ = J, £1J, on these functions can easily be obtained:

J I, MYy =/ (J+M+1)(J—M)|J,M+1), 15

J NI M) =/ (J+M)J-M+1)|J,M—1).

Expressions (14) and (15) make it possible to calculate the
matrix elements of any products of the components J,. It
occurs, however, that these expressions can be derived in a
purely algebraic manner [4], solely from the commutation
relations for the components J, in the LCS. The commutation
relations are in turn determined by the properties of the three-
dimensional rotation group Rj in the LCS, while the quantum
numbers J and M emerge as the symmetry indices [5].

Another important property of the derived effective
Hamiltonian relates to the fact that its operative range
depends on the range of applicability of the geometrical
group Cu,. In other words, this Hamiltonian describes
rigorous coordinate dynamics. Introduction of the BO
approximation is required only when we wish to interpret
the phenomenological constants, an objective that is beyond
the means of symmetry methods. Thus, the effective Hamil-
tonian concept makes it possible to separate the construction
of a model for describing the excitation spectrum from
interpreting the phenomenological constants in this model.
Generally speaking, each such constant contains contribu-
tions determined by the BO approximation and contributions
related to different types of nonadiabatic corrections. It is
quite another matter that the effective Hamiltonian can be
written as a Taylor series in the components of angular
momentum in the MCS and in doing so it represents a
perturbation series in powers of an ordinarily small rota-
tional distortion. Reasoning in a similar manner, we can build
up the effective operator of any other physical quantity that
characterizes the molecule, for example, the effective operator
of the electric dipole moment, which must transform accord-
ing to the representation A4, of the group D..

Finally, note that the methods of the group chain concept
make it possible to easily carry out such analysis for any rigid

molecule in an arbitrarily chosen vibronic state. More than
that, it is easy to give a description within a unified model and
a whole set of vibronic states. The latter is important in the
case where the interaction of vibronic states is fairly strong
(allowing for what is known as random resonances).

6. Geometrical symmetry groups of nonrigid
molecules with energy-equivalent configurations

When analyzing the dynamics of nonrigid molecules in a
given electronic state, we must (in addition to the case of rigid
molecules) allow for the transitions between the various
minima of the nuclear interaction potential. We begin with a
situation where all the equilibrium configurations belong to a
single point group Gy, i.e. the energy minima are equivalent.
Here, the geometrical symmetry of the internal motion is
characterized by what is known [9, 11] as an extended point
group G that additionally incorporates (in comparison to Gy)
elements determining the nonrigid transitions. Such elements
belong to the exchange and nonexchange types. When
elements of the exchange type act, the nuclear interaction
potential is transferred to itself. Hence, the spatial arrange-
ment of the equilibrium configuration does not change, and
nuclear motion is associated with permutation of identical
nuclei. In this respect the situation is fully similar to the case
of a rigid molecule. If all the elements that extend the group
Gy to G belong to the exchange type, then G is the dynamical
invariant symmetry group of the rigorous model of coordi-
nate motion in a nonrigid molecule. The torsion motions of
CH3; tops in the molecules of methanol (CH3OH) and ethane
(C,Hg) are the typical examples of nonrigid motions of this
type.

The main characteristic feature of elements of the
nonexchange type is that they are not symmetry transforma-
tions of the field of nuclear forces. Hence, the spatial
arrangement of the equilibrium configuration changes, and
nuclear motion cannot be associated with the permutation of
identical nuclei. The latter means that the symmetry proper-
ties of the Hamiltonian of the overall coordinate motion for
the permutation of identical nuclei lead to the requirement
that the Hamiltonian be invariant only with respect to the
exchange-type elements belonging to the group G, with such
elements comprising a subgroup Gy of this group. Naturally,
Gy includes Gy as a subgroup. As a result, G becomes a
dynamical noninvariant group. The inversion motion in
ammonia (NH3) molecule is a simple example of nonrigid
motion of the nonexchange type.

For the internal dynamics of a nonrigid molecule, the
extended point group plays the same role as the point group
does for a rigid molecule. Both of them characterize the
geometrical structuring of the overall coordinate motion for
bound states. However, in practical importance they cannot
even be compared, since in most cases involving nonrigid
motions we do not know a priori the solution of the problem
on the symmetry properties of the basis vectors of the
function space and the effective operators of physical
quantities, defined in this space (the effective Hamiltonian
included). Knowing this solution is basically important in
order to provide a description, via perturbation methods, of
the internal dynamics of a system with collective motions.
Naturally, the geometrical symmetry group of a nonrigid
molecule is not determined by the symmetry groups of the
molecular equilibrium configurations, which may even be
different. Hence, building up such a group can be a highly



762 AV Burenin

Physics— Uspekhi 45 (7)

nontrivial problem. The solution is based usually on informa-
tion about the symmetry groups of the equilibrium config-
urations and about the geometry of the nonrigid transitions
between these configurations. Generally, the geometry of
such a transition is defined in terms of the symmetry of an
intermediate configuration [11]. It is much easier to select
such a configuration if one knows the heights of the barriers
for nonrigid motions calculated by methods of quantum
chemistry. One must also bear in mind that, in contrast to
the symmetry groups of equilibrium configurations, the
geometrical groups of nonrigid molecules most often have
not been tabulated. Another very difficult physical problem is
that of resolving the various types of motion within the
constructed geometrical group. To achieve such a resolu-
tion, we must know how to build up the function subspaces
needed for the description of separate types of motion on the
basis of the irreducible representations of this group.

6.1 Molecules with nonrigid exchange-type transitions

To illustrate the various aspects in describing molecules with
nonrigid transitions of exchange type, we shall examine the
interesting case (from the conceptual and technical angles) of
allowing for Berry pseudorotation in XPF4 and PFs mole-
cules. The equilibrium configuration of the phosphorous
pentafluoride (PFs) molecule is depicted in Fig. 2 and it
corresponds to the point group Ds3;. In this configuration,
the nuclei F occupy two nonequivalent positions — in the
plane of a triangle (equatorial), and in the straight line
perpendicular to this plane (axial). It has been established
without doubt (e.g., see Ref. [22]) that the nonrigid motion
called Berry pseudorotation transfers the F nucleus from an
equatorial position to an axial one, and vice versa. In the
example presented in Fig. 2, the equatorial nucleus F; retains
its position, while the remaining four F nuclei pass through an
intermediate configuration (whose symmetry point group is
C4,) with simultaneous rotation through an angle of n/2
about the pseudorotation axis C4 (FP-axis). All this does not
change the spatial arrangement of the equilibrium configura-
tion, while the permutation of identical nuclei is related to the
nuclear motion. The fact that the PFs molecule has three
pseudorotation axes passing through three vertices of the
equatorial triangle results in a very complicated internal
motion with transitions between 20 independent equilibrium
configurations. Until recently all corresponding qualitative
analysis was based on Dalton’s classical research [12] done
nearly three decades ago. However, Dalton’s treatment of the
problem was, to a large extent, empirical. Indeed, the level

F4 a F3 b
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Figure 2. Initial (a) and final (b) equilibrium configurations of the molecule
PFs, related through Berry pseudorotation about the FP-axis (the arrows
in the left figure indicate the motion of the F nuclei through an
intermediate configuration with the Cy4, symmetry without regard for the
rotation of the molecule through an angle of ©/2 about the F;P-axis).

splitting due to pseudorotation was described as a result of
mixing the wave functions of independent rigid molecules,
with the mixing matrices built up intuitively as one- and two-
dimensional matrices alone”’. Here, the mixing of only 4 such
molecules is taken into consideration (one reference molecule
and the three ‘nearest’ to it in the number of pseudorotation
steps) instead of 20 on hand.

Following Ref. [23], we turn to a molecule with much
simpler internal dynamics, XPF,4, where X [CH3 or (CH3)>N
among other molecules] replaces one of the equatorial atoms.
As is well known (e.g., see Ref. [24]), in this case Berry
pseudorotation plays the leading role in the transfer of F
nuclei between the equatorial and axial positions. But now
only one pseudorotation axis mixes the equivalent configura-
tions and it is enough to allow for only two such configura-
tions.

The group 74 is the permutation group for the identical F
nuclei in the XPF4 molecule. Since the spin of the F nucleus is
1/2, the total wave function (if we ignore the hyperfine
interactions related to nuclear spins) is the convolution of
the spin and coordinate parts that transform according to
mutually dual Young diagrams [5] (here only spin Young
diagrams with a number of rows no greater than two are
admissible). Specifying their attendant coordinate Young
diagrams and sewing together the group my with the point
group® Cy, = (E, C2Z) a2 ¢07), we obtain the following
allowed coordinate multiplets for the rigid molecule XPF4:

14y, (5+ 3+ 1)45,3By,3B, . (16)

The number in front of the symbol designating the multiplet
represents the statistical weight of the nucleus, which is
specified by the spin Young diagram corresponding to the
multiplet [5]. The sewing together of the multiplets with the
zero-approximation solutions can be written in the form of
relation (1) to within the substitution of C, for Cy,. The
correlation between the rotational —inversion representations
of the group C,, x C; and the rotational representations of
the group D; of a rigid asymmetric top in terms of the (z, y, x)
coordinates follows from the association of the given groups
through their common subgroup D;. As a result, we have a
classification scheme for the levels in an arbitrary vibronic
state, which for I'qy x I'yj, = A; as an example is shown in the
first two columns in Fig. 3. All the levels are unsplit inversion
doublets.

When Berry pseudorotation is taken into account, the
molecule becomes delocalized over two independent equili-
brium configurations symmetrically arranged near the
unstable intermediate configuration. Hence, the geometrical
group of the unstable configuration, Cy,, is the extended
point group. The presence of pseudorotation is due entirely to
the distortion of the equilibrium configuration as compared
to the intermediate configuration. Here the nonequivalence in
the positions of the identical nuclei participating in the
motion in the intermediate configuration is eliminated,

7 The dimension of the mixing matrices is selected by analogy with the
dimensions of the matrices of the irreducible representations of the point
group D3, of a rigid molecule, although when Berry pseudorotation is
taken into account the geometrical symmetry group of the internal motion
is isomorphic to s and has no two-dimensional irreducible representa-
tions whatsoever.

8 The MCS is selected in such a way that the z-axis coincides with the
XP-axis, and the yz reflection plane with the plane of the equatorial
triangle.



July, 2002

Symmetry of quantum intramolecular dynamics 763

| D» | |C21,->< G

|0, | [axal] [auxa] | cux

N
(5+3+1)4i"

(5+3+1)4)

Table 3. Partition of the basis vectors of the function space for the
configuration —rotational motion of the XPF4 molecule in the vibronic
state of the 4; type in the group C,, into irreducible representations of the
group Dy.

Dy Basis vectors
A1 A]|é1>7 Bz‘b>
A Ay|a), By|b)
Bl Bl\a), Az‘b>
Bg Bz‘(l), Al‘b>

Eila) Ei|b)
E 5

Erla) Es|b)

Figure 3. Energy level classification of the molecule XPF, in a vibronic
state of the 4, type in the group Cj,.

which is characteristic of the exchange type motion [11]. As a
result, with the operations C; and C;, which determine the
pseudorotation in the group Cy,, we can associate the
permutation of identical nuclei in the group my. This
statement agrees with the results of Dalton [12] who simply
used the permutations of identical F nuclei to describe Berry
pseudorotation. Matching ny with Cy, yields the following
allowed coordinate multiplets for the nonrigid molecule:

14y, 342, (5+1)By, 3E. (17)
Next, sewing together the group Cy, with the group C», yields
a detailed classification of levels with allowance made for
nonrigid motion (Fig. 3 depicts this case for I'ey X I'yip, = A}).
Inasmuch as Berry pseudorotation is specified in the group
Cy, by the rotational elements C, 41 and C f, then to describe the
real splitting of levels in a given vibronic state we take (instead
of the group Cy4, x C;) its rotational subgroup Dy, with the
result that the inversion doublets in the spectrum of a
nonrigid molecule remain unsplit (one sublevel of such a
doublet is sometimes absent due to the fact that the multiplet
By of the group Cy, is forbidden).

In setting up a description it is convenient to write the
group Dy in the form Cy4 A U,, where the factor group can be
written as U, = (E, Uz( ¥)). What is important is that the group
C,4 contains not only the pseudorotation elements C} and C;
but also the element C7 whose action is equivalent to ordinary
rotation of the molecule. Hence, the complete set of basis
vectors in the pseudorotation subspace consists only of two
unit vectors |a) and |b) belonging in the C4 group to the
completely symmetric representation « and the representation
b antisymmetric in the elements C; and C;. Only such unit
vectors are invariant with respect to the purely rotational
element C?. The dimensionality of this subspace determines
the number of mixed independent equilibrium configurations
in the given problem. The action of the elements of the factor
group U, in the basis of the invariant subgroup Cy4 for these
vectors is trivial:

Ua) = la),  US|B) = [B), (18)
i.e. in the D4 group the vectors |a¢) and |b) belong to the
irreducible representations 4 and Bs, respectively. Bearing in
mind the well-known behavior of the rotational functions

under transformations belonging to D4, we arrive at the
partition of the configuration—rotational basis vectors into
the irreducible representations of this group for the case
T x I'yi, = A (see Table 3). The rotational parts of the
basis vectors have been written in terms of the irreducible
representations of Dy, with E; and E; being the components
of the E representation that are specified by the conditions
UYE, = E| and UV E, = —E,.

With allowance made for pseudorotation, the effective
operators of physical quantities describing the rotational
motion of the XPF4 molecule belong to the coordinate
Young diagram [4] of the group m4. Matching ny with Cy,
yields one allowed representation A; for such operators in the
group Cy4,. Next, sewing together Cy, x C; with Dy leads in
the D4 group to the A; and A4, representations associated with
the physical quantities that are, respectively, invariant with
respect to inversion i or change their sign. The representation
for the operators of the coordinate spin e acting in a
nonstandard two-dimensional coordinate space with basis
vectors |a) and |b) can be written in terms of the well-known
Pauli matrices [4]:

1Moo 1o =i _1fo 1
S50 —1|° “273i o> 731 ol
(19)

The complete set of self-adjoint operators in the two-
dimensional space consists of the three components ¢; and
the totally symmetric unit operator /. Bearing in mind the
behavior of the basis vectors under transformations belong-
ing to D4 and under time reversion:

Tla) =la), Tlb)=|b), (20)
we find that the operator ez is t-even and belongs to the
representation 4, of the D4 group, while the operators e; and
e, are, respectively, t-even and #-odd and both belong to the
representation Bj.

The Hamiltonian and the operator of the electric dipole
moment are the most interesting effective configuration—
rotational operators. The Hamiltonian belongs to the
representation 4, of D4 and is realized through the following
two spin—rotational schemes:

(A1) X (A1)rors (B2)gy X (B2) gy - (21)

As a result, its complete expression can be written in the
following symbolic form

Her = (I,e3) X A1 + (e1,e2) X By (22)
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This expression implies that each term of the Hamiltonian is a
combination of products of angular momentum components
J;in the MCS of symmetry A4; or B, in the group Dy, while the
parameters in front of this combination are linear functions of
the spin operators of the same symmetry that correlate with
the combination. Since the Hamiltonian is 7-even, when we
write down the last expression explicitly we get

= 3| 51+ 132+ 7% @)

n=0

The superscripts on the terms in the right-hand side of this
expression indicate the type of irreducible representation of
D4, to which the combinations of angular momentum
components refer, while the subscripts stand for the total
power over these components. The coefficients of these
combinations in the first, second, and third terms in Eqn (23)
depend on the spin operators ¢, d, and f, respectively:

é:C(l>1+C(2>e37 CZ:d€1, f:f827 (24)
where ¢, d, and f'are the real-valued spectroscopic constants.
The electric dipole moment belongs to the representation A,

of the D4 group, and the complete expression for it reads as

Herr = (1, 63) X Ar + (61,(’2) X Bj. (25)
The one thing we must bear in mind when writing down this
expression explicitly is that the rotational part of the operator
of the u, component along the a-axis of the LCS contains, in
addition to the components J; in the MCS, the direction
cosines of the MCS with respect to the LCS (see Section 7.2).

Interestingly, the passage to the limit of an impermeable
barrier can be formulated in terms of spin operators. Indeed,
for such a barrier the description procedure is independent of
the type of symmetry of the nonrigid transition. Hence, in
such a description the mere spin operators are retained that
are invariant with respect to permutation of indices in the spin
subspace, viz.  and e3. What is important is that their space is
closed with respect to the operation of multiplication in the
Lie algebra, i.e. the operation of calculating commutators,
since otherwise the condition of conservation of the descrip-
tion procedure under admissible unitary transformations
would be violated. As a result, only the rotational contribu-
tions with

e=cWVI,  d=de (26)
remain in the effective operators. In the basis set from Table 3
we go over to spin vectors of the form

V2o V2
It is of importance that when the parameters ¢ and d are
chosen in form (26), the unit vectors are not mixed with spin
vectors |1) and |2) by the terms of the effective operator of any
physical quantity, i.e. the basis set can be partitioned into the
direct sum of two independent sets. Since in each set the spin
vector is the sole one, it can be discarded, with the result that
the spin parts in the effective operators can be discarded, too.
Thus, we arrive at effective operators (the effective Hamilto-
nian included) corresponding to a rigid molecule with the
point group C,,. In other words, the vectors |1) and |2)
describe the localization of the molecule in two equivalent

. (27)

HS [ N C2 H(,

H;

l v
Hy

H; Ci H,

z

Figure 4. Equilibrium configuration of the ethane (C,Hg) molecule.

minima of the interaction potential with equilibrium config-
urations of symmetry Cy,.

The above analysis shows that when describing nonrigid
motions it is important to isolate the rotational transforma-
tions of the molecule as a whole that correspond to the motion
without a barrier. In this respect, molecules with a linear core
and two equivalent torsion tops may be of interest. Here,
sequential torsion motion of the tops through the same angle
is equivalent to rotation of the molecule as a whole. This leads
to conceptual difficulties when the CNPI group [6] is
involved, namely, one is forced to deal with two-valued
wave functions (which describe individual purely coordinate
motions) that change sign upon a rotation through 2x, which
physically is quite meaningless. Consequently, what are
known as dual groups are brought into the picture, groups
that were introduced for the systems with a half-integer spin
[4]. No such difficulties arise in the approach we are currently
discussing. The classical example here is the ethane (C,Hg)
molecule. The equilibrium configuration of this molecule (see
Fig. 4) corresponds to the point group Ds; = C;, x Cy [25]
which contains the inversion element /. When analysis is
limited to one minimum, the group used is C3, x C; x C;,
which involves two inversion operations of an equal status,
despite the fact that they have different physical meanings.
However, allowance made for torsion motion leads to a
geometrical symmetry specified by an extended point group
of the form [26]

G72 = (C3v X C3v) A C], (28)
where the operation i still commutes with all the elements of
the geometrical group of the molecule. Table 4, which lists the
characters of the group G7,, has been borrowed from Ref. [27].
When there are two inversion operations, in the relation
between the rotational representations of a rigid symmetric
top and the rotational —inversion representation of a sewing
together of type (1), two analogs in group D3, x C; corre-
spond to each element of the group D.. For the analogs to
coincide, we choose the natural requirement that the element
il in this relation be equivalent to the identity rotational
transformation. As a result we have the following correlation:

gH+7 u<— —, (29)

where g and u refer to the rotational —inversion representa-
tion of the group D34 x C;, and the ‘4’ and ‘—’ signs refer to
the multiplet. Figure 5 shows the classification scheme of the
torsion—rotational levels for I'q x I'yi, = A1g. The actually
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Table 4. Characters of the extended point group G, allowing for torsion motions in the ethane (C2Hg) molecule (the classes of the group Gy, are denoted
in a way similar to that used in denoting the classes of the group 74, while the figures in the row under the classes stand for the number of elements in each

the class).
Gn {1 {1°3} 3% {1*2} {1°2%} {123} 2%} {6} {24}
1 4 4 6 9 12 6 12 18
A 1 1 1 1 1 1 1 1 1
Ay 1 1 1 1 1 1 -1 -1 -1
As 1 1 1 -1 1 -1 1 1 -1
As 1 1 1 -1 1 -1 -1 -1 1
E 2 2 2 0 -2 0 0 0
T, 4 1 -2 -2 0 0 0 0
T, 4 1 -2 2 0 -1 0 0 0
T3 4 -2 1 0 0 -2 1 0
Ty 4 -2 1 0 0 0 2 -1 0

|Doo| |D3d><ci| |G72><Ci| |Dao| |D3:1><Ci| |G72><Ci|

1457 (7+3+3)4(;)

(5+1+1)4})

)|

(5+3+3)E)
-)
E / G E RN
e e )
T [y, GRE
E, EXE 37,
17"
axe Sy

Figure 5. Classification of the torsion-—rotational levels of the ethane
(C2Hg) molecule in a vibronic state of the A, type in the group D34.

observed level splittings of a rigid top, caused by k-doubling
and torsion motion, are described by the rotational subgroup
Hg x D3 of the group Gy, x C;, where D3 is the rotational
subgroup of the group Ds,. The group Hg isomorphic to Ds
has the form H; A H,, with the invariant subgroup
Hy = (Ex E,c3 x c},c3 x¢3) and the factor group
H, = (E, Ii). Specifying torsion motion by the elements
3 X c32 and c32 X ¢3, we arrive at an independent description
of torsion and rotational motions via the groups Hg and Ds.
The variant with an independent description is only possible if
stringent restrictions are imposed on the symmetry of the
problem. A less symmetric case occurs in molecules with
planar torsion tops, such as ethylene (C,Ha, point group Dy;,)
and allene (CsHy, point group D»,). Here, the top axis is only
a binary axis, so that there is no way in which the group of
torsion—rotational motion can be represented as the direct
product of the groups describing different types of motion.
The matter is that the top identity requires that the torsion
operations ¢, X Eand E X ¢; be used symmetrically, and their
product ¢; x ¢, is equivalent to ordinary rotation of the
molecule as a whole. But to resolve the motions, it is enough
to match the requirement that the operation ¢, X ¢; is only
specified in the rotational subspace. In many respects the
situation is similar to the case where the operation C} is
applied to describing Berry pseudorotation in the XPF4
molecule.

The problem of resolving the internal motions in the PFs
molecule is much more complicated [28]. As is known [12], the
symmetry group of the coordinate motion is isomorphic to 7s
with allowance made for three pseudorotation axes passing
through the vertices of the equatorial triangle. Since the
operations of the rotational subgroup D3 of the point group
D3, do not mix independent equilibrium configurations, the
number of such configurationsis 5!/6 = 20. Notice that when
analyzing the XPFs molecules we extensively used the
following two properties of the geometrical symmetry group
Cy, for the pseudorotation intermediate configuration. First,
this group incorporates as a subgroup the point group Cy, of
both the equilibrium configurations and, hence, characterizes
the equilibrium configurations as well as the transitions
between them. Second, the group in question is a transforma-
tion group of a single geometric figure, which makes it
possible to easily resolve the rotation of the molecule as a
whole.

The situation with the PFs molecule is altogether
different. And the matter is that it is not because the number
of independent equilibrium configurations mixed by the
Berry pseudorotation increases dramatically. It is important
that the mixing proceeds through three intermediate config-
urations that do not exist simultaneously and they are
arranged differently in space with differing sets of four
identical F nuclei, and that the symmetry group Cy, of an
intermediate configuration does not incorporate the point
group Dj;, as a subgroup. In other words, the transformations
belong to different geometric figures, and their rotational
interpretation cannot be extended to the system as a whole.
Therefore, separation of the rotational transformations is a
complicated problem, and its solution requires a detailed
analysis of the geometrical structure of the symmetry group of
internal motion. Only recently (see Ref. [28]) was it found that
the geometrical symmetry group isomorphic to 75 can be
represented in the form

G = Y N Cs, (30)
where the invariant subgroup Y is isomorphic to the group of
60 rotations about the axes of an icosahedron (or pentagonal
dodecahedron) [29], and the only nontrivial element of the
factor group Cs = (E, o) is the reflection in the plane of the
equatorial triangle. What is interesting is that the group Gy
can be built up [28] solely on the grounds of the rotational
elements of D3 and the pseudorotation element which also has
a rotational interpretation in the group Cy,. But in the group
Gy the only rotational elements are those that belong to the
subgroup Y, which does not contradict the group-building
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procedure precisely because pseudorotation proceeds
through three intermediate configurations that do not exist
simultaneously and are arranged differently in space. What
has been said is readily illustrated by the fact that the group
Gy incorporates as a subgroup the point group D3, contain-
ing among other things improper transformations.

In this section we demonstrated the possibilities of
applying qualitative methods to the solution of problems of
varying complexity that describe the internal motions in
molecules with nonrigid transitions of exchange type. The
effectiveness of these methods is most vividly illustrated by
the fact that we were able to rigorously solve the extremely
complicated classical problem of the internal motion in
molecules of MLs type (PFs, SbCls, NbCls, TaBrs, etc.) with
allowance made for polytope regrouping of the type of Berry
pseudorotation between twenty independent equilibrium
configurations of such molecules. This makes it possible to
look with optimism on the outlook for the development of the
qualitative quantum dynamics of molecules.

The effectiveness of these methods largely stems from the
fact that in describing nonrigid motion one does not need to
determine the trajectory of such a motion in terms of a set of
internal coordinates — one should only indicate an inter-
mediate nuclear configuration [11] whose transformations
specify the symmetry of this motion. If the identical nuclei
participating in the nonrigid motion are arranged in an
equilibrium configuration in a geometrically equivalent way,
the intermediate configuration simply coincides with the
equilibrium configuration. In doing so, the extended point
group differs from the point group in that it incorporates not
only transformations of this configuration as a whole. A
typical example is the ethane (CoHg) molecule. The molecular
extended point group G7; specified in Eqn (28) additionally
allows for (in comparison to the point group D3,) the rotation
of the methyl tops with respect to each other. However, if the
identical nuclei participating in the nonrigid motion are
arranged in an equilibrium configuration in a geometrically
nonequivalent way, the intermediate configuration differs
from the equilibrium configuration. What makes the inter-
mediate configuration so special is that the identical nuclei are
arranged in it equivalently with respect to geometrical
operations that force the nuclei to change places. It should
be emphasized that in the case of nonrigid motion the
intermediate configuration is not obliged to correspond to
the top of the barrier. Such correspondence occurs only when
the barrier originates entirely due to a distortion of the
equilibrium configuration as compared to the intermediate
configuration. This is precisely the situation when the
molecules with a Berry pseudorotation are involved.

6.2 Molecules with nonrigid nonexchange-type transitions
Of all the examples of intramolecular motions of the
nonexchange type considered up to this time, the most
interesting is that involving the hydrazine (N,H4) molecule
[30]. An important consequence of these motions is the
mixing of what are known as stereoisomers [4], although the
geometrical symmetry group of a nonrigid molecule contains
no improper transformations of the molecule as a whole
(similarly to the case of the point group of the molecular
equilibrium configuration).

A characteristic feature of the N>H4 molecule is the
proximity of its equilibrium configuration belonging to the
point group C; = (E, Czy)) [31] to the intermediate molecular
configuration (the left part of Fig. 6). In this intermediate

Figure 6. Intermediate configurations for the stereoisomers of the NoHy
molecule (the z-axis coincides with the straight line connecting the centers
of mass of the equivalent NH> structures).

state the two equivalent NH; structures are isosceles triangles,
with the dihedral angle between them being equal to m/2.
Therefore, each NH; structure can be climbed over a fairly
low potential barrier [32, 33] into an energy-equivalent
position either through reflection o, in the plane passing
through the z-axis parallel to the HH segment (inversion
motion) or through rotation by the angle © about the z-axis
(internal rotation). These four motions (which belong to the
nonexchange type) delocalize the molecule through an
intermediate configuration among eight independent equili-
brium positions. The availability of a molecular stereoisomer-
ism means [4] that there is not a single rotation as a whole that
can make the inverted equilibrium configuration of the
molecule coincide with the initial one. The latter is possible
if the point group contains no improper transformations. The
probability of mixing the stereoisomers of rigid molecules is
exceptionally low, and we can speak of their ‘right’ and ‘left’
modifications whose energy levels coincide. It is easily
comprehended that mere nonrigid motions of the nonex-
change type can mix stereoisomers, since only they alter the
spatial position of the initial configuration. But this is a
necessary condition, while the full answer to the question of
the availability of such a mixing depends on the specific
geometry of motions of nonexchange type.

The noninvariant dynamical group of the N,H4 molecule
is expressed in terms of the geometry of the unstable
intermediate configuration as follows:

Diy = (c2p X €2) N Ca,s (31)
where the direct product of the groups ¢z, = (E, cz(z), a1,072)
describes the symmetry of the motions of the two NH»
structures, while the group C, accounts for the fact that
these structures are identical. The configuration obtained
from the intermediate one through spatial inversion i is
depicted on the right of Fig. 6. Its geometry is used to express
the symmetry of the internal motion of a stereoisomer.
Comparing the two configurations, we easily establish that
i:(szal)Uz(]):(O'lXO’2)U2(2)7 (32)
where the U;k) indicate the rotations of the molecule through
the angle w about the axes k = 1, 2 that run along the bisectors
of the angles between the x- and y-axes, i.e. the group Ds,
takes into account the possibility of stereoisomer mixing. The
element o, = cz(z)az belonging to the exchange type describes
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Figure 7. Energy level classification of the NoH4 molecule in a vibronic state of the 4 type in the group C; (e;, , and e, , are the two components of the
representation E, of the group D3, with n = 3,4 into which, as shown in Table 5, these representations split under reduction of the group Dj; into its

Hamiltonian symmetry subgroup Gg).

a consecutive realization of two motions of nonexchange type
inherent in the NH; structure. Hence mixing takes place over
a fairly low (]?otential barrier. To completely define the
operations U, C), we must know their permutation relations
with the elements of the group Ds;. According to the
condition of commutation between i operation and the
elements of the group Dj;, the operations Uz,(k) commute
with the elements of the group ¢, X ¢z, while their permuta-
tion relations with C* sz are ordinary rotational relations:
CZ(}) U2(1> — U2(2) Cz(}’ .

In the group D3, the symmetry subgroup of the
Hamiltonian of the overall internal coordinate motion can
be written in the form

Gg = (CS X Cs) ANCy, (33)

where c¢s = (E, a1). The group D3, has eight one-dimensional
representations A, and six two-dimensional representations
Ej, while the group Gg has four one-dimensional representa-
tions a; and one two-dimensional representation e [34].
Notice that the group Gg is much broader than the point
group of the molecule, although all the nonrigid motions
belong to the nonexchange type. It is important to emphasize
the fact that in such systems the symmetry group of the
Hamiltonian determines the degeneracy of the levels
(observed in the energy spectrum) and their nuclear statis-

tical weights [7]. In the case at hand we have

6ay, 3ay, 45a3, 36ay, 27e . (34)

The classification of the energy levels made in Ref. [30] is
shown in Fig. 7 for a vibronic state of the A4 type in the group
C,. The following remarks are in order.

(1) When operations of nonexchange type are taken into
account, the symmetry of the rotational motion becomes
broader and is defined by the group D4 which incorporates
rotational transformations of the molecule as a whole that
belong to the group D3, x C;. The extension is associated with
the fact that in the formation of such transformations of the
group D3, x C;not only the element 7 is used but so are other
elements of nonexchange type as well. The behavior with
respect to all such elements must refer to a multiplet, which
leads to modification of the structurein stage (1) (in Section 7.2
this modification is made for a case that technically is
simpler).

(2) Levels of the E5 and Ej4 types split into doublets, since
on reducing the group D3, into the group Gg determining the
degeneracy of the levels and their nuclear statistical weights
these two-dimensional representations are decomposed into
one-dimensional (see Table 5).

(3) The group H, x Hg, where H, = (E, (E x cz)U2<2>)
and Hg = (¢ X ¢2) A Ca, is the rotational subgroup of the
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Table 5. Correlation between the irreducible representations of the
noninvariant group Ds,, which allows for motions of nonexchange type
in the hydrazine (N>H4) molecule, and the irreducible representations of
the symmetry group Gg of the Hamiltonian bearing the responsibility for
its intramolecular motion.

Gy D3y

a Ay, As, ea3
a Az, Ags €13
as Az, A7, €24
ay Ay, Ag, e 4

e Ey, By, Es, Eg

group D3, x C; and it plays only an auxiliary role, since it is
unable to account for all the splittings (improper transforma-
tions correspond to half the nonrigid motions).

(4) The energy level diagram for I’y X I'yjy = B can be
obtained from Fig. 7 by the formal replacements A; < B,
and 4, < B of the representations of the group Dy.

The method of building up the function space and the
operators of the coordinate physical quantities, defined in this
space, can be found in Ref. [30]. Here it should only be noted
that for such operators (the Hamiltonian included) only one
completely symmetric representation a; of the group Gs and a
full three types of transformations belonging to the group D3,
are allowed:

Ay, As, ex3, (35)
where only one component e, 3 of the representation Ej is
admissible (see Table 5). The latter circumstance does not
lead to contradictions, since the components e; 3 and e; 3 of
the representation E3 are mixed only by operations of
nonexchange type, which change some of the elements of the
Hamiltonian symmetry group simultaneously (the symmetry
axis of the point group changes its position from y to x, or vice
versa). It is the noninvariant terms in the Hamiltonian that
split the levels of the E5 and E4 types into doublets (see Fig. 7).
Note that such terms also play a significant role in the passage
to the limit of impermeable barriers for nonrigid intramole-
cular motions.

The emergence of dynamical noninvariant groups in the
description of molecules with nonrigid motions of the
nonexchange type can be explained by the fact that the
geometrical symmetry group of the Hamiltonian in such
systems does not simultaneously ‘look after’ all the
necessary independent equilibrium configurations, since
they are related by noninvariant transformations. As for
the expression ‘symmetry group’ in relation to a dynamical
noninvariant group, the term ‘symmetry’ should be under-
stood here in a broader sense than ‘invariance’. Finally, the
effectiveness of the methods being discussed is well illu-
strated by the example of the hydrazine molecule, which
was used to provide the first description of the effect of
stereoisomer mixing by nonrigid motions. Since the given
effect is possible only if motions of nonexchange type are
present in the system, there is no way in which we can
describe it without using noninvariant groups.

7. Geometrical symmetry groups
of nonrigid molecules
with energy-nonequivalent configurations

For a very large class of molecules the description of the
observed nonrigid motion stems from the necessity to take

into account the mixing of energy-nonequivalent configura-
tions. All such problems can be divided into two groups. The
first group concerns the molecules with transitions between
nonequivalent configurations in a single electronic state. A
typical example is the partially deuterated isotopic form
CH,DOH of the methanol molecule, where the torsion
motion of the distorted methyl group still mixes the three
equilibrium configurations. Two of these are energy-equiva-
lent stereoisomers with the point group C; and correspond to
the case where the D nucleus occupies a position to the left
and right of the COH structure plane, while the third
equilibrium configuration with the point group Cs has its D
nucleus in the COH plane.

The second group deals with problems of describing the
electronic states of a molecule with different isomeric forms
within a unified model. Changes in the isomeric forms of the
molecule caused by alterations in the electronic state are often
encountered, and the classical example here is the formalde-
hyde (H,CO) molecule. It is commonly known (see Ref. [31])
that the equilibrium configuration of this molecule in the
ground electronic state is planar and belongs to the point
group Cy, (the left part of Fig. 8). But in some excited
electronic states the C—O bond does not lie in the plane of
the H»C structure [35], and the point group Cg is realized (the
right part of Fig. 8). Owing to the fairly small displacement
from the plane, inversion motion between the two energy-
equivalent configurations can be observed, with the config-
urations transferring into one another under the molecular
reflection in the yz-plane. A qualitative analysis within the
framework of a unified model of electronic states with
different isomeric forms is necessary, above all, for a
description of the electromagnetic transitions between these
states.

X H, X
H; //\
A
/\ I / ~N

1
- z
y

y

Figure 8. Equilibrium configurations of two isomers of the formaldehyde
(H2CO) molecule (in the nonplanar configuration, the z-axis passes
through the center of mass of the CH> structure and the O nucleus).

7.1 Molecules with transitions between nonequivalent
configurations in a single electronic state

The main idea behind analyzing such systems is that they are
interpreted as distorted systems with energy-equivalent
configurations. For the isotopic form CH,DOH, the
CH;0OH molecule represents the undistorted system, whose
dynamical invariant group (allowing for molecular internal
rotation) coincides with the dynamical noninvariant group
for the form CH,DOH [36].

Following paper [37], we will show the reasonableness of
such an approach by the example of describing the rotational
spectrum of the isotopic form PH>D of the rigid phosphine
molecule. The isotopically symmetric form PH3 is character-
ized by the point group Cs, [31]. Figure 9 illustrates the
classification scheme of the rotational levels of this form for
ey X I'yi, = A). The rotational subgroup D; of the group
Cs, x C; is used to describe the observed level splitting. The
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Figure 9. Classification of the rotational levels of the isotopically
symmetric form PH3 of the phosphine molecule in a completely sym-
metric vibronic state.
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Figure 10. Modification of the rotational level classification caused by the
passage to the isotopically asymmetric form PH,D of the phosphine
molecule.

partition of the rotational function space into the irreducible
representations of D3 and building up of the properly defined
effective operators of physical quantities in this space are
trivial. In particular, only combinations of the components of
angular momentum in the MCS that transform according to
the representation 4, of the D3 group enter into the effective
Hamiltonian.

When we go over to the isotopically asymmetric form
PH,D, let us assume that changes in the qualitative analysis
are independent of the H-to-D mass ratio but are fully
determined now by the presence of two identical nuclei
instead of three. The group Cj, is retained as the dynamical
noninvariant group, while Cg is its Hamiltonian symmetry
subgroup. The latter incorporates reflection in the plane,
which interchanges the position of H nuclei. Then for the
allowed coordinate multiplets of C3, we find

34,,94,, 3E,, 9E; . (36)
The components E; and E; of the E multiplet in expression
(36) correspond to various levels with different statistical
weights, since on reducing the group Cj, into Cg (its
Hamiltonian symmetry subgroup) this two-dimensional
representation is decomposed into two one-dimensional
representations (we encountered a similar situation when
having used noninvariant groups to study the NoH4 mole-
cule). The rotational group Dj also becomes the noninvariant
group, and its representation E determines two levels with
differing energies, with the levels corresponding to the
components E; and E, which are transferred into the
representations 4 and B under the reduction of D3 to C, (its
Hamiltonian symmetry subgroup). Figure 10 demonstrates
the modified classification of the rotational levels of the PH3
molecule (see Fig. 9) for its isotopic form PH,D.

The admissible transformations in the group D; for the
effective rotational Hamiltonian are 4; and E;. It is the
presence of a transformation of the noninvariant type that
distorts the picture of the description corresponding to a
symmetric top with the point group Cs,. A specific building
up shows that the distorted picture is fully equivalent to the
description of a molecule of asymmetric-top type with the

point group Cs. Including the degenerate vibronic states of
the group Cs, in the picture signifies allowing for resonance
interactions within the quasi-degenerate set of these states,
which emerges in the reduction of C3, into Cs. Notice that for
rigid molecules the advantages of a description with the
inclusion of distortion are not really significant. What is
important in such circumstances is that all the description
schemes implicitly use the three-dimensional rotational group
R; in the MCS (which specifies the complete set of basis
vectors |J,k) in the rotational space) as the dynamical
noninvariant group.

Systems similar to the CH,DOH molecule have also been
studied. Among these are the HF —DF dimer [37] and the
isotopic form CH,D —CH:D of the ethane molecule [38]. In
the planar equilibrium configuration of the dimer (HF)a, the
monomers are arranged in an energy-nonequivalent manner
[31]. As a result, the dimer is delocalized onto two indepen-
dent equivalent configurations that differ in monomer
permutation and are symmetrically positioned in the neigh-
borhood of an unstable intermediate configuration with an
energy-equivalent arrangement of the monomers. The sym-
metry of the intermediate configuration corresponds to the
symmetry of internal motion, provided that the nonrigid
transition through this configuration is taken into account.

The most probable are the trans- and cis-transitions [39]
whose intermediate configurations have the symmetry groups
Cy, and Cy,, i.e. two equivalent minima are related through
two transitions belonging to the exchange type. The fact that
there are two different transitions for a single set of minima
does not make it more difficult to analyze the system [11].
When one H nucleus is replaced by a D nucleus, the
equilibrium configurations become nonequivalent and the
internal dynamics present for the symmetric form (HF), grow
distorted. As a consequence, the groups C,; and C,, become
noninvariant.

More interesting, however, is the case of the CH,D—
CH,D isotopic form of the ethane molecule. In describing the
torsion motion of this isotope-substituted molecule one must
take into consideration the fact that the distorted methyl tops
are identical. Here, the extended point group G7; [defined by
expression (26)] of the C,Hg molecule is used as the dynamical
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noninvariant group incorporating the torsion motion opera-
tions. To set apart the Hamiltonian symmetry subgroup Gy
from this group, we allow for the fact that in the noninvariant
group C3, of the methyl top only the reflection in the plane
that interchanges the positions of the H nuclei has an analog
in the identical-nuclei permutation group 747 x . Although
torsion motion delocalizes this plane, the function space and
the operators of physical quantities specified in this space can
be written out for any of its reference positions. The most
appropriate position of this plane is the one in which the D
nuclei of both methyl tops in Fig. 4 are in the yz-plane. Then
we can write down Gy in the form

Gy = (cs x ¢s) NCy, (37)
where ¢g = (E,¢("?)). The group Gy determining the degen-
eracy of the levels and their nuclear statistical weights has four
one-dimensional representations a; and one two-dimensional
representation e:

6ay, 3ay, 45a3, 36ay, 27¢. (38)

Eventually we arrive at a modification of the torsion—
rotational level classification of the ethane (C,Hg) molecule
(see Fig. 5) for its isotopic form CH,D —CH,D (Fig. 11). The
following remarks are in order: (1) the components T; ;. of the
four-dimensional irreducible representation 7; (two one-
dimensional components with the subscripts k = 1,2, and
one two-dimensional with the subscript £ = 3) are determined
by the splitting conditions for these representations in the

|Doo| |D3d><Ci| |G72><Ci| |Doo| |D3d><ci| |G72><Ci|

, 3 Es
Ey x Ay 6T[§_+l),45T£_+2) /
:Al A, \ 27E0) ’
e 6T\, 45T.7)
£ D 277
PR AT | wEiRRAEER 67y 4577
Eyx E, 277" 27EC)
E\xE 6713 375 64" 454D
Ei| X E, 2773
axBNy 277
A< E\N 457 671
3787367
277

l 2777

674", 457"

Figure 11. Modification of the torsion-—rotational level classification
caused by the passage to the isotopically asymmetric form CH,D-
CH:D of the ethane molecule.

Table 6. Correlation between the irreducible representations of the
noninvariant group G7, which allows for torsion motions of nonexchange
type in the CH>D —CH,D isotopic form of the ethane molecule and the
irreducible representations of the symmetry group Gy of the Hamiltonian
of its intramolecular motion.

Gy Gn

a Ar, To1, Tan

a Az, Tr 2, T3

a3 Az, Ti1, Ty

N Ay, Th2, T3 2

e E, T3, T23, T53, Ty 3

reduction of the group Gy, to Gy (Table 6), i.e. each level of
the T; type can, in principle, split into three sublevels; (2) the
real level splittings are described by the noninvariant group
Hg x D3 with the Hamiltonian symmetry subgroup H, x C»,
where C; = (E, C2<X)); (3) no statistical weights for the
representations of the noninvariant group D3, exist, because
in this approximation there is more than one set of such
representations due to the realizations of different point
groups for isolated equilibrium configurations of the
CH,;D—-CH>D molecule. A total of three independent
configurations are possible here: the reference configuration
and the two configurations obtained from it through the
transformations ¢ x ¢7 and ¢ x ¢3. The reference config-
uration has the point group Cj;, while the other two are
stereoisomers with only one symmetry element Cz(” ), where p
stands for the binary axis of the DCCD structure; (4) in the
group Hg x D3, the degeneracy of the levels is completely
removed, and the sublevels due to splitting are denoted by the
components E| and E; of the representation E of the Hg and
Ds groups. These components are determined by the condi-
tions needed for a passage to the symmetric and antisym-
metric representations of the H, and C, groups, and (5) the
Hamiltonian symmetry lowered considerably, but the nuclear
statistical weights of the torsion—rotational levels assume
two values, 78 and 66 (they are obtained by summing the
statistical weights for the multiplets of the group G7,, which
are transferred into a single torsion—rotational level of the
group Hg x Dj3). Naturally, in the limit of an impermeable
torsion barrier the nuclear statistical weights of the stationary
states are transformed into well-known expressions. The
validity of this limiting process is verified by the fact that the
energy levels of the stereoisomers are coincident.

The complete set of the torsion basis vectors, |0) and
| £ 1), is determined by three irreducible representations of
the subgroup Hj of the group Hg. In the latter these basis
vectors realize the following symmetry types:

|O> — A,

i -1-1
V2i

In the upshot we have Table 7 which clearly demonstrates the
division of torsion —rotational basis vectors according to the
types of transformations belonging to the group Hg X Ds.
The torsion part of the operators of physical quantities
specified in this space is built around the coordinate spin
operator e. In its standard definition in the space with the
basis vectors |0) and | & 1), the operator e; is a diagonal
operator with eigenvalues 0 and 41, while the operators
e+ = e] L iep are the raising and lowering operators. Using
the symmetry properties of the torsion basis vectors in the

(39)
|a) =

—>E2.
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Table 7. Division of torsion—rotational basis vectors for the CH,D—
CH,D isotopic form of the methane molecule according to the symmetry
types of the group Hg x Dj (the rotational parts are denoted by the
symmetry types of the group Ds).

H¢ x D3 Basis Hg x D3 Basis Hg x D3 Basis
vectors vectors vectors
Al ><A1 |0>><A1 A] ><A2 ‘0> ><A2 E2><A1 ‘(1>><A1
Al ><E1 |O> ><E1 Al ><E2 ‘0) ><E2 E2 ><E1 ‘ll> ><E1
E1 X Al |S‘> X Al El X A2 ‘Y} X A2 E2 X A2 ‘tl> X Az
E1 X El |S> X El E1 X Ez ‘&‘) X Ez E2 X Eg \a} X E2

group Hg and in relation to the time inversion 7, viz.

T0)=10), T)=|-1), (40)
we find that e; is a r-odd operator belonging to the
representation A4, of the group Hg, and the operators e; and
e, are t-even operators that realize the representation E.
Inasmuch as for three-dimensional space the highest total
order of the product of spin components cannot be larger
than two, altogether there are nine independent self-adjoint
spin operators which are listed in Table 8.

Table 8. Symmetry properties of the complete set of independent spin
operators used in describing torsion motion in the isotopic form CH>D—

CH,D of the ethane molecule ([, ] stands for an anticommutator).

Hg t-even t-odd

A I, e? -

Az - e3

E E] =eL +e_
iEy=e, —e_ iE] = [e3, ep —e_],
E, :e}r—i-ef Ey=—les, ep +e |,

iEy = —e?2 »2
ik = —ei +e”

All the torsion —rotational operators of physical quanti-
ties belong to the identity representation of Gg. The sewing
together of Gy x C; with Hg x Dj yields, within the latter
group, the transformation kinds as follows

AIXAl,AIXEl,Elel,ElXEl (41)
for the operators of physical quantities invariant with respect
to inversion i, and

A2><A1,A2><E1,E2XA1,E2XE1 (42)
for the operators of the quantities that change their signs
when acted upon by i. In particular, according to Eqn (41), the
complete expression for the effective torsion-—rotational
Hamiltonian can be written in the following symbolic form

H= (I, 632, e, +e_, ei +e2,iles, ey —e,]+) x (A1, Er).
(43)

In other words, each term in the Hamiltonian is a combina-
tion of the components J; of angular momentum in the MCS
of symmetry 4; or E; in the group D3, while the coefficients of
the combination depend on the spin operators correlating
with this combination. When we wish to write out the
expression (43) explicitly, we must bear in mind that the
Hamiltonian is a z-even operator. No difficulties also arise in
building up the operators of other physical quantities [38].

Above we have examined the conceptual aspects of
applying symmetry methods to such molecules with nonrigid
internal motions between energy-nonequivalent equilibrium
configurations for which these motions in a certain high-
symmetry form of the molecule become those of the exchange
type and already correspond to transfers between energy-
equivalent configurations, i.e. the description of a real system
is patterned as a distortion of the description of the high-
symmetry system. To this end, the invariant geometrical
group of the high-symmetry problem, the group that allows
for nonrigid motions, is used as a noninvariant group in
describing the distorted system. In particular, the nuclear
statistical weights of the stationary states of the distorted
system can easily be found. The given problem is classical as
regards the usage of symmetry methods, but for systems of
this sort it has been solved for the first time. Its nontrivial
nature is indicated by the simple fact that the nuclear
statistical weights of the stationary states of rigid molecules,
corresponding to nonequivalent equilibrium configurations,
are distinct, generally speaking. Finally, note that the role of a
high-symmetry system is also apparently prominent when the
equations of motion are solved analytically. This is corrobo-
rated by Rebane’s calculations [40] of the binding energies for
different forms of four-particle mesomolecules.

7.2 Joint description of the electronic states

of a molecule with different isomeric forms

The situation where a change in the electronic state of a
molecule is accompanied by an alteration in the molecular
isomeric form is rather common. Developing a unified model
that describes such states is very useful. The point is that even
if the electronic states with distinct isomeric forms remain
practically unmixed due to the large difference in energies,
their analysis within a unified model is needed, for instance, in
order to describe the electromagnetic transitions between
them. Following paper [41], we shall examine the joint
description of two electronic states with distinct isomeric
forms for the formaldehyde (H,CO) molecule. As noted
earlier, the equilibrium configuration of the molecule in the
ground electronic state is planar and belongs to the point
group Gy, = (E, CY, 60 (7)) (the left part of Fig. 8),
while in some of its excited electronic state the C—O bond
does not lie in the plane of the H»C structure, so that the point
group Cs = (E, 6 *9)) is realized (the right part of Fig. 8). Due
to the relatively small deviation from planarity, the inversion
motion is executed between two energy-equivalent configura-
tions, with the configurations transferred into one another
under the reflection of the molecule in the yz-plane.

The analysis of isolated isomers is trivial, and here we
briefly give the results needed in our future exposition. For a
rigid nonplanar isomer, the coordinate multiplets 14’ and
34" are admissible multiplets, and all the rotational levels in
an arbitrary vibronic state are unsplit inversion doublets. To
allow for inversion motion, let us introduce the extended
point group G4 = Cs x Cl, where C§ = (E,c*?). Inversion
motion belongs to the nonexchange type, with the result that
G4 is a noninvariant group. The allowed coordinate multi-
plets of this group are given in the form

14!, 14., 34!, 34!, (44)

where the subscripts s and a indicate the symmetric and
antisymmetric representations of C¢, respectively.
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When an inversion transfer is taken into account, the
symmetry of the rotational motion broadens and is specified
by the group D, = (E, Cz(z), Cz(y), Cz(x)) which incorporates
the rotational transformations of the molecule as a whole
from the group G4 x C;. The extension is needed because in
the formation of such transformations of the group G4 x C;
not only the element 7 is used but also the element ¢(*?) of
nonexchange type. The behavior with respect to these
elements must refer to the multiplet, thus leading to a natural
modification of the structure in stage (1):

(qult)csxchc,- = (F'et) g X (I'vib) ¢y X (Frot—inV)CsquC, )
-
(45)

where the rotational —inversion representations of the group
Cs x C§ x C; follow from the rotational representations of
the group D; via the relationship of the given groups through
their common subgroup D,. According to the classification,
the inversion doublets are now split.

The point group of a planar isomer can be represented in
the form Cs x Cg, and the allowed coordinate multiplets are
14! and 34". Representations of the ‘a’ type are not realized
asmultiplets due to the planarity of the isomer. For this reason
there can be no inversion level doubling. This is a particular
case of the general statement formulated in Section 5.

To describe two electronic states with distinct isomeric
forms in a combined manner, we shall introduce the
dynamical noninvariant group Gj; x Cg, where G, =
¢3y X cs. The c¢3, group specifies the transformations of the
CHj; structure, with the c3-axis passing through the center of
mass of this structure parallel to the y-axis, while one of the
symmetry planes coincides with the yz-plane. Here, the fact
that the angle between the CH; planes in the planar and
nonplanar isomeric forms differs substantially from 27/3 is
unimportant, since such a distinction can be interpreted, for
instance, as a distortion of the nonplanar form. Naturally,
this distortion is also determined by the difference in bond
lengths in the planar and nonplanar isomers. The only thing
that is important here is that qualitatively the group cs,
correctly conveys the picture of transfers between the three
configurations considered (two of which are energy-equiva-
lent) and, as a consequence, determines the complete set of
basis vectors of the function space used in the description of
these transfers. The cs = (E, o (7)) group, which specifies the
transformations of the O structure, makes it possible for the
group G, to describe the reflection of the molecule as a whole
in the yz-plane with the aid of the element ¢ (??) x ¢ (#2). Only
the identity representation of the group cg has physical
meaning, and this trivial behavior will be discarded when we
write out the symmetry types of the group G,. The group c3,
can be represented as c3 A cg, where cg = (E, GU’Z)), which is
convenient when the planarity of the CH> structure is taken
into account. Indeed, let us assume that the molecule is
localized in the yz-plane. Then the planarity of the CH»
structure leads to a situation in which only one out of two
representations of the group cg is physically realized. The
delocalization of the initial configuration is described by the
representations of the cyclic group c3, and the prohibition of
the asymmetric representation of the group cg makes the
representation A, of the ¢3, group in the multiplets of the
group G» to be forbidden, too. As a result, the allowed
multiplets of the noninvariant G|, x Cg group have the form

1(A; x A"), 3(A1 x A"), (Ex A"), 3(Ex A"). (46)

3(Eyxam))

3(E2 % Ar/)(+)

1(Ey x A

1(Ey x A")™)

Eix A" (+)
B, 3(EyxA")

Csx Cgx G

3(A1 XA//)(+)

Figure 12. Energy level classification of the formaldehyde (H,CO)
molecule with a joint description of two electronic states with different
isomeric forms.

It should be emphasized that despite equal nuclear statistical
weights, the components of the degenerate multiplets in
Eqn (46) determine different levels.

If we allow for nonrigid motions between the three
equilibrium configurations, the rotational symmetry is
specified by the subgroup D, of rotations of the molecule as
a whole in the group G» X Cs x C;. The pattern of the
configuration splittings of the rotational levels of the group
D; is shown in Fig. 12. In addition, we depict in this figure the
behavior of the levels when an isolated description of the
isomers is introduced (the passage from the group
G2 x Cs x C; to the group Cs x C§ x C;). Notice that the
correspondence between the representations of the
Cs x C¢ x C; group and the rotational representations of
D, depends on the type of their vibronic states in the point
group (Cs or Cy,).

In building up the function space of configuration—
rotational motion, we shall use the basis functions of the
group D,, which describe the rotation of a nonrigid molecule
as a whole, and the basis configuration functions of the group
¢35, Which describe nonrigid transitions. The latter functions,
in view of the planarity of the CH; structure, are built only
around the unit vectors |0) and | & 1), which are defined by
the three irreducible representations of the group ¢;. As a
result, the symmetry properties of the configuration basis
vectors in the group ¢3, and with respect to time reversion are
given by the expressions (39) and (40). Here, there is no basis
vector of the A4, type, in full agreement with the classification.
Next, from the correlation of the representations of the D,
and G, x Cs x C; groups follows Table 9 which exhibits the
division of the configuration—rotational basis vectors
according to the irreducible representations of the
Gy X Cs x Cj group.

The effective operators of physical quantities that describe
the configuration —rotational motion of the H,CO molecule
belong to the coordinate Young diagram [2] of the group /7.
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Table 9. Division of configuration—rotational basis vectors according to
the symmetry types of the group G, x Cs x C; for the formaldehyde
molecule with a joint description of two electronic states with distinct
isomeric forms (the rotational parts are denoted by the symmetry types of
the group D5).

Gip x Csg x C; Basis vectors | G, x Cs x C; Basis vectors
(4; x 4" [0) x 4 (4 x 41 [0y x B
(Ey x AN |s) x A (Ey x AN s) x By
(Ey x A" a) x A (Ey x A")® @) x B
(A x A" [0) x B, (A x 4™ [0) x Bs
(E; x 4" |s) x B, (E; x 4" |s) x Bs
(Ey x 4" la) x B, (Ey x 4" |a) x Bs

As a consequence, the following transformation kinds
belonging to the group Gj» x Cs are allowed for these
operators:

(I'x A'), T =A, Ay, Ey, E. (47)

The configuration part is formed on the basis of the
coordinate spin operator e. The symmetry properties of the
complete set of independent spin operators are similar to
those listed in Table 7 to within the replacement of the Hg
group with the ¢z, group isomorphic to it. It is interesting that
there is a spin operator of the A4, type, although it is
impossible to build up the similar spin function. This,
however, does not lead to a contradiction, since e3|4;) = 0.

The most interesting effective operator is that of the
electric dipole moment. If, in addition to Eqn (47), we shall
allow for the fact that this operator changes sign when acted
upon by the inversion operation i, the complete expression for
the operator can be written in the symbolic form

Het = (Al,El) XB] +(A2,E2) XB3. (48)

In other words, each term of the electric dipole moment is a
combination of the rotational symmetry operators B (or Bs)
in the group D,, while the parameters in front of this
combination are linear functions of the spin symmetry
operators A, E, (or A, E») in the group c¢3, (the spin
operators must correlate with this combination). Next we
allow for the fact that the component p, of the electric dipole
moment along the a-axis of the LCS can be written as follows

tty = 2i(d? + dO T+ AT + ), (49)
where 4, ; are the direction cosines of the MCS with respect to
the LCS, i.e. the rotational part of expression (48) contains, in
addition to the components J; in the MCS, similar compo-
nents of the A, vectors. We can easily rewrite equation (48)
with the explicitly specified direction cosines:

ty = Zoz[(A1, E1) X A+ (A2, E2) X B
—l—/‘LW,[(A],E]) X By + (Az,Ez) X B]]

+ Zox[(A1, E1) X By + (A2, E2) x A] . (50)

Here, the rotational parts in the form of irreducible
representations of the group D, contain only combinations
of the components of angular momentum. Below we shall
write out the specific expression for terms not related with the
sufficiently weak rotational distortion of the molecule:

fy = 2 [dVT+dPed +d ey +e ) +dP(e? +e?)]
+ Ao [dO) (e —e2) +d O (e2 — e2)], (51)

where the d®) are the real-valued spectroscopic constants.
Since the electric dipole moment is invariant with respect to
the T operation, equation (51) contains no #-odd spin
operators.

In the above analysis we considered only one vibronic
state for each individual isomeric form. However, our
treatment can easily be extended to, say, a set of such states
formed, for instance, by a certain set of vibrational excitations
in each electronic state. To do this, there is a need to introduce
(in addition to the group c3,) the group ¢y, for which the
number of irreducible representations (the number of excita-
tions) taken into account is related to the number of vibronic
states considered. Besides the formaldehyde molecule, such a
description of the effect of modifying the isomeric form under
changes of the electronic state has been given for the ethylene
molecule [42, 43]. As is well known (see the monograph [25]),
the equilibrium configuration of the ethylene molecule in the
ground electronic state is planar and belongs to the point
group Dj,. However, in some excited electronic states the
planes of two CH; structures are orthogonal, and the point
group Dy, is realized [6]. What is important here is that,
notwithstanding the strong hindering [44], we must also allow
for torsion motions inside the isomers, because the geometry
of the problem makes it impossible to resolve these motions
from the nonrigid motions between the isomers, which,
incidentally, are also related to the torsion type. This leads
to the emergence of a four-dimensional torsion space which is
constructed as a segment of a standard five-dimensional
space.

In closing it must be stressed that the mathematical
apparatus of the theory of dynamical noninvariant groups,
used within the concept of a symmetry-group chain, is
extremely flexible. For instance, in the formaldehyde mole-
cule, the transfer between two isomeric forms cannot be
described at all by symmetry transformations in the tradi-
tional sense of the word. Here, the difficulties also stem from
the fact that inside a nonplanar form we must take into
consideration the inversion motion, whereas inside a planar
form such a motion is impossible in principle.

8. Some typical mistakes
in using symmetry properties

Let us discuss some of the widespread qualitative mistakes
made in describing intramolecular dynamics and related to
the incorrect interpretation of its symmetry properties. We
begin with the often ignored fact that coordinate degeneracies
caused by the intrinsic geometrical symmetry group of the
Hamiltonian do not lead to observable degeneracy of the
energy levels. In particular, any level of a rigid molecule (an
electron —vibrational —rotational level), relating to a degen-
erate irreducible representation of the point group associated
with the molecule, corresponds to only one physically
observable state. This very strange (at first glance) statement
has a purely quantum justification. The matter is that to each
invariant transformation of the geometrical group an
identical-nuclei permutation is assigned (see Sections 3 and
6) and, as a result, the spin—coordinate wave function must
satisfy the fundamental symmetry requirements for the
permutation of such nuclei (i.e. be invariant or change sign
under permutations depending on whether the nuclei are
bosons or fermions). Here it occurs that all distinct coordi-
nate wave functions belonging to a single irreducible
representation of the Hamiltonian geometrical symmetry
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group are incorporated into a single regular spin—coordinate
function [5]°.

This leads us to a very important corollary. But before we
shall formulate this corollary, let us examine a purely model
problem concerning the changes in the rigid molecule
spectrum on distortions of the molecular internal dynamics,
distortions accompanied by symmetry breaking (for example,
the point group is reduced from 7, to Cs,). Here we assume
that the distortion is so weak that it has almost no effect on
the position of the levels revealing themselves in the spectrum.
However, even a weak distortion partially removes the
coordinate degeneracies, so that instead, say, of a three-fold
degenerate level belonging to the group 7T, there emerge two
levels with almost equal energies: a single two-fold degenerate
level and a single nondegenerate level, both belonging to the
group Cj,, i.e. the number of different physically observable
states changes abruptly !, with the result that a number of
characteristics governing the internal dynamics of the
molecules also change abruptly (including such an integral
characteristic as the partition function [5]).

Therefore, generally speaking, it is a mistake to go over
from a description with a lower symmetry to one with a higher
symmetry by imposing additional constraints on the para-
meters of the system in the former case. A passage of this type
can be made only for the slowly varying characteristics of the
description, such as the position of the molecular energy levels
(with the exception of cases where singularities emerge in
passing from one description to another; a similar case is
examined below), but not the intensities of transitions
between the levels, which change abruptly already.

We will now show how important it is to correctly take
into account the alterations in the geometrical symmetry
group, caused by changes in the system’s excitation energy.
A simple and yet topical example is the description of the
water (H,O) molecule. The equilibrium configuration of this
molecule is an isosceles triangle (the oxygen nucleus is at the
vertex singled out) and corresponds to the point group Ca,.
As long as we consider this molecule rigid, no qualitative
problems emerge. However, the motion with a large ampli-
tude is executed in such a molecule, the motion that links two
energy-equivalent equilibrium configurations and proceeds
through a potential barrier whose top corresponds to an
intermediate linear configuration. Although the barrier is
fairly high (30 kcal mol~! [45]), passings over it must be taken
into account [14] in describing the modern precision data on
the spectrum of the water molecule. However, when we
attempt to write out in the BO approximation the model
Cy,-symmetry equations which explicitly allow for nonrigid
motion, and then to solve these equations either analytically
or numerically, we are confronted with the problem of a
singularity emerging in the centrifugal energy of the rotation
of the molecule as a whole [46]. Technically, the reason for
this is a vanishing of the moment of inertia with respect to the
molecular axis in the intermediate configuration. Naturally,
the energy of such a system cannot become infinite. The
rather serious mistake is made when all changes in the
geometrical symmetry group, caused by allowance for the

9 What stands apart here are the linear molecules, for which the point
groups (Cw, Or Do) have no degenerate representations for the complete
coordinate electron—vibrational —rotational wave function due to the
existing homomorphism of the point group onto the identical-nuclei
permutation group (see Section 5).

101t can be said that the effectiveness of using coordinate wave functions to
form physically observable states grows as the symmetry lowers.

nonrigid transition, have been ignored. If for a given
excitation energy this transition is essential for an adequate
description of the internal molecular dynamics (this depends
on the accuracy of the experimental data as well), then the
correct geometrical symmetry group is the intermediate-
configuration point group D, incorporating the group C»,
as a subgroup, i.e. in this problem there are no gradual
changes even in the positions of the energy levels, when we
pass to a description with a higher symmetry.

Finally, the correct choice of the symmetry properties of
motion between independent equilibrium configurations is
also highly important. The point is that actually, for a given
choice of such configurations, this motion can be executed in
different ways. To clarify the problem we turn to the classical
example of the methanol (CH30H) molecule which clearly
exhibits torsion motion of the methyl group CH3 between
three energy-equivalent configurations across a potential
barrier that is about 1.1-kcal mol~! high [44]. The presence
of such a motion is entirely due to the fact that in its
equilibrium configuration the COH structure is nonlinear,
rather than occupying the maximum symmetric linear
position along the triad axis of the methyl group CHs.
Hence, the point group decreases from the maximum possible
group Cj3, to the actually observed group Cs[31]. To allow for
torsion motion, the extended point group Gy = ¢3, X ¢s 18
introduced [11], where the groups ¢3, and cg are determined by
the geometries of the CH3 and COH structures. The operation
of rotation about the triad axis of the group cs,, which
specifies the rotation of the CHj structure with respect to the
COH structure, does not present the rotation of the molecule
as a whole and is only defined in the torsion space. As a result,
this leads to a relatively small number of possible torsion
contributions to the effective operators of physical quantities
(the effective Hamiltonian included).

This operation is also often defined in the rotational space
of the molecule [47, 48]. Here, the problem of torsion
tunnelling between three equivalent configurations remains,
but the number of possible torsion contributions grows,
which may improve the quantitative description of precise
experimental data. However, an analysis of the symmetry of
the motions has shown (see Refs [11, 49]) that it is correct to
believe that the given operation can be defined in the
rotational subspace if the torsion motion is executed through
the intermediate configuration with the maximum possible
point group Cj,. Since the potential barrier for such a torsion
motion is fairly high (as noted earlier, a chemically similar
barrier for the linearization of the water-molecule configura-
tion is about 30-kcal mol~! high), at least for the lowest
torsion states this procedure of extending the number of
torsion contributions to the effective operators of physical
quantities is strictly formal and all the additional contribu-
tions have no physical meaning. It is useful to note here that
this procedure is based on the use of the CNPI group. But this
group is too ‘poor’ to geometrically distinguish between the
various types of nonrigid motions for a single set of
equilibrium configurations. For instance, in the methanol
molecule two possible geometries of a torsion motion merge
in this group, since in both geometries the symmetry
transformations correspond to the same permutations of
identical nuclei!'. This could be the reason for the appear-

'l This situation is quite typical. For instance, it also emerges in the
description of torsion motions of trans- and cis-type in the (HF), dimer

(1.
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ance of the description with an extended number of torsion
contributions.

9. Conclusions

Thus, a molecule comprises a multiparticle system with
collective, geometrically structured internal coordinate
motions. As a result, in a given bound electronic state, its
internal dynamics is characterized by a geometrical group
that is the dynamical group of the problem on the discrete
levels of the molecule, where only contributions related to
nuclear and electron spins are ignored in the Hamiltonian.
Unfortunately, there is still no algorithm for obtaining this
group from the rigorous equations of coordinate motion. An
indication of such a behavior of the quantum microsystem is
the presence of a rotational spectrum that is related to the
rotation of the emerging dynamical system as a whole. In this
respect a molecule differs dramatically from an atom. Since
both the analytical and numerical methods of describing the
internal coordinate motion in a molecule are based on
perturbation theory, it is imperative to ensure that the
qualitative properties of rigorous dynamics are ‘implanted’
in the approximate models.

Hence there emerges the problem of finding the geome-
trical group by empirical means. For rigid molecules in
nondegenerate electronic states, this group is the point
group of their single equilibrium configuration. Here, the
symmetry of this configuration is an elementary consequence
of the symmetry of the internal dynamics (but not the other
way around), and only in the above simple case do these two
symmetries coincide. It should be emphasized that, actually,
to describe intramolecular motion by perturbation methods,
one must know not only the geometrical symmetry group but
also to solve the problem of the symmetry properties in the
given group for the basis vectors of the function space of the
types of motion considered and the operators of physical
quantities specified in this space (the Hamiltonian included).
And again, for rigid molecules the answer is well known.
Therefore we can even pay no serious attention to the physical
meaning of the concept of applying symmetry methods.

The situation changes radically when we turn to nonrigid
molecules. First, the geometrical symmetry of the nonrigid
molecule dynamics is not determined by the point groups of
the molecular independent equilibrium configuration, which
may even be nonequivalent, and can only incorporate them as
subgroups. Hence, in the general case there arises a markedly
nontrivial problem of finding such a symmetry, and rather
often the groups specifying this symmetry have not even been
tabulated. Another very complicated (from the standpoint of
physics) problem is that of resolving different types of motion
within the context of a newly built up geometrical group. For
this purpose we must point to the procedure of forming the
function subspaces needed for describing separate types of
motion on the basis of the irreducible representations of this
group. These factors stress the antecedence of symmetry
methods in analyzing the internal coordinate motions of
nonrigid molecules.

Estimating the results of applying symmetry methods to
the description of nonrigid motions in specific molecules, I
would like to note the following. Although the review
considers a fairly broad range of applications of symmetry
methods, the discussed types of nonrigid motions are only a
small segment of the enormous variety of such motions. It is
in view of the existence of this variety that we cannot even

imagine a general approach to employing symmetry methods
for nonrigid molecules. I believe that further development in
this field of research will be in the direction of expanding the
range of applicability of these methods to separate classes of
molecules with definite types of nonrigid motions. More than
that, I have almost entirely ignored the very interesting and
rich segment of phenomena that deals with coordinate
degeneracy of electronic states. What I mean are the
corollaries of the Jahn-—Teller effect, whose description
constitutes a serious problem even in the simplest case of
rigid molecules [15]. Nevertheless, the significance of the
newly obtained results allows us to optimistically look at the
outcome in the development of the qualitative quantum
dynamics of molecules. We must also bear in mind that the
present research is a necessary stage in building an adequate
theory of intramolecular motions.
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