
Abstract. This review is focused on the structure of stable,
metastable and amorphous substances described by simple
classical models of particles interacting through the central
forces. A unified approach suitable for all states is used. The
approach is based on the analysis of the molecular distribution
functions obtained either by using integral equations for distri-
bution functions, or by numerical computer experiments
(Monte Carlo and molecular dynamics methods). One of the
most difficult and still controversial problems of using equations
obtained in the thermodynamic limit (and designed originally to
describe thermodynamically stable equilibrium states) to pre-
dict and study themetastable and amorphous states is discussed.

1. Introduction

Recent progress in studying equilibrium classical systems,
first of all gases and liquids, has been achieved as a result of
the development of two powerful approaches. The first is the
l-particle distribution functions theory, while the second is
based on computer simulations. The main goal of these

approaches is the same, that is to utilize the Gibbs distribu-
tion discovered in 1902, to determine, in a general form, the
probability of the spatial arrangements of molecules (that is
themicrostructure of a substance) and also the complete set of
macroscopic characteristics following from this distribution.
In both cases the problem is reduced to the examination of
functions depending on a small number of variables. Indeed,
when using the integral equation approaches both structural
and thermodynamic properties are determined only by the
lowest order one and two-particle distribution functions (in
case the total energy of the system under consideration is
written in the pair additive form). Moreover, all the higher
distribution functions can be, at least as some expansion,
unambiguously determined through those lowest functions.

On the other hand the computer simulation approaches
make it possible to reduce the calculation of the Gibbs
distribution of a system with a great number of particles
(N � 1023) to the calculation of the Gibbs distribution of a
system with a small number of particles (N � 100ÿ1000),
whose properties under some boundary conditions (periodic
boundary conditions) unambiguously reflect the properties of
the system with large N.

Note, that the integral equation approach not only
reduces the problem to a reasonable number of variables but
also opens a new way of analyzing and revealing the local
properties of the system hidden originally in the total Gibbs
distribution. Monte Carlo approaches make it possible to
produce a chain of microstates of a system in the phase space
and directly average dynamical quantities depending on the
phase space coordinates according to either a canonical or
grand canonical distribution. The molecular dynamic
approaches allow one, in turn, to perform appropriate
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averaging directly along trajectories of molecules moving in
correspondence with the equations of the classical mechanics.
This extends the capabilities of the approach for studying the
nonequilibrium states, particularly amorphous states.

In the last decade the integral equation theory approach
for liquids has been significantly enriched with new approx-
imate equations for correlation functions. This made it
possible to advance greatly in studying both the gaseous and
liquid states of the simple systems of particles interacting by
the central forces. The progress is determined by the high
accuracy of approximations found for the bridge-functionals
appearing in the Ornstein ±Zernike (OZ) equation. All these
approximate integral equations of the theory of gases and
liquids, being with rare exception semiempirical, agree well,
however, with the thermodynamic consistence criteria and
with the computer simulations. At the same time, one of the
principal theoretical problems, of constructing the bridge
functionals from analytical properties of series of irreducible
diagrams forming the bridge functional, has not been solved
completely yet.

Actual problems arise when describing the states in the
critical point vicinity or near the phase equilibrium lines.
Standing rigorously either in the framework of statistical
theory, that is the Gibbs distribution, or in the framework of
the distribution functions, it should be accepted that both the
partition function and correlation functions should exhibit a
singularity pointing to the onset of the phase change in the
phase transition area. However, attempts to find this
singularity have not been successful for it is impossible to
sum up the partition function (except for the case of some
special models, for example the Ising model) in the analytical
formdirectly.Moreover, due to the general character ofGibbs
distribution it is not clear how this singularity can be revealed.

The singularity in the correlation functions might be
thought to be related to vanishing of the physical solutions
to the OZ equation at the evaporation, condensation or the
freezing lines. However, a large body of both analytical and
numerical solutions to integral equations, obtained for a wide
range of interaction potentials, revealed no vanishing of the
solutions at the phase equilibrium lines. Moreover, the
solutions to the OZ equation contain no features suggesting
a difference between the metastable and stable regions. This
fact can hardly be explained from the rigorous statistical
mechanics point of view. As a matter of fact, the metastable
states can only arise in constrained systems with a finite
number of particles, that is the nonuniform case.

The OZ equation, that forms the basis for all current
theories of gases and liquids, is rigorously justified only in the
thermodynamic infinite limit case

N!1 ; V!1 ; n � N

V
� const

and has been designed to describe uniform stable states.
In the nonuniform case the Gibbs distribution does not

correspond to the OZ equation for the two-particle correla-
tion function. We will see below that the Gibbs distribution
for the nonuniform systems corresponds to a coupled set of
equations for one and two-particle distribution functions and
that in this case the density becomes dependant on coordinate
n � n�r�. At the same time solutions to the coupled set of
equations should correspond to a two-phase stable state
rather than to a one-phase uniform metastable state. Today,
there are no rigorous theoretical explanations of this incon-
sistency.

The commonly accepted and used concept is the one
which considers the OZ equation to be valid for describing
the metastable states. In this review we formulate some
hypotheses which justify this approach. Moreover, the
feasibility for solutions to enter the region of the metastable
states allows us, being based on the unified statistical back-
ground, to turn to the thermodynamic procedure for treating
the first order phase transitions based on the thermodynamic
equalities of pressures P, temperatures T and chemical
potentials m of the coexisting phases

mg � m l ; Pg � P l ; Tg � T l :

This procedure can easily be performed for the vapor ± liquid
phase transitions. What is more, using solutions of the OZ
equation in the metastable area, we can also determine the
lines of the absolute stability of the homogeneous phases
(spinodals).

The liquid-crystal phase transition, being similar in
appearance to the vapor ± liquid transition, is of a quite
different physical character and is difficult to describe.
There are fundamental structural differences lying in the
physical nature of these transitions. The latter phase transi-
tion is determined mainly by the attraction part of the
interactions between molecules (the first order vapor ± liquid
phase transition does not exist in the models of particles
interacting with repulsive forces only, for example, a hard
sphere fluid). Moreover, any two equilibrium states, one of
which lies in the gaseous region of the phase diagramwhile the
second one lies in the liquid part, can be connected by a curve
of gradual transformations about the critical point. This
means that there are no inherent features that may inhibit
the gradual interconverting of structures. Theoretically it
means that both of these states can be treated by the one
and the same OZ equation. On the contrary, the properties of
a crystal can not be described just by the OZ equation. To do
this one should turn again to the complete set of coupled
equations. This reflects a physical phenomenon that a
thermodynamically stable state lying on the liquid side of
the phase diagram can not be gradually connected to a
thermodynamically stable state of a crystal. This reflects the
fundamental discrepancy between structures of liquids and
solids resulting in the fact that the critical point is nonexistent
in the liquid-crystal phase transition region. The latter phase
transition is determined solely by forces of repulsion acting
betweenmolecules, that is as amatter of fact, by the geometry
of close packed molecules.

The uniform solutions to the OZ equation can be
continued inside the region of parameters of a crystal. This
gives rise to a new type of metastability, namely the metast-
ability corresponding to one-phase parameters of a stable state.

Under some conditions absolutely new amorphous states
can also arise in the crystalline region of parameters. These
long-lived weakly nonequilibrium states are characterized by
mixed properties. First of all note that the density of matter
and its fluctuations in the amorphous state are very close to
those in solids. On the other hand the correlation character-
istics are close to what is seen in dense liquids having distinct
short order and having no long-range order.

The change to a glassy state takes place either with an
appropriate density increase or with a temperature decrease
of the substance, being already in the dense metastable state.
This change is not a thermodynamic one, it is localized neither
in the density nor in the temperature and depends essentially
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on the rate of change of the density and temperature as well as
on the other conditions of experiments. This transition is
often characterized as kinetic, at the same time, as it will be
shown below, it manifests structural changes. Making some
approximations and assumptions we can consider the glassy
state to be a quasistable one.

The problem now is to find out under what conditions the
methods of the equilibrium statistical mechanics and, as in
our case, the methods of the integral equation theory of
liquids can be used for investigating amorphous states, and
what the reliability and adequacy of the obtained results are.

A great number of calculations using molecular dynamics
have been performed in order to find out if the amorphous
change exists in simple models. The situation as it stands at
present is very discrepant. The results to a great extent depend
on the conditions under which computer experiments have
been performed, for example on the number of test particles
in calculations.

In this review we present a structural comparison of
different states for the simple models from the unifying
standpoint based on the analysis of distribution functions.
This approach makes it possible to understand on a
microscopic level the macroscopic features in different
conditions.

2. Two approaches to the investigation
of the structure of classical systems

2.1 Method of integral equations for distribution functions
Let the Hamiltonian for the system have the form

HN �
XN
i

p2i
2m
�
XN
i

XN
j

F�ri; rj� �
XN
i

V�ri� ; �1�

where pi is themomentumof particle i,F�ri; rj� is the potential
energy of interaction between two particles, and V�r� is the
external field potential at point r.

In this nonuniform case the density, being also a function
of r, is determined in the canonical ensemble as a first
functional derivative of the Helmholtz free energy with
respect to the external field [1]

ÿbÿ1 d lnZ
�
V�r��

dV�r�
����
V! 0

� n�1��r� � n�r� � hnm�r�
�
; �2�

where b � 1=�kT�, k is the Boltzmann constant, Z is the
partition function, nm�r� �

PN
i d�rÿ ri� is the microscopic

density, and h i denotes the ensemble average. The average
density may be found as

n � 1

V

�
V

n�1��r� dr � N

V
: �3�

Similarly in the grand canonical ensemble we have [2]

ÿ dO
du�r� � n�r� ; �4�

where the grand potential O � Fÿ G; G is the Gibbs free
energy, u�r� � mÿ V�r�, and the average density now is
n � N=V.

Similarly the second functional derivative

bÿ1
dn�r1�
du�r2� � ÿb

ÿ1 d2O
du�r2� du�r1� � K �r1; r2� ; �5�

or

ÿbÿ1 dn�r1�
dV�r2� � bÿ2

d2 lnZ �V �
dV�r1� dV�r2� � K�r1; r2� ; �5 0�

yields the density Ð density correlation function

K�r1; r2� �

ÿ
nm�r1� ÿ n�r1�

�ÿ
nm�r2� ÿ n�r2�

��
; �6�

or

K�r1; r2� � n�2��r1; r2� ÿ n�r1� n�r2� � n�r1� d�r1 ÿ r2� : �7�
The last term on the right hand side corresponds to
correlation of a particle with itself and is of little impor-
tance. The first term is a two-particle distribution function.
From the correlation function K�r1; r2� it is possible to
determine the total correlation function h�r1; r2�:

n�r1� n�r2� h�r1; r2� � n�2��r1; r2� ÿ n�r1� n�r2� : �8�
A more usual expression is

g1�r1� g2�r2� h�r1; r2� � g12�r1; r2� ÿ g1�r1� g2�r2� ; �9�
where

ni�ri� � ngi�ri� ; n�2��ri; rj� � n2gi j�ri; rj� : �10�

We will also call the function gi j�ri; rj� a two-particle
distribution function, while gi�ri� is a one-particle function.
Further functional differentiation yields l-particle distribu-
tion functions of any order [3]. Note that the given definition
of the distribution functions is absolutely equivalent to that
following directly from the Gibbs distribution [4, 5].

Let us consider the configurational part of the distribution

gN�r1; r2; . . . ; rN�

� Qÿ1N exp

�
ÿ b
�XN

i; j

F�ri; rj� �
XN
i

V�ri�
��

: �11�

Then the one-particle distribution function is obtained by
integrating gN over all the variables except for the first one

g1�r1� � exp
ÿÿ bV�r1�

�
V

���
V Nÿ1

Qÿ1N

� exp

�
ÿ b
�XN

i; j

F�ri; rj� �
XN
i�2

V�ri�
��

dr2 . . . drN

� exp
ÿÿ bV�r1�

�
exp

ÿ
o�r1�

�
� exp

ÿÿ bV�r1� � o�r1�
�
: �12�

The one particle thermal potential o�r1� emerges as an
average interaction of a marked molecule with all the other
molecules. The volume V has been introduced to make the
distribution g1�r1� dimensionless.

By analogy the two-particle distribution function is
obtained as [5]

g12�r1; r2� � g1�r1� g2�r2�
ÿ
1� h12�r1; r2�

�
� g1�r1� g2�r2� exp

ÿÿ bF�r1; r2� � o12�r1; r2�
�
;

�13�

where the two-particle thermal potential, that is the indirect
part of the potential of mean force, depends both on density
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and temperature. Correlation functions gi�ri� and gi j�ri; rj�
are solutions to the coupled fundamental set of equations [5]

o1�r1� � n

�
g2�r2�C �1�12 �r1; r2� dr2 � bm� ; �14�

h12�r1; r2� � C
�2�
12 �r1; r2�

� n

�
g3�r3�C �2�13 �r1; r3� h23�r2; r3� dr3 ; �15�

in which the direct two-particle correlation functions

C
�1�
12 � �h12 ÿ o12� ÿ 1

2
h12�o12 � B

�1�
12 � ; �16�

C
�2�
12 � h12 ÿ o12 � B

�2�
12 �17�

contain bridge-functionals B
�1�
12 and B

�2�
12 , representing the

infinite series of the irreducible diagrams built on the same
unknown functions gi and hi j [5 ± 7]. In the case of the
spatially homogeneous system oi � 0, gi � 1.

If we take

F�ri; rj� � F
ÿjri ÿ rjj

� � F�ri j� ;

then equation (15) transforms to the usual OZ equation [8]

g�r12� � h�r12� ÿ C �2��r12� � n

�
C �2��r13� h�r23� dr3 ; �18�

and in this case equation (14) reduces to the definition of the
excess chemical potential

bm� � ÿn
�
C �1��r� dr : �19�

This transformation is associated with transition to the
thermodynamic limit. This factor gives rise, as we will see
below, to very difficult problems when using the OZ equation
in treating the metastable states.

Given distribution functions gi and gi j all the thermo-
dynamic parameters can be calculated in approximation (1).
The basic parameter characterizing the stability of the
homogeneous phase is the isothermal compressibility

wT � nÿ1
�
qn
qP

�
T

:

It is known [1, 3] that the isothermal compressibility is
proportional to fluctuations in the number of particles in
the grand canonical ensemble

K � nkTwT �


N 2
�ÿ 
N �2

N
� : �20�

Then taking into account the normalizing conditions�
n�r� dr � hN i ; �21��
dr1

�
dr2 n

�2��r1; r2� �


N�Nÿ 1�� � hN 2i ÿ hN i ; �22�

we get a fundamental equation relating the distribution
function to the compressibility which is a macroscopic

quantity

K � nkTwT

� 1� 1

hN i
�
dr1

�
dr2
�
n�2��r1; r2� ÿ n�r1� n�r2�

�
: �23�

In the homogeneous case formula (23) reduces to the known
expression for compressibility

nkTwT � 1� n

� ÿ
g12�r� ÿ 1

�
dr : �24�

At the same time in the canonical ensemble we have

1� 1

N

�
dr1

�
dr2
�
n�2��r1; r2� ÿ n�r1� n�r2�

� � 0 ; �25�

or

1� n

� ÿ
g12�r� ÿ 1

�
dr � 0 ; �26�

that seemingly leads to the absurd conclusion that the
compressibility is equal to zero.

This gap can be explained [9] if one takes into account that
in the grand canonical ensemble we have

n�2��r1; r2� ! n2 ; gGC�r� ! 1 ; r12 !1 ; �27�

whereas in the canonical it should be

n�2��r1; r2� ! n2
ÿ
1�O�Nÿ1�� ;

gC�r� ! 1�O�Nÿ1� ; r12 !1 : �28�
This can be explained as follows. In the canonical

ensemble the structure around some marked molecule is
formed by the other Nÿ 1 molecules, whereas in the grand
canonical ensemble this deficiency is covered through fluctua-
tions of the number of particles. This means that gGC � gC in
the close vicinity about marked particle, whereas gGC 6� gC,
r!1 in the far region. For the canonical case, let us divide
the volume V into volume v0 corresponding to short range
correlations and volume Vÿ v0 corresponding to long range
correlations [10]. Then it follows that

nkTwT � 1� n

�
v0

ÿ
gGC�r� ÿ 1

�
dr

� 1� n

�
v0

ÿ
gC�r� ÿ 1

�
dr : �29�

On the other hand according to (26) we have

1� n

�
v0

ÿ
gC�r� ÿ 1

�
dr� n

�
Vÿv0

ÿ
gC�r� ÿ 1

�
dr � 0 ; �30�

or taking into account (29) and (30) we obtain

nkTwT � n

�
Vÿv0

ÿ
gC�r� ÿ 1

�
dr � 0 : �31�

Finally, supposing the difference
ÿ
gC�r� ÿ 1

�
is constant in

the volume Vÿ v0 due to the short range nature of
correlations, as it occurs in liquids, we find that [10]

gC�r� ! 1ÿ nkTwT
N
�O�Nÿ2� : �32�
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Thus, correlation function g(r) behaves asymptotically
differently in the two ensembles discussed above. Only in the
thermodynamic limit case does the differences vanishes. In
the case when correlations are of short range nature the
correlation functions found for both ensembles as well as those
corresponding to the thermodynamic limit are equivalent. This
leads us to conclusion that, at least with respect to compres-
sibility, the equations originally derived in the thermody-
namic limit, are also able to describe states corresponding to
finite size systems, for example the metastable states.
Moreover, since amorphous states are also characterized by
existence of short-range order and by absence of long-range
order, the question arises whether the equations designed
originally to describe thermodynamically stable states are
valid for predicting and studying amorphous states where the
relaxation time extends to infinity.

Note that compressibility can be also defined through the
direct correlation function C �2��r�

nkTwT �
h
1ÿ n

� ÿ
C �2��r� ÿ 1

�
dr
iÿ1

: �33�

Due to the specific short-range properties of the function
C�r�, equation (33) is very powerful in the case that the
correlation radius of g�r� function is large, for instance in
the vicinity of the critical point or near the spinodal line.

2.2 Approximate thermodynamically consistent
Ornstein ±Zernike equation
The infinite series of irreducible diagrams constituting the
bridge-functional B �1��gi; gi j�, B �2��gi; gi j� cannot be summed
up completely, therefore, as a matter of fact, the formally
exact equations (14), (15) or (18) are not closed. For example,
single equation (18) relates two unknown functions h�r� and
C�r�. The search for closures C � f �h� is one of the funda-
mental theoretical problems. By now very accurate approx-
imate closures comprising the body of the approximate
equations theory of liquids and solutions have been elabo-
rated for simple systems of particles interacting through the
central symmetric short-range forces (hard sphere fluid,
square well system, system with power potential of repul-
sion, Lennard-Jones liquid, Yukawa model and so on) [11].

Here, we base our consideration on the recently derived
new OZ equation [12, 13], where an attempt to approximate
the bridge- functional was made considering some analytical
properties of diagrams entering this bridge- functional. In this
work we have slightly modified this new equation to allow
solutions to continue inside the region of densities and
temperatures corresponding to the crystalline region of the
phase diagram.

One of the simplest typical diagrams in the expansion of
the bridge-functional has the form [5]

B
�2�
1 �r12� � n2

�
h�r13� h�r14� h�r23� h�r24� h�r34� dr3 dr4 :

�34�

The problem of finding the closures for the OZ equation is
to approximate the nonlocal bridge-functional B � B�h�r��
by the local bridge-function B�r� � B�h�r�� or
B�r� � B�g�r�� or B�r� � B�o�r��. There are no rigorous
theoretical arguments for changing to a local description,
nevertheless overall contemporary approximate theories of
liquids are built using this hypothesis. One of the most

widely used classical equations is, for example, the Percus ±
Yevick (PY) equation

B �2� � ÿ� exp�o� ÿ 1ÿ o
� � ln�1� g� ÿ g ;

g � exp�o� ÿ 1 ; �35�

g � exp�ÿbF��g� 1� : �36�
New ideas have emerged after publications [14, 15], where

it was shown that to obtain the best approximation, the pair
potential F�r� should be explicitly taken into account in the
bridge-functional. For the first time this idea was used in [16,
17], where a semiempirical closure, very accurately describing
the Lennard-Jones fluid, was derived. Elaborating this idea in
[12, 13] we proposed

B �2� � ÿ 1

2
O2 � �1� 2�gÿ nbF2�

�1=2 � nbF2 ÿ gÿ 1;

�37�

g � exp
h
ÿ bF� �1� 2�gÿ nbF2�

�1=2 � nbF2 ÿ 1
i
; �38�

where

O�r� � o�r� ÿ nbF2 � ÿ1�
�
1� 2�gÿ F2�

�1=2
; �39�

F2�r� is the part of potential responsible for attraction and
F�r� � F1�r�rep � F2�r�att in agreement with partitioning of
the potential energy into reference repulsive and perturbation
attractive terms [18].

A distinctive feature of the given closure is that it contains
no empirical or adjustable parameters. Note also that for a
hard sphere fluid F2 � 0 the closure (37) reduces to a simpler
form [19]

B �2� � ÿ 1

2
o2 � �1� 2g�1=2 ÿ gÿ 1 : �40�

Clearly, as follows from (39), the limiting values are

G � gÿ F2 � ÿ 1

2
; O � ÿ1 : �41�

(The second solution in Eqn (39) with the minus sign before
the square root does not satisfy the requirement of weakening
the correlations O! 0, g! 0, r!1 and therefore should
be dropped).

These solutions determine the entire region of the
existence of the gaseous and liquid phases. On this basis a
hypotheses has been put forward that these limiting values
might indicate the melting lines. From this an empirical
criterion of melting has been formulated (see below). To
extend the solutions inside the area of crystalline values of
parameters the closure (37) is modified similarly to what has
been used in [20, 21], where an approximation

o � �1� sg�1=s ÿ 1 ; �42�

that is a generalized version of the closure (40), has been
proposed. In the case s � 1 we arrive at another classical
hypernetted chain approximation (HNC) o � g, B � 0. In
[20, 21] s was chosen either by comparison with some
computer simulation values or from selfconsistent proce-
dures. It was found that s � 2 always. To continue solutions
inside the area of crystalline values of density and tempera-
ture, it is necessary to take s � 2A=B, whereA,B!1 as odd
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values. Thus we arrive at a modified closure

B �2� � sign
����1� 2�gÿ nbF2�

����1=2 � nbF2 ÿ gÿ 1 : �43�

2.3 Methods of computer simulations
In this section these methods will be considered in a general
but brief way for there exists exhaustive literature describing
the modern approaches [22, 23]. As was noted, the main idea
of the computer simulation methods is to use special periodic
boundary conditions tomake a systemwith a small number of
variables equivalent to an infinitely large system. In their
origin, computer simulation approaches represent the most
rigorous way to realize the Gibbs distribution or, in this
instance, the equations of classical mechanics. Monte Carlo
methods make it possible to perform macroscopic averaging
of dynamical quantities in exact correspondence with the
Gibbs distribution due to the fact that it turns out to be
possible to produce a chain of configurations in the phase
space of the microstates with the probability of appearance of
configurations proportional, for example in the canonical
ensemble, to the Boltzmann factor. With Monte Carlo
methods one can determine all the thermodynamic para-
meters.

Here we are interested in an analogue to the radial
correlation function

g
ÿjri ÿ rjj

� � g�r� � V

N4pr2
dN�r�
dr

; �44�
whereN�r� � �1=N� � hP14 i4N Ni�r�i is the average number
of particles separated by a distance r. The energy can be
determined as

E � 3

2
NkT� huki ; �45�

where uk is the energy corresponding to the kth microstate.
Not every macroscopic quantity has its appropriate

microscopic analogue, for example, the Helmholtz free
energy F. We, however, can introduce some parameter l so
that

qF
ql
� ÿbÿ1 q

ql
ln

���
VN

exp
�ÿ bu�X��dX

�
��� �qu=ql� exp�ÿbu� dX���

exp�ÿbu� dX �
�
qu�l;X�

ql

�
; �46�

where X � �r1; r2; . . . ; rN�. Then it follows that

F�l� ÿ F�l0� �
�l
l0

�
qu�l;X�

ql

�
dl : �47�

If l � V then

F�V� ÿ F�V0� � ÿ
�V
V0

P dV ; �48�

and if l � T then

F�T�
T
ÿ F�T0�

T0
� ÿ

�T
T0

hui dT
T 2

: �49�

Formulae (47) and (48) will be especially analyzed in
relation to the density functional approaches.

Methods of molecular dynamics have been developed to
integrate directly the equations of motion and to average the
dynamical quantities along calculated trajectories. The
trajectories of each of the particles are treated as a sequence
of linear steps, with length proportional to the period of time
Dt. In the absence of the external field the following scheme is
possible

ri�t� Dt� � viDtÿ 1

2mi

XNÿ1
j

HF�i; j��Dt�2 � ri�t� ; �50�

vi�t� Dt� � vi�t� ÿ 1

mi

XNÿ1
j

HF�i; j��Dt� : �51�

3. Equilibrium states

3.1 Equilibrium states of liquids and gases
Figure 1 presents the full phase diagram of a simple system (in
our case the Lennard-Jones fluid)

F�r� � 4e
��

s
r

�12

ÿ
�
s
r

�6 �
: �52�
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Figure 1. Complete phase diagram of the Lennard-Jones system. FCB is

the vapor ± liquid phase equilibrium line (binodal).LL1 is the freezing line,

MM1 is the melting line. F1CB1 is the vapor ± liquid boundary of the

absolute stability of homogeneous phases (spinodal). KK1 is the melting

spinodal. The freezing spinodal does not exist, the supercooled and

overcompressed liquid can also be extended inside crystalline values of

temperature and density. C is the critical point r � ns3 � 0:31,
T � � kT=e � 1:31; B is the triple point r � 0:85, T � � 0:67; Tm corre-

sponds to the equilibrium freezing ±melting phase transition, Tg1
, Tg2

are

the temperatures of the amorphous transitions; CC1 is the line of zero

values in the first minimum of the total correlation function, while CC2

corresponds to the maximum values of the reduced isothermal compres-

sibility. These lines along with the Fisher ±Widom one divide the whole

vapor ± liquid region of the phase diagram into three domains: vapor, fluid

and liquid. The EE2 line incorporates equilibrium liquid states; while Eg1
and Eg2 are lines of metastable states existing in the crystalline region of

parameters. Glass 1 and Glass 2 denote the amorphous states.
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The equilibrium phase states rigorously corresponding to
the OZ equation (18) are those pointed in the figure as vapor,
liquid or fluid found above the critical point C. General
thermodynamic and structural properties of substances in
these states are well known and widely described [5, 11]. The
FCB line corresponds to vapor ± liquid phase equilibrium and
LL1 is the freezing line. Here we consider those states only, in
which specific structural features can be observed. As was
noted, one can change gradually from point X1 to point X2

about the critical point. On the other hand, as is seen from
Fig. 2, appropriate correlation functions are qualitatively
different in these two states, and, as we will see, the difference
is related to different asymptotic behavior of the correlation
functions. This means that regardless of the path of changing
frompointX1 to pointX2 above the critical point there should
exist a line along which correlation functions exhibit
qualitative changing. This line has been discovered and is
known as the Fisher ±Widom line.

Note that these changes in no way can be detected
thermodynamically. As was shown in works [5, 24, 25], the
total correlation function can be written in the form

h�r�� g�r� ÿ 1�
X1
m�1

Bm
exp�ilm r�

r
ÿ �nkTwT�2

F�r�
kT

: �53�

The last term is an example of so called far asymptotics,
whereas the sum determines the intermediate asymptotics of
the function h�r�. Here l � �b� ia, where a and b are
determined by a set of two transcendental equations [24, 25];
l can take both real and complex values. Supposing F�r� � 0
at some large value r � Rc, the complete set lm in (53) will
describe, in fact, the function h�r�. As r increases, only terms

with the smallest values of am remain in the competition.
Then, depending on the thermodynamic conditions either a
purely imaginary solution lm � iam with monotonically
decreasing asymptotes or a pair of conjugated complex
solutions lm � bm � iam with an oscillating decay, will
survive. At low and medium densities the monotonically
decreasing term governed by cooperative effects of the
attractive part of the potential dominates. As the density
increases the packing effects controlled by the hard core result
in dominating oscillations. At a certain density nFW at the
specified isotherm the am of monotonic decay becomes equal
to the am of oscillatory decay resulting in change from one
decay regime to another. This change is described in the (n, T)
plane by the Fisher ±Widom line [26].

In a hard sphere fluid there are no pure imaginary
solutions lm � iam, even for the smallest densities, which
means that there are no asymptotes like

h�r� ! A exp�ÿar�
r

; r!1 ; �54�
and this means that the critical point and the spinodal lines
are also absent [24, 25], that is, there is no evaporation ±
condensation phase transition in a hard sphere fluid.

Formula (54) was proposed by Ornstein and Zernike at
the beginning of the past century to explain the critical
phenomena. Upon approaching the critical point a! 0 and
the correlation radius Rk � 1=a!1, which explains the
experimentally detected enhancement of forward scattering.
The understanding of the behavior of matter at the critical
point has come a long way since that time, however the
tendency of the correlation radius to approach infinity is still
considered to be a determining structural indication for the
critical point.

This property of correlation functions is unambiguously
related to the zeroth value of the inverse compressibility
1=K! 0. Along with this both the analytical and numerical
solutions to the OZ equation as well as the computer
simulation results [13, 27, 28] show that there exists another
unambiguous structural indication to the critical point,
namely the minimum of the correlation function h�r�
(curve 2, Fig. 2). This characteristic property of the total
correlation function has escaped the attention of the
researchers, most likely because it is difficult to find a link
between this property and the behavior of a fluid in the
vicinity of the critical point. However, the existence of this
indication itself is beyond any doubt.

Thus along the critical isotherm we have

hmin�r� > 0 ;
1

K
> 0 ; n < ncr ;

hmin�r� � 0 ;
1

K
� 0 ; n � ncr ; �55�

hmin�r� < 0 ;
1

K
> 0 ; n > ncr :

In Fig. 1 we see that there is a line in the phase diagram
originating from the critical point. Everywhere along this line

hmin�r� � 0 ; gmin�r� � 1 :

Furthermore, another line originates also from the critical
point, which is very close to the first one. This line
incorporates points at which the inverse compressibility 1=K
takes its minimal values along appropriate isotherms. A
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Figure 2. Radial correlation functions in the vapor ± liquid region of the

phase diagram. Curve 1 ì `vapor': T � � 1:0; r � 0:01; P=�nkT��
0:9470 �0:9473�; u=�NkT��ÿ0:0932 �ÿ0:0927�; bm� �ÿ0:1061 �ÿ0:1056�.
Curve 2 ì `critical point': T � �1:31; r � 0:30; P=�nkT� �
0:2980 �0:3265�; u=�NkT��ÿ1:7094 �ÿ1:6810�; bm� �ÿ1:5691�ÿ1:5070�.
Curve 3 ì `êuid': T � � 1:6; r � 0:55; P=�nkT� � 0:8503 �0:8172�;
u=�NkT� � ÿ2:2502 �ÿ2:2492�; bm� � ÿ1:0153 �ÿ0:9520�. Curve 4 ì
`liquid': T � � 1:0; r � 0:80; P=�nkT� � 1:5179 �1:2890�; u=�NkT� �
ÿ5:5136 �ÿ5:5234�; bm� � ÿ2:2548 �ÿ2:2716�. R � r=s. The results were
obtainedwith theOZ equation and closure (37). The values extracted from
theMBWRequation of state [45], approximating the computer simulation
calculations are given in parentheses.
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hypothesis has been put forward that the two lines may
coincide with each other. However this hypothesis can
hardly be proved because of inaccuracies caused by approx-
imations themselves and difficulties in the physical interpreta-
tion of the minimum in h�r�.

In general the whole phase region of the stable homo-
geneous (n � const) states, as a matter of fact, can be
considered with respect to structure as comprised of three
homogeneous domains. The first gaseous domain is char-
acterized by having almost no order at all. The second domain
containing states lying above the critical point is character-
ized by short-range order, having a few oscillations (curve 3,
Fig. 2). Finally, the third domain represents liquid, which is
characterized by both the short-range order and far oscilla-
tory decaying order (curve 4, Fig. 2).

3.2 Equilibrium states of crystals
Equilibrium states of crystals are neither uniform nor
isotropic, therefore to describe the structure of a crystal it is
necessary to solve the coupled set of equations (14), (15) for
the two lowest order functions. Today, however, there is no
way to solve this problem. This problem is not so much a
technical issue, but is rather related to how a solution is
constructed.

To clarify this problem let us consider the hard sphere
packing. There are two ways to arrange similar hard spheres
in space in order to keep the remaining volume between
particles minimal. One way corresponds to a face-centered
cubic close packed structure, whereas the other structure
displays a hexagonal symmetry [29] (as a matter of fact there
exists one more crystalline structure displaying an inter-
changing packing ). The fraction of the volume occupied by
hard spheres is equal to 0.74 for all cases. Moreover, the
nearest coordination numbers are also the same for all
structures. Some subtle differences arise in the far coordina-
tion numbers, that is the differences are of weak entropic
nature. It becomes absolutely unclear how solutions to the
equations can distinguish these different states.

A similar situation also arises in the Lennard-Jones
model. The cubic face-centered structure has been accepted
to be correspondent to the stable state. On these grounds the
correlation functions averaged over orientation

~g�r� � 1

4pVn2

�
dr1

�
dOn2�r1; r1 � r� ; �56�

have been found with the Monte Carlo approach for a hard
sphere system [30, 31], which can be related to solutions to the
OZ equation extended inside the crystalline region.

We will see that solutions to the OZ equation obtained in
the latter case, are not those corresponding to the averaged
distribution function for crystal. As is seen from Fig. 3 the
averaged crystalline correlation function for hard spheres is
characterized by both short and long range nondecaying
behavior. In the exact expressions (12) and (13) long-range
nondecaying order is described by the o1�r1� function. It is
governed by interaction with the external field V�r� rather
than by direct interaction between molecules comprising the
pattern. For an infinite uniform solid the external field is
formally absent. However, as a matter of fact, the external
field is implicitly presented by introducing and fixing the
origin of coordinates. The short and long-ranged decreasing
order lies, as for liquids, in the properties ofo�r1; r2� function.
What is specific for solids is the tendency, either with
decreasing temperature or with increasing density, for g�r�

function values to go to zero everywhere except in the small
vicinity of some isolated r points. A specific feature is also a
new additional maximum arising in g�r� between the first two
maxima which are typical for liquids (Figs 3 and 4).

4. Equilibrium phase transitions

4.1. Free energy, chemical potential and the density
functional approach
The excess (nonideal) part of the Helmholtz free energy
density at an arbitrary point in the liquid ± vapor region of
the phase diagram can be obtained on the basis of equations
(49), (50)

fex�n;T �
kT

�
�n
0

�
bP�n 0;T �

n 0
ÿ 1

�
dn 0

n 0
; �57�

fex�n;T �
kT

� fex�n;T0�
kT0

ÿ
�T
T0

u�n;T 0�
kT 0

dT 0

T 0
: �58�
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Figure 3. Hard sphere crystalline correlation function [31]: curve 1 ì
r � 1:0794; curve 2ì r � 1:2987.
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Figure 4. Lennard-Jones correlation functions near the melting line [30]:

T � � 0:75, r � 1:0.
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Having the problem of finding correlation functions
solved, it is possible to connect gradually two points, for
example X1 and X2 (Fig. 1) by alternating integration in (57),
(58) along isotherms and isochores. Appropriate thermody-
namic parameters are determined as

u � n

2

�1
0

F�r� g�r; n; b� dr ; �59�

bP
n
ÿ 1 � ÿ n

6kT

�1
0

r
dF�r�
dr

g �r; n; b� dr : �60�

Now, since, the chemical potential is m � f� P, it is
possible to construct a thermodynamic procedure for
comparing two phases in order to detect lines of phase
equilibrium [32]. This approach being originally exact,
hides, as a matter of fact, a great number of poorly
identified sources of errors. They are inaccuracies caused
by the huge amounts of computation when integrating
numerically along isochores and isotherms. The errors are
related to solving the OZ equation itself. But the major
source of error is that caused by the so called thermo-
dynamic inconsistency of the approximate OZ equation. By
the following it is meant that a complete set of the
thermodynamic parameters can be obtained starting from
any of the formulae (24), (59) or (60). Had correlation
functions been found from the exact OZ equation, the
values of all three sets of thermodynamic parameters
would have been the same. Using solutions to the approx-
imate OZ equation makes formulae (59), (60) thermodyna-
mically inconsistent. That leads to shifting values of the
chemical potential under alternate integration.

Another possibility is to utilize directly the Kirkwood
definition [33]

bm� � n

�1
0

dl
�1
0

qbF�r; l�
ql

g�r; l� dr ; �61�

where bm� is the excess chemical potential, bm �
bm� � ln�nL3�, and L � h=�2pmkT�1=2 is the thermal wave-
length. The Kirkwood formula also implies repeated calcula-
tion of the correlation functions depending on the coupling
parameter l.

However, none of the described approaches can be
utilized for investigating the liquid-crystal phase transitions.
In the former case there is no continuous line connecting
liquid to crystal. In the latter case possible solutions to the OZ
equation no longer correspond to the solid structure.

At present, to describe the freezing phase transition, the
density functional approach has been developed for equiva-
lent descriptions of the states on each side of the lines of phase
equilibrium [2, 3, 34]. The principles of the density functional
theory are based on a theorem [35], according to which there
exists a unique relation between the local density n�r� and the
external field V�r�. The external field localizes the physical
system in space (for example fixing the boundary in liquids or
fixing the origin of coordinates in solid). This means that
thermodynamic potentials such as the Helmholtz free energy
F, the Gibbs free energy G or potential O � Fÿ G depending
on thermodynamic variables are at the same time functions of
the external field. Taking into account the theorem [35] we
have

F � F
�
n�r�� ; G � G

�
n�r�� ; O � O

�
n�r�� ;

or

f �n� � F�n�
V

;
O�n�
V
� ÿP�n� ; G�n�

V
� nm�n� : �62�

It is possible as usual to define the ideal and the excess
components of these functionals, for instance

F
�
n�r�� � Fid

�
n�r��� Fex

�
n�r�� ; �63�

where

Fid�n� �
�

fid
ÿ
n�r�� dr ; �64�

fid�n� � kTn�lnL3nÿ 1� : �65�
Along with the hierarchy of gi, gi j, gi j k functions a direct

correlation function hierarchyCi,Ci j,Ci j k can also be defined
as

C�1��r� � ÿ
d
ÿ
bFex�n�

�
dn�r� ; �66�

C�2��r1; r2� � ÿ
d2
ÿ
bFex�n�

�
dn�r1� dn�r2� : �67�

Basing our consideration on [2] we find here twoways to build
the free energy as the density functional in application to the
phase transitions. The first one follows from the relation

dF�n�
dF�r1; r2� �

1

2
n�2��r1; r2� : �68�

Let us take a system inwhich the interaction potential consists
of the main term that is repulsion and an attractive term
considered as a perturbation

Fl�r1; r2� � F1�r1; r2� � lF2�r1; r2� ; 04l4 1 : �69�

Integrating relation (68) we calculate an increment of the
free energy, arising with charging of the perturbation term, to
that corresponding to a reference system

F �n�ÿF1�n�� 1

2

�1
0

dl
�
dr1

�
dr2n

�2��Fl; r1; r2�F2�r1; r2� :
�70�

The attractive potential lF2 acts in this construction as an
external field.

Note that this derivation is much like the Kirkwood
method. It is applicable for describing the liquid and gaseous
systems, however, additional assumptions need to be
involved to consider the phase transitions. This is caused by
a necessity to determine the properties of the reference system
independently, as a rule, from computer simulations, that
makes the approach, in spite of its apparent attractiveness, to
a great extent semiempirical. Moreover, we will see that the
results obtained with this approach are significantly less
accurate than those calculated using equation (19).

Another construction is specifically adapted for describ-
ing the liquid-solid phase transition. To do this an original
state with known properties and the density n0�r� found in
advance, have to be involved. Let the final state taken at the
same temperature T be of density

nl � n�r; l� � n0�r� � l
ÿ
n�r� ÿ n0�r�

� � n0�r� � lDn�r� ;
04l4 1 : �71�
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Integrating expressions (66) and (67) we finally have [2,
34]

bFex�n� � bFex�n0� ÿ
�
Dn�r�C�1�

ÿ�n0� ; r� dr
�
�1
0

dl�lÿ 1�
�
dr1

�
dr2Dn�r1�Dn�r2�C�2�

ÿ�nl� ; r1; r2� :
�72�

Given Fex�n0�, C�1���n0� ; r� � dFex=dn0�r� and the direct
correlation function C�2��r1; r2; �n�r��� as a local density
functional, the potentialF can in principle be reconstructed as

F �n� � kT

�
n�r�

n
ln
�
L3n�r� ÿ 1

�o
dr

�
�
n�r�V�r� dr� Fex�n� : �73�

This problem is very difficult to solve and requires in fact
making drastic simplifications, which cannot always be
justified. In the absence of an external field the free energy is

f �n� � fid�n� � kTn2
�1
0

dl�lÿ 1�
�
drC�2��ln ; r� : �74�

4.2 Vapor ± liquid phase transition
To determine the lines of the phase equilibrium, equation (70)
can be utilized as follows [36]. The main approximation is

n�2��r1; r2;F2� � n�r1� n�r2� ; �75�

reflecting the neglect of correlations in g�r1; r2�. This so called
random phase approximation is, as a matter of fact, not
different from the Kirkwood superposition approximation
made rather in the pair correlation function than in the three-
particle one. A system of particles with an effective hard
sphere diameter depending on temperature can be chosen as a
reference in correspondence with the proposed partitioning in
work [18] of the Lennard-Jones potential into the attractive
and repulsive parts

F1�r� � FLJ�r� � e ; r4 rmin ;
0; r5 rmin ;

�

F2�r� � ÿe ; r4 rmin ;
FLJ�r�; r5 rmin :

�
�76�

In the uniform limit we obtain

f �n� � fh:s:�n� ÿ 1

2
an2 ; �77�

from (70), (75), (76), where

a � ÿ
�
F2�r� dr : �78�

Then, taking into account that

m � mh:s:

�
n�r��� � F2

ÿjrÿ r 0j� n�r 0� dr 0 ; �79�

we finally get

P � Ph:s: ÿ 1

2
an2 ; �80�

m � mh:s: ÿ an : �81�

The classical Carnahan ± Starling results [37] can be used
to describe the hard sphere reference fluid

Ph:s:�Z� � kT�1� Z� Z2 ÿ Z3�
�1ÿ Z�3 ; �82�

where Z � �p=6� ns3 is the hard sphere packing density
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Figure 5. (a) Vapor ± liquid equilibrium in the density functional approach

(curve 1Ðbinodal, points areMonte Carlo data [38]; curve 2Ðspinodal;

curve 3 Ð Monte Carlo spinodal [28]; the critical temperature is

T � � 1:488). (b) Vapor ± liquid phase equilibrium calculated by integra-

tion according to the equations (57), (58) [32]. Circles are Monte Carlo

calculations [38], while triangles correspond to [39]. (c) Vapor ± liquid

phase equilibrium calculated with (84) and closure [17] Ð solid line, and

that with (88) and closure (43) Ð crosses. Computer experiments [40] are

marked by circles; Monte Carlo values [41] are marked by squares.
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bm�h:s: �
8Zÿ 9Z2 � 3Z3

�1ÿ Z�3 : �83�

Figure 5a presents the vapor ± liquid coexistence phase
diagram found in this version of the density functional theory.
Figure 5b presents the same phase diagram calculated by
integrating equations (57), (58), and Fig. 5c exhibits the result
found from equations for the chemical potential [42, 43], in
which integration over the coupling parameter l can be
performed immediately, so that the resulting equations
depend solely on the parameters of a single final state.

Note that the original equation is an exact analogue to the
Kirkwood formula (61)

bm� � n

�1
0

4pr2 dr �
��

1

2
h2 ÿ 1

2
hC �2� ÿ C �2�

�
� B �2� �

�1
0

h�r; l� qB
�2��r; l�
ql

dl
�
; �84�

where l has the same coupling parameter meaning. The
difference is that equation (84) can, with some assumptions
on properties of the bridge-functional, be immediately
integrated with respect to the coupling parameter. Note that
according to formulae (16), (19)

bm� � ÿ
�1
0

�
hÿ oÿ 1

2
h
ÿ
o� B �1�

��r���� 4pr2 dr ; �85�

that means

B �1��r� � 2

h�r�
�1
0

h�r; l� qB
�2��r; l�
ql

dlÿ B �2��r� : �86�

Because of F�r; l� � lF�r� one can also apply the linearly
uniform approximation to the values

h�r; l� � lh�r� ; C�r; l� � lC�r�

and

O�r; l� � oÿ nbF2 � lO�r� ;
and after some transformations obtain [13]�1

0

h�r; l� qB
�2��r; l�
ql

dl � h�r�
O�r�

�O
0

O
qB �2��O�

qO
dO : �87�

Substitution of closure (36) into (86), (87) gives a result

B �1� � ÿ 1

6
O2 � 1

3
B �2� ; �88�

which can also be derived from direct analysis of the exact
expansions of B �1� and B �2�[44].

Figure 6 presents the bm� dependence on the reduced
density r � ns3 along different isotherms T � � kT=e. Also
presented are the results extracted from the modified
Benedict ±Webb ±Rubin (MBWR) equation of state approx-
imating a large body of computer simulation results [45]. We
see a close agreement between the theory and numerical
experiments; small deviations are found only in the critical
point vicinityT � � 1:31, r � 0:31, where very accurate values
are difficult to obtain both in computer simulations and
theory.

Note that the value of temperature found by the density
functional approach for the critical point T � � 1:5 is in

agreement neither with the computer simulation value nor
with the result from approximate theory of liquids.

4.3 Liquid-crystal phase transition
Currently, the density functional theory is of considerable use
for describing and predicting freezing of liquids [2, 34]. The
basic equation is that presented by (72). Some additional
comments are necessary.

As we have already seen, determination of the local
density n�r� of coexisting phases and analysis of the real
complete two phase system are transformed into considera-
tion of the properties of separated uniform bulk subsystems.
In this case the properties of the interface are not taken into
account. Once the chemical potential m and the free energy
F�n� have been calculated for the bulk uniform separated
systems the comparison is performed. The problem, as in
other approaches, is to prove that the density functional F�n�
derived above is uniform both for stable states and for
metastable ones [34]. On the other hand, changing to the
thermodynamic limit, for instance in liquid, means the neglect
of the external field (boundary with solid), which means
replacing g�r� for liquids in contact with crystal by g
corresponding to bulk liquid. (Note that the condition
n0�r� � n0 underlies all the existent approximations of the
density functional method.)

Another principal simplification lies in the approximation
of the crystalline direct correlation function
C�r1; r2; �n0 � lDn��. The idea of the approach lies in expand-
ing the functional about l � 0. Then in the first approxima-
tion we have [see (72)]�1

0

�1ÿ l�Cÿr1; r2; �n0 � lDn�� dl
�
�1
0

�1ÿ l�
n
C�r1; r2; �n0�

�o
dl�O�l�

� 1

2
C
ÿ
r1; r2; �n0�

�� . . . �89�

Since n0 is the reference liquid density in the homogeneous
case, then C�r1; r2; �n0�� � C�r; n0� can be determined from
some approximate integral equation. The next terms which
could be taken into account in the expansion would give
corrections also found from the properties of liquid. What
should also be noted is that there is one more principal
problem to determine the crystalline density n�r�. It is not

3
bm�
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Figure 6. Chemical potential as a function of temperature T � and

density r. Solid circles are values extracted from the MBWR equation

of state [45].
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known in advance what crystalline structure (symmetry) the
liquid crystallizes to. As a matter of fact, n�r� is postulated in
advance taking into account some additional arguments. To
overcome this problem the solid is often considered as a liquid
with the effective density neff determined from the condition
of consistency with the real crystalline density n�r�.

The effective diameter can be determined, for instance, by
the condition

F cr
ex

�
n�r�� � F liq

ex �neff� ;

where neff is related to crystalline n�r� by the weighting factor

neff � neff �n� �
�
n�r�Wÿr; �n�� dr ; �90�

whereW is a weighting function constructed in a special way
[34].

From all the aforesaid it follows that a theory based on the
density functional approach is, actually, a liquid based theory
of freezing. Formally, the density functional theory allows us
to construct the free energy both for liquids and solids based
on uniform theoretical grounds, which are nothing more than
equations of the theory of liquids. At present, however, there
is no other theoretically more consistent theory of freezing,
although, as we have seen, this approach is bound to
numerous, often intuitive, approximations.

There are, however, some fundamental arguments casting
doubts on the possibility of treating both the liquid and
crystalline states from a uniform standpoint. The reason is
that unlike the two state liquid ± vapor case with no funda-
mental structural differences between states of incompatible
nature, structural differences between liquids and solids are
principal and lie in the existence of the elements of symmetry
in liquids which are incompatible with those existing in solids.
The inherent structure of liquids cannot be transformed into
the crystalline structure by continuous changing. Change
from liquid to crystal always occurs abruptly (this is a reason
for the absence of an appropriate critical point). Therefore,
although they are capable of provision reliable numerical
values, the liquid based models of crystalline state cannot be
accepted as physically well justified approaches. The func-
tional density theory relates rather stable liquid states to
metastable or amorphous ones, at least, with respect to
structure.

As early as 60's Bernal performed some real experiments
with a system of hard spheres [46], from which it might follow
that the symmetry elements of order of 5 can exist even in
liquids with simple central forces of interactions. Contrary to
the earlier structural theories considering liquids as contain-
ing elements of gas disorder and also containing crystalline
type features, today it is commonly accepted that liquids
exhibit a unique structure, which can not be reduced to other
structures [47]. This has been unambiguously confirmed in
[48], when it was shown that even simple liquids can be
overcooled below their freezing point with no crystalliza-
tion. This is possible only if the liquid structure differs
fundamentally from that of solid. On the other hand, crystals
can be overheated or stretched inside the metastable states
having still a crystalline structure. What is important is that
the liquid metastable region overlaps with the crystalline
metastable one. That is two different metastable states now
correspond to the same values of the macroscopic parameters
(this phenomena is absent in the liquid ± vapor phase

transition). This once more underlines the fundamental
structural disagreement between liquid and crystalline states.

A curious situation arises. In accordance with our concept
the thermodynamic comparison procedure of two homoge-
neous phases should involve precisely crystalline metastable
state described by the appropriate crystalline correlation
function only (see Fig. 10 below). The density functional
built on the liquid based approximations has no such
crystalline features.

Along with the thermodynamic comparison procedure an
attempt can be made to predict phase transition based on a
concept of structural changes, as the system approaches the
phase equilibrium point, regardless of whether the given
phase is in contact with another phase. Therefore, the goal is
to find out those one-phase microscopic or macroscopic
criteria [34], which would point to these structural changes.
Some such criteria are well known; for example, according to
the Lindemann rule a crystal loses stability and melts when
the root mean square displacement of atoms from their
equilibrium position in the lattice reaches some definite
value (approximately 15%).

Another one-phase criterion of freezing [32] is based on
analyzing the fine structure of the entropy in terms of many
particle correlations

Sex �
X1
n�2

Sn : �91�

For instance, the two-particle contribution is

S2 � ÿ n

2

� h
g�r� ln ÿg�r��ÿ g�r� � 1

i
dr : �92�

The value of DS � �Sex ÿ S2� is a very sensitive indicator
to structural changes in liquids that occur as the density
increases. In particularly, it was found that reversal of the sign
of DS occurred at exactly the freezing point. This actually
points to somemechanism of losing thermodynamic stability.

A direct but only qualitative criterion is given in work [49]
where conclusions based on computer simulations treat the
shoulder in the second peak of the correlation function as a
structural precursor to freezing. This conclusion is, however,
not in agreement with another treatment of the shoulder (see
below).Most informative are those structural criteria that can
be characterized by the value of some parameters of the
correlation functions. One is the Hansen ±Verlet criterion
[50], which states that freezing occurs when the structure
factor

S�k� � 1� nh�k� �93�

increases to a value of 2.85 at some wave number value k0 in
the Fourier transform of the total correlation function h�r�.
This criterion turned out to be in very close agreement with
computer simulations and with the predictions given by the
integral equation theory [13]. The existence of one-phase
criteria unambiguously reflects the structural changes occur-
ring in the system, however all of them are of semiempirical
and approximate nature.

One of the goals of the theory is to find theoretical
arguments justifying one or another criterion. As we have
seen, the freezing criterion can be numerically related to
properties of the correlation function.

A similar numerical criterion of melting has been
proposed from the limiting form (41). This criterion, being
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not empirical, follows from an approximate theory and is
justified by the same properties of the bridge-functional,
which allowed us to derive approximations (37), (38). At the
same time extension (43) of closure (37) is of phenomenolo-
gical nature and can be justified only by thermodynamic
consistency of the calculated results.

Note that the condition

h�rmin� � 0 for T � Tcr ; n � ncr

may also be taken as a structural indication of the critical
point. Tables 1 and 2 incorporate exhaustive and most
reliable data for freezing and melting obtained by numerous
computer experiments and by various theoretical approxima-
tions.

4.4 Liquid near the phase interface
Several approaches can be used to determine the density
profile near the model interface. The first one is that based on
equations following from the free energy treated as the
density functional. Another one is based on the first
equations of the hierarchy of distribution functions or the
hierarchy of the direct correlation functions. The third way is
that utilizing the fundamental set of the coupled equations
(14), (15), and final one is the so called `blowing ball'
approach based on the OZ equation for two-component
homogeneous mixture.

The starting point in the density functional theory is the
exact equation (72). Let us consider n0 to be the density of a

uniform (bulk) reference fluid at the same chemical potential
that corresponds to the given fluid Dn�r� � n�r� ÿ n0. Then
the potential OV is [2]

OV

�
n�r�� � OV�n0� �

�
V�r� n�r� dr

� bÿ1
� �

n�r� ln n�r�
n0
ÿ Dn

�
dr

� bÿ1
�
dl�lÿ 1�

�
dr1

�
dr2 C

�2�ÿ�nl�; r1; r2�Dn�r1�Dn�r2�:
�94�

Using the singlet approximation

C �2�
ÿ�nl�; r1; r2� � C �2�

ÿ
n0; jr1 ÿ r2j

� �95�

and linearizing the functionalOV�n�r��we arrive at an integral
equation for the density profile in the external field V�r�

n�r1��n0 exp
h
ÿ bV�r1� �

�
C �2��n0; r12�

ÿ
n�r2� ÿ n0

�
dr2

i
:

�96�

The meaning of the singlet approximation lies in setting
the two particle correlation functions C�r1; r2�, g�r1; r2�
appearing in the equation for one particle distribution
function, that is for the density profile, equal to their bulk
equivalent C�r12�, g�r12�. The singlet approximation makes it
possible to derive independently equations for the density
profile.

From (96) we find

o1�r1� � n

�
C �2��r12�

ÿ
g2�r2� ÿ 1

�
dr2 ; �97�

which exactly coincides in appearance with equation (14),
found also in the singlet approximation under condition (19).
Thus, the functional density approach is equivalent to the first
equation of the fundamental set (14), (15) in the singlet

Table 1. Liquid-crystal phase transition in a hard sphere fluid.

Liquid
density rl

Crystal
density rccr

Pressure
P� �n0kT {

k0 Reference

0.911 S�k0� � 2:85
0.928 S�k0� � 2:85
0.943

1.032 g � ÿ1=2
1.018 g � ÿ1=2
1.041

6.17
7.58
8.27

6.95
6.95

PY [13]
B�ÿ1=2�o2 [13]
MC [50]

{ where n0 is the close packing density.

Table 2. Liquid-crystal phase transition in the Lennard-Jones model.

T �{ Liquid density rl,
S�k0� � 2:85

Crystal density rccr ,
O � ÿ1

Pressure
P� � Ps3=e

k0 Reference

2.74 1.061
1.080
1.113

1.208
1.208
1.179

23.29
27.10
32.2

7.26
7.26

PY [13]
B � ÿ1=2 � O2 [13]
MC [50]

1.35 0.963
0.955
0.964

1.085
1.055
1.053

8.54
7.73
9.00

7.16
7.00

PY [13]
B � ÿ1=2 � O2 [13]
MC [50]

1.15 0.947
0.930
0.936
0.960 DS � 0

1.060
1.021
1.024

6.57
5.37
5.68

7.10
6.95

PY [13]
B � ÿ1=2 � O2 [13]
MC [50]
[51]

0.75 0.910
0.871
0.875
0.856 DS � 0

0.998
0.938
0.973

3.23
1.07
0.67

7.05
6.85

PY [13]
B � ÿ1=2 � O2 [13]
MC [50]
[51]

0.67 0.857
0.86

0.912 0.39 6.80 B � ÿ1=2 � O2 [13]
MC [32]

{ Reduced temperature T � � 0:67 corresponds to the triple point.
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approximation. Note that function C �2��r12� is found sepa-
rately from the OZ equation. A small, but very important
difference is that equation (14) deals with the function
C �1��r12�. In the hypernetted chain approximation
B �1� � B �2� � 0 both approaches are exactly equivalent.

From the given comparison it is evident that the
functional density theory is principally not rigorous as not
exactly corresponding to the fundamental set of equations.

One may choose as a basic equation either the first
equation of the BBGKY (Bogolyubov ±Born ±Green ±Kirk-
wood ±Yvon) hierarchy

bÿ1
qo1�r1�
qr1

� n

�
V

g2�r2� exp
�ÿ bF12�r12� � o12�r12�

�
� qF12�r12�

qr1
dr2 �98�

or the LMBW (Lovett ±Mou ±Buff ±Wertheim) equation

qo1�r1�
qr1

� n

�
V

C
�2�
12 �r12�

qg2�r2�
qr2

dr2 : �99�

Equations (98), (99) can be used to solve some particular
problems, however, they can not be applied directly in
general. The question is that unknown functions o1�r1� or
g1�r1� depend in general on three components of the r vector
(for instance, in the liquid ± solid interface). Therefore, a
single vectorial equation becomes equivalent to three coordi-
nate ones. Without writing them in details note that they may
have no unique solution [53]. And only in the one dimensional
case are all restrictions removed, for instance in the case of a
liquid near the ideal wall. Equations (98), (99) can be readily
integrated [53, 54] resulting in

o1�Z1� � n

�
V

g2�Z2�K�r12;Z1;Z2� dr2 � bm� ; �100�

where Z is the normal direction to the ideal wall plane (X, Y).
According to equation (98) we have

K � h�r12��
�1
Z1

exp�ÿbF12 � o12� do12�r 012�
dZ 01

dZ 01 ; �101�

bm� � lim
Z1Z2!1

�
V

K�r12;Z1;Z2� dr2; Z12 � const : �102�

whereas for (99) we obtain

K � C �2��r12� � h�r12� ÿ o12�r12� � B �2��r12� ; �103�

bm� � ÿn
�
C �2��r12� dr2 : �104�

A more physically transparent way is applying the OZ
equation directly to a two component mixture, letting the
concentration of one species, say na � Na=V, to approach
zero. Then terms proportional to na can be omitted in the set
of three OZ equations for mixture. We obtain [55]

oas�r12� � B �2�as �r12� � ns

�
V

C �2�ss �r13� has�r23� dr3 ; �105�

oss�r12� � B �2�ss �r12� � ns

�
V

C �2�ss �r13� hss�r23� dr3 : �106�

Here, the first equation determines the gas correlation
function describing the changing density of smolecules about
molecule a, while the second one corresponds to the structure
of the bulk liquid. To make the molecule a exhibit a plane
surface, the diameter s is allowed to grow to infinite size.
Therefore the distance between centers of molecules a and s in
(105) is set equal to r12 � s� Z12 then changing to the limit
s!1, Z12 � const. The solution of the equation thus
derived oas�s� Z12�, Z12 � Z, is identified then with the
potential o1�Z�. Equation (105) takes the form

o1�Z1� ÿ B �2��Z1� � n

�
g2�r2�C �2��r12� dr2 � bm� : �107�

The right hand side of this equation coincides exactly with
that of equation (100), while an additional term B �2� appears
in the left part.

We see that all the first order approximations produce one
and the same equation for the density profile, having,
however, different kernels K and different integration con-
stants bm�. In other words, the singlet approaches provide a
number of versions depending on two approximations. The
first one is determined by choosing the C �1� function in the
equation for the density profile, while the second one is
determined by choosing the bulk function C �2� or o�r�,
which is determined by choosing the closure. For instance
HNC/PY refers to the HNC singlet equation supplied with
the bulk correlation function calculated with the PY OZ
equation.

In Fig. 7 some density profiles calculated in different
approximations for a hard sphere fluid in contact with an
ideal wall are given. Some computer simulation data are also
presented for comparison.

5. Metastable states

Let us turn to the phase diagram in Fig. 1. There we can
find metastable states of a quite different nature. The
gaseous branch FCF1 of the metastable states corresponds
either to supercooled or supercompressed vapor, whereas
the liquid branch BCB1 incorporates states corresponding
either to overheated or stretched liquid. Spinodal F1CB1

restricts the region of existence of the homogeneous liquid
and gaseous states. The region enclosed by the melting line
MM1 and the spinodal KK1 is that of the metastable
superheated and stretched crystals, whereas the region
lying on the right beyond the freezing line LL1 corresponds
either to supercooled or overcompressed liquid. All the
theoretical and experimental data available nowadays
show that this side, having no spinodal line, covers a wide
subregion of crystalline parameters values, changing farther
in a nonlocal way to the region of amorphous states. A
nontrivial case may occur inside the region KK1MM1.
Under the same conditions, two various metastable states,
one of which is liquid and the second crystalline, can exist.
Does it mean that there exists an equilibrium similar to that
aimed to describe properties of supercooled water, where
the low density liquid metastable water coexists with the
high density metastable one [58]?

5.1 Relationship between metastable states
and Gibbs canonical distribution
Let us first consider in detail arguments that may justify the
idea that the OZ equation is not appropriate to describe
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metastability. For instance in review [59] the idea is
elaborated that the phase equilibrium boundary can be
determined by vanishing the physical solutions to the OZ
equation. The arguments are based on the van Hove theorem
[60, 61], from which may follow that metastable states being
in unstable equilibrium do not correspond to rigorous
statistical mechanical equations derived in the thermody-
namic limit to treat just stable equilibrium states.

The second argument incorporates the fact that, accord-
ing to the Gibbs theorem, the phase distribution is not unique
for a finite system [62, 63] where the metastability can arise,
and therefore the system does not correspond to equations
derived from the unique Gibbs canonical distribution valid
rigorously in the thermodynamic limit only. The idea of
disappearance of the solutions to the OZ equation has been
discussed in papers [64, 65]. As has been already said, many
years of experience showed that disappearance of the
solutions at the stable-metastable boundary is not confirmed
by theory and computer simulations. For instance, Monte
Carlo calculations performed in the phase transition regions

exhibit points that lie on the extension of branches of
equation of state of appropriate phases. These points are
assigned either to supercooled or overcompressed liquid, or to
supercooled vapor [22].

One can suggest that the extension of solutions to the
approximate equations inside the metastable area exists,
because the approximation of the equation makes it not
correspond to the exact partition function and therefore not
correspond to the Gibbs distribution. Similarly, large scale
fluctuations are not taken into account in computer
simulations due to the small number of particles in
calculations, which also leads to distortion of the partition
function.

Indeed ``The completely flat portion in P�n� is a conse-
quence of the limiting process. The absence of a loop is due to
the fact that the complete and rigorous configuration integral
Z includes every possible configuration, including configura-
tions associated with the simultaneous existence of two
phases in the volume V. Approximate evaluations of Z
invariably introduce an implicit restraint of uniform macro-
scopic density throughout V in enumerating configurations,
as well as other approximations. It is not possible under this
restraint for the two phases to exist together in the container.
Mathematically, the result is a loop.'' [66].

In the exact meaning the metastable states are not
equilibrium states. On the other hand, the true nonequili-
brium states are described by explicit time dependent
equations and correlation functions, for instance by the
nonequilibrium chain of the BBGKY equations. At the
same time, metastable correlation functions do not depend
on time. They remain constant until nuclei of appropriate size
corresponding to a new phase arise by chance so that the new
phase could grow.

We arrive at a paradoxical situation. As the metastable
states are described neither by the equilibrium nor by the non-
equilibrium chain of the BBGKY equations, how can these
states be otherwise treated? In other words, how (if possible)
can one introduce the random time of appearance of nuclei
into the BBGKY hierarchy? On the other hand, if we are
interested in finding distribution functions remaining con-
stant for a finite period of time, is it not natural to find out
whether the BBGKY equilibrium chain of equations can also,
for some appropriate conditions, be used for treating
metastability?

Such a hypothesis has been formulated in paper [13],
where metastable states were supposed to be equivalent to
some appropriate equilibrium states. Let us now consider for
this purpose system A, consisting of a large but finite number
N of particles placed in a volume V at temperature T.

The canonical distribution of the system is well known

fN�X;T � � 1

ZN�T � exp
ÿÿ bH�X �� ; �108�

where H�X� is the Hamiltonian of our system. ZN�T� is the
classical partition function

ZN�T � � 1

N!

�
X

exp
ÿÿ bH�X �� dX ; �109�

where X stands for the coordinate and momentum of all
particles.

At the some time, another noncanonical distribution
f �N�X;T� [62, 63] may also exist in the finite case if some
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Figure 7.Density profile of a hard sphere: (a) fluid near the ideal wall [56].

Solid line is HNC/PY data, dashed line is HNC/MSA (mean spherical

approximation). Points areMonte Carlo values ( Snook, Henderson [57]),

r � 0:81); (b) (A hard sphere density profile [53] A Ð fundamental set of

equations (14), (19); B Ð equations (101), (102); C Ð equations (103),
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conditions are fulfilled�
f �N�X � dX �

�
fN�X � dX � 1 ; �110�

E �
�
H�X � f �N�X � dX �

�
H�X � fN�X � dX : �111�

As follows from the Gibbs [62, 63] theorem, we have for
the entropies

S � � ÿk
�
f �N ln f �N dX ; S � ÿk

�
fN ln fN dX �112�

the inequality S5S �, that is the entropy which corresponds
to the Gibbs distribution has a maximal value. The prob-
abilities of canonical and noncanonical distributions in the
phase space are interrelated as

P �N
PN
� exp

�
ÿ V

sn ÿ s�n
k

�
! 0 at V!1 ; �113�

where S �N � Vs �n , SN � Vsn, that is the probability of the
noncanonical distribution tends to zero in the thermody-
namic limit. In the finite case any distribution can be realized,
however it is impossible to detect which one has arisen for it
depends upon the appropriate conditions and random
arrangements of particles. Two cases should be distinguished
here.

As was shown in [62], the noncanonical distribution in the
one phase case can be treated as f �N � fN�t� corresponding to
nonequilibrium in the microcanonical ensemble with con-
stant energyE. In another case, it was shown [67] that if a loop
arises for those values of the thermodynamic parameters at
which two phase states can exist then this unambiguously
points to the bimodality of the statistical distribution. On the
other hand the loop exhibits just the metastable case.

From all the aforesaid it follows that the canonical Gibbs
distribution corresponds to the two phase equilibrium state,
while the noncanonical one corresponds to the one phase
metastable state.

The noncanonical distribution can be written as

f �N�X � �
1

Z �N
exp

�ÿ b
ÿ
H�X � �U�X ��� ; �114�

where U�X� is an arbitrary function determined by the
properties and form of the function f �N�X �,

Z �N�T � �
1

N!

�
exp

�ÿ b
ÿ
H�X � �U�X ��� dX : �115�

If the function H�X � �U�X � � H eff�X � is considered as
a new effective Hamiltonian, then it would mean that the
thermodynamic properties of a metastable one-phase state
with the HamiltonianH�X) are equivalent to those of a stable
one-phase state with the effective Hamiltonian H eff�X �.
Thus, the entire metastable region can be reflected to the
stable one-phase region, with the binodal being the line of
reflection. But what is the way to do this?

Let us consider the canonical distribution (108) and the
partition function (109). If we wanted to use these equations
immediately to treat a two phase system thenwe could find no
features in these equations pointing to the two phase
character of the system. Such a global approach allows us to

solve the phase separation problem only in a roundabout way
calculating the thermodynamic parameters in advance with
further thermodynamic comparison. The structure and the
location of the transition layer are also not presented
explicitly in the Gibbs distribution.

As was noted in book [61], ``It seems to be questionable
whether the condensation properties can be explained from
the general expression of the partition function. From a
mathematical standpoint it is difficult to understand how
the apparently innocent expression (108) can produce that
formula for the free energy F � ÿkT lnZN, which ought to
correspond to a nonsmooth function''.

An immediate change to the thermodynamic limit does
not alter the situation. Although the limiting function

j�n;T� � lim
1

N
F

�
N

n
;T;N

�
; N!1 ; �116�

can be proved to exist [61], it is not clear whether this
expression would have discontinuities of its derivatives and
how the construction of the theory can be made.

However, it is possible to change the global way of
treating a system in general to a local treatment by using S-
particle distribution functions. This makes it possible to
advance further in understanding the bulk properties as well
as those of microscopic structural character. As we have seen
this change leads to a fundamental set of coupled equations
(14), (15), which is an exact equivalent to the Gibbs
distribution. In the one phase equilibrium state with

g1 � const � 1

theGibbs distribution is equivalent to the OZ equation. In the
stable two phase region, the Gibbs distribution ought to
correspond to the complete set of equations (14), (15). The
metastable one-phase state existing at values of parameters of
two phase equilibrium state should correspond to some
noncanonical distribution. On the other hand, from the
aforesaid it follows that this case can be reduced to a
canonical one. The only way this takes place is when the
metastable state corresponds to the OZ equation taken at
values of parameters that correspond now to the two phase
case.

Note that there is no contradiction with the van Hove
theorem which proved the existence of the limiting function
(116). Note also that there is no contradiction with the
condition proved also by van Hove that pressure

P � ÿ qj
q�1=n�

is a nondecreasing function as far as this condition is also
fulfilled in the metastable region.

Let us underline once more the aforesaid. The non-
canonical statistical distribution of the metastable states is
equivalent to the canonical distribution of stable equilibrium
states reflected at the phase equilibrium line and therefore when
changing from the stable region to the metastable one, the OZ
equation has no singularity related to the vanishing of the
solutions. However, there is no answer yet as to whether
solutions to the OZ equation found in the metastable region
exhibit an analytical continuation of the solutions found in
the equilibrium one.

Figure 8 presents correlation functions found in the close
vicinity of the spinodal line in the liquid ± vapor phase
transition area. Points mark Monte Carlo results [28]. Note

612 G N Sarkisov Physics ±Uspekhi 45 (6)



that computer simulation points have some dispersion, which
probably can be explained by the fact that accurate calcula-
tion in the metastable region is a difficult problem.

Let us now take metastable states in the liquid ± solid
phase transition area and those of the crystalline region.

We see in Fig. 9 that one phase metastable states can exist
at those values of thermodynamic parameters that corre-
spond to one phase crystalline equilibrium. Note that in the
vapor ± liquid phase diagram the metastable states could exist
only within two state region of parameters. An explanation
easily follows from the complete set of equations (14), (15).
Homogeneous metastable states can arise if and only if the

equilibrium states are inhomogeneous and are described by the
complete set of equations (14), (15). The stable one-phase
crystalline states are indeed inhomogeneous and are described
indeed by the complete set (14), (15).Therefore, the incomplete
description with the simple OZ equation corresponds to liquid
metastable states in the crystalline region.

In Fig. 9 we present Monte Carlo correlation functions
[28] and those calculated with the theory. One point atT � � 1
and r � ns3 � 0:95 corresponds to the area between freezing
r � 0:94 and melting r � 0:99 [13], while another is placed in
the crystalline part of the phase diagram r � 1:2.

In Fig. 10 we see two types ofmetastable states found for a
hard sphere model, which can exist at the same density.

5.2 Spinodal decomposition
The OZ equation (18) can be written in the Fourier variables

ĥ�k� � Ĉ�k�
1ÿ nĈ�k� ; �117�

where for instance

ĥ�k� � 4p
k

�1
0

h�r� sin�kr� r dr ; �118�

h�r� � 1

2p2r

�1
0

Ĉ�k�
1ÿ nĈ�k� sin�kr� k dk : �119�

This means that solutions to the OZ equation will have no
singularities until the denominator 1ÿ nĈ�k� is equal to zero.
At the same time according to (33) the isothermal compres-
sibility

wT �
�
1ÿ nĈ�0��ÿ1 ;

that means that the quantity 1ÿ nĈ�k� is always positive and
is nowhere equal to zero. The only exception is point k � 0 at
which 1ÿ nĈ�0� can equal zero. That means that the
isothermal compressibility becomes equal to an infinite
value. On the phase diagram (Fig. 1) the points with the
infinite compressibility value comprise the spinodal line. It is
well known that condition wT !1 follows from general
principles of stability of homogeneous phases [68 ± 70]. In
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Figure 8. Correlation functions in the metastable region of vapor ± liquid

transition near the spinodal line T � � 1:2. 1 Ð gaseous region r � 0:14;
P=�nkT� � 0:5069 �0:5277�, bm� � ÿ1:0069 �ÿ0:9767�. 2 Ð liquid region

r � 0:45; P=�nkT� � 0:0351 �0:0516�, bm� � ÿ2:405 �ÿ2:297�. MBWR

values [45] are given in parentheses. Solid lines Ð integral equation

approach [13]; the points are Monte Carlo values [28].
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Figure 9. Radial Lennard-Jones metastable correlation functions beyond

the freezing line. Solid lines ÐMonte Carlo [28]. Lines with points Ð OZ

equation with closure (88), T � � 1:0; r � 0:95 (line 1); r � 1:2 (line 2). At

low density theoretical and computer simulation values are close to each

other; at high density there is some discrepancy, broadening in the second

peak indicating metastability.
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Figure 10. Two types of the metastable states for a hard sphere fluid at one

and the same density r � 0:9931. Curve 1: liquidmetastable state ± closure

(88), curve 2: crystallinemetastable stateÐMonte Carlo [31]. The freezing

density is r � 0:943; the melting density is r � 1:041.
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our case, this condition follows from the OZ equation directly
and no other singularity can be found in the OZ equation.
This means that the OZ equation also has no singularity on
the phase equilibrium line.

The singularity which may exist at the point of the phase
equilibrium should be attributed to solutions to the complete set
of equations (14), (15). It is not clear however, how the
equations (14), (15) can be applied to two-phase system
description and how the solution to the set of equations
(14), (15) can be derived in order to discover this singularity.

When analyzing metastability we noted that under some
conditions, the metastable states remain stable. To disturb
equilibrium, a fluctuation of the appropriate size should
occur overcoming the barrier determined by the free energy
relative minimum. The deeper the extension inside the
metastable region is, that is closer to the spinodal, the lower
the stability of the metastable states. In the latter case, even
very small fluctuations have no time to disperse over the
volume and the system has no way of recovering.

In the labile region beyond the spinodal, even the smallest
fluctuations immediately cause decomposition of the system
into two fractions. This stage is known as the spinodal
decomposition. With this the isothermal compressibility wT
changes sign to negative.

A system of particles interacting by the Yukawa potential
has been studied in the so called mean spherical approxima-
tion (MSA) [27], where analytical solutions appropriate to
stable, metastable and labile states have been found. For the
former two cases the solutions were shown to be real, while in
the latter case the solutions turned out to be complex. Along
with this, numerical solutions have also been found for
comparison, which coincide with those obtained analytically
in the stable and metastable regions. In the labile region,
numerical solutions have been found to be unstable with
respect to the conditions of the iteration procedures. Of
course, the physical instability corresponding to spinodal
decomposition can in no way be attributed to the mathema-
tical instability of solutions to the OZ equation; nevertheless,
correlations between them do exist.

The OZ radial correlation functions found for the
Lennard-Jones model in the labile region are given in
Fig. 11. Of course, these solutions should be treated with
care. Surprisingly, they qualitatively correspond to our
concept of possible structures of the instantly decomposing
system. For example, they reveal the existence of the
longwave components in correlation functions possibly
related to cooperative phenomena. When approaching the
critical point from the labile region the correlation function
transforms into the distribution function, specific for the
critical point.

Table 3 presents the vapor ± liquid spinodal values. Note
that there is no need to involve a comparison procedure to
find the spinodal line [16, 17, 71].

6. Amorphous states

6.1 Nonequilibrium transition to amorphous state
Let us consider once more the phase diagram (Fig. 1), where
the lines Glass 1 and Glass 2 are given. These lines originate
from the liquid region as one line of points of equilibrium and
attain the point E at temperature Tm, where the equilibrium
freezing phase transition may occur. From point E, the line
incorporating now just metastable liquid states attains either

point g1 or g2. Then, the nonequilibrium transition to the
amorphous (glassy) state may occur at points g1 or g2 at
temperatures Tg1

and Tg2
. Glass transition from the super-

cooled or supercompressed metastable liquid to glass is not
localized and depends upon the conditions of changing,
meaning that there is no distinct transition point.

The glassy state is definitely unstable. Thermodynami-
cally, the glass free energy takes no local minimum value.
Glass, in contrast to a supercooled liquid, is continually
relaxing. However, the relaxation time, unlike that for truly
nonequilibrium cases, may be as long as thought to be
infinite.

Amorphization can be considered as follows. As a super-
cooled liquid is cooled to a lower temperature, its viscosity
swiftly increases and molecules comprising the system move
more and more slowly. At some temperature, the molecules
are moving so slowly that they have no chance to rearrange
significantly before the temperature is lowered further. Thus,
the random structure formed at that moment becomes
`frozen'. The momentary structure of this `frozen' liquid is
absolutely equivalent to some random momentary structure
of the true liquid in usual conditions except that the
amorphous structure is so squeezed that it prevents any
diffusion motion.
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Figure 11.Correlation functions for the labile vapor ± liquid region. Curve

1 Ð T � �1:0; r � 0:31; P=�nkT� � ÿ0:186 �ÿ0:137�; u=�NkT� �
ÿ2:666 �ÿ2:597�; bm� � ÿ2:694 �ÿ2:566�. Curve 2 Ð T � � 1:2;
r� 0:31; P=�nkT��0:163 �0:181�; u=�NkT�� ÿ1:920 �ÿ1:958�; bm� �
ÿ1:898 �ÿ1:836�. Curve 3 Ð T � � 1:32; r � 0:31; P=�nkT� �
0:302 �0:327�; u=�NkT� � ÿ1:726 �ÿ1:710�; bm� � ÿ1:577 �ÿ1:516�.

Table 3. Vapor ± liquid spinodal points in the Lennard-Jones model

T � Vapor
density rv

Liquid
density rl

Reference

0.7
1.0
1.2

0.028
0.086
0.161

0.666
0.552
0.446

[16]

0.7
1.0
1.2

0.028
0.077
0.141

0.676
0.567
0.470

[17]

0.7
1.0
1.2

0.029
0.086
0.158

0.675
0.550
0.435

[13, 71]
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It is important to emphasize that the glass transition is
not any kind of phase transition. It is to a great extent a
kinetic event, which depends upon the experimental time
scale and the time scale for molecular rearrangements.
Furthermore, glasses are not crystals either; there is no
long-range order, although some thermodynamic properties
are similar to those of crystals. For instance, the thermal
expansion coefficient

a �
�
d�lnV�
dT

�
P

in the glass is significantly smaller than that in the liquids and
supercooled liquids, and is close to acr.

Without discussing a great number of important proper-
ties of amorphous materials [69, 72], let us consider the
appropriate distribution functions and the way they might
be related to some solutions to the OZ equation.
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Figure 13. Evolution of correlation functions with increasing density in a hard sphere fluid [73]; solid lineÐ [73], dashed lineÐPY, dashed dotted lineÐ

HNC, dotted line Ð paper [78].
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Figure 12. Lennard-Jones molecular dynamics radial correlation function

for glassy states [77], T � � 0:108; r � 0:95.
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6.2 Structure of substance in amorphous state
The idea of formulating a problem on the possible existence of
a link between nonequilibrium distribution functions of glass
and equilibrium solutions to the OZ equation seems at the
first glance to be physically unacceptable. Even attempts to
describe the metastability with the OZ equation were
considered, if not forbidden, at least, problematic, but could
not be rejected due to the huge amount of theoretical and
experimental results.

Paradoxically as it may seem, there are some arguments
concerning glasses pertinent to this discussion. Some years
ago, Malijevsky et al. [73] calculated the radial correlation
function for a hard sphere fluid at crystalline densities using
the OZ equation. A semiempirical closure B �2� was derived
specifically in order to make the calculated values have high
thermodynamic consistency close to the well known accurate
results [74]. A split of the second peak into two subpeaks that
occurs in the correlation function was taken as an indication
of the transition to glassy state. Indeed, the splitting of the
second peak has been generally accepted as a feature which is
appropriate to the amorphous state [75, 76], as follows from
real neutron and X-ray scattering experiments. Another
example of the second peak splitting is that obtained with
molecular dynamics for the Lennard-Jones model [77] (see
Fig. 12).

Note that none of the known approximations of the
theory of liquids predict a split in the second peak [78]. It
was also noticed that the `sign' of splitting in correlation
functions already appears in the ordinary fluid at the reduced
density r � 0:94 just before the freezing point (rcr � 0:943) as
a small bend in the second maximum of g�r�. With the density
increasing, the bend develops and transforms into a split.
Figure 13 presents the evolution of the second peak in the
hard sphere model. Thus, a conclusion was made [73] that the
OZ equation is capable of predicting the amorphous
structure.

Further efforts by Gazzillo and Della-Valle [79] showed
that the OZ equation also exhibits the second peak splitting in
the Lennard-Jones liquid in the case where the MHNC
approximation was applied (Fig. 14). Moreover, they con-
cluded that the metastable liquid is also characterized by
changes in the second peak, namely by broadening of the
peak, which further transforms into a split.

Thus, the split in the second peak of the radial correlation
function can serve as an indication of the onset of amorphous
change.

The OZ results can be explained as follows. The fact that
the relaxation time in a glassy material can be taken to be
infinite means that correlation functions as a matter of fact,
do not depend on time. On the other hand, with respect to
structure, an amorphous state is just a frozen liquid
structure. Does it not mean that under these conditions,
the solution to the OZ equation for the dense system can at
least qualitatively correspond to the glassy state? This
hypothesis, however, may meet some objections. The
molecular dynamics approach was used for investigating
the structural features of the hard discs and hard spheres in
the freezing-melting transition region [49]. After thorough
crystallographic analysis, it was shown that splitting in the
second peak exhibits a structural precursor pointing to the
hexagonal close packed arrangement.

Note that a great number of studies give no clear outlines
concerning this problem and contradict each other in many
aspects.

7. Conclusion

In this review, all kinds of states within narrow limits of
classical model systems described by simple central forces of
interactions are treated from a unified structural standpoint.
However, it turned out to be sufficient to reveal the one-to-
one correspondence between various states and the fine
structural details of appropriate correlation functions. This
makes it possible to discuss structural systematization of
different states.

We have almost not touched the other aspects in the
behavior of the system, for instance thermodynamics. The
great variety of the real and model theoretical potentials of
interaction between complex molecules exhibit a great variety
of correlation functions, particularly in cases of multi-atom
molecules described by atom-atomic correlation functions, or
dipole molecules with correlation functions dependent on
orientations.

Usually distribution functions are considered as a
necessary basis for determining and analyzing macropara-
meters, while very important structural information is
hidden. For example, the understanding of possible reasons of
nonexistence of the freezing-melting critical point becomes
possible only after fundamental structural differences between
crystal and liquid have been revealed.

Another remarkable example is the Fisher ±Widom line
where correlation functions change their asymptotic decay,
which in no way can be detected thermodynamically.

Onemore example is the behavior of correlation functions
in the labile region, revealing possible mechanisms of the
spinodal decomposition.

Particular attention should be given to those structural
one-phase indications to phase transitions which, being of
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Figure 14. Evolution of the correlation function with decreasing tempera-

ture for isochore r � 0:95 in the Lennard-Jones model [79]. Solid lines Ð

modified hypernetted chain approximation (MHNC), pointsÐmolecular

dynamics. The curves with T � > 0:233 are vertically shifted.
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phenomenological nature, are nevertheless directly related to
distribution functions. It is quite surprising that even very
simple systems, that seemed to have been thoroughly studied,
are so rich with respect to structure.
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