
Abstract. Ultrafast-optics applications of nonlinear-optical
processes in gas-filled hollow fibers are briefly reviewed. The
main physical processes behind the use of hollow fibers for
efficient generation of unprecedentedly short light pulses, en-
hanced short-wavelength generation, and improvement of the
sensitivity of nonlinear-optical gas-phase analysis are consid-
ered. These processes include self- and cross-phase modulation,
coherent four-wave mixing, high-order harmonic generation,
and stimulated Raman scattering. The methods to generate
extremely short pulses, including few-cycle field waveforms,
and to control such pulses are discussed.

1. Introduction

Modern laser physics has approached the femtosecond
borderline, and a breakthrough to the domain of attosecond
pulses may be expected in the near future. Sub-10-fs light
pulses have already become a routine tool of laser experi-
ments [1 ± 4] employed for high-temporal-resolution spectro-
scopy [5, 6] and generation of radiation within a broad
spectral range, including the water window [7].

Sub-5-fs light pulses produced by different methods in
recent years [8 ± 10] are a unique tool for studying a broad
class of physical, chemical, and biological processes,
allowing an unprecedentedly high temporal resolution
corresponding to one or two optical cycles to be achieved.
The synthesis of pulses with a duration shorter than 4 fs
through the generation of multiple Stokes and anti-Stokes
sidebands in a Raman-active gas [11] and the experimental
demonstration of the possibility of generating 250-as pulses
(1 as � 10ÿ18 s) by phase-locking high-order optical harmo-
nics [12] are among the most impressive recent achieve-
ments.
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Many prominent results in nonlinear and ultrafast optics
in the past few years have resulted from the use of gas-filled
hollow-core dielectric waveguides. In particular, self-phase
modulation (SPM) of laser pulses in such waveguides allowed
the authors of Refs [8, 9] to produce light pulses as short as
4.5 fs. Hollow fibers play an important role in the synthesis of
ultrashort pulses throughmultiple stimulated Raman scatter-
ing [11, 13 ± 16].

Since the optical breakdown threshold for a gas filling the
fiber is typically much higher than breakdown thresholds for
conventional optical fibers, hollow fibers permit sufficiently
powerful light pulses as short as a few cycles of optical field to
be produced. The authors of Refs [8, 9], in particular, have
employed hollow fibers to generate light pulses with dura-
tions corresponding to several cycles of optical field and
energies up to several tens of microjoules. The method of
laser-pulse compression proposed and implemented in
Refs [8, 9] is currently widely used in femtosecond laser
systems [3].

Thus, the guided-wave optics of ultrashort light pulses,
which is closely related, as mentioned above, to gas-filled
hollow fibers, is a new rapidly growing and exciting area of
physics. Advances in this field offer new approaches to the
generation of attosecond pulses, stimulating the development
of attosecond science [4, 12, 17, 18], giving a new impetus to
optical metrological applications of ultrashort pulses [19 ± 21]
and investigation of ultrafast processes in matter [22], and
suggesting new approaches in the coherent control of
quantum systems in physics, chemistry, and biology [23 ± 28].

The considerable progress achieved in this area of
research in recent years, making it possible to produce light
pulses of extremely short durations and allowing the para-
meters of ultrashort pulses to be controlled in an efficient
way, necessitates a systematic review of the most significant
theoretical and experimental results in this field. Such an
analysis is the main goal of this paper.

This review is organized in the following way. Section 2
briefly overviews applications of gas-filled hollow-fibers in
nonlinear optics. A historical perspective is given on the main
results obtained in nonlinear and ultrafast optics resulting
from the use of hollow fibers.

Section 3 is devoted to the basic physical aspects of
frequency conversion and formation of extremely short
pulses in gas-filled hollow fibers. We will discuss the main
physical processes involved in the formation and propagation
of ultrashort light pulses in hollow fibers that provide specific
knobs to control parameters of ultrashort pulses by means of
nonlinear optics. The general physical principles of ultra-
short-pulse synthesis from phase-locked equidistant spectral
components resulting from high-order harmonic generation
or multiple stimulated Raman scattering will be also
considered. In Section 4, we will analyze self-phase modula-
tion of a short laser pulse in a lossy gas-filled fiber.

Section 5 is devoted to the physical processes behind the
possibility of producing ultrashort pulses with controlled
parameters. Equations for third-harmonic generation
(THG) in a hollow fiber including self- and cross-phase
modulation (XPM) processes will be analyzed. The results
of experimental studies devoted to third-harmonic and
difference-frequency generation (DFG) in gas-filled hollow
fibers are discussed in Section 6. These experimental data
demonstrate the possibility of using hollow fibers for
improving the sensitivity of nonlinear-optical methods of
gas-phase analysis. Effects related to higher order waveguide

modes will be discussed. In Section 7, we consider high-order
harmonic generation in gas-filled hollow fibers. It will be
shown that, due to the self-phase modulation of the pump
pulse in a hollow fiber filled with a weakly ionizing gas, the
phase mismatch may vary within the pump pulse, lowering
the efficiency of harmonic generation and decreasing its
sensitivity to the gas pressure. Section 8 then demonstrates
that the mismatch between the group velocities of the pump
pulse and the probe pulse may limit the minimum duration of
ultrashort pulses synthesized from multiple Stokes and anti-
Stokes sidebands produced in a Raman-active medium pre-
excited with a short laser pulse. The pump and probe pulses
can be group-velocity-matched in a gas-filled hollow fiber
with an appropriate choice of the gas pressure, the inner fiber
diameter, as well as waveguide modes of the pump and probe
beams. Such an approach allows the number of Stokes and
anti-Stokes sidebands generated in a laser-pre-excited
Raman-active medium to be considerably increased, thus
opening the possibility to noticeably reduce the duration of
light pulses synthesized with the use of this technique. The
idea of applying coherent-control methods to improve the
efficiency of multiple Raman sideband generation is dis-
cussed.

In Section 9, we consider hollow waveguides with a
structured periodic cladding, which allow the optical losses
characteristic of hollow-waveguide modes to be substantially
reduced. In Section 10, we will demonstrate that a combina-
tion of a diffraction grating and a mirror gives a compact
optical element integrating a hollow waveguide and a
photonic band-gap (PBG) structure, which offers new
solutions to the problems of nonlinear and ultrafast optics.
We will investigate transmission spectra of hollow planar
photonic band-gap waveguides and provide a qualitative
analysis of these waveguides using the coupled-mode theory.
The physical factors enhancing nonlinear-optical processes in
such hollow waveguides will be also discussed. The main
results of our review will be briefly summarized in the
Conclusion (Section 11).

2. Hollow fibers in the nonlinear optics
of ultrashort pulses

The rapid technological and conceptual progress in femtose-
cond laser physics, including the development of different
types ofmultilayer and chirped dielectricmirrors, has resulted
in the creation of all-solid-state sufficiently compact laser
systems capable of generating sub-10-fs light pulses [1 ± 4].
Still, nonlinear-optical processes in gas media are one of the
main directions in the ultrafast optics of high-power laser
pulses, opening exciting avenues toward the attosecond range
of pulse durations.

Nonlinear-optical phenomena occurring in gas media in
the field of high-power short laser pulses have been exten-
sively investigated for a long period of time (e.g., see classical
monographs [29, 30]). Impressive progress has been achieved
in high-order harmonic generation [31 ± 37] and the produc-
tion of coherent short-wavelength radiation (with a wave-
length less than 2.4 nm [7]).

The predominant concept of nonlinear-optical experi-
ments in rare-gas jets has involved until recently focused
laser beams, ensuring sufficiently high power density of laser
radiation. Limitations on the efficiency of harmonic genera-
tion with such an approach are associated with the short
interaction lengths characteristic of this beam geometry.
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A way to increase the length of nonlinear-optical interac-
tion in a gas medium has been proposed by Miles et al. [38]
back in 1977, when the possibility of a substantial (by three
orders of magnitude) increase in the efficiency of nonlinear-
optical interaction in a hollow dielectric fiber was demon-
strated for a four-wave mixing process of coherent anti-
Stokes Raman scattering. These experiments, in fact, opened
a nonlinear-optical chapter in the history of hollow fibers.

Important theoretical aspects of four-wave mixing in gas-
filled hollow fibers have been studied by Arkhipkin et al. [39].
The authors of Refs [8, 9] have shown that the use of a hollow
optical fiber permits efficient spectral broadening of an
ultrashort laser pulse due to self-phase modulation. In
particular, it was demonstrated that 20-fs laser pulses
propagating through a hollow fiber filled with a rare gas
experience SPM-induced spectral broadening that is suffi-
cient for subsequent pulse compression down to 4.5 fs.

Due to the possibility of using high-power laser pulses and
large propagation lengths, the hollow-fiber technique also
offers much promise for optical frequency conversion
through coherent wave mixing and harmonic generation.
Durfee et al. [40] have demonstrated that the use of hollow
fibers provides an opportunity to achieve a high efficiency of
optical frequency conversion in third-harmonic generation
(up to 0.2%) and parametric four-wave mixing (up to 13%).

The authors of Ref. [40] also demonstrated that the phase
mismatch related to waveguide dispersion in hollow optical
fibers can compensate for the phase mismatch due to gas
dispersion. The efficiency of nonlinear-optical interactions
can be substantially improved under these conditions, open-
ing the way to increase the energy of high-order harmonics
and to control parameters of harmonics by varying the
parameters of pump radiation [41, 42].

Subsequent intense investigations of nonlinear-optical
wave-mixing processes in hollow fibers [43 ± 47] have demon-
strated that, due to the compensation of phase mismatch in
these fibers, the efficiency of frequency conversion in high-
order (up to the 45th order) harmonic generation can be
increased by a factor of 100 ± 1000 as compared with the
efficiencies of frequency conversion attainable in experiments
with gas jets [31 ± 35]. Hollow fibers can also be used, as
shown by experiments [47, 48], to improve the sensitivity and
to expand the capabilities of gas-phase analysis based on
coherent four-wave-mixing spectroscopy.

Theoretical analysis of Ref. [49] has revealed the possibi-
lities of using sequential high-order harmonic generation in
hollow fibers to increase the energy of harmonic radiation as
compared to the case of direct harmonic generation. A gas-
filled hollow fiber can be employed under these conditions as
an efficient multifrequency source of coherent short-wave-
length radiation.

Hollow fibers permit the pump and the signal generated
through a frequency-nondegenerate nonlinear-optical pro-
cess to be phase-matched. With a careful choice of the
parameters of a hollow fiber, the gas pressure, and excitation
of appropriate waveguide modes, the phase mismatch related
to the gas dispersion can be compensated for by the
waveguide component of the phase mismatch [40 ± 42].
When these conditions are satisfied, the energy of the
nonlinear signal can be considerably increased by using
longer hollow fibers.

Parameters of short pulses of short-wavelength radiation
generated through nonlinear-optical interactions in gas-filled
hollow fibers can be controlled due to cross-phase modula-

tion [41, 42]. This idea was implemented by Durfee et al. [50],
who employed cross-phase modulation in parametric four-
wave mixing in a gas-filled hollow fiber to achieve a high
efficiency of frequency up-conversion with simultaneous
pulse compression. Using 35-fs pulses of Ti:sapphire-laser
radiation as a pump, Durfee et al. [50] demonstrated efficient
generation of 8-fs pulses of 270-nm radiation upon the
compensation of the XPM-induced chirp.

Thus, nonlinear-optical interactions of short pulses in
hollow fibers suggest new ways of creating sources of
ultrashort pulses in the UV range. Such sources would be
useful for many practical applications, including high-
temporal-resolution spectroscopy of atomic and molecular
systems, investigation of ultrafast processes in solids, as well
as medical and biological applications. In the following
section, we will discuss in greater detail the basic physical
processes allowing gas-filled hollow fibers to be used for
achieving high efficiencies of frequency conversion and
generating ultrashort light pulses with controlled parameters.

3. General physical aspects of the formation
of ultrashort light pulses in hollow fibers

This section will be devoted to the analysis of general physical
aspects of frequency conversion and ultrashort-pulse genera-
tion in gas-filled hollow fibers. We will briefly consider the
basic physical processes contributing to the formation and
propagation of ultrashort light pulses in hollow fibers and
allowing different regimes of nonlinear-optical control of
ultrashort pulses to be implemented. We will also discuss the
basic physical principles of the synthesis of ultrashort pulses
from phase-locked equidistant spectral components arising as
a result of high-order harmonic generation or multiple
stimulated Raman scattering.

3.1 The basic physical processes
The basic physical processes behind the formation and
propagation of ultrashort light pulses with controlled para-
meters in hollow fibers include effects related to gas disper-
sion and dispersion of waveguide modes, self- and cross-
phase modulation processes, sum- and difference-frequency
generation due to multiwave mixing, high-order harmonic
generation, stimulated Raman scattering, as well as processes
related to the ionization of the gas filling the fiber.

In the regime of strong spectral broadening, modulation
instabilities and shock-wave formation should also be taken
into consideration. These effects distort the spectrum and the
waveform of a short light pulse propagating through a fiber.
However, in the first-order approximation, such effects can
often be ignored. Each of the above-mentioned processes is
examined in a more detailed way below.

3.1.1 Dispersion effects.Dispersion effects play the key role in
the formation of ultrashort pulses. Generally, the dispersion
frequency dependence of the refractive index of the gas filling
the fiber leads to the distortion and spreading of light pulses.
Dispersion effects also limit the efficiency of nonlinear-
optical interactions, as they give rise to phase and group-
velocity mismatches of light pulses.

Dispersion effects can be qualitatively understood in
terms of the expansion of the wave number k as a power
series in the frequency around the central frequency of the
pulse o0 (obviously, such an approach may encounter
difficulties in the case of light pulses as short as several field
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cycles):

k�o� � k0 � 1

u
�oÿ o0� � 1

2
k2�oÿ o0�2 � . . . ; �1�

where k0 � k�o0�, u � �qo=qk�
��
o0

is the group velocity of the
pulse, and k2 � �q2k=qo2���o0

is the group-velocity dispersion.
The first term in expansion (1) describes effects related to the
frequency dependence of the phase velocity of radiation in a
medium, including phase mismatches in nonlinear-optical
interactions. The second term in Eqn (1) results in group-
delay effects in linear and nonlinear-optical processes. The
third term is responsible for group-velocity dispersion, which
is especially important for ultrashort light pulses.

This term describes the spreading and compression of
short pulses. For media where we can restrict our analysis to
the terms up to the second order in the expansion of
dispersion relation (1), the complex amplitude of the pulse
at the output of the medium E�t� is related to the complex
amplitude of the input pulseE0�t� by the following expression
[51]:

E �t� � exp �ÿik0z�
�2pik2z�1=2

exp
i�tÿ z=u�2

2k2z

�
�1
ÿ1

E0�t� exp
�

ix 2

2k2z
ÿ iZx
k2z

�
dx : �2�

Higher order dispersion effects distort the waveforms of light
pulses, which often becomes a serious limiting factor in short-
pulse formation and in ultrafast optics in general.

One of the main advantages of hollow fibers, which is
extensively employed for the formation of ultrashort pulses
and the enhancement of nonlinear-optical interactions of
such pulses, is associated with the possibility of using the
dispersion of guided modes to compensate for the gas
dispersion [40 ± 43]. The relation between the material and
waveguide dispersion components can be tuned within a
rather broad range by varying the inner radius of a hollow
fiber and changing the gas pressure. This circumstance can be
employed to achieve high efficiencies of frequency conversion
and ultrashort-pulse formation (see Sections 6 and 7).

3.1.2 Self-phase modulation. Self-phase modulation is a
phenomenon that results from the dependence of the
refractive index of a medium (the gas filling the fiber in the
case under consideration) on the intensity of a light pulse. In
the case of light fields of moderate intensities, the refractive
index of a medium can be written as

n � n0 � n2I �t� ; �3�

where n0 is the refractive index of the medium in the absence
of a light field, n2 � �2p=n0�2w �3��o;o;o;ÿo� is the non-
linear refractive index [w �3��o;o;o;ÿo� is the third-order
nonlinear-optical susceptibility of the medium], and I�t� is the
intensity of laser radiation. Then, the nonlinear (intensity-
dependent) phase shift of a pulse at a distance L is given by
[29, 51]

F�t� � o
c
n2I �t�L : �4�

Due to the time dependence of radiation intensity within
the light pulse, the nonlinear phase shift is also time-

dependent, giving rise to a generally time-dependent fre-
quency deviation:

Do�t� � o
c
n2L

qI
qt
: �5�

The resulting spectral broadening of the pulse can be
estimated in the following way:

Do � o
c
n2L

I0
t
; �6�

where I0 is the peak intensity of the light pulse and t is the
pulse duration.

Thus, self-phase modulation results in the spectral broad-
ening of a light pulse propagating through a hollow fiber. This
effect allows compression of light pulses through the
compensation of the phase shift acquired by the pulse in a
hollow fiber. Compensation of a linear chirp, corresponding
to a linear time dependence of the instantaneous frequency, is
straightforward from the technical point of view. Such a chirp
arises around the maximum of a Gaussian light pulse, where
the temporal pulse envelope can be approximated with a
quadratic function of time.

It is physically instructive to consider the compression of
chirped light pulses in the time domain. Since the frequency of
a chirped pulse changes from its leading edge to its trailing
edge, dispersion of our compressor should be designed in such
a way as to slow down the leading edge of the pulse with
respect to the trailing edge of the pulse.

In other words, the group velocities for the frequencies
propagating with the leading edge of the pulse should be
lower than the group velocities for the frequencies propagat-
ing with the trailing edge of the pulse. This can be achieved by
designing a dispersive element with the required sign of
dispersion and appropriate dispersion relation. Systems of
diffraction gratings and, recently, multilayer chirped mirrors
(see the review [4]) are now widely used for the purposes of
pulse compression. In certain regimes of pulse propagation,
self-phase modulation and pulse compression may take place
in the same medium.

3.1.3 Cross-phase modulation. Cross-phase modulation is a
result of nonlinear-optical interaction of at least two
physically distinguishable light pulses (i.e., pulses with
different frequencies, polarizations, mode structures, etc.)
related to the phase modulation of one of the pulses (a
probe pulse) due to the change in the refractive index of the
medium induced by another pulse (a pump pulse).

The cross-action of a pump pulse with a frequencyo1 on a
probe pulse with a frequency o2 gives rise to a phase shift of
the probe pulse, which can be written as [65, 66]

FXPM�Z; z� � 3po2
2

c 2k2
w �3��os;os;op;ÿop�

�
� z

0

����Ap

�
Zÿ z

s
; 0

�����2 dz ; �7�

where w �3��os;os;op;ÿop� is the third-order nonlinear-
optical susceptibility of the medium; 1=s � 1=u1 ÿ 1=u2; u1
and u2 are the group velocities of the pump and probe pulses,
respectively; and k2 is the wave number of the pump pulse.
Taking the time derivative of the nonlinear phase shift, we
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arrive at the following expression for the frequency deviation
of the probe pulse:

doXPM�Z; z� � ÿ 3po2
2

c 2k2
w �3��os;os;op;ÿop�

� s

"��Ap�Z; 0�
��2 ÿ ����Ap

�
Zÿ z

s
; 0

�����2
#
: �8�

Similar to self-phase modulation, cross-phase modulation
can be employed for pulse compression. The dependence of
the chirp of the probe pulse on the pump pulse intensity can be
used to control parameters of ultrashort pulses [41, 42, 50].
Cross-phase modulation also opens the way to study the
dynamics of ultrafast nonlinear processes, including multi-
photon ionization, and to characterize ultrashort light pulses
through phase measurements on a short probe pulse.

3.1.4 Multiwave mixing and high-order harmonic generation.
Coherent multiwave mixing and high-order harmonic gen-
eration play an important role in the nonlinear optics of
hollow fibers, allowing high efficiencies of frequency conver-
sion and high sensitivities of methods of coherent nonlinear
spectroscopy to be achieved. In the case when pump pulses
with frequencies o1 and o2 are coupled into a fiber, coherent
multiwave mixing leads to the generation of new spectral
components with frequencies omn � mo1 � no2, where m
and n are integers. The cases of m � 0 and n � 0 then
correspond to the generation of nth- and mth-order harmo-
nics of radiation with frequencies o1 and o2.

Due to the central symmetry of gas media, even-order
nonlinear processes are usually characterized by much lower
efficiencies as compared to odd-order nonlinear processes
[29]. However, even-order nonlinear-optical processes may
take place as a result of inhomogeneities in a medium or in
the light field violating the central symmetry of the problem.
This may be the case, for example, in the regime of gas
ionization.

Specific features of multiwave mixing related to the
guided-wave propagation of ultrashort pulses in a gas filling
a hollow fiber include large interaction lengths, the presence
of the waveguide dispersion component, and multimode
regimes of wave mixing. All these physical factors have to be
taken into consideration for the optimization of nonlinear-
optical frequency conversion and short-pulse formation in
hollow fibers. In particular, the increase in the wave-mixing
length may improve the efficiency of frequency conversion
only when the nonlinear process is phase-matched on the
spatial scale on the order of the fiber length. These factors will
be considered in greater detail in Sections 6 and 7 of this
review.

3.1.5 Stimulated Raman scattering. Stimulated Raman scat-
tering (SRS) is one of the most extensively used and intensely
studied phenomena in nonlinear optics. The SRS effect arises
due to the modulation of laser radiation by molecular
vibrations in a medium. In contrast to spontaneous light
scattering, stimulated scattering involves molecular modes
excited and phased by light in a large volume of a medium,
which results in the generation of highly intense and well-
directed radiation.

Multiple Stokes and anti-Stokes components produced by
SRS are separated by the frequency O of molecular vibra-
tions. A simple model of the SRS process interprets this

phenomenon as a result of harmonic phase modulation of a
light pulse with the frequency O of molecular vibrations. The
spectrum of a laser pulse propagating in a Raman-active
medium under these conditions becomes dressed with Stokes
and anti-Stokes components. The equidistant frequency
components arising in the spectrum of such a pulse can be
employed, as shown in Refs [13 ± 16] (see Section 8 of this
review), for the synthesis of ultrashort light pulses.

3.1.6 Effects related to gas ionization. The goals of nonlinear-
optical experiments performed with the use of hollow fibers
usually involve efficient frequency conversion or formation of
ultrashort pulses. Sometimes, high-order optical nonlinea-
rities are employed for this purpose, and laser pulses with
sufficiently high power densities can be coupled into a fiber.
Under these conditions, ionization effects may have a
considerable influence on both dispersion and nonlinear-
optical properties of the gas filling the fiber. If the collision
frequency in the plasma produced as a result of this ionization
process is much lower than the frequency of optical radiation,
then the nonlinear additive to the refractive index of the gas
associated with plasma electrons is given by

Dn � ÿ o2
p

2o2
;

where o2
p � 4pe 2Ne=m is the plasma frequency, e is the

electron charge, Ne is the electron plasma density, and m is
the electron mass.

Dynamic variations in optical properties of the gas
accompanying the propagation of a short pulse through a
hollow fiber, giving rise, in particular, to the nonlinear
additive to the refractive index of the gas, change phase and
group-velocity matching (see Section 7.3 of this review) and
may result in the temporal and spatial self- and cross-action of
short light pulses. These phenomena, as shown in Ref. [59],
can also be employed to produce ultrashort pulses.

3.2 Synthesis of ultrashort pulses
through the generation of phase-locked equidistant
spectral components: general concepts
In this section, we will consider the general physical principles
of the synthesis of ultrashort pulses through the generation of
phase-locked equidistant spectral components. This idea
underlies a rapidly growing direction of research aimed at
the formation of few-femtosecond, subfemtosecond, and
attosecond pulses. Two possibilities of generating such
spectral components are now actively studied. One of two
ways leading beyond the femtosecond range is based on high-
order harmonic generation. The other approach involves
multiple Raman sideband generation through SRS (see
Section 8). It seems appropriate in this context to qualita-
tively illustrate the basic idea of ultrashort pulse synthesis
with the use of this method.

Let us consider the total electric field of a set of N
equidistant spectral components with amplitudes An, phases
jn, and frequencies on � o0 � n do �n � 1; 2; . . . ;N�, where
do is the intermode interval:

E �t� �
XN
n� 1

An cos �ont� jn� : �9�

Suppose now that all the spectral components have equal
amplitudes and phases. Then, calculating the sum in Eqn (9),
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we arrive at the following expression for the radiation
intensity:

I �t� � I0
sin2�N do t=2�
sin2�do t=2� ; �10�

where I0 is the intensity of a single mode.
As can be seen from Eqn (10), the time dependence of the

total radiation intensity in the case under study has a form of
a sequence of pulses with the time interval between the pulses
equal to Dt � 2p=do and the duration of pulses given by
t � 2p=N do. Thus, the phase-locking of equidistant spectral
components is one of the key conditions for synthesizing
trains of atto- and subfemtosecond pulses. This condition
should be satisfied regardless of whether equidistant spectral
components were produced through high-order harmonic
generation or through stimulated Raman scattering. The
ways to phase-lock and phase-match high-order harmonics
and multiple Raman sidebands will be considered in greater
detail in Sections 7 and 8 of this review.

4. Generation of ultrashort pulses using
self-phase modulation in a gas-filled hollow fiber

Self-phase modulation in gas-filled hollow fibers is one of the
key effects allowing the generation of high-power ultrashort
light pulses [8, 9]. When optimizing hollow-fiber compressors
of light pulses, it is important to remember that waveguide
modes of hollow fibers are characterized by considerable
optical losses, related to the nature of waveguiding of optical
radiation in hollow fibers. Therefore, the analysis of the
influence of optical losses on nonlinear-optical interactions
in hollow fibers is very important for the optimization of
parameters of hollow fibers employed to produce ultrashort
light pulses [52, 53].

In this section, we will analyze the equation of self-phase
modulation of a short laser pulse in leakymodes of a gas-filled
hollow fiber. We will present a simple, but physically very
instructive analytical solution to this equation, which reveals
the main features of SPM under these conditions and allows
the influence of waveguide losses to be included in the analysis
aimed at optimizing pulse compressors based on gas-filled
hollow fibers.

4.1 Parameters of waveguide modes of hollow fibers
Consider a light pulse with a transverse distribution corre-
sponding to the EH1n mode of a hollow fiber propagating
along the z-axis chosen along the axis of a hollow fiber filled
with a gas with an inertialess Kerr nonlinearity:

E � 1

2
f n�r�An�Z n; z� exp

�
ÿiot�

�
iKn ÿ a n

2

�
z

�
� c:c: ;

�11�

where o is the central frequency of the light pulse; f n�r�,
An�Z n; z�, Kn, and a n are the transverse field distribution,
the slowly varying pulse envelope, the propagation con-
stant, and the attenuation coefficient corresponding to the
EH1n mode of the hollow fiber; Z n � �tÿ z=vn�=t is the time
(in the frame of reference running with the pulse) normal-
ized to the pulse duration t; and vn is the group velocity of
the pulse.

The z-dependence for the guided modes of a hollow fiber
involves a factor exp �iKnz�, similar to the case of a plane

wave. However, the propagation constantKn differs from the
wave number k � on=c of a light wave in a gas with a
refractive index n (see Section 4) because of a nonzero
transverse component of the wave number in guided modes,
resulting from a multiple reflection of radiation from
waveguide walls.

We assume that the attenuation coefficient for the
considered light pulse is small, and the wavelength is much
less than the inner radius of the hollow fiber a:

oa
c

4 1 ; �12����� Knc

on1�o� ÿ 1

����5 1 ; �13�

where n1�o� is the refractive index of the gas filling the fiber at
the frequency o. Under these conditions, we can employ
approximate analytical solutions for the transverse field
distribution and propagation constants of an electromag-
netic field in a hollow fiber.

In the case of EH1n modes of a hollow fiber, we have
[54, 55]

f n�r� � J0

�
unr
a

�
: �14�

Here, J0�x� is the zeroth-order Bessel function and un is the
eigenvalue of the characteristic equation for the EH1n mode.
Propagation constants and attenuation coefficients are then
given by [54]:

Kn � on1�o�
c

(
1ÿ 1

2

�
unc

aon1�o�
�2)

; �15�

a n � 2

an1�o�
�
unc

ao

�2 e2�o� � n 2
1 �o�

2n 2
1 �o�

�
e2�o� ÿ n 2

1 �o�
�1=2 ; �16�

where e2�o� is the dielectric function of fiber walls at the
frequency o.

As can be seen fromEqn (15), the propagation constant in
a hollow fiber differs from the wave number describing the
propagation of a wave in a gas medium with the refractive
index n1�o�. This circumstance suggests the way to achieve
phase and group-velocity matching for nonlinear-optical
processes in hollow fibers by using the dispersion of guided
modes to compensate for the material dispersion of the gas
filling the fiber.

4.2 Equation of self-phase modulation and its solution
Using a procedure similar to that described in Ref. [29], we
derive the following equation for the slowly varying pulse
envelope:

dAn

dz
� a n

2
An � ig nAnjAnj2 ; �17�

where the nonlinear coefficient g n can be expressed in terms of
the nonlinear-optical cubic susceptibility with the relevant
frequency arguments,

g n � 3po2

2Knc 2
w �3��o;o;ÿo;o�

� � �
f n�r��4r drdy� � �
f n�r��2r drdy : �18�
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Solving Eqn (17), we arrive at the following expressions
for the amplitude and the phase of the pulse:

An�Z n; z� � An
0�Z n� exp

�
ij�Z n; z� ÿ 1

2
a nz

�
; �19�

j�Z n; z� � g n

a n

��An
0�Z n���2�1ÿ exp �ÿa nz�� : �20�

Formulas (19) and (20) are very instructive, as they provide a
clear physical understanding of how the amplitude and the
phase of a self-phase-modulated pulse evolve in space,
revealing the role of waveguide losses in the SPM of a short
pulse in a hollow fiber.

4.3 Amplitude and chirp evolution
Let us introduce a parameter b characterizing the chirp of a
light pulse:

b � q2j�Z n; z�
�qZ n�2 : �21�

Substituting Eqn (20) into Eqn (21), we derive

b�Z n; z� � g n

a n

q2
��An

0�Z n���2
�qZ n�2

�
1ÿ exp �ÿa nz�� : �22�

As can be seen from Eqns (19), (20), and (22), the chirp
parameter b first increases and then saturates at some level
determined by the attenuation coefficient a. The amplitude of
the chirped pulse under these conditions monotonically
decreases as a function of z (Fig. 1).

4.4 The amplitude of a compressed pulse
Let us estimate the amplitude of a pulse transmitted through a
hollow fiber after chirp compensation. Provided that SPM
puts a considerable chirp on the pulse,

b4 tÿ2 ; �23�

the ratio of the power of the pulse with compensated chirp to
the initial pulse power is proportional to b [56], which implies
that the power of the pulse after chirp compensation is
proportional to the product of the chirp parameter and the

pulse amplitude squared:

Pc / b�An�2 : �24�

As can be seen from Fig. 1, the maximum power of a
compressed pulse is achieved with some fiber length Lopt,
depending on the inner radius of the hollow fiber [see
Eqns (19), (20), and (22)]. The expressions derived above
also allow the estimation of the dependence of the maximum
power of compressed pulse Pmax on the inner radius of a
hollow fiber with an optimal length Lopt. When the intensity
of a light pulse is fixed, Eqns (19), (20), (22), and (24) yield

Pmax / a 5 : �25�

In a situation when the pulse power is fixed, the light intensity
in a hollow fiber is proportional to aÿ2, which implies that
An

0 � aÿ1. Then, using Eqns (19), (20), (22), and (24), we find
that

Pmax � a : �26�

Thus, the power of a compressed pulse can be increased
with both fixed pulse power and fixed light intensity by using
fibers with larger inner diameters. Apparently, limitations on
the increase in the power of a compressed pulse in this case
may be mainly associated with the excitation of higher order
waveguide modes in a hollow fiber.

Thus, we have presented a simple analytical solution to
the equation governing the self-phase modulation of a light
pulse in leaky modes of a hollow fiber, which reveals the main
features of the SPM process in a hollow fiber and permits
optimization of parameters of hollow-fiber pulse compres-
sors. Analysis of this solution shows that the increase of the
chirp parameter of a self-phase-modulated pulse in a hollow
fiber saturates at some level determined by the attenuation
coefficient of the waveguide mode. The amplitude of the
chirped pulse under these conditionsmonotonically decreases
as a function of the propagation length of the pulse in the
fiber.

It should be mentioned that, as a short laser pulse
propagates through a hollow fiber and its spectrum becomes
broader and broader due to self-phase modulation, group-
velocity dispersion effects become more and more important.
Analysis of such effects requires the inclusion of higher order
dispersion terms into the equation for the complex amplitude
of a light pulse, and the first-order dispersion theory
approximation becomes inapplicable.

5. Cross-phase modulation and control
of ultrashort light pulses in a hollow fiber

Cross-phase modulation provides an opportunity to control
parameters of short pulses of short-wavelength radiation
produced through nonlinear-optical interactions in gas-filled
hollow fibers [41, 42]. In particular, in the case of third-
harmonic generation in a hollow fiber, the fundamental pulse,
efficiently interacting with its third harmonic and, at the same
time, experiencing noticeable self-phase modulation, leads to
the cross-phase modulation of the third-harmonic pulse [41,
42].

Similar SPM and XPM phenomena have been also
observed in experiments on third-harmonic generation in
the field of ultrashort laser pulses leading to the ionization
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of air [57, 58], where the temporal self-action of light pulses
was accompanied by the self-defocusing of fundamental
radiation due to the induced density profile of plasma
electrons. Theoretical analysis performed in Ref. [59] has
demonstrated that SPM due to plasma nonlinearity under
conditions of ionization in a hollow waveguide makes it
possible to produce light pulses with a linear chirp, which
can be efficiently compensated with a dispersive delay line
(the influence of ionization effects on harmonic generation in
hollow fibers has been also considered in Refs [60, 61]).

Let us consider third-harmonic generation in a hollow
optical fiber filled with a gas medium with a third-order
nonlinearity. To analyze this process, we will employ the
approximation of slowly varying envelopes, assuming that
the duration of light pulses is large as comparedwith a cycle of
the optical field. Physically instructive expressions governing
third-harmonic generation in a hollow fiber that take into
account SPM and XPM can be derived in the case when
consideration can be restricted to first-order dispersion
effects. Such an approximation is widely used in guided-
wave optics [62 ± 67], as it may provide a qualitative under-
standing of the main features of nonlinear-optical processes.
The results obtained within the framework of this approxima-
tion can be then used, in particular, as an initial guess for
more detailed and accurate, but less physically transparent,
numerical simulations.

Let us represent the pulses of fundamental radiation
(pump) and its third harmonic propagating along the z-axis
in a hollow fiber filled with a gas with an instantaneous Kerr
nonlinearity (where dispersion of the second and higher
orders can be neglected) in the following form:

Ep � 1

2
f n
0n

p �q� e n
0n

p An 0n�t; z� exp �ÿi�otÿ Kn 0n
p z��� c:c:; �27�

Eh � 1

2
f m

0m
h �q� em 0mh Bm 0m�t; z� exp �ÿi�3otÿ Km 0m

h z��� c:c:;

�28�

whereo is the central frequency of fundamental radiation; the
indices `p' and `h' correspond to the pumping and third-
harmonic pulses, respectively; f n

0n
p �q� and f m

0m
h �q� are the

transverse distributions of the field in the fundamental beam
and the third harmonic in a hollow fiber that correspond to
the relevant eigenmodes of the hollow fiber with indices n 0, n
and m 0, m, respectively; Kn 0n

p and Km 0m
h are the propagation

constants of the fundamental pulse and the third harmonic
corresponding to the relevant eigenmodes of the hollow fiber
[54, 55]; An 0n�t; z� is the slowly varying amplitude of the
fundamental pulse (we assume that a definite waveguide
mode is excited at the fundamental frequency); Bm 0m�t; z� is
the slowly varying amplitude of the third harmonic (indices
specifying the transverse mode of the corresponding pumping
beam are omitted to simplify notation); and e n

0n
p and em

0m
h are

the unit polarization vectors of fundamental radiation and
the third harmonic, respectively.

When inequalities (12) and (13) are satisfied for the
fundamental frequency and its third harmonic, we can
employ approximate analytical solutions for the transverse
distribution of the field and propagation constants in a
hollow fiber [54]. In particular, for EH1m modes of a hollow
fiber, we have

f 1m
l �q� � f ml �q� � J0

um r
a

� �
: �29�

Here, J0�x� is the zeroth-order Bessel function, um is the
eigenvalue of the EH1m mode �l � p; h�, a is the inner radius
of the hollow fiber, and

K 1m
l � Km

l �
ol n1�ol�

c

�
�
1ÿ

�
umc

aol n1�ol�
�2�

1

2
� c

aol
Im m�ol�

��
; �30�

where

m�ol� � e2�ol� � n 2
1 �ol�

2n 2
1 �ol�

�
e2�ol� ÿ n 2

1 �ol�
�1=2

for EHmodes and e2�ol� is the dielectric constant of the walls
of the fiber at the frequency ol.

The slowly varying amplitudes An�z; t� � A1n�z; t� and
Bm�z; t� � B 1m�z; t� of the pumping pulse and the third
harmonic are governed by the equations�

q
qt
� 1

v n
p

q
qz

�
An � i~g n1A

njAnj2 ; �31�
�
q
qt
� 1

vm
h

q
qz

�
Bm � i~b mn�An�3 exp �ÿiDkmnz�

� 2i~gmn
2 BmjAnj : �32�

Here, v np and vm
h are the group velocities of the fundamental

and third-harmonic pulses, respectively, and

Dkmn � Km
h ÿ 3Kn

p � Dk0 � Dkmn
w �33�

is the phase mismatch that includes the waveguide dispersion,
where

Dk0 � oh

c

�
n1�oh� ÿ n1�op�

�
;

Dkmn
w �

c

op

"
3

�
un
p

a

�2

ÿ 1

3

�
um
h

a

�2
#

are the components of the phase mismatch due to gas and
waveguide dispersion, respectively. The total phase mismatch
can be represented as a sum of two components in the case
when the inequality n1�ol� ÿ 15 1 is satisfied.

The nonlinear coefficients ~gm1 , ~gmn
2 , and ~b mn can be

expressed in terms of the nonlinear-optical cubic susceptibil-
ities with the relevant frequency arguments:

~g n1 �
3po2

2Kn
p c

2
e n �p ŵ �3��o;o;ÿo;o� e np e n �p e np

�
� � �

f np �q�
�4r drdy� � �

f np �q�
�2r drdy ; �34�

~gmn
2 �

27po2

2Km
h c 2

em �h ŵ �3��3o; 3o;ÿo;o� emh e n �p e np

�
� � �

f m
h �q�

�2�
f np �q�

�2r dr dy� � �
f m
h �q�

�2rdr dy ; �35�

~b mn � 9po2

2Km
h c

2
em �h ŵ �3��3o;o;o;o� e np e n �p e np

�
� �

f m
h �q�

�
f np �q�

�3r dr dy� � �
f m
h �q�

�2r dr dy : �36�
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Equations (31) and (32) are similar to the equations that
describe third-harmonic generation in a gas medium with
SPM and XPM within the framework of the plane-wave
approximation. The nonlinear term on the right-hand side of
Eqn (31) describes the SPM effect. The first term on the right-
hand side of Eqn (32) describes the third-order polarization of
a medium responsible for third-harmonic generation and
XPM of the third harmonic due to SPM of the fundamental
pulse. The second term on the right-hand side of this equation
is responsible for XPM due to the modulation of the
refractive index at the frequency of the third harmonic by
the fundamental pulse.

In writing Eqn (32), we assumed that the third-harmonic
pulse is rather weak, and self-phase modulation for this pulse
is negligible. However, in contrast to the plane-wave approx-
imation, Eqns (31) and (32) take into account the influence of
a waveguide through propagation constants (30), group
velocities of the pumping pulse and the third harmonic, and
nonlinear coefficients (34) ± (36), which explicitly involve
factors sensitive to the transverse distributions of the
pumping and third-harmonic fields for the relevant wave-
guide modes. In particular, the phase mismatch, which is
involved in Eqn (32) and which determines the efficiency of
third-harmonic generation, depends not only on the gas
dispersion, but also on the dispersion of waveguide modes.
As pointed out in Refs [40 ± 42], this circumstance provides an
opportunity to improve phase-matching conditions for a
certain pair of transverse modes of fundamental radiation
and the third harmonic.

Solving the set of equations (31) and (32), we derive the
following expressions for the amplitudes of the fundamental
pulse and the third harmonic:

An�Z n
p ; z� � An

0�Z n
p � exp

�
i~g n1
��An

0�Z n
p �
��2z� ; �37�

Bm�Zm
h ; z� � i~b mn exp

�
2i~gmn

2

�z
0

��An
0�Zm

h � zmnz 0���2 dz 0�
�
�z
0

dz 0
�
An

0�Zm
h � zmnz 0��3

� exp

�
ÿiDkmnz 0 � 3i~gm1

��An
0�Zm

h � zmnz 0���2z 0
ÿ 2i~gmn

2

�z 0
0

��An
0�Zm

h � zmnz 00���2 dz 00� ; �38�

where Zm
l � �tÿ z=vml �=t is the time in the frame of reference

running with one of the pulses �l � p; h� normalized to the
duration t of the incident pulse and zmn � �1=vm

h ÿ 1=v n
p �tÿ1.

Since we restrict our consideration to the first order of
dispersion theory, the fundamental pulse (37) propagates in
a fiber without changing its waveform, An�Z n

p ; z� � An
0�Z n

p �,
where An

0�Z n
p � is the envelope of the fundamental pulse at the

input of the fiber.
The results of numerical simulations presented in Fig. 2

show that the third-harmonic pulse experiences phase
modulation due to XPM, and the spectrum of this pulse
features considerable broadening even as compared with the
pump pulse, which is subject to SPM. Due to this effect,
the third-harmonic pulse can be efficiently compressed
through the compensation of a linear chirp (Fig. 3). With
the growth in the pump power, as can be seen from Fig. 4,
the chirp of the third-harmonic pulse and its spectral width
increase, which makes it possible to obtain sufficiently
short pulses at the output of a compressor. It should be
noted, however, that the increase in the pump power may

give rise to distortions in the waveform of the third-
harmonic pulse.

Thus, cross-phase modulation, which accompanies third-
harmonic generation in a hollow fiber, allows one to control
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the chirp of the third harmonic by varying the amplitude of
the pump pulse and parameters (pressure and dispersion) of
the gas filling the fiber. This effect provides an opportunity to
produce light pulses with a tripled frequency and controllable
pulse duration.

Generally, group-delay effects may have a considerable
influence on third-harmonic generation with short light
pulses in a hollow fiber. As revealed by the envelopes of the
power of the pump pulse and the fundamental mode of the
third harmonic at the output of a fiber (Fig. 5a), due to the
walk-off of the pumping pulse and the third harmonic, the
third-harmonic pulse first becomes longer (curve 2 in Fig. 5a,
where the walk-off of the fundamental pulse and the third
harmonic within the fiber length is equal to Zh � Z 1

h � 0:8)
and then (with a further decrease in the duration of the pump
pulse) splits into two spikes (curve 1 in Fig. 5a, where the
walk-off of the fundamental pulse and the third harmonic
within the fiber length is equal to Zh � 3).

In the latter case, the right-hand spike in Fig. 5a is
produced through third-harmonic generation within an area
with a length on the order of the coherence length
l 11ph � 1=Dk 11 near the input end of the fiber, whereas the
left-hand spike emerges from third-harmonic generation in an
analogous area near the output end of the fiber. The power of
the third harmonic produced in the central part of the fiber is
negligibly small compared with the third-harmonic signal
generated near the ends of the fiber. This effect can be easily
explained with the use of Eqn (38).

Indeed, assuming that the walk-off length meets the
inequality lw 5L, letting the upper integration limit in
Eqn (38) tend to infinity, and taking into account that, for

low pump powers, the second and third terms in the argument
of the exponential are small as compared with the first term,
we find that the power of the third-harmonic signal is
determined by the Fourier transform of the amplitude of the
pump pulse in Dk representation:

Bm�Zm
h ; z� � i

~b m

zmn

� z=z mn

0

dZ 00
�
An

0�Zh � Z 00��3
� exp

�
ÿi Dk

mn

zmn Z 00
�
:

Physically, the low efficiency of third-harmonic generation in
the central part of the fiber is associated with a large phase
mismatch between the pump pulse and the third harmonic
(Dk 11=z 11 � 100 for 25-fs pulses at an argon pressure of
0.5 atm).

Importantly, the third-harmonic spike produced near the
output end of the fiber experiences much stronger phase
modulation and, consequently, allows a higher compression
efficiency (Fig. 5b) to be achieved as compared with the third-
harmonic spike generated near the input end of the fiber. This
is due to the fact that, due to SPM, the pump pulse features
much stronger phase modulation near the output end of the
fiber than near its input end. Therefore, the third-harmonic
spike generated near the output end of the fiber has a stronger
phase modulation and ensures a higher efficiency of pulse
compression through chirp compensation (Fig. 5b). The
relevant spectra of pump and third-harmonic pulses are
presented in Fig. 6. Similar to the case of a small walk-off of
the pump pulse and the third harmonic, the growth in the
pump power increases the spectral width of the third-
harmonic pulse (Fig. 7).

Thus, under conditions of noticeable walk-off of the
pump pulse and the third harmonic, the nonlinear-optical
interaction of short laser pulses in a gas-filled hollow fiber
becomes much more complex than in the absence of group-
delay effects. However, even in this case, cross-phase
modulation provides an opportunity to control parameters
of third-harmonic pulses (see Fig. 7) and to produce
ultrashort light pulses in the ultraviolet range.

Generation of ultrashort pulses of short-wavelength
radiation using cross-phase modulation in nonlinear-
optical interactions in gas-filled hollow fibers has been
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elegantly implemented by Durfee et al. [50], who investi-
gated the process of difference-frequency generation 3o �
2o� 2oÿ o, where o is the frequency of Ti:sapphire-laser
fundamental radiation (with a wavelength of 800 nm) and 2o
is the second harmonic of the fundamental frequency (with a
wavelength of 400 nm). The energy of radiation generated at
the frequency 3o (the wavelength is 270 nm) at the output of
the fiber was as high as 10 mJ. The efficiency of energy
conversion from second-harmonic radiation into radiation
with the frequency 3o exceeded 20%. The duration of the
fundamental pulse was equal to 35 fs. For low powers of the
fundamental pulse, the duration of the 3o pulse was about
20 fs.

With an increase in the power of fundamental radiation,
the spectrum of 3o radiation displayed considerable broad-
ening due to cross-phase modulation. The use of a prism
compressor allowed the authors of Ref. [50] to produce 8-fs
pulses of 3o radiation with a sufficiently high quality of pulse
waveforms. The spectral width of the 3o pulse increased with
further growth in the pump power. According to the estimates
of Ref. [50], the spectral broadening observed in experiments
would be sufficient, with an appropriate chirp profile, to
produce sub-3-fs pulses of 270-nm radiation.

6. Four-wave mixing in hollow fibers
as a way to improve the sensitivity
of nonlinear-optical gas-phase analysis

6.1 The diagnostic aspect of nonlinear-optical processes
in hollow fibers
In this section, we will examine the potential of hollow
fibers for improving the sensitivity and expanding the
capabilities of coherent four-wave-mixing spectroscopy [38,
47, 48]. We will study the properties of nonlinear-optical
interactions in gas-filled hollow fibers that open new
avenues for numerous practical applications of hollow
fibers in nonlinear optics, the optics of ultrashort pulses,
and nonlinear spectroscopy.

In particular, one of the most general properties of the
waveguide regime of nonlinear-optical interactions in hollow
fibers is associated with the fact that the use of a hollow fiber
allows high power densities of laser radiation typical of the

tight-focusing regime to be achieved with an appropriate
focusing of pump beams. The waveguide regime of radiation
propagation under these conditions ensures the geometry of
nonlinear-optical processes that is characteristic of plane-
wave interaction, thus allowing the efficiency of sum-
frequency generation to be considerably improved relative
to nonlinear-optical interactions of tightly focused light
beams in a medium with a normal dispersion.

Most of the nonlinear-optical hollow-fiber experiments
performed to date were performed with the use of high-
intensity femtosecond pulses (the pioneering work by Miles
et al. [38] does not belong to this class of experiments, but
this work does not deal with sum-frequency generation
processes). The prohibition on third-harmonic generation
and sum-frequency generation in a gas with an initially
positive dispersion in these experiments may be removed
due to the ionization of the gas (such effects were observed
in numerous experiments [68 ± 72]) and due to the self-action
of laser pulses (which was also observed experimentally, see
Refs [57, 58, 73]).

The experiments presented below in this section provide
direct evidence of the possibility of sum-frequency generation
and optical frequency multiplication in media with a normal
dispersion due to the use of the waveguide regime of
nonlinear-optical interactions. Picosecond pulses of moder-
ate intensities (the maximum intensities of laser pulses in our
experiments were on the order of 1011 W cmÿ2) were used for
the purposes of this demonstration. No third harmonic was
generated when such laser beams were tightly focused in the
gas in the absence of a fiber, which indicates that the
perturbation of the gas medium and the pump beams
themselves do not have a considerable influence on non-
linear-optical processes. Such an approach allowed us to
study the main properties of four-wave mixing (FWM)
processes in the waveguide regime and to examine the ways
to phase-match FWM processes under these conditions.

One of the important results of our study is the experi-
mental demonstration of the considerable influence of higher
order waveguide modes on FWM processes in hollow fibers.
Investigation of FWM of picosecond pulses is also of
considerable interest in the context of the possibility of using
hollow fibers to improve the sensitivity of nonlinear-optical
techniques for gas-phase analysis. Picosecond pulses are often
a reasonable choice for stationary spectroscopic techniques,
which are widely employed for various practical applications
and which may often impose certain limitations on the
duration of laser pulses.

6.2 Basic relations for four-wave mixing in hollow fibers
6.2.1 The amplitude of the FWM signal. In this section, we will
study the specific features of FWM processes in gas-filled
hollow fibers taking into consideration the influence of phase-
matching effects, optical losses of hollow-fiber modes, and
higher order waveguide modes. We will consider FWM
processes of third-harmonic and difference-frequency gen-
eration giving rise to a signal at the frequency of the third
harmonic in accordance with the following FWM schemes:
3o � o� o� o and 3o � 2o� 2oÿ o, where o and 2o
are the frequencies of pump pulses (fundamental radiation of
the pump laser and its second harmonic). Processes of this
type, as demonstrated by experiments [40], allow high
efficiencies of nonlinear-optical frequency conversion to be
achieved by phase-matching the light pulses involved in
FWM in a hollow fiber.
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Figure 7. Spectrum of the third harmonic emitted into the EH11 mode at

the output of a hollow fiber for 2t � 25 fs and (1) Pp0 � 2 GW and
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Suppose that the fundamental radiation and its second
harmonic (pump pulses) propagate along the z-axis of a
hollow fiber with an inner radius a. We assume that the
hollow fiber is filled with a gas with a cubic nonlinearity and a
refractive index n. The dielectric constant of the cladding of
the hollow fiber is assumed to be a real quantity meeting the
condition e > n 2. The fields of the pump andFWMpulses can
be then represented as

E1 � 1

2
f
q
1 �r�Aq

0 exp

�
ÿiot�

�
iK

q
1 ÿ

a q
1

2

�
z

�
� c:c: ; �39�

E2 � 1

2

X
l

f l
2 �r�Bl

0 exp

�
ÿ2iot�

�
iKl

2 ÿ
a l
2
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�
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�
� c:c: ; �40�

E3 � 1

2
f m
3 �r�Cm�z� exp �ÿ3iot� iKm

3 z
�� c:c: ; �41�

where f
q
1 �r�, f l

2 �r�, and f m
3 �r� are the transverse field

distributions corresponding to the EH1q, EH1l, and EH1m

hollow-fiber modes of fundamental radiation, the second
harmonic, and the FWM pulse, respectively; r is the distance
from the axis of the hollow fiber;A

q
0 andB

l
0 are the amplitudes

of the pulses of fundamental radiation and the second
harmonic at the input of the fiber;Cm�z� is the slowly varying
amplitude of the FWM signal; K

q
1 , Kl

2, and Km
3 are the

propagation constants of fundamental radiation, the second
harmonic, and the FWM signal in the hollow fiber, respec-
tively; and a q

1 and a l
2 are the attenuation coefficients for the

EH1q waveguide mode at the fundamental frequency and the
EH1l waveguide mode at the frequency of the second
harmonic.

Representing the field of the second harmonic in Eqn (40)
as a sum of hollow-fiber modes, we extend our analysis to
FWM processes where two of the four waves have equal
frequencies 2o, but different transverse field distributions
corresponding to different waveguide modes EH1l 0 and EH1l 00

(i.e., l � l 0; l 00).
We assume that each of the waves involved in the FWM

process has a small attenuation coefficient and a wavelength
much less than the fiber core radius a. Inequalities (2) and (3)
are then satisfied for all the frequencies under consideration,
and we can employ approximate analytical solutions of
Eqns (14) ± (16) for the transverse field distribution, propaga-
tion constants, and attenuation coefficients of the electro-
magnetic field in a hollow fiber.

The equation for the slowly varying envelope of the third
harmonic in a lossy hollow fiber is written as

d

dz
Cm

THG �
am
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2
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THG

� ibmq
THG�Aq
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3a q

1 z

2

�
; �42�

where am
3 is the attenuation coefficient for the EH1m mode of

the THG signal. The phase mismatch is then written as

Dkmn
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3 ÿ 3K
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1 � Dk g

THG � Dk 0mq
THG ; �43�

where
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are the components of the phase mismatch due to the
dispersion of the gas and waveguide dispersion, respectively
[the total phasemismatch can be represented as a sum of these
two components in the case when n�o�, n�3o� � 1].

The nonlinear coefficient bmq
THG can be expressed in terms

of the relevant nonlinear-optical cubic susceptibility [48]:

bmq
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where w �3�THG is the third-order nonlinear-optical susceptibility
responsible for third-harmonic generation.

Integrating Eqn (42), we derive the following expression
for the amplitude of the EH1m mode of the third harmonic:
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where L is the length of the gas-filled hollow fiber.
In the limiting case of low losses and zero phasemismatch,

Eqn (47) is reduced to

Cm
THG � ibmq

THG�Aq
0�3L : �48�

Using Eqn (48), we can obtain the following estimate for the
power of the third-harmonic signal:

PTHG � P 3
1

L2

a 4
; �49�

where P1 is the power of fundamental radiation.
In the case of a difference-frequency generation process

3o � 2o� 2oÿ o, involving the EH1q hollow-fiber mode of
fundamental radiation and EH1l 0 and EH1l 00 modes of the
second harmonic, generating the EH1m mode of the DFG
signal at the frequency of the third harmonic in a lossy hollow
fiber, the slowly varying envelope of the DFG signal is
governed by the following equation:
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Here, the phase mismatch includes the dispersion of wave-
guide modes and can be represented as

Dkml 0l 00q
DFG � Km
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are the components of the phase mismatch due to the
dispersion of the gas and waveguide modes, respectively.

698 A M Zheltikov Physics ±Uspekhi 45 (7)



The nonlinear coefficient can be expressed in terms of the
relevant nonlinear-optical cubic susceptibility [48]:

bml 0l 00q
DFG � 27po2

Km
3 c

2
w �3�DFG

� �
f m3 �r� f l 0

2 �r� f l 00
2 �r� f q

1 �r�r dr dy� � �
f m3 �r�

�2r drdy ;

�54�

where w �3�DFG is the third-order nonlinear-optical susceptibility
responsible for difference-frequency generation.

Integrating Eqn (50), we derive the following expression
for the amplitude of the DFG signal excited in the EH1m

mode:
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In the limiting case of low losses and zero phasemismatch,
Eqn (55) can be reduced to

Cm
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0 Bl 0
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l 00
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Using Eqn (56), we derive the following estimate for the
power of the DFG signal:

PDFG � P1P
0
2P
00
2

L2

a 4
; �57�

where P 02 and P 002 are the powers of pump radiation at the
frequency of the second harmonic in the relevant guided
modes.

Expressions (49) and (57) describe the dependence of the
FWM signal power on geometrical sizes of a hollow fiber. In
Section 6.2.2, we will use these formulas to analyze the
physical factors allowing the efficiency of four-wave mixing
of short laser pulses to be increased in gas-filled hollow fibers.

6.2.2 Improving the efficiency of four-wave mixing in the
waveguide regime. To illustrate how the efficiency of FWM
processes can be improved by using hollow fibers, it would be
instructive to consider the basic formulas of the elementary
theory of four-wave mixing. Expressions for the powers of
signals produced through FWM processes of third-harmonic
and difference-frequency generation (generally, oDFG �
2o2 ÿ o1) can be found in many textbooks on nonlinear
optics (see, e.g., Refs [29, 30]). In particular, in the regime of
loose focusing, when the condition

b4L �58�

is satisfied, where b is the confocal parameter, these expres-
sions can be written as

PTHG � P 3
1

L2

b 2

sin2
��Dk� 4=b�L=2���Dk� 4=b�L=2�2 �59�

in the case of third-harmonic generation,

PDFG � P1P
2
2

L2

b 2

sin2�DkL=2�
�DkL=2�2 ; �60�

in the case of difference-frequency generation. Here, we used
the following notation: P1 and P2 are the powers of the pump
waves and Dk is the phase mismatch for the corresponding
FWM process.

Let us consider in greater detail the enhancement of the
efficiency of FWM processes in hollow fibers with respect to
the geometry of tight focusing due to the increase in the
interaction length of light beams attainable with hollow
fibers. Physically, a hollow fiber enhances FWM processes
since it allows light intensities typical of the tight-focusing
regime to be achieved, simultaneously letting these beams
interact in a nearly plane-wave regime.

Since the intensity of the FWM signal is proportional to
the intensities of the pump beams, the power of the FWM
signal can be increased by decreasing the diameter of a hollow
fiber and keeping the powers of pump beams constant as long
as the phase-matching conditions are satisfied and the losses
of the waves interacting in the fiber are low. The role of a
hollow fiber is thus to ensure the regime of interaction of
collimated beams [cf. Eqns (59), (60) and (49), (57)] for light
beams having intensities typical of the regime of tight
focusing, simultaneously providing large interaction lengths
for these beams and improving the phase matching.

Figure 8 displays the phase mismatch calculated with the
use of Eqns (43) ± (45) and (51) ± (53) for THG and DFG
processes involving different waveguide modes as a function
of the inner radius of a hollow fiber filled with atmospheric-
pressure air under normal conditions. As can be seen from
these plots, the phase mismatch for the DFG process
involving fundamental waveguide modes of pump and signal
radiation can be completely compensated with an appro-
priate choice of the hollow-fiber inner radius. In the case of
third-harmonic generation in the field of the fundamental
mode of pump radiation, phase matching can be achieved
only for higher order modes of the hollow fiber. Generally,
the phase-matching problem under these conditions can be
solved by adjusting the gas pressure, choosing optimal
parameters of the hollow fiber, and excitation of appropriate
waveguide modes [40 ± 42].
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Thus, there are two natural ways of increasing the
efficiency of nonlinear-optical processes in hollow fibers:
(i) increasing the fiber length and (ii) reducing the inner
radius of the fiber. The enhancement factor cannot be
increased infinitely, of course. The increase of the fiber length
is limited by optical losses of hollow-fiber modes, while the
decrease of the inner radius requires a tighter focusing of the
pump beam, eventually leading to the breakdown of the gas
filling the fiber. The use of shorter pulses under these
conditions allows a further improvement of the efficiency of
nonlinear-optical processes due to the increase in the break-
down threshold of the gas.

6.2.3 Removing the prohibition on third-harmonic generation.
Hollow fibers may play an even more important role in the
case of sum-frequency and third-harmonic generation. In
media with a normal dispersion, such FWM processes are
characterized by a low efficiency in the tight-focusing regime
due to an additional phase shift of a focused beam with
respect to a plane wave. This geometric phase shift around the
axis of a Gaussian beam can be written as [30]

Dj � ÿ arctan
2�zÿ z0�

b
; �61�

where z0 is the coordinate of the beam waist.
In accordance with Eqn (61), the phase shift between the

field of the third harmonic and the nonlinear polarization
responsible for THG tends to �p as z! �1. Therefore, no
third harmonic can be observed at the output of the medium
in this regime because of the destructive interference of the
pump and third-harmonic fields generated before and after
the focus.

The situation radically changes in the case of hollow
fibers, where nonlinear-optical interactions occur in the
regime of collimated light beams, giving rise to no �p phase
shift between the signal field and the relevant polarization of
the medium. This allows efficient third-harmonic generation.
Experimental results confirming this conclusion will be
presented below.

6.3 Experimental setup
The experimental setup for studying FWM processes in gas-
filled hollow fibers (Fig. 9) consisted of a picosecond laser
system, which generated pump radiation at the wavelengths
of 1.06 and 0.53 mm, a hollow fiber, and a detection system
based on a photodetector, photomultiplier, and a CCD

camera. The picosecond system included a passively mode-
locked Nd:YAG master oscillator with negative-feedback-
controlled cavity Q factor [71], a single-pulse selection unit,
and amplifying stages. Passive mode locking in the master
oscillator was implemented with the use of a saturable
absorber film, which was placed in front of the rear cavity
mirror and which made it possible to generate laser pulses
with a duration of 35 ps.

Negative feedback was introduced by inserting an electro-
optical switch controlled with a fast-response photomultiplier
inside the cavity. An optical signal served as the input for the
fast-response photomultiplier. This feedback loop consider-
ably improved the stability of parameters of laser pulses [74],
providing an opportunity to generate trains of picosecond
light pulses with a duration of the envelope on the order of
30 ± 40 ms. As the regime of stationary lasing was established
in the master oscillator, the negative feedback loop was
switched off, and a short train of highly stable picosecond
pulses with a duration of the envelope of about 100 ns and an
energy of approximately 1.5 mJ was generated.

An electro-optical switch was used to separate a single
pulse from this train. The energy of a single 35-ps laser pulse
thus selected ranged from 30 to 40 mJ. The single-pulse
selection unit also served as an optical decoupler, suppres-
sing the parasitic feedback between amplifying stages and the
master oscillator and preventing radiation reflected from
optical elements of the amplification system from influencing
the formation of trains of pulses in the master oscillator.
Further details of this picosecond laser system can be found
elsewhere [71, 74].

A single pulse of 1.06-mm radiation passes through three
amplifying stages. The energy of the laser pulse at the output
of the third stage may reach 50 mJ. The spatial distribution of
intensity in such a laser beam is close to that characteristic of
the Gaussian mode. This radiation was used as a pump beam
in the THG scheme and one of the pump beams in sum- and
difference-frequency generation. A KDP crystal was used to
produce the second harmonic of Nd:YAG laser radiation for
two-color experiments. A spherical lens was employed to
couple pump beams into the fiber (see Fig. 9).

We used commercially available hollow fibers with inner
diameters of 70, 100, 127, 152, and 203 mm in our experiments.
The lengths of the fibers were varied from 1 up to 30 cm. The
attenuation coefficients of 1.06-mm radiation in these fibers
were estimated as 0.6, 0.2, 0.1, 0.06, and 0.04 dB cmÿ1,
respectively. The signals produced through third-harmonic,
sum-frequency, and difference-frequency generation in these
fibers were selected with a monochromator and bandpass
filters and were detected with a photomultiplier. A CCD
camera was used to investigate the spatial profiles of light
beams coming out of the fiber.

Gas-pressure dependences of nonlinear-optical signals
were measured with an experimental setup (Fig. 10) consist-
ing of a picosecond laser, a vacuum chamber with a hollow
fiber inside, and a detection system based on a photomulti-
plier. The Nd:YAG picosecond laser generated 50-ps pump
pulses at 1.06 and 0.53 mm. The maximum energy of 1.06-mm
radiation reached 100mJ. AKDP crystal was used to produce
the second harmonic of fundamental radiation.

An achromatic lens was used to couple the pump laser
beams into a hollow fiber. Two photodiodes were used to
monitor the energies of both of these laser beams transmitted
through the fiber. The energies of fundamental radiation and
the second harmonic in these experiments were equal to 1 and
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Figure 9.Diagram of the experimental setup for studying FWM processes

in gas-filled hollow fibers based on a passively mode-locked picosecond

laser system: LS, picosecond laser system; A, amplification stages; GP,

Glan prism; L, achromatic lens; HF, hollow fiber; F, bandpass filter; PM,

photomultiplier; CCD, CCD camera; SP, signal-processing unit; and PC,

personal computer.
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0.1 mJ, respectively. The signal produced through an FWM
process in a hollow fiber was detected with a photomultiplier
and was then processed and displayed with a digital
oscilloscope. The result of averaging over 30 FWM pulses
was stored in a personal computer.

6.4 The influence of higher order waveguide modes
The results of our experiments [47, 48] fully justify our
expectations that the use of hollow fibers allows the
efficiency of FWM processes to be improved, the prohibition
on THG to be removed, and phase-matching conditions in
FWM processes to be improved. Our experiments also
revealed a noticeable influence of higher order waveguide
modes on FWM processes in gas-filled hollow fibers. The
processes of four-wave mixing 3o � 2o� 2oÿ o involving
different guided modes observed in experiments [47, 48] are
presented in Table 1, where the transverse distributions of
light field intensity in waveguide modes are also shown.

The power of the DFG signal at the frequency oDFG �
2o2 ÿ o1 (whereo1 is the frequency of fundamental radiation
of the Nd:YAG laser and o2 � 2o1 is the frequency of the
second harmonic of this laser) is linear in the fundamental
radiation power and quadratic in the power of the second
harmonic of the Nd:YAG laser. These results indicate that
nonlinear-optical interactions in our experiments occur in the
weak-field regime, and effects related to the ionization of the
medium and the self-action of pump pulses do not exert a
considerable influence on nonlinear-optical processes. This
conclusion is also supported by the fact that no THG signal
was observed in our experiments in the tight-focusing regime
with the same focusing parameters as in hollow-fiber
experiments, but in the absence of a hollow fiber, until a
plasma was produced due to the gas breakdown. The THG
signal was easily detectable under conditions of ionization of
the medium and ionization-induced self-action of pump
pulses [57, 58].

The influence of phase-matching effects on FWM
processes in hollow fibers is illustrated by the experimental
data presented in Fig. 11. In particular, these experimental
data indicate that, for gases whose dispersion properties are
similar within the studied frequency range, the pressure
dependences of the DFG signal power have much in
common. Specifically, the pressure dependences of the DFG
signal for argon and nitrogen display qualitatively similar
tendencies.

At the same time, the pressure dependence of the DFG
signal for carbon dioxide qualitatively differs from similar
dependences for argon and nitrogen. This is due to consider-
able differences in the dispersion properties of carbon dioxide
and those of argon and nitrogen. In particular, the phase
mismatch for the DFG process at the atmospheric pressure of
carbon dioxide is estimated as Dk g

DFG � 1:8 cmÿ1, which
noticeably differs from the phase mismatch corresponding
to the atmospheric pressure of nitrogen or argon
(Dk g

DFG � 1 cmÿ1).
Comparison of the experimental data presented in

Figs 12 ± 14 with the results of calculations performed with
the use of Eqns (51) ± (53) and (55) reveals a noticeable role of
higher order waveguide modes in nonlinear-optical processes
in hollow fibers. It is instructive in this context to consider in
greater detail the results obtained for the DFG process
oDFG � 2o2 ÿ o1 �3o � 2o� 2oÿ o� in an argon-filled
hollow fiber with a length of 17.4 cm and an inner diameter
a � 100 mm.

A satisfactory agreement between the experimental data
(squares) and theoretical predictions (the solid lines) is
achieved when effects related to higher order waveguide
modes are included in the analysis. In particular, a satisfac-
tory agreement between the experimental data in Fig. 12 and
the results of calculations performed with the use of
Eqns (51) ± (53) and (55) was achieved when not only the
DFG process occurring in the fundamental waveguide mode
(i.e., the DFG process involving the EH11 hollow-fiber modes
of fundamental radiation, second harmonic, and the DFG
signal; the first line of Table 1), but also the DFG process
involving the EH12 mode of fundamental radiation, EH11 and
EH13 modes of the second harmonic, and the EH12 mode of
the DFG signal (the second line of Table 1) was included in
calculations.

The maximum of the DFG signal around an argon
pressure of about 0.7 atm is observed within the pressure
range where the DFG process in the fundamental waveguide

PM

HF

V

DO

PC

VC
DG

PD2

PD1

F

L

LS

1.06 mm; 0.53 mm
50 ps

Figure 10.Diagram of the experimental setup for studying the influence of

the gas pressure on FWM processes in a gas-filled hollow fiber: LS,

picosecond laser system; L, achromatic lens; VC, vacuum chamber; HF,

hollow fiber; DG, diffraction grating; PM, photomultiplier; F, filter

blocking pump beams; PD1 and PD2, photodiodes measuring the energy

of fundamental radiation and the second harmonic, respectively; DO,

digital oscilloscope; V, computer-controlled valve for gas delivery.
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Table 1. Four-wave mixing 3o � 2o� 2oÿ o involving different guided
modes of a gas-filled hollow fiber and transverse intensity distributions of
the light field in these modes.
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mode is phase-matched (the dashed line in Fig. 12 shows the
phase mismatch for this process). At lower pressures,
difference-frequency generation through the FWM interac-
tion of the EH12 mode of fundamental radiation, EH11 and
EH13 modes of the second harmonic, and the EH12 mode of
the DFG signal begins to play a more important role (the

phase mismatch for this process is shown by the dash-dotted
line in Fig. 12). Thus, higher order waveguide modes of a
hollow fiber may have a noticeable influence on FWM
processes.

The results of our experiments also show that the role of
higher order waveguide modes in nonlinear-optical processes
in a hollow fiber becomes more significant with increasing
inner diameter of the fiber. Figure 13 presents the results of
experiments performed for the FWM process 3o �
2o� 2oÿ o in an argon-filled hollow fiber with a length of
20.1 cm and an inner diameter 203 mm. To achieve a
reasonable agreement between the experimental data (the
dots) and the results of calculations (solid line 1) in this case,
we have to take into consideration FWM processes involving
the EH11 and EH13 waveguide modes of fundamental
radiation, the EH11, EH12, and EH14 waveguide modes of
the second harmonic, and the EH11, EH12, and EH13 modes
of the FWM signal (the phase mismatches for these FWM
processes are shown by dashed lines 2 ± 5 in Fig. 13).

The maximum of the FWM signal observed around an
argon pressure of 0.25 atm then corresponds to the phase
matching of the FWM process in the fundamental waveguide
mode (the first line of Table 1; the phase mismatch for this
process is shown by dashed line 2 in Fig. 13). For an argon
pressure of 0.6 atm, the chosen length of the fiber is close to a
tripled coherence length of the considered FWM process
�L � 3Lcoh�.

The maximum of the FWM signal observed around an
argon pressure of 0.9 atm corresponds to the phase matching
of the FWM process involving the EH11 modes of funda-
mental radiation and the second harmonic and the EH12

mode of the FWM signal (the fourth line of Table 1; the phase
mismatch for this process is shown by the dashed line 4 in
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Fig. 13), as well as the FWMprocess involving the EH11 mode
of fundamental radiation, the EH11 and EH12 modes of the
second harmonic, and the EH13 mode of the FWM signal (the
fifth line of Table 1; the phase mismatch for this process is
shown by the dashed line 5 in Fig. 13).

The four-wave mixing of the EH13 mode of fundamental
radiation, the EH11 and EH14 modes of the second harmonic,
and the EH11 mode of the FWM signal (the third line of
Table 1) provides a noticeable contribution to the total FWM
signal within the range of argon pressures from 0.3 up to
0.4 atm, where this FWM process is phase-matched (the
dashed line 3 in Fig. 13).

Figure 14 displays the power of the DFG signal generated
in argon-filled hollow fibers with different inner diameters
and a length of� 20 cm as a function of the argon pressure p.
As can be seen from Fig. 14, the maximum of the DFG signal
related to the all-fundamental-mode FWM process is shifted
toward lower pressures with an increase in the inner diameter
of the hollow fiber, approaching its limiting position
corresponding to the FWM process in collimated beams. In
this limiting case, the maximum power of the DFG signal is
achieved, in accordance with Eqn (37), for a gas pressure in
the fiber equal to 0.16 atm (at this pressure, the coherence
length of the DFG process, Lph � p=Dk g

DFG, becomes equal
to the fiber length).

Thus, the results of these measurements agree well with
our expectations based on the analysis of Eqns (28) ± (30). The
maxima observed in the DFG signal at an argon pressure of
about 0.7 atm for a hollow fiber with an inner diameter of
152 mm and a pressure of 0.9 atm for a fiber with an inner
diameter of 203 mm can be attributed, by analogy with the
case considered above, to FWM processes involving higher
order waveguide modes of the pump and FWM beams.

Thus, the results of experimental and theoretical studies
presented above reveal several important features of non-
linear-optical processes in gas-filled hollow fibers, giving a
deeper insight into methodological aspects of the problem
and opening new possibilities for practical applications of
hollow fibers in nonlinear optics, the optics of ultrashort
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pulses, and nonlinear spectroscopy. Due to the improvement
of phase-matching conditions with an appropriate choice of
the gas pressure and optimal parameters of the hollow fiber,
we were able to use hollow fibers with a large length (up to
30 cm) for difference-frequency generation, which resulted in
a considerable increase in the power of the difference-
frequency signal at the output of the fiber.

Our experimental results indicate that higher order
waveguide modes may have a considerable influence on
four-wave mixing processes in gas-filled hollow fibers. This
effect can be employed to increase the total energy of short-
wavelength radiation produced through nonlinear-optical
processes in hollow fibers. On the other hand, effects related
to higher order waveguide modes should be taken into
consideration in the optimization of hollow-fiber frequency
converters and pulse compressors, where the excitation of
higher order waveguide modes may lead to unwanted energy
losses.

Finally, the experiments discussed above have shown that
the waveguide regime of nonlinear-optical interactions
implemented in hollow fibers removes the limitations on the
efficiency of third-harmonic and sum-frequency generation,
which are characteristic of the tight-focusing regime in media
with normal dispersion and which are due to the geometric
phase shift arising in tightly focused light beams. This finding
suggests that hollow fibers can considerably expand the
possibilities of frequency conversion and nonlinear-optical
spectroscopic gas-phase analysis.

7. High-order harmonic generation
in gas-filled hollow fibers

7.1 Hollow fibers as sources
of coherent short-wavelength radiation
High-order harmonic generation in hollow fibers suggests
promising ways for producing few-cycle pulses with simulta-
neous frequency conversion of laser radiation. The improve-
ment of the efficiency of high-order harmonic generation and
the control of the temporal and spatial phase distribution in
optical harmonics are currently the key issues in the synthesis
of ultrashort pulses (including subfemtosecond pulses) with
controlled parameters.

Hollow fibers allow the length of nonlinear-optical
interactions to be radically increased and phase and group-
velocity matching to be achieved, thus offering new possibi-
lities for improving the efficiency of high-order harmonic
generation. The results of experimental studies [43 ± 46] have
demonstrated that, due to the compensation of phase
mismatch in hollow fibers, the efficiency of frequency
conversion in high-order harmonic generation can be
increased by a factor of 100 ± 1000 as compared with the
efficiencies of frequency conversion attainable in experiments
with gas jets. A conversion efficiency of 4� 10ÿ5 has been
achieved by Constant et al. [45] for the 15th harmonic
generated in a hollow fiber filled with xenon with the use of
40-fs 1.5-mJ 800-nm pulses.

Figure 15 illustrates the possibility of increasing the
efficiency of high-order harmonic generation due to
improved phase matching. This figure presents the results
of calculations [61] for the enhancement Z of generation of
high-order harmonics of 790-nm fundamental radiation in a
150-mm-inner-diameter hollow fiber filled with different rare
gases (helium, neon, and argon). The transverse distribution

of the pump intensity was assumed to correspond to the EH11

waveguide mode.
The phase of high-order harmonics can be controlled by

choosing the initial chirp of the pump pulse [75], by varying
the position of the pump-beam waist relative to the nonlinear
medium [76], by applying a biharmonic pump [77, 78], and by
preparing the initial state of a harmonic-generating system in
the form of a coherent superposition of quantum states [79].
In particular, by applying a linearly chirped pump field to
compensate for the phase of the nonlinear polarization
induced in a medium by the laser field, one can efficiently
control the shape of the spectrum of high-order harmonics
[75] and to compress pulses of optical harmonics through the
compensation of their chirp [80].

7.2 The nonlinear-optical response and propagation effects
Analysis of harmonic generation in hollow fibers includes two
stages: (i) calculation of the nonlinear-optical response of an
atomic, ionic, or molecular system responsible for high-order
harmonic generation [68, 69, 81 ± 86] and (ii) solution of the
wave equation governing the relevant propagation effects
[85 ± 87]. Many important physical aspects related to the
nonlinear-optical response of a gas medium can be under-
stood in terms of the quasiclassical model of harmonic
generation developed in Refs [82, 83].

The quantum-mechanical analysis of the nonlinear-
optical response [84 ± 86] gives the following expression for
the complex amplitude of the qth harmonic:

dq /
X
s

exp
�ÿiS�ps; ts; ts� � iqts

�
�its=2� e�3=2�det �ts; ts��1=2 ; �62�

where

S�p; t; t 0� �
�t
t 0

�
1

2

�
pÿ A�t 00��2 � Ip

�
dt 00 �63�

is the quasiclassical action; p � v� A�t� is the canonic
momentum; det �ts; ts� is the determinant of a 2� 2 matrix
involving second-order derivatives of the action in ts and ts;
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e is a small positive quantity; and Ip is the ionization potential
[Eqns (62) and (63) are written using the atomic system of
units]. The summation in Eqn (62) is performed over the
saddle points, which can be found from a set of equations
[84 ± 86] expressing the condition that an electron moving
along a certain trajectory returns to its parent ion after the
time interval ts, the energy-conservation law, and the
equation governing the tunneling of an electron at the
moment of time ts ÿ ts.

As shown in Refs [84 ± 86], within the range of frequencies
above the cut-off frequency, the amplitude and the phase of
harmonics are mainly determined by a single type of
trajectory of electrons returning to a parent ion with the
energy corresponding to the emitted harmonic. Analysis of
Eqn (62) can be then restricted to a single term corresponding
to the solution of the considered equations for saddle points
that provide a dominant contribution to the process of
harmonic generation. The phase of harmonics in this case is
determined by the classical action corresponding to this
saddle point.

The situation becomes muchmore complicated within the
plateau region of the harmonic spectrum, where the approx-
imation of a single stationary point is no longer sufficient
[84 ± 86] and at least two types of quasiclassical trajectories
should be taken into consideration. Each of these types of
trajectory is characterized by its own phase, which depends on
the pump field intensity, resulting in complicated interference
effects [85].

Propagation effects may have a considerable influence on
the phase of the field of optical harmonics. In particular,
propagation effects, as shown in [88, 89], may filter under
certain conditions the contribution of one type of electron
trajectory, allowing the formation of ultrashort pulses.
Ionization effects give rise to a dynamic phase shift of the
harmonic field [60, 61, 90], considerably changing phase
matching and the efficiency of high-order harmonic genera-
tion. Such effects are briefly discussed in the following
section.

7.3 Ionization effects
A straightforward way to improve the efficiency of nonlinear-
optical interactions underlying pulse-compression and fre-
quency-conversion applications of hollow fibers is to increase
the intensity of laser pulses coupled into a fiber. Although the
breakdown threshold for gas-filled fibers is much higher than
the breakdown threshold for ordinary fibers, it would be
natural to expect that the influence of ionization effects on the
dispersion of a gas-filled fiber and nonlinear-optical processes
in such a fiber should increase with the growth in the laser
field coupled into the fiber.

Suppose that the light fields are sufficiently weak to allow
a perturbative analysis of nonlinear-optical interactions in a
hollow fiber. Then, in the regime where the slowly varying
envelope approximation is applicable, pump depletion is
negligible, and the number of atoms undergoing ionization
is small, the intensity of the qth-order harmonic generated in a
hollow fiber filled with a nonlinear gas undergoing weak
pump-induced ionization is governed by the following
expression [60, 61]:

Iq�y; q� � 2pKqqo
��PNL

q �y; q�
��2

�
���� 1ÿ exp

�ÿiDkn
q �y�zÿ Kqz

�
ÿiDkn

q �y� ÿ Kq

����2 ; �64�

where y � tÿ z=v; v is the group velocity of the pump and
harmonic pulses;Kq is the waveguide propagation constant of
the harmonic pulse; o is the pump frequency; PNL

q �y; q� is the
amplitude of the nonlinear polarization induced in the gas at
the frequency of the harmonic; 2Kq is the absorption
coefficient of qth-harmonic radiation; and

Dkn
q �y� � Dk0 � Dkn

w � dkn
q �y� �65�

is the phase mismatch including the phase mismatch due to
waveguide dispersion, with

Dk0 � qo
c

�
n1�qo� ÿ n1�o�

�
; Dkn

w ; and dkn
q �y�

being the components of the phase mismatch related to gas
dispersion, waveguide modes, and electrons emerging from
ionization.

The inclusion of ionization effects in the analysis of pulse
propagation and harmonic generation in hollow fibers
generally requires the use of some model of ionization
allowing the calculation of the ionization rate w�I �. In
Refs [60, 90], the influence of ionization effects on high-
order harmonic generation in hollow fibers was analyzed with
an assumption of rectangular laser pulses. A rectangular
pulse gives rise to a linear growth in the effective electron
concentration as a function of time (see the inset in Fig. 16).
Although grossly oversimplified, such an approach, however,
reveals some important features of the influence of ionization
on phase matching in harmonic generation in hollow fibers
without specifying the ionization model.

Figure 17 shows the energy of the 27th harmonic pulse

Eq �
���

Iq�y; q� dqdy

(q is the harmonic number) as a function of the gas pressure in
an argon-filled hollow fiber with an inner diameter of 150 mm
in the absence of ionization (dashed line 1) and when 0.8% of
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atoms are ionized during the pump pulse (solid line 2) in the
case when the transverse distribution of the pump intensity
corresponds to the EH11 waveguidemode and the pump pulse
has a rectangular shape (see the inset in Fig. 16). As can be
seen from Fig. 17, the ionization of only 0.8% of argon atoms
significantly changes the pressure dependence of the harmo-
nic energy. Since the gas filling the fiber now undergoes
ionization during the pump pulse, the contribution of free
electrons to the refractive index of the gas leads to the phase
modulation of the pump pulse.

Due to the change in the phase of the pump pulse from its
leading edge to the trailing edge, the phase mismatch for
harmonic generation changes within the pump pulse.
Figure 16 shows the phase mismatch for the 27th harmonic
of 790-nm fundamental radiation generated in an argon-filled
hollow fiber with an inner diameter of 150 mm calculated [60]
as a function of the gas pressure (the dashed line) on the
leading edge of the pulse, where ionization does not play an
important role, and (the solid line) on the trailing edge of the
pulse, where 0.8% of atoms are ionized. It was assumed in
those calculations that the transverse distribution of pump
intensity corresponds to the EH11 waveguide mode. The
pump pulse has a rectangular shape (the dashed line in the
inset), giving rise to a linear growth in the effective electron
concentration as a function of time y (the solid line in the
inset). As can be seen from Fig. 16, the phase mismatch in an
ionizing gas is a function of time y. Therefore, different
pressures would be required to phase-match harmonic
generation at different y (see Fig. 16). The net effect of
ionization occurring in the gas filling the fiber is that it
decreases the overall efficiency of harmonic generation and
makes the harmonic-generation efficiency less sensitive to the
gas pressure in the hollow fiber.

Figure 18 shows the energy of the 41st harmonic of
790-nm fundamental radiation generated in a 150-mm-inner-
diameter 2-cm-long hollow fiber filled with argon (curves 1,
2), neon (curves 3, 4), and helium (curves 5, 6) calculated [61]
as a function of the gas pressure. The ionization probability
was calculated in accordance with the Ammosov ±Delone ±
Kra|̄nov (ADK) formula [91]. Ionization processes (dotted
curves 2, 4, 6) shift the maxima in the dependences of the

harmonic energy on the gas pressure in the fiber relative to the
positions of these maxima in the absence of ionization (solid
lines 1, 3, 5).

Thus, we have shown that a weak ionization of the gas
filling the fiber during the pump pulse gives rise to an
electronic contribution to the refractive index of the gas and,
consequently, to the phase modulation of the pump pulse.
Due to this change in the phase of the pump pulse from its
leading edge to the trailing edge, the phase mismatch for
harmonic generation changes within the pump pulse, decreas-
ing the overall efficiency of harmonic generation, but making
the harmonic-generation efficiency less sensitive to the gas
pressure in the hollow fiber.

8. Synthesis of ultrashort light pulses
in a hollow fiber with a Raman-active gas

8.1 Nonlinear-optical processes in gas media
and horizons of attosecond optics
One of the most promising and exciting directions of studies
currently performed with gas-filled hollow fibers involves the
synthesis of ultrashort laser pulses through high-order
stimulated Raman scattering [11, 13 ± 16, 92 ± 94]. According
to the theoretical analysis carried out in Refs [13 ± 16, 92 ± 94],
such an approach may allow the generation of subfemtose-
cond and attosecond pulses.

Generation of extremely short light pulses, including
pulses in the subfemtosecond range of durations, is one of
the key issues in modern physics. Several possibilities for
generating subfemtosecond and attosecond pulses are cur-
rently being discussed. One of the ways that leads beyond the
femtosecond range is based on high-order harmonic genera-
tion in gas jets [31 ± 35] and plasmas created on the surface of
a solid target [36]. The spectrum of harmonics produced in an
intense laser field features a plateau with approximately equal
harmonic amplitudes. As shown in Refs [88, 89, 95 ± 97],
sequences of attosecond pulses can be synthesized by phase-
locking these high-order harmonics (similar ideas have been
discussed earlier in Refs [98, 99]).
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The ways to solve the phase-locking problem are now
being extensively discussed in the literature [88, 89, 95 ± 97].
The methods of selection of single pulses out of pulse trains
synthesized under such conditions are also being explored [95,
96]. Christov et al. [100] have pointed out the possibility of
producing single attosecond pulses through harmonic gen-
eration in a gas in the field of ultrashort laser pulses (with
durations on the order of 5 fs). Theoretical predictions
concerning the possibility of synthesizing trains of attose-
cond pulses from phase-locked optical harmonics have been
confirmed recently by the results of experiments [12],
demonstrating that a group of high-order harmonics can be
emitted under certain conditions in the form of a sequence of
250-as pulses.

Another direction in ultrashort-pulse generation involves
the studies of high-order stimulatedRaman scattering and the
methods of phase-locking Stokes and anti-Stokes sidebands
produced in Raman-active media [11, 13 ± 16, 92 ± 94]. These
studies have shown, in particular, that superintense laser
fields are, in fact, not necessary for the generation of
attosecond pulses. Stokes and anti-Stokes sidebands can be
produced with high efficiencies even in pump fields of
moderate intensities, and phase relations suitable for synthe-
sizing subfemtosecond and attosecond pulses can be provided
for these sidebands with an appropriate excitation of Raman
modes. As demonstrated by recent experiments [11], this
approach allows the generation of pulses as short as 3.8 fs.

In this section, we will discuss in greater detail the
possibilities of ultrashort-pulse synthesis through the genera-
tion of multiple Stokes and anti-Stokes sidebands in a
Raman-active medium pre-excited with a short laser pulse.
This method of short-pulse generation has been proposed and
experimentally implemented in Refs [11, 13 ± 16]. The main
idea of this approach can be described in the following way. A
short laser pulse with a duration less than the vibration cycle
of a Raman-active vibration in a medium is used to pre-excite
such vibrations of gas molecules. The molecular vibrations
thus excited then modulate a probe pulse, which enters the
medium with some delay time relative to the pump pulse.
Amplitude and phase relations between multiple Stokes and
anti-Stokes sidebands arising as a result of this process are
suitable for synthesizing extremely short light pulses.

Important advantages of this approach to short-pulse
generation are due to the fact that the preparation of a
medium with a high-power laser pulse in this case is
separated in time from the generation of Stokes and anti-
Stokes sidebands in the field of a probe pulse with a moderate
intensity. Numerous competing processes, having a detri-
mental effect on the formation of short pulses, such as self-
action of laser pulses, ionization of a medium, and broad-
ening and shifting of Stokes and anti-Stokes sidebands, can be
eliminated under these conditions.

A hollow fiber with a length of 70 ± 100 cm was used in
experiments [14 ± 16] to increase the length of interaction of
pump and probe pulses with a Raman-active gas. With such
interaction lengths, the group delay of the pump and probe
pulses may become one of the important factors limiting the
duration of pulses synthesized with the use of this technique.
We will show below that a hollow fiber may serve not only to
increase the interaction length, but also to reduce the
influence of group-delay effects in such experiments. The
group-velocitymismatch of the pump and probe pulses can be
considerably decreased in a hollow fiber with an appropriate
choice of the gas pressure, the inner diameter of the hollow

fiber, and waveguide modes involved in the wave-mixing
process. This allows the number of Stokes and anti-Stokes
sidebands to be considerably increased by using longer
hollow fibers, thus providing an opportunity to substantially
reduce the duration of light pulses synthesized with the use of
this approach.

8.2 The influence of group-delay effects
on the synthesis of ultrashort light pulses
We will analyze the possibilities of synthesizing ultrashort
pulses through the generation of multiple Stokes and anti-
Stokes sidebands using the slowly varying envelope approx-
imation. Although such an approximation is, rigorously
speaking, inapplicable for a detailed description of the
evolution of ultrashort light pulses, it permits some general
tendencies in the evolution of the pulse and its spectrum to be
understood. We will use this approximation to examine the
role of group-delay effects in the synthesis of ultrashort light
pulses in Raman-active gases and to illustrate the ways of
reducing the group delay due to the waveguide dispersion.

Restricting our analysis to the case of EH1q modes of a
hollow fiber, we represent the fields of the pump and probe
pulses propagating in a hollow fiber (Fig. 19) in the following
form:

E1 � 1

2
f m�r�A�t; z� exp �ÿi�o1tÿ Km

1 z��� c:c: ; �66�

E2 � 1

2
f n�r�B�t; z� exp �ÿi�o2tÿ Kn

2 z�
�� c:c: ; �67�

where o1 and o2 are the central frequencies of the pump and
probe pulses, respectively; f q�r� is the transverse field
distribution in the EH1q mode of the hollow fiber; r is the
distance from the axis of the hollow fiber; Km

1 and Kn
2 are the

propagation constants of the pump and probe pulses
corresponding to the waveguide modes of the hollow fiber;
and A�t; z� and B�t; z� are the slowly varying envelopes of the
pump and probe pulses, respectively.

When the pump pulse (66) is switched off, Raman-active
Q modes excited in the medium by this pulse freely decay in
accordance with the following expression [15]:
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Figure 19. Propagation of light pulses in a gas-filled hollow fiber. The first

pulse is used to excite Raman-active vibrations of molecules in the gas

filling the fiber. The second pulse generates multiple Stokes and anti-

Stokes sidebands in accordance with the approach developed in Refs [21 ±

24]. The waveguide dispersion component compensates for the group-

velocity mismatch of the pump and probe pulses; n1 is the refractive index
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whereQ0 is the amplitude of vibrations, which is proportional
to the energy of the pump pulse; T2 is the dephasing time of
molecular vibrations; andO is the frequency of Raman-active
vibrations.

The solution to the equation governing the evolution of
the complex envelope of the probe pulse entering the Raman-
active medium with some delay with respect to the pump
pulse in the plane-wave regime under conditions when the
dephasing time T2 substantially exceeds the period of Raman
vibrations and the durations of the light pulses has been found
by Nazarkin et al. [15]. In the considered case of Raman
scattering occurring inwaveguidemodes of a hollow fiber, the
solution is formally given by the expression derived in
Ref. [15],

B�t; z� � B�t; 0� exp
�
ÿig sin �DKmnz�

DKmn
sin �Ot� DKmnz�

�
;

�69�

where t � tÿ z=v n2 , B�t; 0� is the envelope of the input probe
pulse,

DKmn � O
2

�
1

v n
2

ÿ 1

vm1

�
�70�

is the parameter characterizing the mismatch of the group
velocities,

g � 2p
c

o2NQ0
qa
qQ

; �71�

N is the concentration of Raman-active molecules in the gas,
and qa=qQ is the derivative of the molecular polarizability in
the vibrational coordinate. Expression (69) includes wave-
guide effects through the group velocities of light pulses,
which are now defined in terms of the relevant propagation
constants, and the coefficient g, which is normalized in such a
way as to include the transverse distributions of light fields in
waveguide modes.

The spectrum of the probe pulse can now be represented
as a superposition of equidistant spectral components
os � o2 � sO �s � 0;�1;�2; . . .�, which are separated from
each other by the frequency of molecular vibrations O. The
number of Stokes and anti-Stokes sidebands in the spectrum
of the probe pulse propagating in such an impulsively pre-
excited Raman-active gas increases with the growth in the
propagation length (Fig. 20). Under these conditions, the
mismatch of the group velocities of the pump and probe
pulses (the dashed lines in Fig. 21a, b) may be a serious
problem for many gases, restricting the interaction length to
the characteristic walk-off length l gmn � p=2DKmn which can
be understood as the length where the group delay of the
pump and probe pulses becomes equal to half the period of
molecular Raman-active vibrations.

In particular, for pulses of 800- and 400-nm radiation
propagating in an SF6 gas at a pressure of 0.5 atm, the group-
velocity mismatch in the absence of the waveguide dispersion
component calculated with the use of the experimental data
from [101] (the parameter DK0 in the third column of Table 2)
is approximately equal to 0.049 cmÿ1 in its absolute value.
This estimate shows that group-delay effects may become the
main factor limiting the minimum pulse duration for the
schemes synthesizing subfemtosecond and attosecond pulses
with the use of high-frequency Raman-active vibrations, such

as Ramanmodes of molecular hydrogen, for example (see the
data presented in Table 2 and Fig. 21b). Two to three Stokes
and anti-Stokes sidebands due to such Raman vibrations
would be sufficient, as shown in Ref. [16], to synthesize a
subfemtosecond light pulse.
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8.3 The ways to reduce the group-velocity mismatch
in a hollow fiber
The group-velocity mismatch under the above-specified
experimental conditions can be reduced by using the disper-
sion of waveguide modes. Physically, this opportunity is
associated with the fact that the group velocity of a light
pulse propagating in a gas-filled hollow fiber (solid lines in
Fig. 21),

v pq �
�
qKpq

qo

�ÿ1
; �72�

where Kpq is the propagation constant corresponding to the
relevant waveguide mode of a hollow fiber with mode indices
p and q, differs from the group velocity of a light pulse in the
same gas, but in the absence of a waveguide (dashed lines in
Fig. 21),

v �
�
qk
qo

�ÿ1
� c

n

�
1� o

n

qn
qo

�ÿ1
; �73�

where k � no=c and n is the refractive index of the gas.
This difference in group velocities v pq and v defined by

Eqns (72) and (73) is due to the fact that the propagation
constant of a light pulse in a gas-filled hollow fiber is related
to the wave number k of this pulse in the same gas, but in the
absence of the fiber by the expression Kpq � �k2 ÿ h2pq�1=2,
where the quantity hpq can be found from the characteristic
equation for the waveguide mode of a hollow fiber (the
relevant wave-vector diagram is shown in Fig. 19).

In particular, using Eqn (30), we arrive at the following
expression for the group velocity of a light pulse with a
transverse field distribution corresponding to the EH1m

mode of a hollow fiber:

�vml �ÿ1 � �vl�ÿ1
�
1� 1

2

�
um
l c

aol n�ol�
�2�

; �74�

where

vl � c

n�ol�
�
1� ol

n�ol�
qn
qo

����
ol

�ÿ1

is the group velocity of the light pulse in the gas in the absence
of a hollow fiber.

The group-velocity mismatch in a gas-filled hollow fiber
can be then represented as a sum of two terms:

DKmn � DK0 � DKw
mn ; �75�

where DK0 and DKw
mn are the components of the group-

velocity mismatch due to the gas and waveguide dispersion,
respectively.

An important conclusion that follows from the fact that
the group-velocity mismatch of short light pulses propagating
in a gas-filled hollow fiber can be represented as a sum of
group-velocity mismatch components related to the gas and
waveguide dispersion is that the influence of group-delay
effects on nonlinear-optical wave mixing in a hollow fiber can
be reduced with an appropriate choice of the sort and the
pressure of the gas filling the fiber, the inner radius of the
fiber, and the waveguide modes involved in the nonlinear-
optical process. The waveguide component of the group-
velocity mismatch, as follows from Eqns (74) and (75), is
inversely proportional to the square of the inner radius of a
hollow fiber, scaling as

DKw
mn / aÿ2 :

Physically, this circumstance implies that larger group-
velocity mismatches can be compensated in hollow fibers
with smaller inner diameters.

Dispersion curves for the group indices of Raman-active
gases SF6 and H2 at a pressure of 0.5 atm are shown by the
dashed lines in Fig. 21. The dotted lines in the same figures
represent the dispersion curves for the group indices of the
EH11 modes of hollow fibers with inner radii of 42 mm
(Fig. 21a) and 68 mm (Fig. 21b). The resulting dispersion
curves of the group indices including the waveguide disper-
sion are shown by the solid lines in these figures. With an
appropriate choice of hollow-fiber parameters, as can be seen
from the dependences presented in Fig. 21, the group-delay
mismatch can be compensated within a sufficiently broad
spectral range.

The third column of Table 2 presents the values of the
group-velocity mismatch DK0 for light pulses of 800- and
400-nm radiation in various gases with intense Raman-active
modes (the frequencies of Raman-active vibrations Dk are
presented in the second column of this table) at a gas pressure
p � 0:5 atm. The walk-off length for pulses with such
wavelengths in an SF6 gas at a pressure of 0.4 atm, which
was employed in experiments [14 ± 16], is approximately 40 cm
under these conditions. Group-delay effects may have a
considerable influence on the generation of Stokes and anti-
Stokes sidebands in such a situation, imposing limitations on
the duration of light pulses synthesized in this way. The
group-velocity mismatch can be completely compensated,
on the other hand, for light pulses of 800- and 400-nm
radiation by choosing the inner radius of a hollow fiber
equal to 47 mm and using the fundamental waveguide mode
to propagate each of these pulses.

The group-velocity mismatch of the pump and probe
pulses can also be compensated in a similar way for other
gases (see Table 2).

Table 2. Parameters of gases with intense Raman-active modes.

Gas Dk, cmÿ1 DK0, cmÿ1 a, mm La N

SF6

N2

O2

CO2

H2

775
2330
1555
1388
4160

0.049
0.087
0.07
0.094
0.1

42
54
49
40
68

30
63
45
25

115

22
8
11
12
4

Notation: Dk is the frequency of Raman-active vibrations (from
Ref. [101]); DK0 is the group-velocity mismatch for pulses of 800- and
400-nm radiation in the gas in the absence of a hollow éber calculated for
a gas pressure of 0.5 atm with the use of the data from Ref. [101]; a is the
optimal inner radius of a hollow éber allowing group-velocity matching
to be achieved for pulses of 800- and 400-nm radiation in the
fundamental mode of the hollow éber élled with a gas at a pressure of
0.5 atm; La is the attenuation length of 800-nm radiation in the
fundamental mode of a hollow éber with the optimal inner radius a

corresponding to the group-velocity matching of 800- and 400-nm
radiation pulses; and N � �2cDkt 0�ÿ1 is the minimum number of Stokes
and anti-Stokes components necessary to generate a pulse shorter than
1 fs (t 0 � 1 fs).
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8.4 Generation of multiple Stokes
and anti-Stokes sidebands and group-delay-free synthesis
of ultrashort pulses
If the group-velocity mismatchDKmn is small, Eqn (69) for the
envelope of the probe pulse can be rewritten as

B�t; z� � B�t; 0�
X1

s�ÿ1
Js�gz� exp �ÿisOt� ; �76�

where Js�x� is the sth-order Bessel function. As can be seen
from Eqn (76), multiple Stokes and anti-Stokes components
arise in the spectrum of the probe pulse as this pulse
propagates through an impulsively pre-excited Raman active
gas and becomes dressed with Stokes and anti-Stokes side-
bands. The number of these sidebands increases with the
growth in the pump energy (leading to an increase in the
parameter g) and the interaction length (see Fig. 20) which is
no longer limited by the walk-off length of the pump and
probe pulses.

The minimum pulse duration that can be achieved by
compensating the chirp of the pulse described by Eqn (76) is
determined by the number M of Stokes and anti-Stokes
components generated in the process of pulse propagation:
t � �2cDkM�ÿ1 (see also Table 2). Due to the properties of
Bessel functions, the maximum value of M, in turn, is
determined by the parameter gL (where L is the length of the
Raman-active medium) in accordance with the approximate
formula M � gL. Thus, large interaction lengths are crucial
for synthesizing ultrashort light pulses. The increase of the
interaction length is, however, limited by group-delay effects
(see Fig. 21) and group-velocity dispersion (Fig. 22).

Fortunately, with an appropriate choice of hollow-fiber
parameters, the waveguide dispersion component, as can be
seen from Figs 21 and 22, reduces the group delay and group-
velocity dispersion for Stokes and anti-Stokes components
within a broad spectral range. This circumstance is especially
important for gases with high-frequency Raman-active
vibrations. In the case of molecular hydrogen at a pressure
of 0.5 atm, for example, the lengths corresponding to the
group delay of Stokes components and a probe pulse with a
wavelength of 400 nm equal to half the period of molecular
vibrations are estimated in the absence of a hollow fiber as 37,
21, and 16 cm for the first, second, and third Stokes
components, respectively. The use of a hollow fiber with an
inner radius of 68 mm under these conditions (Figs 21b, 22b)
would allow these characteristic walk-off lengths to be
increased up to 57, 47, and 500 cm for the first, second, and
third Stokes components, respectively.

Thus, the compensation of the group-velocity mismatch
of the pump and probe pulses due to the use of the
waveguide dispersion of a hollow fiber allows the efficiency
of synthesizing ultrashort pulses through the generation of
multiple Stokes and anti-Stokes sidebands in a Raman-
active medium to be considerably improved. It should be
mentioned here that the increase in the length of a hollow
fiber inevitably leads to the growth in the magnitude of
optical losses for leaky modes of a hollow fiber, which are
always characterized by substantially nonzero attenuation
coefficients (the characteristic attenuation lengths are
summarized in the fifth column of Table 2). One promising
way to solve this problem is to employ hollow-core fibers
with a cladding having a structure of a two-dimensional
photonic crystal Ð the so-called holey (or photonic-crystal)
fibers [27 ± 31]. The presence of a photonic band gap in the

transmission spectrum of the cladding of such fibers permits
optical losses characteristic of the leaky modes of hollow
waveguides to be substantially reduced [32, 33] (see Section
9 of this review).

The analysis performed above shows that the group-
velocity mismatch of the pump and probe pulses may limit
the minimum duration of ultrashort pulses produced through
the generation of multiple Stokes and anti-Stokes sidebands
in a Raman-active medium pre-excited with a short laser
pulse. The use of hollow fibers in such experiments allows the
efficiency of ultrashort-pulse synthesis to be considerably
improved not only due to the increase in the length of
nonlinear-optical interaction of light pulses in a Raman-
active gas, but also due to the possibility of reducing the
group-velocity mismatch of ultrashort pulses by using the
waveguide dispersion of a hollow fiber. Having represented
the group-velocity mismatch of short light pulses propagating
through a gas-filled hollow fiber as a sum of components
related to the gas dispersion and the dispersion of waveguide
modes, we demonstrated that the influence of group-delay
effects on stimulated Raman scattering in an impulsively
excited gas can be considerably reduced with an appropriate
choice of the sort and the pressure of the gas filling the fiber,
the inner diameter of the hollow fiber, and waveguide modes
involved in the impulsive excitation of the medium and the
Raman-scattering process. The number of Stokes and anti-
Stokes sidebands can be considerably increased under these
conditions, which opens the way to decreasing the minimum
duration of light pulses synthesized with the use of this
approach.
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8.5 Selective excitation of Raman-active modes
In this section, we will discuss a coherence-control technique
that permits more Stokes and anti-Stokes sidebands to be
generated without increasing the propagation length in a
Raman-active gas, thus allowing shorter pulses to be
synthesized and the influence of dispersion effects to be
reduced. One of the simplest modifications of such a
coherence-control approach is illustrated in Fig. 23. This
method is based on the idea of replacing a single short pump
pulse, which is usually employed to impulsively excite a
Raman mode, by a sequence of N short light pulses.

The time interval T between the pulses in this sequence is
chosen equal to a multiple of the period of the Raman-active
mode T0 � 2p=O. The vibration amplitude of the Raman-
active mode is then described by the following expression
[102]:

Q�t� � Q0�T � sin �Ot� j� ; �77�
where

j � p
T

T0
�Nÿ 1� ; �78�

Q0�T � � C

O
sin �pNT=T0�
sin �pT=T0� ; �79�

and C is a constant.
Expressions (77) ± (79) reveal resonances in the depen-

dence of the amplitude of molecular vibrations on the
interpulse separation in a periodic pulse sequence. The
resonances in the dependence Q�T � show up when the time
interval T is equal to the period T0 of the Raman-active mode
(Fig. 24). Physically, these resonances are a result of the in-
phase excitation of vibrations by a periodic external force
whose period is a multiple of the period of molecular
vibrations. In contrast to the case when a Raman-active
mode is excited with a single short pulse, a resonant sequence
of short pulses allows Raman vibrations to be excited in a
selective way. To understand more aspects in the resonant
behavior of the amplitude of molecular vibrations as a
function of the interval between the pulses in a pulse
sequence and to appreciate the consequences of this behavior
for short-pulse synthesis in an impulsively excited Raman-
active medium, it is very instructive to consider excitation of
molecular vibrations in the frequency domain. The Fourier
transform of a periodic pulse sequence gives a comb of
equidistant modes. The separation Do between the neighbor-
ing modes in this comb is exactly tuned to a resonance with
the frequency of the Raman mode (see Fig. 23):
Do � 2p=T � O=p, where p is an integer. The resonant
amplitude of molecular vibrations is proportional to the
number of pulses in the train, which allows the efficiency of
Raman excitation of a gas medium to be improved (see
Fig. 24).

Table 3 provides a list of simple Raman-active molecules
having short vibrational periods and high intensities of
Raman lines, which seem to be promising for the synthesis
of ultrashort pulses. To quantify the intensity of Raman
scattering, we use the parameter introduced by SchroÈ tter
and KloÈ ckner [103] (see also Ref. [104]).

Experimentally, resonant sequences of short pulses,
allowing a selective excitation of Raman-active modes, can
be produced with the use of spatial light modulators [105 ±
111] which are capable of generating pulses with a virtually
arbitrary temporal waveform. In particular, as demonstrated
by experiments [25 ± 27], periodic sequences of femtosecond
pulses with appropriately chosen periods of pulses produced
with the use of spatial light modulators can be employed to
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selectively prepare ground- or excited-state wave packets of
potassium molecules [26, 27] and to steer multiphoton
transitions in sodium atoms [25] in the gas phase. An
important advantage of using spatial light modulators for
the selective resonant excitation of Raman gases is associated
with the fact that such modulators would provide an
opportunity of automatic feedback optimization of fre-
quency combs and pulse sequences with the use of optimal-
control algorithms [28, 112 ± 114].

9. Periodic-cladding hollow waveguides:
the way to reduce optical losses

The waveguiding of radiation in conventional fibers is
achieved due to total internal reflection. In the case of
hollow fibers, the refractive index of the core is lower than
the refractive index of the cladding. The propagation
constants of waveguide modes in hollow fibers have,
therefore, nonzero imaginary parts, and optical losses are
inherent in the propagation of light in such fibers. This
circumstance limits the fiber length in nonlinear-optical
experiments, imposing restrictions on the enhancement of
the nonlinear signal generated through harmonic generation
and wave mixing. In this section, we will show that the use
of hollow waveguides with a periodic cladding allows
optical losses inherent in hollow-waveguide modes to be
considerably reduced.

The idea of lowering the magnitude of optical losses in a
hollow waveguide with a periodic cladding relative to the
magnitude of optical losses in a hollowwaveguide with a solid
cladding is based on the high reflectivity of the periodic
structure within the photonic band gap [115, 116]. To
illustrate this idea, we will employ the geometric-optic
approach to the analysis of radiation propagation in a
waveguide.

Physically, attenuation of radiation propagating in a
hollow waveguide is due to optical losses accompanying the
reflection of radiation fromwaveguide walls. The attenuation
coefficient a can then be found from the following relation
[115]:

R 2S � exp �ÿaL� ; �80�

where R is the reflection coefficient and S is the number of
reflections from waveguide walls per length L. For a
waveguiding layer (a fiber core) with a size a, the quantity S
is given by

S � L

2a tan y
: �81�

Here, y is the angle of incidence, which can be expressed in
terms of the propagation constant K and the transverse
component of the wave number h as

h tan y � K : �82�

Using Eqns (80) ± (82), we arrive at the following expres-
sion for the attenuation coefficient:

a � ÿ h

aK
lnR : �83�

In the case of a hollow fiber, the reflection coefficient R is
determined by standard Fresnel formulas. For TE waves
making small angles y with waveguide walls, we derive then
[115]

a l
h �

l 2l2

n1a 3�n 2
2 ÿ n 2

1 �1=2
; �84�

where n1 and n2 are the refractive indices of the waveguiding
layer and the cladding, respectively, and l is an integer
corresponding to the mode index.

Thus, the magnitude of optical losses in this case scales as
l2=a 3, which is typical of hollow waveguides. This scaling law
often prevents one from using long hollow waveguides in the
case when a small core size is necessary to achieve a high
power density of laser radiation.

This problem can be solved by using a hollow waveguide
with a periodic cladding. Suppose that the refractive index of
the waveguiding layer is equal, as before, to n1, but the
cladding now consists of alternating layers with refractive
indices n1 and n2. Then, the coefficient of reflection from
waveguide walls can be written as [115]

RPBG � ÿiK � sinh �sNd�
�
s cosh �sNd� � i

Db
2

sinh �sNd�
�ÿ1

;

�85�

where

s 2 � K �Kÿ
�
Db
2

�2

; �86�

Db � 2�n
o
c
cos yÿ 2pm

d
� 2�n

oÿ o0

c
cos y �87�

is the detuning from the Bragg resonance for a periodic
structure of the waveguide cladding with a period d; o0 is
the central frequency of the photonic band gap of the
cladding, �n � ��n 2

1 � n 2
2 �=2

�1=2
; m is an integer; d is the

modulation period of the refractive index in the cladding; N
is the number of periods in the waveguide cladding; and K is
the coefficient of coupling of forward and backward waves in
the periodic cladding. In the case of a TE wave with m � 1,
this coupling coefficient can be written as [115]

K �
���
2
p

i�n 2
2 ÿ n 2

1 �
l cos y�n 2

2 � n 2
1 �1=2

: �88�

Table 3. Parameters of Raman-active molecules with short periods of
Raman vibrations and high intensities of Raman scattering.

Molecule O=2pc, cmÿ1 Sj [103, 104] T0, fs

H2

HF
H2O
NH3

C6H6

C2H4

CH4

HCl
H2S
N2

N2O
CO
NO
O2

CO2

4156
3962
3652
3334
3070
3019
2914
2886
2611
2331
2224
2143
1877
1555
1285

3.7
1.0
3.4
6.3
14
6.6
8.6
3.1
7.1
1.0
0.4
0.9
0.4
1.1
2.0

8.0
8.4
9.1
10
11
11
11
12
13
14
15
16
18
21
26

Notation: O=2pc, Raman frequency; Sj, parameter introduced in
Ref. [103] to characterize the intensity of Raman scattering relative to
the Raman scattering intensity of the 2331-cmÿ1 mode in molecular
nitrogen; T0, vibrational period.
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Around the center of the photonic band gap, where
jDbj5 jKj, we have [115]

RPBG � tanh
ÿjKjNd

�
: �89�

For sufficiently large arguments of the hyperbolic tangent in
Eqn (89), the lowering of the magnitude of optical losses in a
hollow waveguide with a periodic cladding relative to a
hollow waveguide with a solid cladding is characterized by
the ratio

aPBG
ah
/ a exp

ÿÿ2jKjNd
�
: �90�

As can be seen from Eqn (90), the increase in the number of
periods in the cladding of a hollow waveguide leads to an
exponential decrease in the magnitude of optical losses of
waveguidemodes relative to themagnitude of optical losses in
a conventional hollow waveguide.

Thus, hollow waveguides with a periodic cladding allow
optical losses characteristic of hollow-waveguide modes to be
considerably reduced. As the number of periods of the
cladding is increased, the magnitude of optical losses
decreases exponentially. Therefore, hollow waveguides with
a periodic cladding offer much promise for increasing the
efficiency of nonlinear-optical interactions, including self-
and cross-phase modulation, harmonic generation, and
wave mixing.

Since hollow-core photonic-crystal fibers [117 ± 126]
belong to this class of waveguides, we anticipate that these
fibers may be very useful for enhancing nonlinear-optical
interactions. However, the structure of cladding in photonic-
crystal fibers is, of course, much more complicated than the
structure of a periodic multilayer considered above. There-
fore, a more detailed analysis of waveguide modes and
dispersion properties of photonic-crystal fibers is necessary
to find optimal regimes of nonlinear-optical processes in such
fibers.

10. Planar hollow corrugated photonic band-gap
waveguides

10.1 A hollow waveguide with properties
of a one-dimensional photonic crystal
One promising way of further enhancement of nonlinear-
optical interactions and improvement of phase and group-
velocity matching involves the creation of optical compo-
nents integrating the properties of hollow waveguides and
photonic band-gap structures. Photonic band-gap structures
(or photonic crystals) are extensively employed nowadays for
both fundamental research and the creation of practical
optical components [127 ± 129].

Numerous applications of such structures are based on
their reflection, transmission, and dispersion properties,
related to the existence of photonic band gaps in their
transmission spectra and dispersion relations. One-dimen-
sional PBG structures are employed as multilayer mirrors
[130, 131], pulse compressors [132 ± 134], narrow-band filters
[115, 135], optical limiters and switches [136, 137], logic gates
[138], and compact frequency converters [139 ± 142]. More
complicated, two-dimensional photonic crystals are used to
create compact waveguides, decouplers, and multiplexers, as
well as novel optical fibers. Such structures also serve for the
engineering of new laser materials [143].

Below, we will consider the possibilities offered by a
compact optical element consisting of a diffraction grating
and a mirror (or another diffraction grating). The possibility
of creating a one-dimensional PBG structure based on a
grating pair has been previously discussed by Todori and
Hayase [144]. The results of transmission measurements
performed in Ref. [144] on a grating pair were interpreted
with the use of a simple formula for a one-dimensional PBG
structure neglecting waveguiding effects. We will show below
that the waveguiding properties of a grating±mirror PBG
structure play a very important role, having a noticeable
influence on the transmission and dispersion of such a
structure, considerably extending its filtering and phase-
matching capabilities, and providing additional degrees of
freedom in controlling the dispersion of guided modes.

10.2 Mode coupling and dispersion properties
of a planar hollow PBG waveguide
To illustrate the main properties of a planar hollow
waveguide consisting of a metal diffraction grating and a
metal mirror (Fig. 25), we will employ a standard approach
based on coupled-mode equations [55, 115]. Within the
framework of this approach, the periodic modulation of the
refractive index introduced by the grating is treated as a
perturbation coupling forward and backward modes of an
unperturbed waveguide. Around Bragg resonances, this
coupling is especially strong, giving rise to photonic band
gaps.

The electric field inside a corrugated planar waveguide
can be represented as a superposition of modes of an
unperturbed planar waveguide (shown in Fig. 26) with
unknown slowly varying envelopes [55, 115]:

E � 1

2

X
n

fn�x�
�
An�z� exp �ibnz� � Bn�z� exp �ÿibnz�

�
� exp �ÿiot� � c:c: ; �91�

where o is the radiation frequency; bn and fn�x� are the
propagation constant and the transverse field distribution for
the nth mode of the planar waveguide, respectively;An�z� and
Bn�z� are the slowly varying envelopes of the forward and
backward waveguide modes with the mode index n.

Perturbation of the dielectric function De�x� due to the
spatial modulation introduced by the grating gives rise to an

L

ecl

ecl

nco

lG

x

bfbb

2a

y
z

Figure 25. Mirror and diffraction grating combined to form a planar

hollow corrugated waveguide: L is the period of the grating, 2a is the

separation between the grating and themirror, nco is the refractive index of

the waveguiding layer, and ecl is the dielectric constant of the cladding. The
photonic band gap in the dispersion relation and transmission spectrum of

such a structure arises due to a strong coupling of forward and backward

waveguide modes with propagation constants bf and bb around the Bragg

resonance (97).
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additive to the polarization equal to

~P � De�x; z�E : �92�

Whenever De�x; z� is a scalar quantity, no coupling between
TE and TMmodes arises, and TE and TMmodes are coupled
in an independent way [55, 115]. Since the perturbation
introduced by a diffraction grating in the case under study is
periodic along the z-axis, this perturbation can be expanded
as a Fourier series:

De�x; z� �
X
l

~el�x� exp �ilGz� ; �93�

where G � 2p=L is the reciprocal lattice constant andL is the
period of the grating.

The set of equations for the envelopes of coupled modes is
then written as [55, 115]

dAn

dz
�
X
m; l

anml

�
Am exp

�
i�bm ÿ bn � lG�z�

� Bm exp
�ÿi�bm � bn ÿ lG�z�	 ; �94�

dBn

dz
�
X
m; l

anml

�
Am exp

�
i�bm � bn ÿ lG�z�

� Bm exp
�ÿi�bm ÿ bn � lG�z�	 ; �95�

anml � 2pio2

bnc 2

�
~el�x� fm�x� f �n �x� dx� �� fn�x���2 dx : �96�

With afbl 6� 0, a forwardmode with amode index `f ' and a
backward mode with a mode index `b' are especially strongly
coupled when the Bragg resonance condition,

bf � bb � lG ; �97�

where l is an integer, is satisfied. In this regime, an efficient
energy exchange between forward and backward modes
occurs in a corrugated planar waveguide.

Figure 27 gives a general idea of how the photonic band
gap is produced in a corrugated planar hollow waveguide.
Many waveguide modes were simultaneously excited in PBG
waveguides studied in our experiments, where structures with
large air gaps between the grating and the mirror (the air-gap
half-width a � 10ÿ44 mm) were used. In such a situation, the
broad photonic band gap observed in experiments is a result
of overlapping of photonic band gaps corresponding to a
family of strongly coupled modes meeting the Bragg-
resonance condition of Eqn (97).

Figure 27 also shows the effective refractive index for the
waveguide propagation regime, defined as neff � ~bn=k, where
~bn is the propagation constant of the nth mode in the
corrugated planar waveguide. This effective refractive index
provides an idea of the phase velocities of the coupled modes,
allowing phase-matching abilities of the created PBG
waveguide to be understood. The lower panel of Fig. 27
displays the experimentally measured (see Section 10.3)
TM-mode transmission of a planar hollow PBG waveguide
with the air-gap half-width a equal to 22 mm. The Bragg-
resonance condition in the photonic band gap is met for two
integers l and l 0 (G is the reciprocal-lattice vector).
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Figure 26. Electric-field distribution in guided modes of a planar hollow

PBGwaveguide: projections of the mode field amplitude (a) on the y-axis,ÿ�
fn�x�

�
y

�
, for the TE0 and TE7 modes and (b) on the x-axis,

ÿ�
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�
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�
,

for the TM0, TM1, TM2, and TM9 modes of a planar waveguide with

aluminum-coated walls. The air-gap half-width is 11 mm, the refractive

index of the waveguiding layer is 1, and the wavelength is 0.62 mm. The

hatched areas show the region of nonzero perturbation of the dielectric

function.
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Figure 27.Dispersion relations, effective refractive index, and the photonic

band gap for a planar hollow PBG waveguide: photonic band gaps

corresponding to a family of strongly coupled modes meeting the Bragg-

resonance condition (97) overlap to form a broad photonic band gap in

transmission. The effective refractive index neff � ~bn=k, where ~bn is the

propagation constant of the nth guided mode in the corrugated planar

waveguide, provides an idea of the phase velocities of the coupled modes

and allows phase-matching abilities of the PBGwaveguide to be analyzed.
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10.3 Transmission spectra
and enhancement of nonlinear-optical processes
The element implementing the idea of a compact optical
component combining the properties of a hollow waveguide
and a PBG structure consists of an aluminum-coated
diffraction grating and an aluminum-coated mirror [145].
Our experiments were performed with 1200- and 2400-
grooves mmÿ1 diffraction gratings, which allowed the
photonic band gaps to be observed in the visible range. The
waveguiding length of the structure was equal to 6 cm. The
separation between the grating and the mirror was varied
from 20 up to 100 mm. By changing this parameter, we were
able to tune the photonic band gap in the transmission spectra
of such structures (Fig. 28).

Transmission spectra of created planar hollow wave-
guides, as is seen from Fig. 28, feature photonic band gaps,
whose positions and parameters are sensitive to the polariza-
tion of probing radiation and characteristics of the wave-
guide. As one might expect from Eqn (97), the photonic band
gap for TM-polarized light is blue-shifted as the width of the
waveguiding layer decreases (see Fig. 28). A decrease in the air
gap between the grating and the mirror also leads to an
increase in the magnitude and the width of the photonic band
gap, which is due to the growth in the degree of light
localization within the area of the perturbed dielectric
function near the walls of the waveguide (see Fig. 26),
resulting in a stronger coupling of forward and backward
modes.

The results of experimental studies [145, 146] show that
the above-described planar hollow PBG waveguide displays
properties similar to the properties of planar corrugated
waveguides. However, in contrast to a conventional corru-
gated dielectric waveguide, the light is guided in a gas (or
whatever fills the gap between the grating and the mirror) in
our structure, which permits such structures to be employed
to guide high-intensity laser pulses, thus allowing many
remarkable opportunities of gas-filled hollow waveguides
demonstrated in the past few years by ultrashort-pulse
generation, nonlinear-optical frequency conversion, and
spectroscopic experiments to be considerably expanded.

Periodic perturbation of the refractive index introduced
by the grating, giving rise to photonic band gaps, provides
additional degrees of freedom in tuning the dispersion of the
structure, opening new ways of phase and group-velocity
matching of light pulses and appealing for soliton research.
We anticipate that the efficiency of nonlinear-optical pro-
cesses can be improved in such waveguides due to the local-
field enhancement, which is characteristic of PBG structures
[146, 147]. Finally, localization of light near a metal-coated
grating surface in lowest order TM modes in the waveguide
(see Fig. 26) allows effects related to the photonic band-gap
structure to be effectively enhanced.

Planar hollow PBG waveguides permit dispersion tailor-
ing within the frequency range accessible to many widespread
lasers, including lasers generating short pulses. Such struc-
tures may be, therefore, very useful for many practical
applications, including pulse compression, high-order har-
monic generation, and nonlinear-optical gas-phase analysis.
In particular, self-phase modulation, which is employed for
pulse compression, and multiwave mixing processes can be
substantially enhanced in such waveguides due to local-field
effects.

The efficiency of frequency conversion through high-
order harmonic generation and wave mixing can be

improved due to phase and group-velocity matching. With
an appropriate choice of a resonant gas and the width of the
gap between the grating and the mirror, such waveguide
structures can be also used as optical filters whose transmis-
sion spectra may be tuned in a very practical way by simply
changing the gas pressure.

11. Conclusions

The rapid conceptual and technological progress achieved in
the optics of ultrashort pulses within the past five to seven
years has had a significant impact on various areas of modern
science. As a part of this process, ultrashort laser pulses
evolved from a unique subject of research accessible only to
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Figure 28. Transmission spectra of a planar corrugated hollow waveguide

consisting of a 2400-grooves mmÿ1 aluminum-coated grating and an

aluminum mirror (see Fig. 26) with an air-gap half-width a equal to

44 mm (a), 22 mm (b), and 11 mm (c).
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a few laboratories into a routine tool of laser experiments
extensively employed in physics, chemistry, biology, biome-
dicine, and laser technologies. The examples of applications
of gas-filled waveguides given above illustrate that such
waveguides are an important element in the vast toolkit of
ultrafast optics, which serves to successfully and efficiently
solve several fundamental problems of nonlinear optics and
ultrafast science.

The main physical processes underlying the successful use
of hollow fibers for the efficient generation of unprecedent-
edly short light pulses, enhancement of coherent short-
wavelength radiation generation, and improvement of the
sensitivity of nonlinear-optical gas-phase analysis include
self- and cross-phase modulation, coherent four-wave mix-
ing, high-order harmonic generation, and stimulated Raman
scattering. Self-phase modulation in hollow fibers allows a
few-optical-cycle pulses with energies up to several tens of
microjoules to be produced.

Stimulated Raman scattering has already been demon-
strated to permit the generation of sub-4-fs pulses, and it
opens the way to synthesize subfemtosecond pulses.
Increased interaction lengths and improved phase and
group-velocity matching attainable for ultrashort pulses in
hollow fibers substantially enhance harmonic-generation and
wave-mixing processes. These properties of hollow fibers
offer much promise for the creation of sources capable of
efficiently generating coherent short-wavelength radiation
and for the improvement of the sensitivity of optical gas-
phase analysis.

Harmonic generation and wave mixing combined with
cross-phase modulation make it possible to produce extre-
mely short pulses with simultaneous frequency conversion.
New horizons for applying hollow waveguides in ultrafast
optics are associated with the use of coherence-control
methods for an optimal preparation of a medium for the
maximum efficiency of harmonic generation and stimulated
Raman scattering, as well as with the creation of new optical
components integrating hollow waveguides with photonic
band-gap structures.
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