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Abstract. Two self-sustained wave regimes newly found in blood
coagulation models are discussed: (1) oscillating-amplitude self-
sustained waves, and (2) waves initially propagating as classical
(constant-velocity constant-amplitude) self-sustained waves
and then abruptly stopping at a fairly large distance from the
point of activation. Depending on model parameters the latter
waves either damp out or turn into stationary, spatially loca-
lized peaks. Analysis of blood coagulation models suggests that
blood is an active medium with very unusual properties.

1. Introduction

Nonlinear reaction-diffusion systems exhibit a great variety
of dynamic behavior and different forms of self-organization.
The possibility of chemical reactions in a diffusion medium
implies the presence of an energy source at each point of the
space. Such systems are usually referred to as active media.
Their behavior may be strikingly distinct from that of
conventional physical media. The processes that take place
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in active media may be different in nature, not necessarily
chemical ones. The laser is the best known example of a
physical system. Its active medium is created by an electrical
discharge in gases, irradiation of a gas or a crystal by light,
bombardment with a beam of electrons, and other modes of
energy ‘pumping’ from the outside, besides chemical reac-
tions. However, consideration of processes proceeding in
such systems leads to the same class of equations that are
used for the description of nonlinear reaction-diffusion
systems. During the last 40 years, many mathematical
models have been proposed to describe various physical [1 —
6], chemical [7—10], biological [11-16], and even social [17]
systems. They have allowed the elucidation of certain general
laws governing active media. Indeed, these studies contrib-
uted to the creation of a new scientific discipline, nonlinear
dynamics, that encompasses practically all fields of modern
natural science.

A ‘reaction-diffusion’ type system is described by a
parabolic equation

Here, U is the vector, D is the diagonal matrix of diffusion
coefficients, and F(U) is the function describing chemical or
physical processes. In what follows, it will be frequently
convenient to consider F(U) as a ‘chemical’ function
although this does not actually imply any real chemical
requirements for this function, nor does this compromise the
generality of the consideration.

How the ‘chemical’ part of a system behaves can be
deduced from the consideration of a particular case of the
absence of diffusion terms. In this case, the system of
equations (1) turns to a system of ordinary differential
equations (2) that describes the system’s behavior at ‘a
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point’, that is in such a small part of the space where diffusion
averages all concentrations:

U=F(U). (2)

This situation is easy to reproduce in experiment. To this
effect, it is sufficient to thoroughly mix a medium; this
procedure makes a ‘point’ as large as an ordinary ‘labora-
tory dish’. Hence, the two different names of system (2):
system at a point (point system) and fully mixed system.

1.1 A simple example

Analysis of models of various reaction-diffusion systems has
demonstrated that many types of their behavior can be
described by rather a simple model. We shall take advantage
of this fact to describe key events in active media regardless of
details and specific features of a concrete real physical or
chemical medium. Such a model system is composed of two
chemical components frequently referred to as the activator
and inhibitor freely diffusing in one-, two- or three-dimen-
sional space. As a rule, an activator is able to accelerate self-
production; such a process is known as autocatalytic reaction.
Autocatalysis is responsible for strong nonlinearity of the
system.

Let us consider some basic properties of ‘reaction-
diffusion’ systems taking a simplest FitzHugh-—Nagumo
(FHN)-type model as an example [I18—20]. Numerous
models of this type have been described. They have much in
common in terms of behavior. Most data discussed in this
section are well known from text-books and may be skipped
by the learned reader. We included a summary of general
information in this paper because it appears useful to
compare the behavior of the blood coagulation system with
the simplest model of an active medium.

A characteristic feature of FHN and similar models is
cubic nonlinearity when a reaction function is given for the
first variable and linear dependence in the second equation:
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where f(u) = —u(u— 1)(u—n), 0 <n < 1/2 (see Ref. [20]),
and ¢ is the small parameter.

On the one hand, this model is an extension of the known
Kolmogorov—Petrovskii — Piskunov model [21]. On the other
hand, it is a simplification of the Hodgkin—Huxley model
describing propagation of impulses in nerve fibres [22]. It is
maintained that equations of the FitzHugh—Nagumo type
may be used to describe propagation of impulses in nerve and
cardiac muscle fibres and also in neuristor circuits [1]. The
system being considered is not fully consistent with the notion
of reaction-diffusion systems because variables of the model
may assume a negative value whereas there is no such thing as
negative concentration. It is worth noting that negativity of
‘concentrations’ has no effect on the qualitative behavior of
the system. By choosing different roots of function f'(u), it is
possible to shift the range of changes of variable values to the
positive region.

The phase plane of the FHN point system under
consideration (3) is shown in Fig. 1. One of the isoclines is S-
shaped. Systems with such an isocline or analogs resulting
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Figure 1. Phase portrait of a FHN system in the case of a single stable
stationary state (a) and kinetics of the system’s responses to perturbations
(b). System (3) has a single stationary point, a stable node (¢ = 0.001,
a=4,b=—0.55n=0.4). Let us consider a perturbation resulting in an
up-jump of the stationary value of variable v. After this perturbation
exceeds a certain threshold level (in this case 0.069), it rapidly decays. The
response of the system to a rise in v up to 0.066 is described by curve / in
(a). It is difficult to see in this figure. It is better apparent on a plot of this
variable versus time (b). If the perturbation exceeds the threshold level
(e.g. if it equals 0.07), the return to the stationary point is described by
curve 2 (a). This trajectory shows a weak dependence on the magnitude of
perturbation, being largely determined by the S-shape of the isocline.
Compare curves 2, 3, and 4 for which the initial value of vis 0.07, 0.10, and
0.15 respectively. Figure (b) shows the time dependence of variable v for
the three initial perturbations two of which are above the threshold level.
They correspond to the initial perturbations described by curves 7, 2, and 3
respectively (a). As can be seen, the kinetics of the system changes
considerably beyond the threshold while its response in terms of shape
and amplitude is virtually independent of the suprathreshold perturbation
when its amplitude continues to increase.

from a turn at 90° or mirror reflections appear to be the
simplest systems, dynamics of which can not be reduced to the
local behavior in the vicinity of fixed points. In such systems,
isoclines may intersect each other at one, two or three fixed
points. When there is a single intersection point (as shown in
Fig. 1) lying on one of the descending branches of the isocline,
the system has a single stable stationary state of the node or
focus type. Such a case is the simplest one, but even here there
are strong nonlocal effects. In a system with an S-shaped
isocline showing the threshold behavior, an impulse may be
generated, the amplitude and shape of which are practically
independent of the initial perturbation.
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1.2 Self-sustained waves

In the spatial case [see system (3)], similar to the ‘point’ one,
there is a single stationary state, isotropic and coincident with
the stationary state of a ‘point’ system.

Perturbation in a small part of such a medium produces
responses similar to those of a point system (see Fig. 1). The
system has a threshold (magnitude of perturbation) above
which it responds in a qualitatively different manner than
below. The system shows traditional behavior until the
threshold is reached, that is the deviation is proportional to
the perturbation and rapidly dissipates after the latter is
withdrawn. The behavior drastically changes above the
threshold level. Specifically, a ‘self-sustained’ wave is gener-
ated, being one of the best known dynamic objects in active
media [1, 13]. In response to a suprathreshold increase of the
variable v at the left boundary of the segment, its concentra-
tion falls giving rise to an impulse closely resembling one in a
‘point’ system (see Figs 1 and 2). Owing to diffusion, this
impulse begins to propagate in space. Figure 2 illustrates a
one-dimensional case. However, a one-dimensional section
has the same shape in a space of any dimension. The solution
in the form of a traveling impulse is in a sense a stationary one.
At given parameter values and a suprathreshold perturbation
of the system, a wave is generated which propagates with a
constant amplitude and speed.
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Figure 2. Propagation of a self-sustained wave. Local suprathreshold
increase of second variable concentration up to 0.07 near the left boundary
of the segment (see Fig. 1a, b) gives rise to a running impulse. In response
to the initial rise in the concentration of variable v, its concentration first
decreases sharply and then returns to the stationary state. The form of the
response of both variables at each point of the space resembles the
response of a homogeneous system at the same parameters. This change
of concentrations disperses in the space as a wave. All wave parameters,
i.e. amplitude, impulse shape, and speed, are constant throughout the
entire propagation time. The parameters of the model are the same as in
Fig. 1, D,, = 0.001. The time interval between the profiles is 50.

It differs from waves in the passive and conservative
media more common in classical physics in that it travels
without attenuation as far as the medium border, shows
practically no dependence on the initial conditions, and
behaves unusually in many other respects [13, 23—25]. As a
rule, the collision of two such self-sustained waves results in
annihilation, i.e. both disappear [23-25]. There is no
interference (additive interaction) between self-sustained
waves. Sometimes, they do not annihilate after collision but
reflect off each other or show a more complicated behavior
[26—32]. In a two- or three-dimensional space, self-sustained

waves wind into spirals and thus create stable sources of self-
sustained waves of ‘infinite’ duration. There are many good
books and reviews devoted to self-sustained waves and active
media to which the readers are referred [1, 13, 23, 24, 33].

The FHN model considered in the preceding section can
be supplemented by inhibitor diffusion:
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where f(u) = —u(u— 1)(u — n).

The solution in the form of a running impulse or self-
sustained wave also exists in the case when the inhibitor
diffuses with a coefficient lower than the diffusion coefficient
of the activator. This is not a rigid condition; however, the
solution for self-sustained waves always requires that the
inhibitor propagate slower than the activator. Assuming that
the inhibitor diffuses much faster than the activator, one
arrives at one more nontrivial phenomenon: self-organization
of spatial structures.

1.3 Dissipative structures

These structures were discovered by Turing in 1952 [11]. To-
day, they are referred to as Turing’s dissipative structures or,
for simplicity, Turing structures. It was shown that, certain
conditions for the right sides of model (1) being fulfilled, the
spatially uniform stationary distribution of variables deter-
mined by the steady-state of the point model loses stability
after the addition of diffusion terms. In a linear approxima-
tion, this leads to a saddle-type instability and the growth of a
certain kind of perturbations.

Let us modify the parameters of the model so that the
single fixed point becomes a stable focus and lies on a branch
of the isocline in the first equation with a positive derivative
with respect to the activator (¢ =0.01, b = —0.48). Such
parameters make it possible to satisfy the necessary condi-
tions of the Turing bifurcation. The corresponding point
model at given parameter values has a single fixed point, i.e.
stable focus. Weak perturbation of the initial spatially
uniform distribution corresponding to fixed point values
results in an enhancement of perturbations by the Turing
mechanism and the formation of dissipative structures
(Fig. 3a). Figure 3b shows established spatial distributions
of the activator and inhibitor.

In an initially isotropic system, a small change of
parameter leads to spatial structures, i.e. self-organization.
Why do regions with elevated concentrations of matter (see
Fig. 3) stably exist in a medium with free diffusion? This is
possible because the ‘activator’ is able to accelerate self-
production and thus make up for the losses due to the
outflow of matter by diffusion. The inhibitor can ‘localize’ a
part of the space with a high activator concentration due to
the larger diffusion coefficient. A much higher diffusion rate
of the inhibitor is an indispensable condition for self-
organization in such media. Turing’s work provided a basis
for a large number of studies on self-organization mechan-
isms in nature [1, 8, 34].

In the absence of diffusion, system (3) may undergo
nondecaying oscillations (self-sustained oscillations). They
occur when a single fixed point lies on the ascending branch of
the cubic S-shaped isocline. In the case of diffusion, the
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Figure 3. Dissipative structures in an FHN model [system (4)].
(a) Formation of a Turing structure for the first variable of the model;
(b) spatially nonuniform distributions of concentrations of both variables
for model (4) established by 7 = 1000 (solid line — activator u, dashed
line — inhibitor v). Parameter values used for model (4): ¢ = 0.01, a = 4,
b=-048,n=0.4,D,=0.001, D, =0.07. The problem was considered
on a segment with L = 3. The initial conditions were given by a small local
perturbation in the center of the segment for the first variable. All the rest
of the points of the space were in a stationary state corresponding to the
fixed point of the system u = 0.742, v = 0.065.

regime of self-sustained oscillations is substituted by complex
oscillations in space and various synchronization phenom-
ena. Their consideration is however beyond the scope of the
present paper.

1.4 Bistability
In the absence of diffusion, systems (3) and (4) may have up to
three fixed points. A case of two fixed points corresponds to
the contact of isoclines and is not a rough one. In the case of
three fixed points, two of them are as a rule stable, while the
third one (saddle) lies between them (Fig. 4a). Such a medium
is called bistable; it contains two coexisting stable stationary
states, each having its own region of attraction. The boundary
between these regions is made up by incoming separatrices of
the saddle (dashed lines in Fig. 4a). Starting from different
initial conditions, that is from different phase plane regions, it
is possible to reach either the up or down state (Fig. 4a).
When the diffusion of both the activator and the inhibitor
‘turns on’ at the appropriate parameter values and diffusion
coefficient ratio, the system may have two coexisting stable
spatially uniform states, each with its own characteristic
threshold. In other words, there is a threshold perturbation
level above which the system is unable to return to the initial
state and ‘switches over’ to a new one. It is clear from Fig. 4a
that threshold is a vague notion. The perturbation needed to
prevent a system from returning to the initial state depends on
its direction in the phase plane. Therefore, the threshold
depends on a combination of perturbations of both variables
that affects the system. The boundary of the attraction region
of a given state in the phase space is an exact measure of
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Figure 4. Bistability case: phase portrait (a), trigger wave (b). Figure (a)
presents a phase portrait of system (3) without diffusion in the case of three
fixed points (¢ = 0.02, a = 9.3995, b = —0.405, n = 0.4); it shows isoclines
of the first and second equations (3) and phase trajectories. The dashed
lines represent saddle separatrices. The coordinates of fixed points are as
follows: 0.88; 0.051 (upper point), 0.12; —0.0299 (lower point), 0.395;
—0.001 (intermediate point). Figure (b) shows that the addition of
diffusion excites a trigger wave transforming the stable down-state to the
up-state (¢ =0.02, «=9.3995, b=-0405, n=04, D,=0.001,
D, = 0.005).

perturbation. For all this, the notion of threshold is con-
venient by virtue of its simplicity and demonstrability.

In such a medium, it is possible to excite trigger waves that
transform one stationary state to another. They have a good
physical analogy in the form of phase transition waves. The
following rule holds for bistable systems with cubic non-
linearity: a system tends to exist in a spatially uniform state
having a larger threshold. In a sense, the larger threshold is
equivalent to a deeper potential well. There is an explicit
analogy between the two even though these systems are not
conservative and the potential has no special meaning for
them [35-37].

At the mutual position of isoclines shown in Fig. 4a, the
threshold of the up (far-from-zero) stable state is higher than
the threshold of the down (close to zero) state, and it is
possible to excite a wave that triggers the lower state to the
upper one (Fig. 4b). To this effect, a part of the space needs to
be perturbed to above the threshold level. Then, the traveling
wave will shift the whole spatial section from the lower to
upper state. By shifting the coordinates of the saddle point to
the right, one obtains a situation in which the down-state
threshold is higher than the up-state threshold and it is
possible to excite a wave switching the latter to the former.
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This rule does not hold invariably. An interesting
phenomenon [24] referred to by western authors as non-
equilibrium Bloch— Ising bifurcation [37] can be observed as
parameter ¢ decreases, i.e. at a marked slowdown of the
inhibitor in bistable diffusion media. By means of special
selection of initial conditions, it is possible to excite two
waves, one transforming the upper state to the lower one the
other transforming the lower state to the upper one, at the
same parameter values below this bifurcation. A study of this
bifurcation [37] and the behavior of an FHN-type system
below it in a two-dimensional case was reported in Refs [38 —
41].

The distribution patterns of trigger waves are reminiscent
of those of self-sustained waves in that their fronts move at a
constant velocity. Interacting trigger fronts collide and, as a
rule, annihilate. In certain situations, they can repulse one
another [37] or give rise to a self-sustained wave [37, 41] or
stationary peak [37].

The appearance of stationary peak is of special interest. It
is formed at low velocities of colliding waves. By way of
example, Fig. 5 presents a stationary peak profile resulting
from the interaction of two off-waves. Such a nonisotropic
distribution of matter looks surprising. In some degree, it
resembles Turing structures. However, it is represented by a
solitary peak whereas in Turing’s case the entire space is filled
with structures which gives an impression of a self-sustained
wave. Certainly, it is possible to obtain a single peak in the
Turing case too, by taking a sufficiently short segment. But
the stationary peak shown in Fig. 5 does not depend on the
length of the segment. It may rise abruptly out of the ‘plain’,
tens or more times higher than the peak. Its parameters
(amplitude and width of the distribution of variables in
space) are independent of the medium dimensions if the
segment length is larger than the peak size. It appears that
the peak is stabilized owing to the inhibitor being distributed
over a wider area in space than the activator preventing the
latter’s expansion. It is noteworthy that the peaks can be
obtained in a monostable medium as well [1].
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Figure 5. Activator and inhibitor profile of an established stationary peak
resulting from interaction of two waves that trigger the upper state to the
lower one. Parameters: ¢=0.02, a=9.3995, b= —0.2637, n=10.4,
D, =0.001, D, = 0.005.

1.5 Results of consideration of a simple example

All the three classes of dynamic behavior considered in
previous sections (self-sustained waves, dissipative struc-
tures, and bistability) are impracticable in linear systems.
They arise because nonlinearity produces instabilities in the

phase space by the agency of which the system tends to avoid
equilibrium. In the simple case considered above, this region
is formed by the ascending branch of the S-shaped isocline.
Such behavior is associated with self-accelerating processes,
an ‘enhancement’ of perturbations by the system. We confine
ourselves to citing the above data on classical active media
and turn to a new example, the main theme of this work.

The objective of the present paper is to analyse mechan-
isms of the experimentally observed formation of a fibrin clot,
that is the movement of a self-sustained wave that abruptly
stops after initial propagation. A simplest case from the
theory of active media has been considered in a preceding
section. It will be shown below what blood coagulation has in
common with processes taking place in the active media
described earlier and what distinguishes it from the classical
notions and requires the development of new concepts in the
theory of nonlinear dynamical systems.

Hypothesis of the self-sustained wave nature of coagulation.
Investigations into blood coagulation processes have demon-
strated that they show many properties of active media [34,
35]. The production of active factors contributing to
thrombus formation is possible at all points of the space.
The blood coagulation cascade is integrated by positive
feedback relationships responsible for strong self-activation
of the process. It has all the components necessary for
thrombus development governed by mechanisms that
involve self-sustained waves. There is an important differ-
ence, however. A thrombus can not grow infinitely. Nor-
mally, its growth is always localized in space.

Our studies on blood coagulation have allowed us to
advance a hypothesis that blood is an active medium of a new
type [42—47]. In this medium, not only classical self-sustained
waves are generated but also waves that initially propagate as
classical ones but then abruptly stop at a certain distance from
the point of activation, not propagating as far as the
boundaries [44, 57]. Mathematical models formalizing our
ideas of coagulation describe an active medium in which the
known objects may coexist with new dynamic and stationary
ones. In this way, the existence and propagation of self-
sustained waves with varying amplitudes were discovered
[44, 57] along with the formation of ring patterns and
‘spots’, i.e. stationary nonisotropic distributions of concen-
trations of matter in space [48—51]. Similar studies designed
to broaden our knowledge of active media are underway
using other models [52—-63] and experimental [64—72]
systems. It appears that only now are we beginning to
understand how little we know about the possible types of
dynamic behavior of systems having energy sources at each
point of the space.

We believe that the blood coagulation system is not a
unique one. Similar mechanisms may be responsible for
unusual phenomena in biology [15, 16, 73—78], chemistry
[79—86], and physics [66 — 70, 72]. For this reason, we suppose
that the results of our dynamic blood coagulation studies may
be of interest to a wide circle of students of natural sciences.

2. Molecular basis of coagulation

2.1 Clot formation — synthesis of fibrin polymers

How is a thrombus formed? Normally, a hemorrhage is
stopped within 1-3 min after damage to small blood
vessels. This primary hemostasis is due to the narrowing of
the vessel channels and their obstruction at the site of injury
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by a primary thrombus, i.e. a compact aggregate of platelets
(one type of blood cell). Further development of the blood
clot that completely blocks bleeding (secondary hemostasis) is
due to the synthesis of the protein fibrin. Its polymerization
quickly gives rise to a compact gel, a major thrombus
constituent. Normal, ‘liquid’, blood is lacking in fibrin but
contains, instead, a large amount of fibrinogen, its precursor.
The splitting of small fragments from fibrinogen results in its
conversion to fibrin. This process is shown in Fig. 6a. The
enzyme thrombin catalyzes breakdown of four peptide bonds
of fibrinogen and thus releases four small fragments,
fibrinopeptides A and B. The resulting fibrin monomers
undergo fast polymerization to long branched chains
(Fig. 6b). In this way, a network of fibrin polymers develops
at the site of injury, and the entire medium passes to a ‘solid’,
aggregate state called gel, a commonly known state exempli-
fied by ‘la gelee’ (jelly) of French cuisine. Blood cells turn out
to be enclosed in the fibrin network. Collectively, these
structures make up a thrombus that seals the lesioned wall
of the vessel. Gel formation is almost immediately followed
by biochemical reactions giving rise to the cross-links between
fibrin polymer threads. They consolidate the clot into a
genuine solid body.

Naturally, the enzyme converting fibrinogen to fibrin is
not present in blood in an active form. Instead, its
precursor, prothrombin occurs in blood plasma. Similar to
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Figure 6. Synthesis of fibrin polymer. (a) Thrombin-induced cleavage of
fibrinopeptides A and B (FPA, FPB) off fibrinogen; (b) subsequent
polymerization of fibrin monomers into long branched chains [simplified
from Mosesson M W J. Lab. Clin. Med., 1990].

fibrinogen, prothrombin is activated by means of chemical
cleavage of a small fragment. There is rather a complicated
system of biochemical reactions that ensures ‘correct’
regulation of the work of the system, that is its activation
upon vessel injury, spatial-temporal dynamics of thrombus
growth and its arrest.

The main problem considered below is by what and how it
is decided that blood needs ‘to be or not to be’ liquid in a
selected portion of the circulatory system. Why is blood liquid
in a normally functioning organ but undergoes clotting under
the effect of biochemical reactions triggered where the vessel
is damaged? By what and how is the clot size and localization
determined?

2.2 Two modes of activation of coagulation. Intrinsic

and extrinsic pathways of coagulation and their role
Figure 7 is a schematic representation of the blood
coagulation cascade [86]. The main clotting factors are
denoted by Roman numerals. All of them are proteins
circulating in blood as inactive precursors. Practically all
these factors are activated by the cleavage of a small
fragment from the molecule, similar to fibrinogen or
prothrombin. Figure 7 shows activated clotting factors
denoted as a. According to this scheme, they activate each
other in response to a vascular lesion initiating a cascade of
consecutive reactions. For example, thrombin is activated
by factor X, formed at a preceding stage of the cascade.
Traditionally, two pathways of activation leading to the
production of factor X, are distinguished. The intrinsic
pathway is a long train of consecutive reactions starting
from factor XII. The other, extrinsic, pathway proceeds
from tissue factor or thromboplastin which is a protein
located at the surface of practically all cells of the human
body with the exception of endothelial cells making up the
inner lining of normal blood vessels.

Coagulation is activated where the inner lining is damaged
and blood gets in contact with cells having thromboplastin on
their surface (see Fig. 7). This is the main (extrinsic) pathway
of coagulation. It is known to be almost invariably involved in
blood clotting whenever the vessels are damaged. It ensures
fast (1-2 min) and efficient activation of coagulation. It
follows from Fig. 7 that clotting may be also triggered by
activation of factor XII, i.e. via the intrinsic pathway. Factor
XII is always present in blood (hence the name of this
pathway — intrinsic) and can be activated upon contact
with a material alien to the body, e.g. glass. The intrinsic
pathway is considered to be a ‘reserve’ one. The activation via
this pathway is weaker than in the previous case and needs
more time to be completed (within 7— 10 min after initiation).
It is however well-known that people lacking intrinsic factors
of the ‘reserve’ pathway are vulnerable to hemorrhage
because of deficient coagulation, even if the ‘main pathway’
remains normal.

Blood coagulation disorders are collectively called hemo-
philias. Many of them are hereditary disorders. One of the
forms of hemophilia is the very common hemophilia A caused
by the absence of factor VIII. Many lay people know about
this disorder because it is due to an inherited defect which has
been transmitted through succeeding generations in certain
royal families of Europe. Tsarevich Alexis, the last heir to the
Russian throne, suffered from this disease. Almost equally
widespread is hemophilia B, caused by the deficit of factor IX,
another element of the ‘reserve’ pathway. Clinical manifesta-
tions of the two disorders are very much alike.
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Figure 7. Schematic representation of biochemical reactions involved in blood coagulation. Roman numerals denote precursors of clotting factors and
a — their activated forms. APC — activated protein C, TF — tissue factor. Plus and minus-arrows show positive and negative feedback relationships
respectively. Dotted arrows indicate leakage of active factors in the case of inhibition. k and / are velocity constants of reactions and factor inactivation

respectively.

One of the questions that has long remained unanswered
in the science of hematology is why the deficiency in clotting
factors of the ‘reserve’ pathway is so crucial for the
coagulation process at all. There is the main, extrinsic
pathway via which clotting is effectively initiated in case of a
vessels damage. Why, then, is coagulation compromised in
subjects lacking factors of the ‘reserve’ (intrinsic) pathway
despite the normally functioning extrinsic pathway? We shall
try to answer this question below.

2.3 Specific kinetic features of molecular processes

of coagulation

Cascades of enzymatic reactions are widespread in biological
objects. They occur in many systems, both at the cellular and
other levels. Chemically, these cascades are a sequence of
reactions mediated by proteolytic enzymes, such as the blood
coagulation cascade, or by enzymes phosphorylating other
proteins and termed proteinkinases.

Let us consider major features of the blood coagulation
cascade. It is schematically represented in Fig. 8.

Naturally, the kinetics of active factor concentrations in
such an enzymatic cascade in response to any perturbation is
strongly nonlinear. It has been shown for a cascade of
consecutive reactions that at an initial stage (+ — 0) a rise in
the concentration of a final product is described by a power
function in the form of ¢”, where the index p denotes the
number of steps in the cascade [87]. This is due to the fact that
each step yields an enzyme. Each second, one enzyme
molecule produces many molecules of the product which are
also enzymes synthesizing large amounts of their respective

product, etc. In other words, the cascade is a powerful
amplifier with nonlinear properties. Amplification energy is
derived from ongoing chemical reactions. Such a linear
cascade has two stationary states, one zero and the other
fully activated. The zero state is unstable and is readily
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Figure 8. Kinetics of active factors (U;) formed at different stages of the
blood coagulation cascade.
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transformed to the fully activated one upon a slightest
fluctuation of the incoming signal. This situation corre-
sponds to complete blood coagulation.

The above cascade properties (self-acceleration and
instability) make blood coagulation akin to active media.
The ability to intensify a perturbation creates prerequisites
for the formation of a most important property of coagula-
tion, the threshold response to system activation. As long as
activation is below threshold blood remains liquid to provide
protection of the organism against spontaneous clotting. As
in the simplest example considered in the Introduction, the
‘threshold behavior’ of the coagulation system and bistability
(stability of two coexisting blood states, liquid and solid) are
induced by inhibitors and processes that arrest self-accelera-
tion. They are sure to be present in the system and will be
discussed below.

Blood coagulation reactions are integrated by strong
positive feedback relationships. To induce bistability and
ensure blood coagulation, nature did not confine itself to
imparting nonlinearity to the enzymatic cascade. The prop-
erty of nonlinearity is multiply reinforced by strong positive
feedback relationships. Figure 7 shows that factors VIII and
V stand apart form the others. They are not direct elements of
the cascade, nor do they exhibit enzymatic activity. They are
actually cofactors or effectors that significantly, by several
orders of magnitude, increase the activity of factors IX and X.
Cofactors V and VIII are initially inactive but their activation
by thrombin leads to the formation of positive feedback loops
in the system. In Fig. 7 they are shown by plus-arrows. By
virtue of this mechanism, thrombin self-production is
accelerated 10° times.

It has been shown in experiment that thrombin can
activate factor XI [88, 89] at the top of the cascade thus
giving rise to one more positive feedback loop in the
coagulation system (see Fig. 7). This reaction makes the
system autonomous. In other words, thrombin is capable of
maintaining self-production even in the absence of activation
via both intrinsic and extrinsic pathways. What is actually
needed for the purpose is an initial primer, e.g. a small amount
of thrombin itself.

Stability of the blood liquid state is maintained by
inhibitors. The sequence of reactions considered in the
preceding paragraphs (see Fig. 7) can stably exist in the
inactive liquid state only if the lifetime of active forms of
clotting factors is relatively short. Otherwise, the blood
quickly coagulates. To prevent clotting, all active enzymes
are rapidly inactivated by special inhibitor proteins
contained in blood, e.g. antithrombin. Inactivation is
effected by the binding of the inhibitors to active
factors. This process is illustrated in Fig. 7 by dotted
arrows originating from the corresponding factors. Such a
‘flow-through’ system, where active factors undergo fast
and irreversible inactivation, needs to be continuously
replenished by new inactive precursors. This function is
performed by the liver.

Ensemble of protein C reactions — negative feedback in
blood coagulation. Besides inhibitors, there are a number of
reactions that collectively make up a negative feedback
system. They are shown in the figure by minus-arrows.
When activated, protein C, one more clotting factor, is
capable of splitting cofactors VIII and V. This activity breaks
positive feedback loops and reduces the activation rate by
several orders of magnitude. Interestingly, activation of
protein C, i.e. switching on the negative feedback mechan-

ism, is effected by thrombin, that is the same key factor of
blood coagulation which produces fibrin for clot formation
and accelerates self-production through positive feedback.
Thus, all roads lead to thrombin!

2.4 Homogeneous Kkinetics of blood coagulation

Blood coagulation experiments are usually designed as
follows. A blood sample added to a tube is supplemented
by an appropriate agent (e.g. a clotting activator obtained
from under vascular endothelium), and the resulting
solution is mixed for some time and thereafter left for
the coagulation process to develop. In the end, a clot (i.e.
gel) is formed (Fig. 9a). Under these conditions, clotting
is a homogeneous process that involves the entire blood
volume. A different picture is observed when a blood
vessel is damaged (Fig. 9b). Blood leaks through the
lesioned endothelium and comes in contact with tissues
underlying it. The resultant activation of clotting factors
induces coagulation at the sight of injury. The growth of
the clot stops after it attains a certain size, seals the
lesion, and arrests leakage. Sufficiently large vessels
continue to function normally despite the lesion which in
the meantime undergoes reparation. Thus, the coagulation
process under natural conditions occurs as the growth of
a certain spatial structure; this poses an invariably
inhomogeneous problem. We shall start from a simpler
homogeneous case.

=

in vitro

Time

in vivo

Figure 9. Thrombus formation in a tube (in vitro) (a) and in a blood vessel
(in vivo) (b). In the tube, the process involves the entire blood volume
(shading is proportional to thrombus solidification). In the vessel, only a
portion of the blood at the site of injury undergoes solidification.

The scheme in Fig. 7 requires almost 40 differential
equations to be fully described. There are a few mathematical
models of the system differing in the degree of detail of the
description. By means of reasonable simplifications (e.g. on
the assumption of constant precursor concentrations), it is
possible to reduce the number of equations to eight and use
this system for the quantitative description of in vitro
experiments [45, 46]. At the same time, all major kinetic
properties of the system of interest in a homogeneous case can
be qualitatively described by only two differential equations.
The system that will be used, by way of example, to consider
characteristic properties of the blood coagulation process is
actually a reduced version of the model described elsewhere
[45]. This reduced model includes two variables, thrombin ()
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and activated protein C (v):
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where uy is the concentration of prothrombin (thrombin
precursor), A is the continuous influx of factor X, that
characterizes in this model the degree of system activation
via the extrinsic pathway (see Fig. 7), and K; is the
combination of elementary constants shown in Fig. 7.

Table 1. Values of constants used in model (5).

K K K3 Ky

2.45 min~! 447.66 nM~'  3.87nM~! 1.65 x 107* min~!
K K K; Ks

4.89 nM~! 2.3 min~! 0.0014 min~! 0.1 min~!

Here, the expression within the first brackets in the
equation for thrombin describes a positive feedback loop
involving cofactor V and the expression in the second
brackets a positive feedback loop involving cofactor VIII
(see Fig. 7). The expression within the square brackets
contains reactions related to the positive feedback loop via
thrombin activation of factor XI (see constant Kj) as well as
the influx of factor X,. The expression within the third
brackets describes the limitation on the thrombin level
imposed by the concentration of its precursor in blood
plasma uy. According to the equation, protein C is activated
by thrombin and inactivated in proportion to its own level.
All the constants correspond to those used in the earlier
description of the complete model [45, 46]. One of the main
properties of blood coagulation demonstrated by the above
system of equations is the threshold response of the system to
activation. The threshold response of the blood coagulation
system was first predicted theoretically by M A Khanin [90,
91]. Figure 10a shows characteristic kinetics of clotting factors
in response to activation signals of different amplitudes. Each
consecutive curve number corresponds to an increase of factor
X, influx by 0.0005 nM min~!. After the activation signal
reaches a certain level, a dramatic change of kinetics occurs
and the concentration of the active factor begins to grow
exponentially. At subthreshold activation signals, the sys-
tem’s response is roughly proportional to the amount of
activation. A very low plasma thrombin level fails to
substantially increase fibrin production, and the blood
remains ‘liquid’. A suprathreshold activation results in a
jump of concentration to a value 4—5 orders of magnitude
above the subthreshold one. Figure 10b illustrates the
modulation of thrombin concentrations in response to
suprathreshold signals. It can be seen that the amplitude of
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Figure 10. (a) Kinetics of thrombin synthesis at subthreshold (curves /7, 2,
3) and suprathreshold (curve 4) levels of activation (respective influx
values: /—0.001 nM min~!; 2—0.0015 1M min~'; 3—0.002 nM min~!;
4—0.0025 nM min~"); (b) explosive kinetics of thrombin synthesis in case
of suprathreshold activation followed by plateau for the lack of exhaus-
tion of precursors in the model (curve / — influx equals 0.0025 nM min~';
2—0.003nM min~', 3—0.01 nM min—1); (c) phase portrait of model (5)
for the case of subthreshold activation (4 = 0.002 nM min~'). Dark-
colored lines are isoclines; light-colored lines are phase trajectories. The
dashed line is a saddle separatrix. \

the response remains unaltered as the activation signal
increases whereas the time needed to reach a maximum
response changes significantly.

Comparison of the model and experimental findings
reveals a qualitative similarity. In experiment, the behavior
is more complicated; specifically, for suprathreshold activa-
tion signals, the thrombin concentration falls rapidly after it
reached a maximum value. Such a behavior is due firstly to
the exhaustion of active factor precursors and secondly to the
fast inactivation of synthesized thrombin by inhibitors
present in blood in large amounts. There is no explicit
exhaustion of precursors in the model even though the
thrombin concentration is limited by the plasma level of its
precursor (up). The amount of thrombin necessary for solid
clot formation in the real coagulation process is much smaller
than the maximum achievable in the model. Therefore, the
entire process depends on the initial phase of thrombin
synthesis in which the behavior of the model resembles that
in vivo. As in the model, the magnitude of the activation
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signal shows a stronger influence on the time necessary to
reach a maximum thrombin level than on its peak amplitude.
Analysis of complete models taking into consideration
exhaustion of precursors confirms this conclusion [46].
Figure 10c presents a phase portrait of system (5) for a
case of subthreshold activation (corresponding to curve 3 in
Fig. 10a). In this case, the system has three fixed points. The
figure shows only two of them located near the origin of
coordinates. The third one, a stable node, lies four orders of
magnitude from the second point along axis u, that is outside
the selected scale, and corresponds to the coagulated state of
plasma. The complete phase portrait of this system showing
the third fixed point is practically indistinguishable from the
phase portrait in Fig. 11b where the near fixed points are
absent. The large scale difference (a few orders of magnitude)
makes these points practically indistinguishable. The stable
fixed point close to zero corresponds to the transition of the
system (at zero initial values of variables) to low (subthres-
hold) stationary concentrations of active clotting factors. It
follows from Fig. 10c that, in this case, the thrombin
concentration begins to grow quickly if its initial values were
in excess of 0.25 nM as determined by the saddle separatrix
separating the two stable fixed points of the system.
The shape of the isocline of the first equation in system
5 changes with increasing system activation level. Figure 11a
illustrates the transition from subthreshold to suprathreshold
activation. The changes are largely confined to the zone of
small values of variable u. As the influx of factor X, increases,
the left branch of the isocline ascends. As soon as it touches

the isocline of the second equation, the two fixed points
closest to zero disappear. A complete isocline for the case of
suprathreshold activation is presented in Fig. 11b showing the
respective phase portrait of system (5).

Systems of type (5) are rigid from the computational
standpoint. The presence of S-shaped isoclines in such
systems accounts for their tendency to fluctuations. System
(5) is no exception. A rise of the constant k. leads to a self-
sustained oscillation regime (Fig. 12). Comparison of the
model and in vitro experiment (a fully mixed system) indicates
that the simplest model provides an adequate qualitative
description of the majority of the observed effects. The
system generates a thrombin impulse in response to small
suprathreshold perturbations [92, 93]. As in the model, the
amplitude of this impulse is many orders of magnitude higher
than the thrombin concentrations in liquid blood. Also, it
shows a weak dependence on the activation signal which
largely influences the clotting time (the lower the suprathres-
hold activation the more time coagulation takes to complete).
It has been shown above (Fig. 10b) that the simplest model

behaves in a similar way.

We shall not dwell at length on the homogeneous kinetics
of this system because we think it is much more interesting to
consider the spatial aspect of the problem.

3. Phenomenological model

How will the system of chemical reactions represented in
Fig. 7 behave in a spatial problem? In the case of activation in
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Figure 11. (a) Change of the isocline shape in the first equation of system
(5) upon a rise in the level of its activation (influx of factor X,). The solid
line represents suprathreshold activation (4 = 0.0025 nM min~!); the
dashed line is subthreshold activation (4 = 0.002 nM min~!). (b) Full
phase portrait of system (5) in the case of suprathreshold activation

represented by the solid line in (a). [Pay attention to the difference
between the scales in figures (a) and (b)].

Figure 12. 10-fold increase of the constant of protein C activation by
thrombin (K7 = kgpe = 0.014 min~', 4 = 0.0025 nM min~') leads to self-
sustained oscillations of active clotting factors. (a) Kinetic curves of
thrombin (solid line) and activated protein C (dashed line). (b) Respective
phase portrait of system (5): the light-colored lines are isoclines, the dark-
colored lines are the limit cycle trajectory.
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one part of the space, active clotting factors can spread either
by diffusion or by drift in the blood flow. Equations (5) can be
extended by the addition of diffusion terms. Then, activation
of coagulation in a certain part of the space will induce
propagation of a self-sustained wave of clot formation. Such
behavior is typical of active media.

Although the greatly simplified model of the coagulation
system obtained in our studies adequately describes the
homogeneous kinetics of the system, it is evidently in conflict
with the knowledge that a clot is always finite and localized.

We have considered many complete versions of the
description of biochemical reactions involved in blood
coagulation and could see that thrombin always spreads as a
self-sustained wave or trigger wave. This is a rough effect
independent of our simplifications, the key point being the
ability of thrombin to activate self-production. Due to this
ability, the blood is an active medium, and active clotting
factors can not only migrate from the site of injury to
circulation but can also be formed at each point of the
space. All the inhibitors represented in Fig. 7 that so
effectively block thrombin synthesis and rapidly decrease its
concentration in a homogeneous case prove unable to do the
same in a spatial situation. The expanding front of the
inhibitors cannot overtake the thrombin front.

The first attempt to resolve this paradox was made in the
works of Ataullakhanov and Guriya [43, 44]. These authors
proposed a phenomenological model of coagulation [43]
based on a simple idea that a self-sustained wave can catch
up with another such wave. The equations of this model have
the form
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In this model, the ability of thrombin for self-accelerated
production is taken into consideration in a simple way. By
analogy with the previous model (5), thrombin is denoted by
the variable u. It can accelerate self-production, i.e. auto-
catalysis takes place. Also taken into account is thrombin
inactivation effected through its binding to plasma inhibitors.
The second variable, v, is a hypothetical inhibitor which is
absent in an explicit form from the previously considered
system of biochemical reactions (see Fig. 7). The hypothesis
suggests that this inhibitor must also inactivate thrombin but
differs from other inhibitors in terms of kinetics. It is induced
by thrombin and thereafter accelerates self-production (the
expression within the square brackets in the first term of the
equation for v). According to the second equation of system
(6), the production of inhibitor v is proportional to the
thrombin level which means that it is synthesized only in the
zone of thrombin action. This inhibitor, similar to all active
clotting factors, is characterized by a certain inactivation rate.
For the convenience of watching the process, the third
variable F (fibrin analogy) is introduced; it marks the clot
formation site. The third variable is actually an indicator
(integrated thrombin value). The third equation has no effect
on process dynamics.

The idea of the phenomenological model consists in that a
self-sustained wave can be overtaken (and damped out) by the
following one traveling at a higher velocity. The former wave

(thrombin wave) creates conditions for the formation of the
latter (hypothetical inhibitor). Because this inhibitor is also
capable of autocatalysis, it has a degree of autonomy; that is
its velocity depends on the kinetics of its own reactions. This
model is qualitatively consistent with experimental findings.
The thrombin wave initially propagates and then stops
abruptly. This fact would be of little interest in itself (there
are many ways to damp the thrombin wave out) were it not
for a number of unusual clot growth regimes predicted by the
model and later confirmed in experiment [42]. By changing
the constant K> of the model that determines the thrombin
production threshold, it is possible to pass from the ‘normal’
formation of a clot of finite size to the continuous growth
regime. Incidentally, the model predicts an interesting
dynamic regime, i.e. a self-sustained wave with a pulsed
amplitude. This is an implicit extension of the notion of a
self-sustained wave, an ulterior definition. In a model of
‘normal’ thrombus growth containing a slightly less active
inhibitor (e.g. due to a decreased production rate), this
amplitude will not reduce the amplitude of the thrombin
self-sustained wave to zero; rather, this amplitude will remain
somewhat higher than the threshold value but insufficient to
induce inhibitor production. Thus, a thrombin self-sustained
wave propagating from the site of injury may escape the
influence of the inhibitor and acquire its maximum amplitude
again under the effect of reactions of the blood coagulation
cascade. Thereafter, the entire process is repeated starting
from active formation of the inhibitor that leads to a decrease
of the thrombin self-sustained wave amplitude, etc.

Figure 13a illustrates the spatial dynamics of thrombin
wave distribution. Evidently, the wave amplitude undergoes
well-apparent pulsation. There are points where the ampli-
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Figure 13. Propagation of a thrombin wave with a pulsed amplitude (a)
and the corresponding formation of a layered fibrin clot (b). See Table 2
for parameters.




630 F I Ataullakhanov, V I Zarnitsyna, A Yu Kondratovich, E S Lobanova, V I Sarbash

Physics— Uspekhi 45 (6)

Table 2.
K K K3 Ky
2 min~! 0.95nM 0.05min~"  5min~! nM~!
Ks K K Kg Ky
0.0015 min~! 5nM 0.05 nM 0.35min~! 2.8 min~!

tude is never large; fibrin formation at such points is rather
low. Therefore, the running thrombin wave leaves behind a
sort of matrix in the form of fibrin that gives an idea of
changes of its amplitude. The resulting structure is a stratified
thrombus in which liquid layers alternate with solid ones.
Figure 13b shows the spatial distribution of fibrin in this
situation. It can be seen that the resultant area of synthesized
fibrin has a layered structure. At some points, the thrombin
level was high while at others it was low; accordingly, fibrin
production was high at the former points and low at the latter.
The most important thing about this situation is that the
fibrin amplitude can change by an order of magnitude.

The question is whether in vivo coagulation occurs at
variance with the model. How does a fibrin clot grow? What
are its dynamic characteristics (size and velocity)? Does it
have a similar density at the point of activation, in the center
and periphery of the thrombus? Do the unusual events
predicted by the model ever take place in experiment? It
turns out that the spatial aspect of coagulation has never
interested researchers, a strange and unusual situation in
modern biology that appears to encompass all conceivable
problems (suffice it to say that thousands of publications
concerning blood coagulation alone appear every year). It is
the phenomenological model that gave incentive to experi-
mental studies on spatial coagulation dynamics.

4. Dynamics of thrombus development in vitro

We examined blood in the absence of mixing. If coagulation is
activated in a thin blood layer coated over a dish floor, a clot
is formed around the activator. Clotting is readily induced by
glass; therefore, we frequently use glass surfaces to activate
coagulation. Glass beads are dropped into a Petri dish
containing a thin blood layer. After the blood is decanted
half an hour later, the beads covered with red clots (true
thrombi) remain at the bottom of the dish (Fig. 14a). The
thrombi attach the beads to the bottom. They are known to
readily ‘adhere’ to practically any surface which is a great
advantage in terms of protection of the organism. Practically
speaking, blood is not a very convenient object for experi-
menting because it contains a large amount of light-absorbing
erythrocytes. They make it difficult to continuously measure
clot dimensions. It has been shown that the plasma remaining
after the removal of blood cells is as subject to coagulation as
the whole blood. It is transparent, and a growing fibrin clot
scatters light. Therefore, it is easy to continuously observe
clot development in blood plasma. Figure 14e presents a
cinematogram of the clot growth on glass bead in a thin
plasma layer. The snapshots were taken at 3-minute intervals.
As can be seen, the clot grows for same time after which the
growth is arrested. The resultant clot at the bead surface is
about 0.6 mm in size. Thus, the possibility has been
demonstrated to reproduce, in a relatively simple experi-
ment, coagulation dynamics reminiscent in many respects of
the real process taking place in the body.
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Figure 14. Thrombus formation in whole blood (a) and platelet-depleted
plasma (b, d) identified from light scattering patterns. (a, b) Thrombi
growing around glass beads (0.5—0.6 mm in diameter) and a collagen fibre
(arrow) respectively; (c) clotting induced by a small parcel of dry thrombin
(100—200 pg); (d) inhibition zones formed 120 min after activation of
coagulation by glass beads; (e) snapshots taken at 3-minute intervals and
showing clot formation on a glass bead (light scattering) in platelet-
depleted plasma (the black triangle is a patch of light near the bead). In all
experiments, the plasma layer is 0.5 mm thick.

Investigations into this process have shown that activa-
tion of coagulation under such conditions via both intrinsic
(by glass) and extrinsic (by a vessel wall fragment) pathways
results in blood clots of roughly the same size [42, 94]. Very
different activation signals have a similar effect. The plasma
may be activated by a glass bead or a thin collagen fibre
(Fig. 14b) or even by dry thrombin (Fig. 14c). In the latter
case, the clot is as thick as on a glass bead even though the
amount of thrombin introduced into the system is large
enough to coagulate all the blood present in the human
body. However, no further growth of the clot can be
observed. Indeed, it is arrested at a certain distance from the
point of activation which does not depend on the activation
signal. This finding was the first confirmation that clot
development is governed by mechanisms involving self-
sustained waves because only in this case do both the waves
and the structures being formed show a weak dependence on
the magnitude of the activation signal.

We undertook an experimental verification of other
predictions of the phenomenological model. Surprisingly,
they all proved to hold true. A difference between experi-
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mental conditions and the human body consists in that 30—
40 min after the beginning of the experiment coagulation
occurs in the absence of activators. There are ‘spontaneous
centers’ (Fig. 14b, bottom right) from which clotting
spreads, the clot growth dynamics being identical with that
of clots growing at the surface of strong activators. The
whole space is filled with clots within 60—90 min after the
initiation of the experiment. Interestingly, the final structure
is divided into parts by dark stripes where blood remains in
the liquid state (Fig. 14d). In accordance with the phenom-
enological model, areas around a completely formed clot
must for some time contain elevated amounts of the
hypothetical inhibitor. Indeed, coagulation in these areas
can not be induced even by strong activation signals. The
most interesting experimental findings are stratified struc-
tures predicted by model (6) [43]. In certain cases of simple
glass-activated coagulation, the clot stops growing after a
period of initial development and is surrounded by liquid
blood (Fig. 15). Thereafter, another clot begins to develop
at some distance from the previous one. Thus, the second
layer is formed with a liquid zone around it.

Light scattering, arb. units
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Figure 15. Formation of a layered thrombus in experiment. ATIII (2 U)
was added to platelet-free recalcified blood plasma, pH = 7.4, and
coagulation was activated by glass. Fibrin clot growth was followed by
measuring light scattering. The interprofile interval is 1 min.

Therefore, predictions of the phenomenological model
having no firm biochemical foundation for the existence of an
inhibitor receive experimental confirmation! Hence, the
immediate impulse to search for this inhibitor. It is however
a difficult task since, theoretically, such an inhibitor must be a
short-lived entity. Otherwise, its concentration in blood
would be so high as to completely prevent clotting. In a
word, it is clear that the molecular mechanisms of stopping of
blood coagulation present the most puzzling aspect of the
problem.

5. Hypothesis of thrombin activity switching.
A new model

5.1 Biochemical prerequisites for the hypothesis

Let us now return to the analysis of molecular mechanisms of
biochemical reactions leading to blood coagulation. Publica-
tions that appeared a few years ago made researchers switch
their attention from putative autocatalysis of the inhibitor to

the properties of thrombin itself. Thrombin is known to play
the role of ‘two-faced Janus’ in the blood coagulation process.
It acts both as a procoagulant (a substance promoting clot
growth) and as an anticoagulant (a substance inhibiting clot
growth). This dual function of thrombin is well illustrated by
Fig. 7. One of the thrombin ‘faces’ is the activation of self-
production (plus-arrows), the other is the inhibition of self-
production (minus-arrows). It turned out that thrombin
exists in two structurally different forms. One effectively
converts fibrinogen to fibrin and activates cofactors (the
plus-arrows in Fig. 7) but is a weak activator of protein C
(‘anticoagulation reactions’ indicated by minus-arrows). The
other structural form of thrombin is an efficacious activator
of protein C but fails to effectively split fibrinogen.

Such an ability to switch over from one activity to the
other is consistent with the notion of a second self-sustained
wave, i.e. a wave of a certain substance overtaking the
thrombin wave. The role of this substance is not to exclude
thrombin but to transform its procoagulant state to an anti-
coagulant one. Unfortunately, the ability of thrombin to
‘change faces’, that is to switch over from one state to the
other, was studied under conditions that are not encountered
in the body [95, 96]. Specifically, it was induced by a synthetic
chemical compound having no analogs in biological tissues
[95]. At the same time, a natural protein was discovered that
effectively stimulates this ability [97]. However, this protein is
located at the surface of the cells that make up the inner lining
of blood vessels. Therefore, it is always in contact with blood.
Its ability to modulate thrombin action does not depend on
thrombin concentration whereas the hypothesis claims that a
substance influencing thrombin must be in turn activated (or
synthesized) by thrombin.

Today, there is no substance meeting all these require-
ments. Nevertheless, we tried to study how the transition of
thrombin from one state to the other may influence coagula-
tion dynamics. We constructed a mathematical model based
on the scheme in Fig. 7 and supplemented by reactions shown
in Fig. 16[47]. Also, we postulated that the cleavage of protein
C yields (as it really does) a peptide binding to thrombin and
promoting its transition from one form to the other; it thus
closes the feedback loop in the system (see Fig. 16). This
peptide differs from the hypothetical inhibitor of the
phenomenological model. Nevertheless, the system has a
feedback accounting for autocatalysis in protein C produc-
tion. First, the blood coagulation cascade produces one form

X4, Prothrombinase
Prothrombin

Figure 16. Schematic representation of reactions involved in the transfor-
mation of thrombin activity. Peptide P, a product of protein C (PC)
activation, converts the procoagulant form of thrombin (thrombin I) to
the anticoagulant form (thrombin II). Minus-arrows depict the feedback
loop.
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of thrombin (thrombin I) and activated protein C production
rate is relatively low. Then thrombin I splits protein C to
produce a peptide that transforms it to thrombin II and
accelerates self-production. In this way, a self-accelerating
process is triggered in the system which transforms thrombin
to the form having impaired ability to maintain coagulation.
In other words, thrombin action is somewhat neutralized. For
the purpose of the model, a peptide resulting from protein C
activation was chosen to serve as such a modulator. It is
understandable that its function can be performed by any
substance produced in the negative feedback loop via protein
C, e.g. a product of cofactor V, or VIII, inactivation by
protein C.

The initial model included equations for all clotting
factors shown in Figs 7 and 16. Subsequent comparative
analysis of the reaction constants allowed this model to be
simplified to a system of three equations. This model is not the
phenomenological anymore. All constants and variables of
the new model are consistent with the molecular nature of
blood coagulation [47]. The sole hypothesis in support of this
model postulates the existence of a thrombin modulator that
switches it from one state to the other.

The simplified dimensionless model is represented by a
system of three parabolic-type equations involving partial
derivatives (A — the Laplace operator) and has the form [47]

Ou (1 + Kyu)

= DAu+ Kjuw (1 — ) 20

o u+ Kjuw (1 —u) (15 Ko) u,
%:DAv—kKsuz—K()v, (7)
ow

a:DAw—i—u—Ké;w.

The model contains three variables: the activator u (the
product of autocatalysis), the inhibitor v (its production rate
is proportional to the square of activator), and the variable
w (which maintains formation of activator; its production
rate is proportional to the activator). The activator is a sum
of the first and second forms of thrombin; the inhibitor is
activated protein C; the variable w is clotting factor XI, (see
Fig. 7). It should be noted that this model implies no
apparent autocatalysis of the inhibitor, unlike the phenom-
enological model (6). To differentiate between the two, we
shall refer to the new model as mechanistic since it is based
on the real chemical mechanisms underlying blood coagula-
tion.

Regimes of ‘normal’ thrombus development, infinite
growth (as far as medium borders), and the thrombin wave
with a pulsed amplitude were obtained in both model (7) and
the phenomenological model (6). In addition, model (7) was
found to contain one more regime previously unreported as
occurring in blood coagulation models and in dynamic
system models at large. Therefore, we present the results of a
dynamic study of this model in a separate section.

5.2 Analysis of mechanistic model of coagulation

Analysis of ‘point model’. In order to analyse the observed
regimes, we compared the behavior of system (7) in space and
the bifurcation diagram of the corresponding point system
(D = 0). Variables v and w were expressed through « from the
corresponding equations of model (7) (at D =0) and
substituted into the first equation of the model. The resulting
function is the 4th power polynomial the roots of which

determine the fixed points of the system:

(KK 5 (K KK , K
f(u)fu< X u—|—<K4 (1- Ky)+ X, )u K4u—|—l .

(8)

It follows from formula (8) that the system always
contains a zero fixed point. This point is stable at any
parameter values and corresponds to the ‘liquid’ state of the
blood. Moreover, the 4th power polynomial (8) always has
one negative root because the expression within the brackets
equals 1 at u = 0 and the value of the corresponding 3d power
polynomial as u — —oo tends to —oo. Accordingly, the
number of positive real roots of polynomial (8) (including
the zero one) that determines the fixed points of system (7) can
vary from 1 to 3 depending on the parameters of the model.
The phase portrait of the system is organized so that the
trajectory with the initial conditions in the positive quadrant
never invades the negative value region.

Let us consider the behavior of the system in the plane of
parameters (K>; Kg). These parameters determine the rates of
activator production and inhibitor inactivation respectively.
Fig. 17a illustrates alteration of the type of the far-from-zero
fixed point in system (8). The system has a single fixed (zero)
point in the shaded region 0. Intersection of the right
boundary of region 0 gives rise to two more fixed points. The
point closer to the origin of coordinates remains unstable over

20

,_.
W
|

Figure 17. (a) Bifurcation diagram of model (7). The solid lines show
boundaries separating different types of far-from-zero ‘upper’ fixed point
of the system. In shaded region 0 the system has a stable single fixed (zero)
point in the positive quadrant. In regions / and 2, the far-from-zero point
is unstable (/ — saddle-node, 2 — unstable focus); it is stable in regions 3
and 4. The line between regions 2 and 3 is the Poincaré — Andronov — Hopf
bifurcation line. (b) Arbitrarily breaking up the plane of parameters (K3;
Ks) into four types (A4, B, C,D) of model (7) responses to the initial
perturbation (other parameters of the model are presented in Table 3).
The dashed lines show boundaries corresponding to the solid lines of the
preceding figure.
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the entire field of the constants. The lines show bifurcation
boundaries of the far-from-zero fixed point. It is unstable in
regions / and 2 but stable in regions 3 and 4. The line between
regions 2 and 3 is the Poincaré — Andronov — Hopf bifurcation
line. Regions 3 and 4 correspond to bistability, when the
system has two stable points separated by an unstable one. A
decrease of K; leads to the expansion of region 2. Numerical
experiments showed that this region gives place to a cascade of
bifurcations of doubling period and undergoes transition to
chaotic oscillations according to the Feigenbaum scenario. At
the selected values of other parameters, the regions of limit
cycles and chaos exist only in a very narrow range of Kg values
adjoining the Andronov-Hopf bifurcation line on the left. The
constants used in the model are presented in Table 3.

Table 3.
K, K> K3 Ky Ks Ks
6.85 varies 2.36 0.087 17.0 varies

Spatial dynamics of coagulation. The behavior of system
(8) was examined on a segment L = 10 (A = az/axZ). It was
supposed that the diffusion coefficient is the same for all the
three variables (D = 0.00026). Activation of the system was
simulated by a local enhancement of variable u on the left
boundary of the segment being considered. Figure 17b
represents an arbitrary breaking up of the previously
examined region of changing parameters (K>; Kg) into four
spatial behavior regimes 4, B, C, D. The solid lines show the
boundaries between different types of spatial regimes, the
dashed lines are bifurcation boundaries of the point system. A
variety of spatial behavior regimes of system (7) may be
roughly categorized into four types that occur in the
respective regions of the (K5; K¢) parametric plane.

Zone A. In this zone, the initial perturbation of the system
decays. Both the velocity and the amplitude of an impulse
running from the activation zone decrease so that it vanishes.
Zone A (at K < 14) includes regions 0 and / and most of
region 2 of bifurcation boundaries of the point system. In
these regions, the ‘homogeneous’ system has a single stable
point (zero). The impulse spreads further when initial
parameters move upward and to the right across zone A.
Moreover, the impulse moves with practically constant
velocity and amplitude, and then stops abruptly and vanishes
(Fig. 18). Such a regime agrees with the experimentally
observed [42] ‘normal’ growth of a fibrin clot. At K, < 5,
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Figure 18. Propagation of a self-sustained wave followed by an abrupt stop
in zone 4 (K, = 15.0, K¢ = 0.044, other parameters are given in Table 3).

zone A also includes a part of region 3 containing one more
stable fixed point (the bistability zone in the point system).
The zero stable point in region 3 corresponds to the ‘liquid’
state of the blood and the nonzero one to the ‘solid’ state, i.e. a
clot. It is worthwhile to note that the choice of other initial
conditions (other activations) leads to the attraction region of
the second nonzero fixed point, that is to obtain a trigger wave
and transform blood to a coagulated state.

Zone B. In the upper part of zone B, a ‘classical’ (constant-
velocity, constant-amplitude) self-sustained impulse propa-
gates. Here, the thrombin wave travels an infinitely long
distance without attenuation simulating a continuously
growing clot. Such a situation is not infrequent in in vitro
experiments when a fibrin clot fills the entire space. Zone B
includes upper parts of regions 0 and / and almost the entire
region 2 adjoining its right boundary at K, > 5. At K> <7,
the solution depends in a complex manner on the initial
conditions; simultaneously, the transition to turbulent
regimes occurs. Also, propagation of a pulsed-amplitude
impulse is observed in zone B, along with the formation of
the ‘stratified’ thrombi mentioned above and confirmed in
experiment [42]. There are several scenarios for the formation
of such thrombi (Fig. 19).
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Figure 19. Two different scenarios of the formation of the ‘stratified’
thrombi predicted by model (7). Fibrin is represented as an integrated
thrombin value, in analogy to the phenomenological model (6)
(dF/dt = u). (a) Computation at constant values K» =7, K¢ = 0.075;
other constants are given in Table 3; consecutive ring formation. A
thrombin self-sustained wave travels to the right of the activation
boundary and splits; the backward impulse contributes to the formation
of the next ring before it decays. (b) Computation at constant values
K, = 8.2, K¢ = 0.077; other constants are given in Table 3. The traveling
wave leaves behind a pulsed space of active factor concentrations, and ring
formation occurs simultaneously over the entire length of the developing
fibrin clot. Higher fibrin concentrations are achieved than in (a) during the
same time; this results in a denser thrombus. All the remaining parameters
(segment length equalling 3, interprofile time intervals equalling 20, and
initial activation on the left border) are similar in both cases.




634 F I Ataullakhanov, V I Zarnitsyna, A Yu Kondratovich, E S Lobanova, V I Sarbash

Physics— Uspekhi 45 (6)

Generally speaking, the lower part of zone B should have
been divided by more boundaries not shown in Fig. 17. This is
a zone of chaotic behavior on the whole. Strictly speaking, the
pulsed impulse propagation regime should not be regarded as
chaotic since it is a boundary regime. Also, wave-splitting
regimes are feasible in zone B, with a running impulse
breaking into two; the pair of impulses thus formed breaks
in turn into two more pairs, etc.; as a result, the entire space
turns out to be chaotically filled with traveling, standing, and
oscillating structures. The dynamic patterns of such a system
in this zone are poorly known.

Zone C trigger wave propagates. The left boundary of this
zone almost exactly coincides with the Andronov—Hopf
bifurcation line. It should be recalled that zone C in a point
system is a bistable zone characterized by the presence of two
stable fixed points, zero (corresponding to ‘liquid’ blood) and
nonzero (corresponding to ‘solid’ fibrin clot). Above a certain
activation threshold, the entire space of the system is filled
with thrombin.

Zone D is a small area between zone 4 where the initial
perturbation decays and zone B where self-sustained impulses
propagate. In zone D, an impulse traveling from the
activation region does not dissipate after a stop but under-
goes stabilization and exists for an infinitely long time.
Figure 20a illustrates the transition of the system to such a
spatially nonuniform stationary solution. It also presents a
thrombin spatial distribution profile (Fig. 20b). Of special
interest is the structure with all three variables of the model.
Figure 20b, where the distribution of corresponding variables
is normalized to their maximum values shows that thrombin
(u) has the narrowest profile (spatial distribution). The
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Figure 20. Formation of a standing impulse of active clotting factors at a
distance from the activation boundary in zone D (K, = 11.0, K¢ = 0.062,
other parameters are presented in Table 3); (a) impulse formation;
(b) distributions of all three variables of the model corresponding to the
stationary impulse and normalized to their maximum values (the max-
imum of each variable is given in brackets).

inhibitor shows the broadest distribution; it bounds the
structure and prevents the spread of thrombin. It is worth-
while to note that this structure forms in the case of equality of
the diffusion coefficients of all three variables of the model.
Such a mode of formation of solitary structures (peaks) in
‘reaction-diffusion’-type systems has not been previously
described.

6. Conclusion

Based on theoretical and experimental studies of spatial
dynamics of blood coagulation, we arrived at the conclusion
that blood may be regarded as an active medium. It is
however an unusual active medium where the excitation
propagates over a finite distance and retains many features
of traditional self-sustained waves. In the context of the
science of coagulation, it means that the blood clotting
process consists of three distinct phases; initiation, elonga-
tion (growth), and termination of clot development. Each
phase is dominated by a different set of biochemical reactions.
Moreover, the phases are space and time-specific occurring in
different parts of the clot and changing each other.

Initiation of coagulation. The process may start by means
of the intrinsic or extrinsic pathway. All initiation reactions
occur at the injured or foreign surface or in close proximity to
it. As a result, thrombin in the procoagulant state accumu-
lates in a high concentration near the surface.

Clot elongation. High thrombin concentration at the
surface activates intrinsic pathway factors regardless of the
way of initiation of coagulation. In fact, the intrinsic pathway
is not so much the mode of activation as the mode of
generation of a thrombin self-sustained wave to support the
growth phase independently of activation signals. This path-
way determines the clot growth rate.

Stopping and termination of clot development. This third
phase depends on reactions responsible for the stop of a
thrombin self-sustained wave. We believe that the key role is
played by a so far unknown product of some reaction in the
negative feedback loop via protein C. This product trans-
forms one form of thrombin to the other and thus catalyzes
self-acceleration of thrombin inactivation and the arrest of
coagulation. The size of the clot is a function of the kinetic
parameters of this process; it is practically unrelated to the
nature and strength of the activation signal. This phase is very
poorly understood and remains to be clarified. It is described
on the assumption of unknown factors or reactions.

The above hypothesis was used to explain a number of
puzzling phenomena.

To begin with, the function of intrinsic pathway reactions
in the coagulation process consists of clot elongation. This
offers an immediate solution to the puzzle of hemophilias. In
accordance with the canonical viewpoint, blood coagulation
should not suffer in subjects deficient in clotting factors VIII
or IX because its activation induced by a vessels damage
occurs via the ‘extrinsic’ pathway; it triggers the cascade
starting from factor X. Such patients have an intact extrinsic
pathway and may be expected to form a normal clot. By
contrast, we think that hemophilia is a thrombus growth
defect rather than an abnormal activation. While the latter
remains normal, clotting is compromised and the thrombus
does not grow for the lack of the self-supporting process for
which ‘intrinsic’ pathway factors are indispensable. This
accounts for the lack of adequate clot formation that does
not proceed farther than a thin film at the wound surface
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which fails to prevent bleeding completely. An experimental
study of the spatial dynamics of coagulation in patients with
hemophilia is currently underway in our laboratory. The
preliminary results indicate that the clot elongation phase is
indeed compromised in these patients. The clot practically
stops growing after the process is normally activated.

Secondly, the hypothesis provides a physiological expla-
nation of the existence of two different thrombin states.

Thirdly, examination of coagulation models suggests
regimes in which the normal development of the thrombus is
disturbed. Two such regimes appear to be of special interest.
One of them has been described in the phenomenological
model (6) [44] as a continuous clot growth characterized by
marked variations of the thrombin wave amplitude account-
ing for the ‘layered’ structure of the resultant clot. This regime
appears to develop in serious pathological cases leading to the
so-called disseminated intravascular coagulation syndrome
manifested as numerous small thrombi developing in patients
with quite different and unrelated diseases. It is a very
dangerous clinical condition in which normal regulatory
mechanisms of blood circulation are overwhelmed rapidly
leading to a fatal outcome. This syndrome is known to occur
in patients with cancer, renal insufficiency, infection, any
form of shock or other diseases.

Studies of the spatial dynamics of blood coagulation have
provided important new knowledge of this interesting but
very specific process; furthermore, they have resulted in the
discovery of a previously unknown type of general dynamic
behavior. It appears that the spatial dynamics of three-
component reaction-diffusion systems may bring to light as
many unexpected facts as the dynamics of three ordinary
differential equations revealed in its time. In this context, the
following is worthy of note. Having to do with an active
medium in which the behavior of the system at a point is
described by two differential equations, it is possible to
predict spatial events from the phase portrait (homogeneous
behavior) of the system. If an impulse is observed in the
homogeneous case, in the spatial case this impulse will be
most likely running at a constant velocity over an infinite
distance or, alternatively, it will decay if the diffusion
coefficient it too large. In the case of two stationary states,
i.e. bistability, a trigger wave will be traveling. Such a
situation is impossible in the general case of three differential
equations. In certain regions of a parametric space, the spatial
dynamics of such system can be predicted from its homo-
geneous behavior. However, predictions become impractic-
able under more complex regimes. Let us consider a
stationary impulse regime. In a homogeneous system an
impulse is generated; in a parametric space, a large region
corresponds to this regime. Is it possible to predict, from the
‘point’ system behavior, the fate of the initial perturbation in
this or that region of the parametric space? Indeed, it may
either decay after covering a certain distance, stop and give
rise to a stationary structure, or travel infinitely far. We can
not answer this question, nor can we even say whether there is
a solution in the form of stationary structures in this system.
The system’s behavior at a point is practically identical under
each of the three regimes.

It has long been known that the transition from two
ordinary differential equations to three implies an important
qualitative leap. Specifically, the dynamic behavior of a fully
determined system of three ordinary differential equations
may be chaotic. The discovery of dynamic chaos in the second
half of the 20th century revolutionized the theory of dynamic

systems and substantially modified our basic views of the
nature of things by confusing random and deterministic
phenomena. The existence of totally new regular regimes of
distribution and self-organization in three-component sys-
tems proved a complete surprise. This discovery leads far
beyond the blood coagulation problem. We believe that
further studies on three-component system dynamics will
bring many new and unexpected facts to different fields of
natural science.
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