
Abstract. General principles of polarized-neutron magnetic
scattering are presented and their applications are considered.
It is shown that this technique is especially useful if the system
as a whole contains an axial vector interaction. The examples of
the magnetic field, Dzyaloshinski|̄ ±Moriya interaction, and
elastic torsion are considered. In all these cases, polarized
neutron scattering provides information unavailable with other
experimental methods. The theory is illustrated by pertinent
experimental results, notably the confirmation of the Polya-
kov ±Kadanoff ±Wilson algebra for critical three-spin fluctua-
tions in iron; the first determination of chiral critical exponents
in the triangular-lattice antiferromagnets; and the determina-
tion of noncollinear magnetic structure for a number of complex
antiferromagnets.

``No one can embrace the unembraceable!''
Koz'ma Prutkov}

1. Introduction

Polarized electromagnetic radiation (light, X-rays, synchro-
tron radiation, etc.) is widely used in condensed matter
studies, and the corresponding theoretical concepts and

basic results are generally known. For polarized neutrons,
the situation is quite different. The basic principles of their
application, the results obtained, and research prospects are
only known to a small circle of specialists.

At the same time, polarized neutrons are being increas-
ingly used in condensed matter physics. Conferences on this
theme (Polarized Neutrons for Condensed Matter Investiga-
tions, PNCMI) are being held on a regular basis. The last such
conference, PNCMI-2000, was held at the St Petersburg
Institute of Nuclear Physics (Gatchina) in the summer of
2000. The next conference is scheduled for September 2002 at
the Institute for Solid State Research in Julich, Germany.

The main areas of application of polarized neutrons are
perhaps best illustrated by examining the program of the
PNCMI-2000 conference, whose proceedings were published
in Physica B 297 (2001). The problems discussed at the
conference were the following.

1. Elastic and inelastic scattering of polarized neutrons in
magnetic substances as a tool for studying magnetic struc-
tures and excitations. Particular emphasis was on small-angle
scattering in disordered systems, a technique that allows
large-scale nuclear and magnetic inhomogeneities in a
material to be examined separately.

2. Depolarization of neutrons in magnetic materials. This
effect is used to study very large scale (1 mm and more)
magnetic inhomogeneities in bulk samples, which cannot be
resolved by other scattering techniques.

3. The study of surfaces and multilayered structures using
the specular and diffuse reflection of neutrons (neutron
reflectometry). This technique makes it possible to assess the
quality (or otherwise) of interfaces and to study the exchange
interaction in multilayered structures of Fe/Cr type. The
latter point is important for understanding the mechanism
of giant magnetoresistance.

4. Scattering of polarized neutrons from nuclei. This
enables one, first, to study spatial and temporal phenomena
related to nuclear spin polarization and, second, to investi-
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gate incoherent scattering from nuclei and thus to obtain
information on the energy density of states in the system.

5. Spin density studies using the elastic scattering of
polarized neutrons by samples in an external magnetic field.

6. Neutron spin echo. This method permits the spectra of
both magnetic and nonmagnetic substances (for example,
He II, polymers) to be studied at very low energies (10ÿ6 eV)
and at distances comparable to interatomic separation.

7. A somewhat exotic program of testing the fundamental
principles of quantum mechanics Ð mainly with neutron
interferometry.

Clearly, one review paper is not enough space for all the
above applications of polarized neutrons to be described in
sufficient detail. We therefore limit ourselves to considering
the elastic and inelastic scattering of polarized neutrons in
magnetic materials. Examples from various areas of the
physics of magnetism will serve to illustrate the general
principles of this scattering.

It should be borne in mind when reading this review that
experimental techniques involving polarized neutrons are
considered here only briefly and that only basic physical
ideas underlying these techniques are described. The reason is
that the volume of the review is limited and that the author is a
theorist and so does not consider himself a specialist in
experimental techniques.

2. Experimental methods
for studying neutron polarization

The neutron spin s � 1=2 is described by the operator r=2,
where r is the Pauli vector. The term polarization of a
neutron refers to the t-odd axial vector P � �r , where the bar
indicates an average over the spin states of the neutron beam.
Currently, three major methods are available for creating
beams of polarized neutrons and measuring the polarization
after scattering.

1. Bragg scattering from ferromagnetic crystals. When
using the interference of magnetic and nuclear scattering, it
turns out that we can suppress almost completely the
scattering from one of the polarization projections onto the
direction of the sample's polarization. (This point is discussed
in detail at the beginning of Section 9.)

2. Reflection from magnetized mirrors. This phenomenon
is essentially as follows [1 ± 3]. When entering a material, a
neutron beam is refracted. The square of the index of
refraction is

n20 � 1ÿ 2p
N0b

ME
;

where N0 is the density of the material,M and E are the mass
and energy of a neutron, and b is the scattering length for
neutrons scattered by thematerial's nuclei (this quantity is the
negative of the scattering amplitude). The deviation of n20
from unity is usually very small (of order 10ÿ4ÿ10ÿ6), so in
neutron optics only small glancing angles are considered.

In the case of a magnetized medium, the interaction
between a neutron spin and a magnetic field in the sample is
added to the picture:

V�r� � ÿmnrB�r� ; �1�
where mn � ÿ1;91mN, mN � mBme=Mp being the nuclear
magneton. The index of refraction then turns out to be
dependent on the relative orientation of the magnetic
induction and the neutron spin, n2� � n20 � jmnjB=E, and at a

proper glancing angle (usually on the order of tens ofminutes)
neutrons in one spin state are completely reflected while those
in the other enter the sample. In other words, the beam of
nonpolarized neutrons is split into two completely polarized
parts.

3. Filters using polarized nuclei of the isotope 3He. The
nuclei of 3He absorb neutrons strongly only if neutron spins
are antiparallel to those of the nuclei [4]. Therefore, such a
filter transmits neutrons whose spins are parallel to the spin of
the 3He nuclei. The polarization of the nuclei of 3He is
achieved by optically pumping a dilute gas and then
compressing it to several atmospheres. The spin relaxation
time in the filter's 3He nuclei is on the order of 100 hours.

Neutron polarization control methods. In working with
polarized neutrons, there is sometimes need to change the
direction of their polarization vector P and to introduce
neutrons into some (for example, zero-magnetic-field)
regions of space without altering the neutron polarization.
Such problems are solved by creating a specially chosen
magnetic field structure in the path of the neutron beam and
using the fact that the polarization vector rotates in a
magnetic field. This rotation is described by the equation of
motion

dP

dt
� ÿ2mn

�
B�r� � P

�
; �2�

which follows from Eqn (1). In Eqn (2), B�r� is the magnetic
induction at the neutron's location (here and hereafter we use
units with �h � 1). If the neutron velocity is v, then in Eqn (2)
r � r0 � vt, and the spin of the neutron may be considered as
subjected to a time-dependent magnetic field.

Experimentally, two regimes of neutron motion are
possible, adiabatic and nonadiabatic [5]. The former occurs
when the adiabaticity condition oLt4 1 is fulfilled
(oL � 2jmnjjBj is the Larmor frequency for the rotation of
the neutron in the field B, and t is the characteristic time for
the field to change by an amount of the order of jBj, either in
magnitude or direction). In this regime the vector P follows
the direction of the field. Thus, it is possible to turn the
polarization through a specified angle in this regime.

In the opposite limit oLt5 1, the polarization vector is
too slow to follow the direction of the field, and thus remains
unchanged. In particular, it is possible, by using non-
adiabatic transmission through a magnetic screen, to arbi-
trarily specify the polarization direction of neutrons incident
on the sample located in a zero field and to let the scattered
neutrons pass the screen with their polarization direction
unchanged. Another method for influencing the neutron spin
is a resonance �o � oL� high-frequency field which permits
the neutron spin to be rotated through a specified angle
(usually 90� or 180�) [6]. This polarization-rotation system is
called a flipper.

A large number of experimental facilities have been built
for working with polarized neutrons, the coverage of which is
beyond the scope of the present review. The interested reader
is referred to the proceedings of the PNCMI-98 and PNCMI-
2000 conferences, published in Physica B 267 ± 268 (1999),
297 (2001).

There are two major methods for studying the polariza-
tion of scattered neutrons, known as linear neutron polari-
metry and the three-dimensional analysis of polarization (or
spherical neutron polarimetry).

Linear neutron polarimetry. The basic idea of this method,
developed in the classical work of Moon et al. [6], is as
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follows: The sample is placed in a weak magnetic guide field,
which fixes the direction of the polarization P0 of the incident
neutrons. The measured quantities are the cross sections for
scattering with andwithout a change in polarization (spin-flip
and non-spin-flip scattering, respectively). The schematic of
the experimental arrangement is shown in Fig. 1.

If the direction of the guide field is taken as the z axis, we
have two probabilities, n� and nÿ, for the spin respectively
along and opposite to the field before scattering. The two
probabilities are related by the normalization conditions
n� � nÿ � 1, and the projection of the polarization vector
onto the z axis is Pz � n� ÿ nÿ. Clearly, there are four cross
sections to be considered here: s�� and sÿÿ for no spin flip
events, and s�ÿ and sÿ� for spin flip events, with the right
(first) and left (second) indices corresponding to spin
projections before and after scattering.

The cross section s�� is measured when flippers 1 and 2 in
Fig. 1 are not switched on and only neutrons with their spins
up pass through the device. The cross section sÿ� is measured
when flipper 2 is on, which changes the direction of the
neutron spins from up before the scattering to down after.
Similarly, s�ÿ is measured when flipper 1 is on, and sÿÿ,
when both flippers are on.

The cross section and the projectionPz of the polarization
of scattered neutrons are given by

s � 1

2
�s�� � sÿÿ � sÿ� � s�ÿ�

� 1

2
P0�s�� � sÿ� ÿ s�ÿ ÿ sÿÿ� ;

�3�
sPz � 1

2
�s�� ÿ sÿÿ � s�ÿ ÿ sÿ��

� 1

2
P0�s�� � sÿÿ ÿ sÿ� ÿ s�ÿ� :

The Zeeman energy of a neutron in a field is usually negligible
compared to its kinetic energy. Then s�� � sÿÿ � snsf,
where snsf is the non-spin-flip cross section.

It then follows from Eqn (3) that

s � snsf � ssf � 1

2
P0�sÿ� ÿ s�ÿ� ;

sPz � 1

2
�s�ÿ ÿ sÿ�� � 1

2
P0�snsf ÿ ssf� ;

where ssf � s�ÿ � sÿ� is the total spin-flip cross section. The
cross section is a scalar, whereas the polarization is an axial

vector. Therefore the cross section may depend on the
polarization P0 only if there is an axial vector in the system.
The same condition is required for neutrons to be polarized in
a scattering event.

A shortage of linear neutron polarimetry is that one
cannot distinguish a rotation of the polarization vector from
a change in its length. This is the reason why the method of
three-dimensional analysis of polarization was developed.

Three-dimensional polarization analysis. This method was
used in the early 1970s by Rekveldt to analyze the polariza-
tion of a transmitted neutron beam [7], and by Drabkin,
Okorokov et al. to study small-angle scattering [8, 9]. In 1989,
Tasset and colleagues developed an innovative facility called
CRYOPAD for the three-dimensional analysis of large angle
scattering Ð an approach they called spherical neutron
polarimetry [4, 10, 11].

In a three-dimensional analysis, the neutrons are taken
to be initially polarized in three mutually perpendicular
directions x, y and z successively, and then, following
scattering from a sample placed in a zero magnetic field,
all the three components of the polarization vectors of
scattered neutrons are measured. This yields the polariza-
tion matrix Pfi, with the indices `f' and `i' referring to the
final and initial polarizations, running over the values x, y
and z. As a result, along with the diagonal components Pxx,
Pyy and Pzz, which are measured in the linear polarization
analysis, also the nondiagonal components Pxy, etc. are
measured, which describe the polarization rotation in a
scattering event.

The facility for small-angle three-dimensional polariza-
tion analysis described in Ref. [9] is shown in Fig. 2.
Unfortunately, since three-dimensional analysis requires
very long measurement times and highly intense neutron
beams, it has not been thus far used in inelastic scattering
studies involving energy transfer measurements.

3. Neutron polarization: theory

In the case of nonpolarized neutrons, the cross section is the
sum of the nuclear and magnetic contributions. But since
magnetization is a vector, exploring the magnetic scattering
cross section alone does not give full information about the
distribution of average magnetization in a sample, nor about
the fluctuations of this distribution. This information can be
obtained using polarized neutrons.

A theoretical framework for analyzing experiments on
polarized neutron scattering were developed many years ago
[12 ± 19] (see also Refs [20 ± 23]). As indicated above, the
characteristics measured in neutron-scattering studies are
the scattering cross section and the polarization of scattered
neutrons.

The inelastic scattering cross section can be written in a
general form as

s�Q;o� � s0�Q;o� � P0R0�Q;o� ; �4�

where Q � ki ÿ kf and o � Ei ÿ Ef are the momentum and
energy the scattered neutron transfers to the sample. Clearly,
in the elastic case there is no dependence on o in Eqn (4).
SinceP0 is an axial vector, the dependence of the cross section
on P0 can only appear when there is a pseudovector
interaction of some kind in the system. This may be an
interaction with an external magnetic field, spontaneous
magnetization, the Dzyaloshinski|̄ ±Moriya interaction, tor-

S

H

1

2

A

D

P

Figure 1. Schematic diagram of linear neutron polarimetry: P, polarizer;

1 and 2, flippers, serving to reverse polarization direction;S, sample placed

in magnetic field H; A, analyzer; D, detector. The arrows indicate the

direction of the original polarization P0 and two possible polarization

directions after scattering.
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sional deformation, spin spirals, etc. All these cases will be
discussed in detail below.

The analogous expression for the polarization of the
scattered neutrons has the form

Ps�Q;o� � T �Q;o�P0 � R1�Q;o� : �5�

In Eqn (5), T is a second-rank tensor acting on the vector P0

according to the rule �TP0�a � TabP0b, where a; b � x; y; z.
Here and hereafter, summation over repeated indices is
assumed. The tensor Tab may have a symmetric and an
antisymmetric part.

In the general case, the tensor Tab can be written as

Tab � T
�S �
ab � eabgAg ;

where eabg is a third-rank unit pseudotensor andAg is an axial
vector. Equation (5) then becomes

Ps � T �S �P0 � A� P0 � R1 : �6�

Although expressions (4) and (6) generally contain 16
quantities, in practice there are much fewer independent
quantities. Another obvious restriction to note is jPj4 1.

Scattering amplitude. We now turn to the microscopic
description of neutron scattering. For neutrons with spin, the
nuclear scattering amplitude consists of two parts, one of
which is proportional to the product of the neutron and
nuclear spins. For nonpolarized nuclei, this part gives an
incoherent background which is weakly dependent on the
momentum Q and is usually neglected in magnetic studies.
The nuclear scattering amplitude can therefore be written as

NQ � ÿNÿ1=2
X
n

bn exp �iQRn� ; �7�

where Rn and bn are the coordinate and the scattering length
of the nth nucleus in the system, respectively, andN is the total
number of nuclei.

The amplitude of magnetic scattering is easily calculated
in the Born approximation by taking the magnetic field in
Eqn (1) in the familiar form

B�r� � ÿ 1

c

�
dr 0

R� j�r 0�
R 3

; �8�

where R � rÿ r 0, and j�r� is the current, consisting of a spin
and an orbital part [24]. The magnetic scattering amplitude
can then be written

Fm � rM?Q : �9�

In Eqn (9), M?Q �MQ ÿ �Q̂MQ�Q̂ is the part, perpendicular
to the momentQ, of the vectorMQ defined by the relation

MQ � rNÿ1=2
X
j

exp �iQrj�
�
sj ÿ i

Q� pj
Q 2

�
; �10�

where r � 5:4� 10ÿ13 cm, and sj and pj � ÿiHj are the spin
and the momentum of the jth electron in the system; here and
hereafter, Q̂ � Q=Q.

In Eqn (10) for MQ, the first and second terms
describe scattering from spins and the orbital current,
respectively. One should make the following points about
this formula. The amplitude of magnetic scattering is
proportional to the neutron spin and is determined by
that part of the Fourier component of the magnetization
density which is perpendicular to the momentum transfer.
Therefore, the dependence on Q does not disappear even
in the limit Q! 0, which is an important circumstance for
small-angle scattering (see below). The dependence on the
direction Q is due to the weak decrease of the magnetic
interaction with the distance and describes the demagneti-
zation effect for finite Q, when jQj > 1=L, where L is the
sample size.

In many cases, the orbital part of scattering (d-electron
magnetism) can be neglected. Then, the formula forMQ takes

1

3

4

3

2

5

6

y

x z

7 m

P

S

P0

H � 0

z

Hy Hx

PyPy

Figure 2.Facility for the three-dimensional analysis of polarization in small-angle scattering [9]: 1, collimator; 2, specular polarizer; 3, flippers; 4, `Vector'

module; 5, twenty-channel specular analyzer; 6, detectors. As the bottom, the specifying and analyzing blocks of the `Vector' module are shown, which

consist of mutually perpendicular solenoids of rectangular cross sections when the polarization component Py is measured (S is the sample in zero field).
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the form [12]

MQ � rNÿ1=2
X
m

exp �iQRm�Fm�Q�Sm � r F �Q�SQ ;

�11�
Fm�Q� �

�
dt c�m�t�

X
j

exp �iQrj�
�SjSm�cm�t�
Sm�Sm � 1� :

Here, Rm and Sm are the coordinate and the spin of the
mth magnetic atom, respectively, and Fm�Q� is its magnetic
form factor. The right-hand side of Eqn (11) for MQ is
written for the case in which all magnetic atoms are
identical and determines the corresponding Fourier compo-
nent SQ.

In some cases (manganites, f electrons in rare earths and
actinides), orbital scattering is important, for which the
following rather complicated expressions hold [25]:

ML
Q � rNÿ1=2

X
m

exp �iQRm�Lm�Q� ;

Lm�Q� �
�
dt c �m�t�

X
j

lj�Q�cm�t� ; �12�

lj�Q� � 1

2

�
lj h�iQrj� � h�iQrj� lj

�
:

Here, lj is the orbital momentum operator for the jth
electron of the atom, and h�x� � �1ÿ �1ÿ x� expx�xÿ2.
As one should expect, for small Q the vector Lm�Q�
becomes one-half the total orbital momentum of an
ion.

However, Eqns (12) do not exhaust all the orbital
current contributes to the magnetic scattering. There is
also a small term proportional to m �=MQ 2, where m � is
the effective mass of the carrier, and M is the neutron mass.
This contribution can be important for Q! 0 [26 ± 28] but,
to our knowledge, it has not been studied experimentally
even though it may be very informative for heavy-fermion
systems.

Thus, from Eqns (7) and (9), we obtain for the scattering
amplitude

FQ � NQ �M?Qr ; �13�

which implies that both the cross section and the polarization
of scattered neutrons consist of three parts Ð nuclear,
magnetic, and nuclear-magnetic interference.

In the present review, we consider inelastic scattering and
then indicate how to transform the results to the elastic case.
We emphasize that the derivations below are not system-
specific but only rely on Eqn (13) for FQ, the general
principles of statistical physics, and the algebra of Pauli
matrices.

Van Hove functions and generalized susceptibilities. In
the literature, the cross section is commonly expressed in
terms of the so-called van Hove functions [29] or in terms
of generalized susceptibilities [1, 30]. The usual nuclear or
magnetic scattering is then expressed in terms of the
imaginary parts of the corresponding generalized suscept-
ibilities. This, however, is only true of diagonal cases Ð
for example, for purely nuclear scattering or for the cases
in which the magnetic susceptibility wab is a symmetric
second-rank tensor (see below). If wab has an antisym-
metric part or if we are interested in the nuclear-magnetic

interference, a somewhat more complicated formalism is
needed.

The van Hove functions are defined as follows [29, 30]:

HAB�o� � 1

2p

�1
ÿ1

dt exp �iot� 
A�t�B�0��
� Zÿ1

X
a; b

exp

�
ÿEa

T

�
AabBba d�o� Eab� : �14�

Here, the angle brackets denote thermodynamic averaging,
the subscripts a and b refer to the system's states,Ea;b are their
energies, Eab � Ea ÿ Eb, and Z �P exp �ÿEa=T � is the
partition function.

For generalized susceptibilities, we have [31]

hA;Bio � i

�1
0

dt exp �iot� 
�A�t�;B�0���
� ÿZÿ1

X
a; b

exp

�
ÿEa

T

�
AabBba

�
1ÿ exp

Eab

T

�

� �o� Eab � id�ÿ1 ; d! � 0 : �15�

Using the well-known formula 1=�x� id� � P=xÿ ipd�x�,
where P is the principal value, it can readily be shown that

pHAB�o� �
�
1ÿ exp

�
ÿo
T

��ÿ1
hA;B i00o : �16�

Here, hA;B i00o is the so-called absorption part of the
susceptibility hA;B io, determined by the d-function contri-
bution to Eqn (15) according to the rule

hA;B io � hA;B i0o � ihA;Bi00o ; �17�

where hA;B i0o is the dispersion part associated with the
denominator P=�o� Eab�. If A � B�, then hB�;B i00o is
identical to the imaginary part of the susceptibility
hB�;B io. In the general case, the function hA;B i00o may be
complex.

The absorption parts of the susceptibilities have simpler
symmetry properties than van Hove functions. As these
properties are important for further discussion, let us
formulate them here. From time-reversal symmetry, we have
[31]

hA;B io;H � �hB;Aio;ÿH : �18�

In Eqn (18),H is an external magnetic field or a spontaneous
magnetization, the plus sign corresponds to quantities with
the same time parity, and the minus sign to those with
different time parity. Further, using Eqn (15), we can readily
show that

hA;B io�id � hB;Aiÿoÿid ;

hA;B i0o � hB;Ai0ÿo ; �19�

hA;B i00o � ÿhB;Ai00ÿo :

Cross section and polarization of scattered neutrons.
Using a standard procedure [1, 29, 30] and definition (17)
for the absorption parts of the generalized susceptibilities,
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we obtain [22, 23]

s�Q;o� � 1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
� �hNÿQ;NQi00o � hM?ÿQ;M?Qi00o � iP0hM?ÿQ �M?Qi00o
� P0hNÿQ;M?Q �M?ÿQ;NQi00o

	
; �20�

Ps�Q;o� � 1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1�hNÿQ;NQi00o P0

� �
�P0M
?
ÿQ�;M?Q

�00
o �



M?ÿQ; �M?QP0�

�00
o

ÿ 
�M?ÿQ;M?Q��00oP0

�ÿ ihM?ÿQ �M?Qi00o
� hNÿQ;M?Q �M?ÿQ;NQi00o
� ihNÿQ;M?Q ÿM?ÿQ;NQi00o � P0

	
: �21�

Equations (20) and (21) can be greatly simplified by
introducing the symmetric and antisymmetric parts of the
magnetic susceptibility as follows:

hS a
ÿQ;S

b
Qio � wab�Q;o� � w �S�ab �Q;o� � w �A�ab �Q;o� ; �22�

where w �S�ab � w �S�ba and w �A�ab � ÿw �A�ba . Since any antisymmetric
second-rank tensor is uniquely related to an axial vector, we
write [32]

w �A�ab �Q;o� � ÿieabg Cg�Q;o� : �23�

Here, eabg is a third-rank unit pseudotensor, and C is an axial
vector, which we will call a chirality vector or chirality.

Thus, the cross section depends on the polarization of the
neutrons if the chirality vector C is nonzero. The physical
meaning of separating the susceptibility into a symmetric and
an antisymmetric (chiral) part is as follows: the symmetric
part describes the fluctuations of magnetization along the
axes x; y; z, whereas the chiral part describes skew fluctua-
tions.

Using Eqns (15) and (17), we can easily show that the
absorption parts of wab

�S� and Cg are identical to Im wab
�S� and

ImCg. Equation (20) then becomes

s�Q;o� � 1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
� �hNÿQ;NQi00o � r 2F 2

m Im w �S�ab �Q;o��dab ÿ Q̂aQ̂b�
� 2r 2F 2

m�P0Q̂�
ÿ
Q̂ ImC�Q;o��

� P0hNÿQ;M?Q �M?ÿQ;NQi00o
	
; �24�

where Fm is the magnetic form factor of the ion. If the system
has no axial vector, then only the first two terms Ð taking
into account the nuclear and usual scattering Ð are present,
and the cross section is independent of the polarization P0.

In the case of a magnetically isotropic scatterer, the
magnetic susceptibility is

wab � wdab ; �25�
and the second term in Eqn (24) turns out to be 2r 2F 2

m Im w.
This occurs, for example, in cubic crystals in the paramag-
netic phase (ferromagnets above the Curie point). The third
term in Eqn (24) describes chiral (skew) spin fluctuations [32].
Finally, the last term in Eqn (24) takes into account the
interference of the magnetic and nuclear scattering. It should

be noted that the vectors determining the chiral scattering and
the interference scattering are mutually perpendicular. Thus,
for example, directing the polarization P0 along the momen-
tum transfer Q, one can get rid of the interference contribu-
tion to the cross section. This fact was first noted for inelastic
scattering in ferromagnets [33].

In a similar way, for the polarization of scattered
neutrons, we have

Ps�Q;o� � 1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1�hNÿQ;NQi00o P0

� r 2F 2
m

�
2 Im w �S�? �Q;o�P0 ÿ Im w �S�?aaP0

ÿ 2Q̂
ÿ
Q̂ ImC�Q;o��� � hNÿQ;M?Q �M?ÿQ;NQi00o

� ihNÿQ;M?Q ÿM?ÿQ;NQi00o � P0

	
: �26�

Here, the first term is the nuclear-scattering contribution,
which does not change the polarization of the neutrons. The
next two terms describe the change in the neutron polariza-
tion in ordinary magnetic scattering events, where the tensor
w �S�? �Q;o� has the components

w �S�?ab�Q;o� � �daa1 ÿ Q̂aQ̂a1� w �S�a1b1
�db1b ÿ Q̂b1Q̂b� �27�

and is perpendicular to the vector Q̂: w?Q̂ � Q̂w? � 0.
Polarization due to scattering is described by the chiral
terms and by the interference between the nuclear and
magnetic scattering. Finally, the last term accounts for the
interference-related rotation of the polarization vector P0.
We emphasize that both the chiral scattering and the
interference terms appear only if there is an axial vector in
the system.

If the incident neutrons are polarized along the momen-
tum-transfer vector, in the case of ordinary magnetic
scattering the polarization changes sign, so that

P � sn ÿ sm
sn � sm

P0 ; �28�

where sn and sm are the cross sections for nuclear and
magnetic scattering, respectively.

Separating out spin-flip and non-spin-flip scattering as a
tool to separately study nuclear and magnetic scattering Ð
and to study various contributions from the latter Ð was
proposed in Ref. [6] and has since become a standard
technique. Magnetic scattering often is much stronger than
the nuclear scattering. This occurs, for example, for critical
scattering in ferromagnets, for near-Bragg scattering in
antiferromagnets, etc. For magnetically isotropic samples,
from Eqns (25) and (26), we have in this case the following
simple formula [12]:

P � ÿQ̂�Q̂P0� : �29�

The corresponding change in the sign of polarization was first
observed experimentally for small-angle critical scattering in
nickel [34] and used to study critical fluctuations in iron (see
Ref. [35] and references therein).

Expression (29) also proved helpful in describing the
depolarization of neutrons passing through a medium with
large-scale magnetic inhomogeneities. It was predicted [36]
and then confirmed experimentally [8] that the depolarization
effect depends on how the neutrons' velocity and polarization
are oriented relative to each other. These results have

574 S V Maleev Physics ±Uspekhi 45 (6)



provided the basis for neutron depolarization studies of
magnetic textures [37, 38]. The combination of the depolar-
ization and small-angle scattering techniques has revealed
two correlation lengths in the critical region in iron ± nickel
invar [39 ± 41] and allowed one to determine the width of the
Curie temperature spread due to the internal inhomogeneity
of this alloy [42].

For elastic scattering, the formulas for cross section and
polarization have the same structure as Eqns (20) and (21)
and are obtained from them by the replacement

1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
hA;B i00o ! hAihB i ; �30�

with the angle brackets indicating a thermodynamic average.
Note one more fact, which will be used in our further

discussion. In experiment, one often measures scattering in a
specified direction (without measuring the energy transfer),
i.e., the scattering integrated over the energy transfero. If the
characteristic energy transfer is small compared to T and Ei,
then the factor

1

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
in Eqns (20) and (21) may be replaced by T=po, and the
corresponding expressions for the cross section and polariza-
tion will contain integrals of the form

T

p

�
do
o
hA;B i00Q;o :

Neglecting the dependence of the momentum transfer ono in
these integrals (experimentally specified quantity is the
scattering angle, notQ), we have [31]

hAB io�0 �
T

p

�
do
o
hA;B i00o : �31�

The quantity on the left is the generalized susceptibility at
o � 0, known as the static susceptibility. We call the
corresponding expressions for the cross section and polariza-
tion static (not to be confused with elastic!).

As already noted, in the absence of axial-vector interac-
tions in the system the magnetic-scattering cross section is
independent of the polarization P0, and amagnetic-scattering
event involves the rotation of the polarization vector Ð a
rotation which is described by the expression in square
brackets in Eqn (21). This gives rise to non-spin-flip and
spin-flip neutron scattering processes, whose experimental
study provides a standard method for separating magnetic
from nuclear scattering as well as for separating various
contributions to the magnetic scattering. We will not try to
consider the numerous examples of such separation and limit
ourselves to the less trivial cases of chiral scattering and
nuclear-magnetic interference, phenomena which arise if
some kind of axial-vector interaction is present in the
system. Examples discussed below show that the experimen-
tal study of related phenomena yields additional information
compared with ordinary magnetic scattering.

4. Chiral scattering. Magnetic spirals

In this section we will consider chiral scattering from spiral
magnetic structures in ordered magnetic materials. Inelastic

chiral scattering due to the Dzyaloshinski|̄ ±Moriya interac-
tion and chiral scattering from magnetized samples (dynamic
chirality [32]) will be treated in Sections 5 and 6, respectively.

As noted above, chiral scattering arises from skew spin
fluctuations. Magnetic spirals (frozen fluctuations) lead to
elastic chiral scattering, the direction of the spiral's rotation
being an axial vector that determines the spin chirality. From
Eqns (20) and (21) it follows that chiral scattering makes the
cross section dependent on the initial polarization P0 and
leads to the scattering-induced polarization. Both these
effects are determined by the same vector quantity. There-
fore, we restrict ourselves below to the study of the chiral
contribution to the cross section, which is the simplest to
investigate experimentally.

We start with elastic scattering from a magnetic spiral. In
this case, the average spin of amagnetic atomat a site,Sm, and
the vectorMQ have the form1

Sm � 1

2

�
S exp �ÿikRm� � S � exp �ikRm�

�
� S1 cos �kRm� � S2 sin �kRm� ; �32�

MQ � r

2N
F �Q�

X
s

�SdQÿk; s � S �dQ�k; s� ; �33�

whereRm is the coordinate of the sitem and t is the reciprocal
lattice vector.

Using Eqn (33), the general formula (20), and the rule (30)
to calculate elastic scattering, we obtain [17, 18]

sel �
�
r

2
F �Q�

�2��
S 2
1 ÿ �S1; Q̂�2 � S 2

2 ÿ �S2Q̂�2
�

� �DQ�k � DQÿk� � 2�P0Q̂�
ÿ�S1 � S2� Q̂

��DQ�k ÿ DQÿk�
	
:

�34�
Here, the function

DQ�k � �2p�
3

V0

X
s

d�Q� kÿ s�

describes the superstructural peaks at Q � �k� s, and V0 is
the unit-cell volume. The last term in Eqn (34) differs from the
generally accepted form [17, 18]. In its traditional form, it is
proportional toP0�S?1 �S?2 �. The simpler expression involved
in Eqn (34) is a consequence of the identity
A? � B? � Q̂��A� B� Q̂� [21]. Note that the expression for
polarization that arises upon scattering from a spiral was first
derived in Ref. [16]. The last term in Eqn (34) is proportional
to the product of the average values of the spins S1 and S2.
Strictly speaking, it should be replaced by the Fourier
transform of the static chirality

Cm1m2
� hSm1

� Sm2
i ; �35�

and these quantities are not necessarily equal (see Section 8).
Below we call a spiral right-handed (right) or left-handed

(left) depending on whether the vectors S1, S2, and k form a
right or left coordinate system when made mutually perpen-
dicular by less-than-90� rotations [18]. This definition is
transparent for a simple spiral, when jS1j � jS2j and all

1 Here and hereafter, we speak of the average spin for definiteness,

although in many cases Ð in rare-earth ions, for example Ð the total

moment Jm is actually involved.
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three vectors are mutually perpendicular. For this case,
important for our further discussion, we have, instead of
Eqn (34), [17, 18]

sel �
�
rS

2
F �Q�

�2��
1� �Q̂m̂�2 � 2�P0Q̂��Q̂m̂��DQ�k

� �1� �Q̂m̂�2 ÿ 2�P0Q̂��Q̂m̂��DQÿk
	
; �36�

where m̂ � �S1 � S2�=S 2 and the vector k is parallel or
antiparallel to m̂ (a right or a left spiral).

It follows from Eqns (34) and (36) that the scattering of
polarized neutrons makes it possible to determine the
direction of the spiral's rotation. In a real sample, however,
domains can exist that differ in rotation direction. The
polarization-dependent part of the cross section in this case
is proportional to the difference in population nR ÿ nL
between `right' and `left' domains �nR � nL � 1�.

If the symmetry of the crystal is such that its energy is
independent of the direction of the spiral's rotation, then the
population difference nR 6� nL may only occur by chance, so
that on average the cross section does not depend onP0. Such
a dependence results from a fluctuation, which is noticeable
only for large domains comparable in size to the sample.
Indeed, if the sample contains N accidentally formed
domains, then it is clear that the population difference
nR ÿ nL / Nÿ1=2.

The situation is different when the Dzyaloshinski|̄ ±
Moriya interaction

VDM � 1

2

X
m1;m2

Dm1m2
�Sm1
� Sm2

� �37�

is present. The summation in Eqn (37) is over the pairs of ions
such that symmetry allows an axial vector Dm1m2

to exist
between them. In 1964, Dzyaloshinski|̄ first showed [43] (see
also Refs [44 ± 46]) that the interaction (37) determines the
direction of a spiral's rotation, so that the cross section in the
direction toward the superstructural peaks Q � �k� s

should be dependent on the initial neutron polarization. In
particular, as Eqn (36) suggests, in the case of a simple spiral
(at t � 0), one of the superstructural peaks should disappear
for the neutrons completely polarized along the vectorQ � k.

The dependence of the cross section on the polarizationP0

in the noncentrosymmetric cubic crystal MnSi has been
studied experimentally in Refs [47, 48]. At Tc � 29 K this
material, which has a P213 �T 4� structure, exhibits a simple
spiral with k � �2p=a��x; x; x�, where x � 0:017. Figure 3
taken from Ref. [48] shows the intensity of scattering to the
right �Q � ÿk� at T � 16 K for neutrons polarized along and
opposite to the direction k. Such dependence on the direction
P0 corresponds to the left-handed spiral. The small scattering
at P0k ÿ k is due to the noncomplete polarization of the
neutrons �P0 � 0:91�.

Thus, the Dzyaloshinski|̄ ±Moriya interaction determines
the rotation direction of a spin spiral. At the same time, in
many cases the energy of a crystal is independent of this
direction, and hence the scattering cross section should be
independent of P0. It has been shown [49] that the non-
conservation of spatial parity in the standard model of weak
interaction should cause magnetic ions in metals to interact
with one another via the exchange of electron ± hole pairs Ð
analogous to the RKKY interaction. As a result, the left
spiral should have a lower energy than the right. Although

this energy is very small (of the order of 100 Hz per spin), it
should in principle lead to a nonzero population difference
nR ÿ nL.

In Ref. [50], an attempt was made to detect this effect in
holmium by studying the dependence of the scattering cross
section on P0. It turned out that nR ÿ nL < 10ÿ5. A similar
(although less accurate) result of Ref. [51] was obtained using
polarized synchrotron radiation. It was also found [50] that
torsional strain leads to a nonzero difference nR ÿ nL. Thus,
in holmium there exists an interaction proportional to the
product Cu, where C is the spin chirality, and u is the
torsional strain. Let us discuss this in more detail.

Holmium has a hexagonal close-packed structure. Mag-
netic order arises at a temperature TN � 133 K, and in the
range TN > T > 86 K there exists a simple magnetic spiral
with the vector k along the ĉ axis and spins rotating in the
plane ab. The length of the vector k decreases with
temperature, and k � 0:3�2p=c� at T � TN [52, 53].

In Ref. [50], measurements were made on a textured
sample of holmium with a hexagonal-axis direction spread
of about 15�. The researchers studied scattering with t � 0,
i.e., with jQj � jkj, and measured the `polarizability' of the
sample, defined as

P��k� � 1

P0

I���k� ÿ Iÿ��k�
I���k� � Iÿ��k� � nL ÿ nR ; �38�

where the I���k� are the scattering intensities to the left �kf �
ki ÿ k� and to the right �kf � ki � k� of the incident neutron
beam polarized along �I�� and opposite to �Iÿ� the direction
Q. The sample was deformed at T > TN and then cooled
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Figure 3. Intensity of the superstructural peak withQ � ÿk (scattering to

the right of the direct beam) versus neutron polarization inMnSi [48]. The

almost complete disappearance of scattering for the polarization P0

opposite to the direction k corresponds to a left-handed spiral. The

maximum of the curve for P0kk corresponds to the Bragg condition

jQj � jkj.
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below TN. The dependence of polarizability on the scattering
angle is shown in Fig. 4 taken from Ref. [50].

The observed polarizability asymmetry reveals that
torsional strain influences the population of domains with
different handness. The difference in polarizability values for
twisting to the left and then (following heating above TN) to
the right is due to the fact that the sample had been subjected
to plastic deformation to increase the effect. At present, a
detailed study of this effect in single-crystal holmium under
reversible elastic deformation is being planned [54].

From the results of Fig. 4 it is clear that torsional strain,
violating the symmetry of the crystal, produces an energy
difference between the right and left domains Ð i.e., acts
similar to the Dzyaloshinski|̄ ±Moriya interaction. Essen-
tially, this means that there is an interaction between spin
chirality and torsional strain, which can be written phenom-
enologically in the form [50]

W � 1

2

X
m1 ;m2

gm1m2
�Sm1
� Sm2

� ��H� �um1
ÿ um2

�� ; �39�

where the um1;m2
are the displacements of spins from their

equilibrium positions due to strain, and the constants gm1m2

determine the interaction energy.
In the case of elastic deformation, spin displacements um

can be calculated from elasticity theory [55]. For twisting
about the z axis, we have

ux � ÿtyz ; uy � tzx ; uz � tc�x; y� ;

where t � qj=qz is the angle of rotation per unit length, andc
is the torsion function whose form depends on the shape of
the sample [55]. Then, it turns out that torsional strain gives
rise to the Dzyaloshinski|̄ vector

Dm1m2
� tgm1m2

�
xm1m2

ÿ qcm1m2

qy
; ym1m2

� qcm1m2

qx
; ÿ2zm1m2

�
;

�40�
cm1m2

� cm1
ÿ cm2

:

For a simple spiral rotating about the z axis, the energy of
interaction with torsional strain is found to be [50]

W � ÿ2t�S1 � S2�z Nm

X
R

g�R�z sin �kR� ; �41�

where Nm is the number of magnetic atoms in the sample.
Generally speaking, this energy, because of the small t, is very
small but Ð as the above experimental results suggest Ð
sufficient for producing a population difference nR ÿ nL.

Clearly, local torsional strains due to lattice vibrations are
much greater than those obtainable by twisting the sample.
Expression (39) also describes the interaction of spin chirality
Sm1
� Sm2

with lattice vibrations. Representing the displace-
ments um in the usual manner as a sum of phonon creation
and annihilation operators bq and b�q (q denoting the wave
vector and polarization of a phonon [31]), we obtain

W � 2
X
q

eq � q

�2MNoq�1=2
�
bqCq�q� � b�q Cq�ÿq�

�
: �42�

Here,M is the unit-cell mass,oq and eq are the phonon energy
and polarization vector, respectively, and

Cq�Q� �
X
m1;m2

gm1m2
�Sm1
� Sm2

�

� exp

�
i

2
Q�Rm1

� Rm2
�
�
sin �qRm2m1

� : �43�

The quantity (43) can be considered as a spin-chirality
operator interacting with the phonon field. Note that the
operator Cq�Q� depends on the momenta q and Q, unlike
most other operators involved in the theory. This double
dependence will be important in discussing dynamic chirality
further below.

The energy (42) must be small compared with the other
spin ± lattice interactions. However, for q � k, chiral critical
fluctuations near the NeÂ el temperature TN are large. This has
been predicted theoretically [56 ± 59] and recently confirmed
experimentally [54, 60 ± 63]. Possible consequences are a
strong renormalization of the phonon energy at q � k or an
additional soft mode. A qualitative discussion of this question
can be found in Ref. [50].

Finally, a few words about the possible microscopic
nature of the interaction (39) are in order. In rare-earth
metals, the spin ± orbit interaction is large, and their magnet-
ism is therefore due to the total moment J. In holmium, in
particular, Ho3� ions are in the states 5I8 with J � 8. Below
TN, a magnetic spiral results from the rotation of moments,
which is due to the RKKY interaction between them. This
interaction is a consequence of the exchange between
localized f electrons and the conduction electrons. However,
there is also the so-called skew scattering of conduction
electrons by f electrons; the energy of this scattering is of the
form [64]

Vs�r� � V�r�Ll ; �44�

where L and l are the orbital moments of the f electrons and
the band electrons, respectively. In k space, lk0k � i�k0 � k�.

Second-order perturbation theory in (44) yields a
correction to the RKKY interaction of the total moments
and also gives their pseudodipole interaction. This latter has
the form [65]

VPD
m1m2

� Vm1m2
�Rm1m2

Jm1
��Rm1m2

Jm2
� : �45�

Torsional strain perturbs the band structure of themetal. As a
result, the periodic potential of the crystalU�r� is replaced by
U
ÿ
r� �ru��. A calculation to second order in (44) should lead
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Figure 4. Polarizability of holmium versus the deformation of twisting

about the texture axis (a) to the left and (b) first to the left and then to the

right. The difference in polarizability values results from the plastic

deformation due to twisting [50].
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to the interaction (39). The corresponding theoretical
problem has not yet been solved, though.

For metals, torsional strain seems to be the only way to
create an effective Dzyaloshinski|̄ ±Moriya interaction to
determine the rotation direction of a magnetic spiral. For
insulators, this is not so. The pioneering study of Ref. [66]
shows that, by cooling the cubic spinel ZnCr2Se4 below
TN � 20 K in crossed electric and magnetic fields, one can
create states with only a right or only a left spiral by changing
the sign ofE. The single-domain spiral state was not examined
in any detail in Ref. [66]; in particular, the temperature
dependence of chirality near TN was not investigated.

A method for creating the Dzyaloshinski|̄ ±Moriya
interaction using an external electric field alone was pro-
posed in Ref. [67]. Based on symmetry properties, the
corresponding contribution to the magnetic energy is written
as

VE � 1

2

X
m1;m2

Cm1m2
�p� Rm1m2

� � �Sm1
� Sm2

� ; �46�

where p is the sample polarization caused by the field E. This
method has indeed revealed a small population difference
nR ÿ nL in the layered triangular-lattice antiferromagnet
CsMnBr3 [68]. In addition, however, there was a large
change in the critical properties of the system: the critical
exponent b determining the average magnetization at a site
near TN decreased by a factor of one and a half. The reason
for this is still unclear.

It should be noted that in a number of studies (see, for
example, Refs [54, 63, 69, 70]) a `natural' domain population
difference of yet-unidentified nature was observed: it may be
caused by the statistical fluctuations we have discussed above,
or by some internal factors Ð for example, nonuniform
deformations, which necessarily produce local twistings in
the crystal.

Summarizing, we have demonstrated that polarized
neutrons are a good tool for studying spiral magnetic
structures in many situations. However, systematic studies
of static spin chirality have not yet been made Ð except for
CsMnBr3 and holmium [54, 63], which will be discussed in
Section 8.

5. Chiral scattering in a paramagnetic phase

If the system has an axial vector of one kind or another,
inelastic scattering may occur in a disordered phase. This is
true, in particular, of the Dzyaloshinski|̄ ±Moriya interaction
and of the case when an external magnetic field is present. In
this section, we first consider those general properties of such
scattering that follow from the symmetry properties of axial-
vector interactions and then turn to the chiral scattering,
which is associated with the Dzyaloshinski|̄ ±Moriya interac-
tion.

It should be noted that for materials lacking long-range
magnetic order (low-dimensional and strongly frustrated
magnetic systems) the experimental investigation of chiral
scattering seems to be the most direct way to study the
Dzyaloshinski|̄ ±Moriya interaction. Also, for strongly inter-
acting systems (the neighborhood of critical points), chiral
scattering is determined by higher-order spin fluctuations
(three-spin fluctuations for the magnetic field and four-spin
ones for the Dzyaloshinski|̄ ±Moriya interaction), and these
are not amenable to the nonpolarized neutrons technique,
sensitive only to pair spin correlations.

In Ref. [47], it is shown that in MnSi the polarization
dependence of the cross section persists in the paramagnetic
phase �T > TN�, where no static spiral structure exists
(Fig. 5). This phenomenon has been explained qualitatively
[47] in terms of the Landau ±Ginzburg expansion for the
free energy in the presence of the Dzyaloshinski|̄ ±Moriya
interaction [44, 46]. We will use perturbation theory [71] to
obtain this result and the corresponding formulas for the
cross section. The exact solution of the one-dimensional
problem yields similar results [71, 72]. It is necessary,
however, to first examine some general properties of chiral
scattering for cases in which it is not caused by static chiral
structures.

According to Eqn (24), the corresponding contribution to
the cross section is [32]

sch�Q;o� � 2

p
kf
ki

r 2F 2�Q�
�
1ÿ exp

�
ÿo
T

��ÿ1
� �P0Q̂�

ÿ
Q̂ ImC�Q;o�� : �47�

Here, the vectorC�Q;o� is defined by Eqn (23), which relates
it to the antisymmetric part of the magnetic susceptibility.
Using definition (22) and the time-reversal symmetry of the
susceptibility (18), we obtain

wab�Q;H;o� � wba�ÿQ;ÿH;o� ; �48�

from which it follows immediately that in the presence of a
center of inversion in the system the antisymmetric part wab
emerges only in a magnetic field.

As is known, the Dzyaloshinski|̄ vector is nonzero if the
straight line connecting two ions does not have a center of
inversion [73]. In other words, the environment surrounding
magnetic ions is not centrally symmetric. Needless to say, the
crystal as a whole may still have a center of inversion (see
Ref. [44]). Unless otherwise stated, we will assume a
subsystem of magnetic ions when treating centrosymmetric
and noncentrosymmetric cases in what follows.

From Eqn (48) it follows that if there is the Dzya-
loshinski|̄ ±Moriya interaction and if H � 0, then the anti-
symmetric part of the susceptibility is an odd function of Q.
Clearly, the same is true of the function C�Q;o� in Eqn (23).
Further, using Eqn (19), we find that ImC�Q;o� is an odd
function of o and, hence,

ImCg�Q;o� � ÿImCg�ÿQ;o� � ÿImCg�Q;ÿo� : �49�
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Figure 5. Polarization dependence of the cross section in MnSi above TN.

Filled and open circles correspond to two opposite directions of P0.
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Similarly, if there is a center of inversion and H 6� 0, we
obtain

ImCg�Q;o;H� � ImCg�ÿQ;o;H�

� ImCg�Q;ÿo;H� � ÿImCg�Q;o;ÿH� ; �50�

i.e., in this case ImCg is an even function of o and an odd
function of H. That ImCg has different o parity in the two
cases above is a consequence of the fact that the Dzya-
loshinski|̄ vector is t-even whereas the magnetic field is t-odd.

Note also that Cg�o� is an analytic function of frequency.
Therefore, ImCg�o� and ReCg�o� differ in parity. This
follows immediately from the Kramers ±Kronig dispersion
relation. The parity of the function ImCg�o� is very
important for our further discussion.

To see this, let us assume that characteristic energies
transferred upon scattering are small compared with the
temperature. Then, sch � �T=o� ImCg�Q;o�. In the case of
the Dzyaloshinski|̄ ±Moriya interaction, sch is an even
function of o and, hence, the static chiral cross section
integrated over the energy transfer is nonzero; in the
magnetic field case, sch is an odd function of o and vanishes
when integrated over o.

We now proceed to calculate sch for the Dzyaloshinski|̄ ±
Moriya interaction, treating it by perturbation theory. We
will see that chiral scattering in the paramagnetic phase
occurs only if the Dzyaloshinski|̄ vector Dm1m2

in Eqn (37)
has a uniform component that is the same for all ion pairs.
Such a situation occurs for MnSi, the weak ferromagnets
FeGe and F2O3, the low-dimensional antiferromagnets
CsCuCl3 [74] and Ba2CuGeO7 [75], etc.

Thus, taking the direction of the vectorDm1m2
as the z axis

and passing to Fourier components of Eqn (37), we obtain for
the uniform case

VDM � i
X
q

dz
qS

x
q S

y
ÿq ; �51�

where

dz
q �

X
m2

Dz
m1m2

sin �qRm1m2
� : �52�

In the derivation of Eqns (51) and (52), we have noted that
Dm2m1

� ÿDm1m2
.

For simplicity, we will assume that in the absence of the
Dzyaloshinski|̄ ±Moriya interaction the magnetic suscept-
ibility is isotropic, i.e.,

w �0�ab �Q;o� � w0�Q;o�dab : �53�

Then, it can easily be shown that, to first order in interaction
(51), the susceptibility tensor components obey the equations

wxx � w0 ÿ iw0dqwyx ; wyx � iw0dqwxx �54�

with similar equations for wyy and wxy. Solving these equations
gives

w? � wxx � wyy � w0 �1ÿ d 2
q w

2
0 �ÿ1 ; �55�

wxy � ÿwyx � iw 2
0 dq �1ÿ d 2

q w
2
0 �ÿ1 :

Thus, we see that the Dzyaloshinski|̄ ±Moriya interaction
gives rise to the antisymmetric part of the susceptibility.

Using definition (23), Eqns (55) are conveniently written
as

w? �
1

2

�
1

wÿ10 ÿ d
� 1

wÿ10 � d

�
;

�56�
Cz � 1

2

�
1

wÿ10 � d
ÿ 1

wÿ10 ÿ d

�
:

Let us illustrate these expressions using critical fluctuations as
an example. As is known [76, 77], in the static limit, i.e., when
all scattered neutrons are detected, irrespective of the energy
transfer o, the susceptibility w0 is well described by the
Ornstein ± Zernicke formula

w0�Q� �
Z

q 2 � K 2
: �57�

Here, q � Qÿ s is the distance to the nearest Bragg reflection
of the magnetic structure (ferromagnetic or antiferromag-
netic), and K is the inverse correlation length.

Inmost cases, we have dz
s � 0; hence, for small qwe obtain

dz
Q � 2d0qn̂ ; �58�

where n̂ is the unit vector in the direction of the bond along
which the Dzyaloshinski|̄ ±Moriya interaction is allowed.
Substituting Eqn (57) into Eqns (58) and (56) yields for the
cross section [71]

ds
dO
� �rF�Q��2��1� �Q̂ẑ�2�
�
�

1

�q� an̂�2 � K 2
a

� 1

�qÿ an̂�2 � K 2
a

�

� 2�P0Q̂��Q̂ẑ�
�

1

�q� an̂�2 � K 2
a

ÿ 1

�qÿ an̂�2 � K 2
a

��
; �59�

a � d0
ZTc

; K 2
a � K 2 ÿ a 2 :

The appearance of the factor T ÿ1c (where Tc is the Curie
temperature or the NeÂ el temperature) in the formula for a
follows from dimensional considerations and can be justified
using the Kramers ±Kronig relations.

An expression analogous to Eqn (59) can also be obtained
by the method of Ref. [47]. It follows from Eqn (59) that the
uniform Dzyaloshinski|̄ ±Moriya interaction leads to incom-
mensurate spin fluctuations at q � �an̂. Also, Ka goes to zero
for T > Tc, indicating that a first-order phase transition is
possible. However, including terms of order a 2 in our
approximation would be going beyond the accuracy of the
calculation. The renormalization-group method has shown
[45] that the Dzyaloshinski|̄ ±Moriya interaction does indeed
lead to a first-order transition. This result has not yet been
tested experimentally.

It should be noted here that in deriving Eqn (54) we have
essentially decoupled the four-spin correlation function into a
product of two pair correlations. This can be done only far
away from critical points. Therefore the study of chiral
fluctuations allows the investigation of four-spin fluctua-
tions.
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Thus, the Dzyaloshinski|̄ ±Moriya interaction in the
paramagnetic phase leads to incommensurate spin fluctua-
tions with a period determined by this interaction and to a
cross section dependent on neutron polarization. As in the
magnetic spiral case, by appropriately choosing the geometry,
one can fully suppress one of the incommensurate scattering
peaks. These conclusions, obtained by perturbation theory,
are confirmed by the exact solution of the one-dimensional
problem [71, 72]. Note also that the appearance in the
susceptibility of an antisymmetric part due to the Dzya-
loshinski|̄ ±Moriya interaction was first shown in Ref. [78].
Unfortunately, with the exception of Ref. [47], no studies
have been carried out on the incommensurate critical
scattering due to the Dzyaloshinski|̄ ±Moriya interaction.

In some materials the Dzyaloshinski|̄ ±Moriya interac-
tion alternates sign,

Dm1�b;m2�b � ÿDm1m2
;

where the vector b determines the length and direction of the
corresponding bond. As examples, we may quote copper
benzoate [79] and the spin-Peierls compound CuGeO3, in
both of which the vector b coincides with half the period along
the b̂ axis [22]. In this case Eqn (51) becomes

VDM � i
X
q

dz
qS

x
q S

y
ÿqÿk0 ; �60�

where k0 is the reciprocal-lattice vector corresponding to b.
As a result, the susceptibility wxy depends on the vectors q and
q� k0 and contributes nothing to neutron scattering.

In summary, using the scattering of polarized neutrons to
study chiral fluctuations due to the Dzyaloshinski|̄ ±Moriya
interaction in the paramagnetic phase near critical points may
prove a key step in the experimental study of critical
phenomena. This is especially true of low-dimensional ferro-
magnets, where there is no long-range magnetic order down
to the lowest temperatures and where we are dealing with
quantum criticality.

6. Dynamic chirality: theory

The term dynamic chirality refers to inelastic chiral scattering
that arises in a magnetic field or in the presence of
spontaneous magnetization. Dynamic chirality was studied
experimentally near the Curie point [80 ± 83] for ferromagnets
and in the spin-wave region [84, 85] for triangular-lattice
antiferromagnets and holmium [54, 60 ± 63]. Both series of
studies provided nontrivial information unlikely to be
available with other methods. In this section, following
Refs [32, 86 ± 88], the theoretical framework is provided; in
Sections 7 and 8, the experimental results are described.

The magnetic field determines the direction of the
chirality vector C�Q;o�. From symmetry considerations, we
have for uniaxial crystals

C � CHĥ� CXY�ĥĉ�ĉ ; �61�

where ĥ � H=H, and ĉ is the unit vector along the preferred
axis. In cubic crystals, only the first term is present. The same
term is the only one present in the case of an isotropic
Heisenberg interaction, and in XY systems, only the second
term survives. It is also clear that dynamic chirality cannot
exist in Ising systems.

From Eqn (61) and (24), we find

sch�Q;o� � 2

p
kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1�
rF�Q��2P0

� ��Q̂ĥ�2 ImCH�Q̂;o� � �ĥQ̂��Q̂ĉ��ĉĥ� ImCXY�Q;o�
�
:

�62�

In expression (62), we have set P0 � P0ĥ because it is only in
this case that the hard-to-control rotation of polarization
about the field is absent. As follows from Eqn (50), the
dynamic chirality ImC is an odd function of H and in a
weak field is linear inH.

The interaction with the magnetic field has the form

VH � gmBH
X
m

Sm � gmBN
1=2HS0 ; �63�

where mB is the Bohr magneton �gmB > 0�, and S0 is the
Fourier component, defined by the right-hand side of
Eqn (11), of the spin density SQ for Q � 0. Applying the
general principles of statistical physics [89] to ImC in the
linear approximation in field, the following somewhat
symbolic expression can be written:

ImCg�Q;o� � gmBN
1=2Hm Im Eabg

� i

�1=T
0

dt dt1 exp
��o� id�t�
Tt S

a
ÿQ�t�Sm

0 �t1�Sb
Q�0�

�
;

�64�
where Tt indicates ordering with respect to the `times' t and
t1, and where we have performed the analytic continuation
from discrete imaginary frequencies ion � 2pinT (with n an
integer) to the real axis by replacing ion by o� id.

The cumbersome expression (64) has a simple physical
interpretation, however. In the linear approximation in field,
chiral scattering is determined by three-spin fluctuations. This
is what sets it apart from ordinary magnetic scattering, which
is due to pair spin correlations [1, 2]. Thus, the dynamic
chirality C�Q;o� is a new physical phenomenon whose
experimental study should provide additional information
compared to ordinary magnetic scattering.

Based on the general principles of the diagrammatical
technique [89], Eqn (64) can be considered as representing the
scattering of a spin excitation from a uniform field (Fig. 6).

Q, ÿo; a Q, o; b

Q1 � 0;o1 � 0H

Figure 6. Diagram representing dynamic chirality in a weak field. Wavy

lines are spin Green's functions Gmn�Q;o� � ÿwmn�Q;o�. The hatched

region is the three-spin vertex part, which can be viewed as the amplitude

for the scattering of a spin excitation from a uniform magnetic field.
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The corresponding analytical expression is

Cg�Q;o� � iEabgwaa1�Q;o�Gm1
a1b1
�Q;o; 0; 0�

� wm1m�0; 0�Hmwb1b�Q;o� ; �65�

where wmn, themagnetic susceptibility tensor forH � 0, differs
from the standard definition of the spin Green's functions in
sign, and Gm1

a1b1
�Q;o; 0; 0� is the three-spin vertex part

describing the interaction of spin excitations with �Q;o� and
�Q1 � 0, o1 � 0�. Therefore the quantity Gw�0; 0�H can be
viewed as the amplitude of the scattering of a spin excitation
ofmomentumQ and energyo from a uniform static magnetic
field. We will need Eqn (65) in the analysis of dynamic
chirality in triangular-lattice antiferromagnets in our further
discussion.

The microscopic calculation of the vector C�Q;o� is
possible only for a magnetically ordered phase and based on
spin wave theory; for ferromagnets, this calculation is trivial
(see below). The results of Ref. [32] for two-sublattice
antiferromagnets need to be revised. For triangular-lattice
antiferromagnets, no such calculations are yet available. In
the paramagnetic phase, the calculation of the vector C runs
into the same difficulties as for the spin Green's function.

At the same time, in the critical region near the second-
order phase transition temperature, rather full information
about the function C�Q;o� can be obtained based on the
concepts of static and dynamic scaling [32, 54, 60, 61, 88].
Below, such an analysis will be given for triangular-lattice
ferromagnets and antiferromagnets. Our discussion will be
mainly limited to the formal aspects of the question. A
detailed discussion of the corresponding physical problems
is given in Sections 7 and 8, in which the relevant experimental
data are analyzed.

As is known, the modern theory of phase transitions is
founded on the concepts of a correlation length x and an
anomalous dimensionality of physical quantities (see, for
example, Refs [76, 77]). Near the transition temperature Tc,
the correlation length is written as

x � Kÿ1 � atÿn : �66�

Here, a is a length of the order of the interatomic separation,
t � jTÿ Tcj=Tc, and n is the critical exponent for the
correlation length. In the Landau theory, n � 1=2 [31].
Fluctuations change the exponent n, so we generally have
1 > n > 1=2.

The anomalous dimensionality DA for every fluctuating
physical quantity A�x� (where x is a spatial coordinate) is
defined by the equation

A�lx� � lÿDAA�x� ; �67�

from which it follows that the correlation function of two
quantities A�x� and B�y� for an x ± y distance less than x is

GAB�xÿ y� � Zjxÿ yjÿ�DA�DB� ; �68�

whereZ is a constant. Note that the coordinate dependence of
the correlation function of a critical variable is usually written
in the form jxÿ yjÿ�1�Z�, where Z is the so-called Fisher
exponent [76, 77]. From Eqns (67) and (68), every strongly
fluctuating quantity has its own Fisher exponent defined by
the equation DA � �1� ZA�=2.

If the distance r � jxÿ yj > x, GAB decreases exponen-
tially as exp �ÿr=x�. In momentum space, for three-dimen-
sional systems of interest here, these properties can be written
in the form

GAB�q� � �qa�DA�DBÿ3fAB

�
q

K

�
: �69�

Here, K is the inverse correlation length, and q is the distance
to the nearest Bragg reflection of the magnetic structure that
appears at T < Tc. Clearly, formula (69) holds for qa5 1 and
Ka5 1. The asymptotic properties of the function fAB are
such that

GAB�q� �
�Ka�DA�DBÿ3fAB�0� ; q5 K ;

�qa�DA�DBÿ3fAB�1� ; q4 K ;

8<: �70�

where fAB�0� � fAB�1� � 1=Tc.
The function GAB�q� is identical to the static limit of the

generalized susceptibility, Eqn (31),

GAB�q� � hA;B i0 � wAB�q; 0� :

Extension to finite frequencies is achieved by using the
dynamic scaling hypothesis [76, 77, 90]. For this, one
introduces the concept of a characteristic frequency of
critical fluctuations with momentum q:

O�q� � Tc�qa�z : �71�

Here, z is a new dynamical critical exponent. We have

wAB�q;o� � GAB�q�F
�

o
O�q� ;

q

K

�
; �72�

where F �0; q=K� � 1 and, consistent with general scaling
ideas, the dependence on K disappears for q4 K.

In the opposite limit of q5 K, the function F depends only
on the ratio o=O�K�. The exceptions are ferromagnets in the
approximation in which weak relativistic interactions (mag-
netic dipole, anisotropy) are neglected and only the isotropic
Heisenberg exchange is considered. In this case, by total spin
conservation, the magnetic susceptibility w�0;o� � 0 for all
o 6� 0, and the dependence of q for q5 K does remain [91, 92].

Below we will give a discussion of experimental results for
critical scattering in isotropic (cubic) ferromagnets and
antiferromagnets with a triangular lattice. The subsequent
theoretical analysis will have to be performed separately for
these two systems.

Ferromagnets. We first note that any strongly correlated
spin system shows nontrivial higher-order spin correlations.
In scaling theory, their dimensionality is determined by the
anomalous dimensionality of the corresponding physical
quantities. In ferromagnets, SQ and the homogeneous spin
density S0 are critical variables. In coordinate space, their
dimensionality is D � �1� Z�=2, where the Fisher exponent Z
is a quantity whose value is less than 0.1 [76, 77]. Thus, the
total dimensionality of the three-spin correlator in coordinate
space is 3D. Because of the uniformity of space, it depends
only on two differences, x12 and x23. When passing to
momentum space, it is necessary to integrate over these two
differences. Then for the vector C defined by Eqn (64) we
obtain the following expression that takes into account
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dynamic scaling:

C�Q;o� � gmBHin

T 2
c �Ka�6ÿ3D

f

�
o

O�q� ;
q

K

�
: �73�

Here, q is the distance from the vector Q to the nearest
reciprocal lattice site t, �Ka�ÿ6�3D � t�ÿ3n=2��3ÿZ� � tÿ3

(neglecting Z and assuming n � 2=3), and Hin is the internal
field in the sample.

In ferromagnets near the Curie point, the magnetic
susceptibility is large, and we must distinguish between the
external field H and the internal field Hin related to H by the
equation Hin � H�1� 4pwN�ÿ1, where N is the coefficient of
demagnetization of the sample. The criterion of a weak field
in this case is gmBHin 5Tc�Ka��5ÿZ�=2. Note also that
C�Q; 0� � 0. The only exception is a ferromagnet in the
exchange approximation at Q � s, when C�s;o� � 1=o and
ImC � 0. This is a consequence of the total spin conservation
law, which precludes the relaxation of uniform magnetiza-
tion, as discussed, e.g., in Ref. [92].

For q4 K, the dependence on K, i.e., on t, disappears from
the pair correlation function. For dynamic chirality, this is
not the case. The reason is that one of the critical variables in
Eqn (64), namely S0, has zero momentum (see Fig. 6).
Therefore, the t dependence cannot disappear completely
either for q4 K or for K 6� 0. To gain insight into the nature of
the t dependence, one can apply the so-called correlation-
merging principle [93], which has come to be known as the
Polyakov ±Kadanoff ±Wilson operator algebra [94, 95] (see
also Ref. [92]).

The correlation-merging principle is based on a simple
idea. Two closely spaced spins must fluctuate as a single
quantity which has the dimension of energy density e�x�. This
is because, in the exchange approximation, the energy density
is proportional to the product of two close spins. This fact is
expressed mathematically as follows:


Sx�x1�Sy�x2�Sz�x3�
� � 
e�x2�Sz�x3�

�
jx1 ÿ x2j2DÿDe

� A

jx1 ÿ x2j2DÿDe jx2 ÿ x3jD�De
: �74�

Here, x5 x12 5 x23, and De � 3ÿ 1=n is the dimensionality
of the energy density. The dimensionality of De is determined
based on the well-known thermodynamic equality
�DE�2� � T 2C�t� [31] and the fact that the heat capacity
varies as C�t� � tÿa, where a � 2ÿ 3n.

In the static theory for the three-spin correlation, Eqn (74)
gives nothing because e�x2� and Sz�x3� have different t-parity
and, hence, A � 0. In the dynamic theory, the anomalous
dimensionality of the operators remains the same as in the
static theory; so, from Eqns (73) and (74), for q4K, we have
[88, 92]

C�Q;o� � gmBH f
�
o=O�q��

T 2
c �qa�5ÿZÿ1=n�Ka�1=nÿ�1�Z�=2

: �75�

Assuming Z � 0 and n � 2=3, we have C � qÿ7=2tÿ2=3. Thus,
for q4K, a critical factorization is obtained, i.e., the function
that describes three-spin fluctuations is factorized into two
factors, one depending on �q;o� and the other, on t.

There are two points to make about Eqn (75).
1. Strictly speaking, Refs [93 ± 95] considered static

fluctuations and a scalar field. Therefore, the redistribution

of dimensionalities in Eqn (75) should be treated as an
additional hypothesis requiring a theoretical justification.
Remaining within the framework of dynamic scaling theory,
one needs to show that Eqn (75) does indeed involve
De � 3ÿ 1=n rather than some other combination of critical
exponents. This has not yet been done.

2. The correlation-merging principle (the Polyakov ±
Kadanoff ±Wilson algebra) clearly requires experimental
verification. To our knowledge, the only study where this
was done is that of Ref. [82]. The experimental temperature
dependence of chiral scattering obtained in that work was
found to be in good agreement with Eqn (75) (see Section 7).

Triangular-lattice antiferromagnets. In Refs [56 ± 59], it is
argued that the phase transition in triangular-lattice anti-
ferromagnets is a second-order transition and that spin
chirality is a critical variable along with the lattice magnetiza-
tions. These studies used the Heisenberg and XY models
combined with the Monte Carlo method to calculate critical
exponents, including those for chiral fluctuations. A more
detailed discussion and a criticism of the results of Refs [56 ±
59] are given in Section 8. For themoment, followingRef. [32],
we limit ourselves to considering the impact of scaling theory
on dynamic chirality and show that the scattering of polarized
neutrons is the only technique currently available for
determining chiral critical exponents. The reason is that the
chiral susceptibility is a four-spin correlation function, and
there are currently no methods with which it can be studied
experimentally. Therefore, until now, chirality has only been
treated as an object of theory in the literature. However, the
experimental study of chiral fluctuations, in particular, the
measurement of the chiral exponent Dc, is necessary for the
adequacy of the theory to be completely examined.

In coordinate space, the spin chirality operator has the
form

Cm1m2
� Sm1

� Sm2
: �76�

The operator (76) depends on the center-of-mass coordinate
R � �Rm1

� Rm2
�=2 and the relative distance q � Rm1

ÿ Rm2
.

In Refs [56 ± 59], the chiral susceptibility is defined as

wc�Q� �
X
R



C�R�C�0�� exp �iQR� � g

�
q

Kc

�
tÿgc ; �77�

where C�R� �PqC�R; q� is the chiral field operator,
Kc � aÿ1t nc is the inverse correlation length, and nc and gc
are the critical exponents for the correlation length and chiral
susceptibility, respectively; the exponent gc is related to nc and
the anomalous dimensionality in the standard manner by the
equation gc � nc�3ÿ 2Dc�. According to Refs [56 ± 59], the
correlation-length exponents are the same for chiral and
antiferromagnetic fluctuations.

It follows from Eqn (77) that chiral fluctuations relate to
the R dependence of C�R; q� and, by analogy with Eqn (67),
we have

C�lR; q� � lÿDcC�R; q� : �78�

The dynamic chirality vector C�q;o� is the generalized
susceptibility,


C�0;Q�;S0b
�
oHb ; C�0;Q� �

X
R; q

exp �iQR�C�R; q� :

In triangular-lattice antiferromagnets, uniform magnetiza-
tion is not a critical variable and its anomalous dimension-
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ality is zero. Using Eqns (61), (68), and (72), we obtain

C�Q;o� � gmBH

T 2
N�Kca�3ÿDc

�
ĥCH�q;o� � ĉ�ĥĉ�CXY�q;o�

�
:

�79�

In Eqn (79) the critical behavior of chirality is determined
by the factor �Kca�3ÿDc , which is due to the zeromoment of the
magnetic field, and the factor Tÿ2N is separated out from
dimensionality consideration. The form of the functions CH

andCXY can be determined based on the above picture of how
antiferromagnetic fluctuations are scattered by a magnetic
field (see Fig. 6). The magnetic susceptibilities w0 that enter
into Eqn (65) are diagonal. In the Heisenberg case, the
antiferromagnetic fluctuations are isotropic �wab � dab�, and
for the XYmodel, they are polarized along the xy plane.

For definiteness, we assume thatH k ĉ. Then in both cases
the vertex G in Eqn (65) accounts for the transformation of
the y�x�-polarized fluctuation into the x�y�-polarized one,
but it should be noted that wxx � wyy. As a result, expression
(79) is proportional to w 2

�
q=K;o=O�q�� wÿ2�0; 0�, where K

and O�q� are the inverse correlation length and characteristic
energy of antiferromagnetic fluctuations, respectively, and
the factor wÿ2�0; 0� ensures zero scaling dimensionality for
the functions CH and CXY. Note, however, that this factor
cannot describe the o dependence of the vector C because
Re w 2 and Im w 2 do not possess the required o-parity [see
Eqn (50)].

On the other hand, we have not yet included the
contribution from the noncritical variable S0. The simplest
assumption ensuring the required o-parity of the vector C is
to introduce an additional factor o=TN. For the field along
the ĉ axis, we obtain

C�q;o� � gmHẑoCw 2
�
q=K;o=O�q��

T 3
N�Kca�3ÿDcw 2�0; 0� ; �80�

withC a constant of order unity. As we shall see, formula (80)
fits the experimental results quite well; it has a more detailed
structure compared with Eqn (12) of Ref. [32]. On the other
hand, Eqn (14) of Ref. [32] is incorrect because it is
inconsistent with the zero scaling dimensionality of the
functions C. A more general case of a canted field in the XY
model requires an additional analysis.

Up to this point, we have discussed dynamic chirality for
critical scattering, wheno5T. There is currently a great deal
of interest in dynamic chirality in the quantum limit �o > T �,
when sch�o� can no longer be considered an odd function of
o, and frequency-integrated dynamic chirality is nonzero. An
experimental study of this regime near quantum critical
points would be of particular importance. The study of
dynamic chirality in the spin-Peierls compound CuGeO3 is
also of interest. Needless to say, in all these cases the
interpretation of experimental results requires a theoretical
analysis similar to that given above.

7. Dynamic chirality in ferromagnets:
experiment

The canted-field method. Dynamic chirality in ferromagnets
has been studied experimentally by small-angle neutron
scattering both at T � Tc and in the spin-wave region. In all
cases, the characteristic energy transfer o was small com-
pared with the temperature. Therefore, the cross section

sch�o� should be an odd function of o. However, for small-
angle scattering this is true only if the magnetic field is either
parallel or perpendicular to the incident neutron beam, the
reason being the factor �Q̂ĥ�2 in Eqn (62) [88]. (In the
following treatment, we will consider only cubic and
amorphous ferromagnets, where CXY � 0.)

The kinematics of small-angle scattering is illustrated in
Fig. 7, from which it follows that if the scattering angle #5 1
and o5E (E is the initial neutron energy), then

Q � k

�
# 2 �

�
o
2E

�2�1=2
;

Qx � 2E#
��2E#�2 � o2

�ÿ1=2
; �81�

Qz � o
��2E#�2 � o2

�ÿ1=2
:

This gives

�Q̂ĥ�2 � �2E#�
2 cos2 j� o2 sin2 j� 2E#o sin 2j

o2 � �2E#�2 : �82�

The third term in Eqn (82) is an odd function of o; so, for
j 6� 0�; 90�, an o-even contribution appears in sch�o�. The
dependence on the angle j of the spectrum of neutrons
scattered in iron at T � Tc was studied in Ref. [81]. The
results obtained support the predictions of the theory (Fig. 8).
Therefore, for the static chirality we have

sch�#� � r 2TP0 sin 2j
�
do

2E#

o2 � �2E#�2 ImC�Q;o� : �83�

Thus, the function sch�#� changes sign as # changes sign. This
implies that the dynamic chirality can be separated fromother
forms of scattering not only by changing the sign of P0 but
also by studying the right ± left asymmetry of the scattering.

Experimental verification of the Polyakov ±Kadanoff ±
Wilson algebra. If k#4 K, then in a weak magnetic field
Eqn (75) can be used for calculating ImC. The temperature
dependence of sch�#� is then determined by the factor
�Ka�ÿ1=n��1�Z�=2 � tÿ2=3. This theoretical prediction was
verified experimentally in Ref. [82]. The results obtained
there (Fig. 9) are described by the dependence of the form
tÿ�0:67�0:07�, in accord with theoretical predictions. To our
knowledge, this is the only study where the conclusions of
the Polyakov ±Kadanoff ±Wilson algebra have been veri-
fied experimentally. Moreover, it is totally impossible to
conceive of doing this without invoking dynamic chirality

j

#

ÿ#

Hk

kf

kf

Q

ÿQ z

x

Figure 7.Kinematics of small-angle scattering in amagnetic field (Hk is the
projection of the field on the scattering plane). Scattering to the right and

to the left of the direct beam is shown.
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because in all other cases it is the pair correlation function
that is studied.

Crossover to dipole dynamics in a chiral channel.
Equation (75) also offers the possibility of studying the
characteristic energy of critical fluctuations in the momenta
and temperatures where the magnetic dipole interaction is
significant [88]. The problem, in essence, is the following. If
only the isotropic Heisenberg interaction is included, the

characteristic energy of critical fluctuations has the form

Oe�Q� � Tc�Qa�ze ; �84�
where ze � �5ÿ Z�=2 is the critical exponent of exchange
dynamics [76, 77, 90, 92]. Although small in magnitude, the
magnetic dipole interaction has two important consequences:
(1) the total-spin conservation law underlying the derivation
of Eqn (84) is violated, and (2) the long-range interaction
gives rise to demagnetization effects, which are important
when 4pw0�Q�4 1, with w0 the dimensionless static suscept-
ibility [91, 92]. Equation (84) for the critical fluctuation
energy no longer holds in this temperature ±momentum
region.

The static susceptibility w�Q� � hSÿQ;SQi0=3 defined by
Eqn (22) is related to w0 by the equation w0 � �o0=4p�w, where
o0 � 4p�gmB�2vÿ10 , and v0 is the unit-cell volume. It then
follows from Eqn (70) that the demagnetization is large
provided that

tÿg
o0

Tc
4 1 ; K4Q < qd � aÿ1

�
o0

Tc

�1=2

; �85�

where g � �2ÿ Z�n is the critical susceptibility exponent and
where we have neglected Z in the expression for the dipole
momentum qd. The values of o0, qd, and a for a number of
ferromagnets may be found in Ref. [92].

In the dipole region of momenta and temperatures, all the
critical exponents n, Z, g, and z change their values. It has been
shown, however [96], that changes in n and Z are very small
and can be neglected; z changes markedly, however, in the
dipole region due to the large energy of the nonuniform
magnetic field that appears near the critical fluctuation.

Therefore, Eqn (84) becomes

Od�Q� � Tc�qda�zeÿzd �Qa�zd ; �86�

where zd is a new critical exponent of dipole dynamics [91, 92,
97, 98], and the factor �qda�zeÿzd ensures matching to the
exchange region. Thus, it turns out that Od�Q�4Oe�Q�. At
present, two values zd are being discussed in the literature:
zd � 2ÿ Z, corresponding to van Hove's assumption
O � wÿ1 [76, 77, 97, 98]; and zd � �5ÿ Z�=2ÿ 1=n � 1,
corresponding to the so-called hard dipole dynamics [91, 92].

An attempt to observe a transition to dipole dynamics for
the scattering of nonpolarized neutrons in iron proved
unsuccessful [99]. The reason is that the o dependence is
very difficult to measure for Q5 qd. Furthermore, a
theoretical analysis [100] revealed an additional numerical
smallness in the problem, with the result that the transition to
dipole dynamics at Q4 K actually occurs at momentum
transfers much below qd. Let us show that, using Eqn (75),
this transition can be studied relatively simply in a chiral
channel Ð where there is no reason to expect the above
numerical smallness to appear.

Suppose, for simplicity, that Z � 0 and n � 2=3 and
substitute Eqn (75) into Eqn (83). Then, neglecting the
energy o as compared to 2E# in Eqn (81) for Q (i.e.,
assuming scattering to be quasi-elastic), we obtain [88]

sch�#� � r 2P0 sin 2j
gmBHin f0

2E�ka�# 2t 2=3
O�k#�
Oe�k#� sgn# : �87�

Here, O�k#� is the characteristic energy of critical fluctua-
tions, the energy Oe is defined by Eqn (84), and
f0 �

�
dx f �x� � 1. It can be shown that this integral

00

# �2.25�
j � 0

# �2.25�
j �35�

o o

Figure 8. Spectra of the small-angle chiral scattering of polarized neutrons

in iron at T � Tc depending on the angle j between the magnetic field and

a perpendicular to the incident neutron beam [81].
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Figure 9. Temperature dependence of dynamic chirality in iron for k# > K
and gmBH < gmBHc � Tc�Ka�5=2 for various values of j.
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converges. Thus, we see that in the quasi-elastic approxima-
tion, the dynamic chirality is proportional to the ratio O=Oe

and that the cross section of nonpolarized neutrons has the
form

s�#� � 2rj�1�
3�ka#�2 : �88�

The quasi-elastic approximation is valid if the time of
interaction of a neutron with a magnetic fluctuation of size
Qÿ1 is less than the fluctuation lifetime Oÿ1�Q� (in units
where �h � 1). In this case, the inhomogeneity is quasi-static
for a neutron. Clearly, the time of interaction is �Qv�ÿ1, where
v is the neutron velocity. Using the exchange expression (84)
for O, we arrive at the quasi-elasticity condition

k# < qin � aÿ1
�

2E

Tcka

�2=3

; �89�

where qin is the inelasticity momentum. Clearly, this restric-
tion is relevant only if qin > qd.

For k# > qin, it is necessary to take into account the
o2 term in Eqn (81) for Q. It has been shown [88] that for
k#4 qin, the cross sections sch and s have small factors
�qin=k#�9=2 and �qin=k#�3=2, respectively, and hence drop off
sharply with increasing #. In Refs [83, 84], the dynamic
chirality for critical scattering in iron was investigated. The
quantity studied was

PS �
��#sch�k#���
s�k#� : �90�

The results presented by the authors show that in the
exchange approximation the quantity PS has a maximum at
k# � qin and decreases as # up to k# � K. In Ref. [88], it is
shown that for lower # the quantity PS is at first constant and
then proportional to # 2.

Thus, in the exchange approximation the quantity PS has
only one maximum located at k# � qin. The corresponding
experimental results are shown in Fig. 10. One can see two
distinct maxima, one at k# � qin, and the other between K and
qd. The latter maximum can be explained by assuming that
zd < 3=2. Thus, the result obtained is in qualitative agreement
with the hard �zd � 1� version of dipole dynamics.

Unfortunately, in the experiment of Ref. [83] the values of
qd and qin differ by a factor between 1.5 and 2, making it
impossible to draw any quantitative conclusionsÐ but that a
transition to dipole dynamics occurs at zd < 3=2 is beyond
question. It would be important to repeat the experiments
using harder neutrons and lower-Tc ferromagnets, thus
increasing the ratio qin=qd. Mention should also be made of
the statement in Ref. [92] that the crossover to dipole
dynamics should depend strongly on the spin S of the ions.
It is therefore of interest to study the dynamic chirality
experimentally in the ferromagnets EuS and EuO with
S � 7=2 and low Curie temperature.

Spin waves in amorphous ferromagnets. In amorphous
ferromagnets the absence of Bragg reflections complicates
the study of spin waves by standard neutron spectroscopy.
One has therefore to study inelastic scattering in the small-Q
range, where strong elastic nuclear and magnetic scatterings
due to the sample's spatial inhomogeneity occur. This
requires separating the weak inelastic magnetic scattering
from this elastic background. The canted-field method allows
easy separation of the #-odd contribution of dynamic
chirality to inelastic scattering Ð the contribution that
contains all the information we need about the spin wave
spectrum. This has been done for the amorphous ferro-
magnets Fe50Ni22Cr10P18 and Fe48Ni34P18 [84, 85]. We begin
by providing the theoretical framework on which this
investigation is based and then present the experimental
results.

As is well known, the spin-wave dispersion law in ferro-
magnets is quadratic,

eq � Dq 2 ; �91�

where D is the spin-wave stiffness, which can be conveniently
written D � 1=2msw, where msw is the spin-wave effective
mass. In the linear theory of spin waves (see, e.g., Ref. [101]),
the antisymmetric part of the susceptibility is written in the
form

wxy � ÿwyx �
i

2
hS i��oÿ eq � id�ÿ1 � �o� eq � id�ÿ1� ;

�92�

where the z axis is in the direction of the magnetization of the
sample, and hS i is the average of the atomic spin. Using
Eqn (83), we obtain

sch�#� � r 2ThS iP0 sin 2j
�
do

2E#

o2 � �2E#�2

� �d�oÿDQ 2� � d�o�DQ 2�� : �93�

Using Eqn (81) forQ, the integral in Eqn (93) can easily be
evaluated to give

sch�#� � r 2hS iP0T sin 2j

2E##0�# 2
0 ÿ # 2�1=2

: �94�

Here, #0 � �2MD�ÿ1 � msw=M5 1, and M is the neutron
mass. FromEqn (4), it follows that the angle of scattering of a
neutron with excitation or with absorption of a spin wave
cannot exceed the value of the cutoff angle #0 [102 ± 105]. This
is an obvious result physically: the excitation of a spin wave is
kinematically equivalent to the scattering of a heavy ball by a
light one at rest. Clearly, the heavy ball in this case is deflected

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

ÿ5

ÿ10
qinqdPS, 10ÿ3

k#, nmÿ1

Figure 10. Dependence of PS � j#schj=s on k# for critical scattering in

iron at Tÿ Tc � 1 K, K � 1� 10ÿ3 nmÿ1, H � 16 Oe [83]. Solid curve:

hard dynamics; dashed curve: exchange dynamics.
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by an angle not exceeding the mass ratio of the two balls.
Experimentally, the existence of the cutoff angle #0 has been
confirmed for neutron scattering in iron [105]. For small #,
Eqn (91) does not apply because of the neglect of the dipole
interaction. It can be shown, however, that the formula holds
for #! #0.

From the experimental results of Ref. [84] shown in
Fig. 11, it is seen that, in spite of its small magnitude, the
dynamic chirality is separated quite confidently from other
forms of scattering. The study of the cutoff angle #0 near the
Curie temperature yielded the temperature dependence of the
spin-wave stiffness D for the amorphous ferromagnets
Fe50Ni22Cr10P18 and Fe48Ni34P18. It was found that D � tx,
where x � 0:36� 0:025 and x � 0:31� 0:02 for the first and
the second ferromagnets, respectively. These values of x are in
good agreement with dynamic-scaling predictions. Indeed,
from Eqn (84) for T < Tc, the spin wave stiffness is
D � �Ka��1ÿZ�=2 � t 0:37, assuming Z � 0 and n � 2=3. Thus,
the prediction of dynamic scaling theory proved to be valid
for the amorphous ferromagnets Fe50Ni22Cr10P18 and
Fe48Ni34P18 as well.

As already noted, for #5#0, dipole forces become a
factor. This phenomenon was studied in Ref. [85] using a
square neutron detector. The observed strong dependence of

the dynamic chirality on the angle between the scattering
plane and the magnetic field is in good agreement with spin
wave theory.

8. Triangular-lattice ferromagnets: experiment

We now turn to discussing work on dynamic chirality in the
layered triangular lattice antiferromagnets CsMnBr3 and
CsNiCl3, and in holmium. Let us first explain the importance
of this work, though. Triangular-lattice antiferromagnets are
frustrated magnetic materials. Unlike ordinary layered
antiferromagnets (for example, cuprates, with the square as
the basic element of the magnetic structure), in triangular-
lattice antiferromagnets the basic element is an equilateral
triangle with spins at each of the vertices. In such a triangle,
the antiferromagnetic interaction usually leads to the frustra-
tion effect (Fig. 12a): if spins 1 and 2 are antiparallel, then spin
3 finds itself in a zero molecular field, i.e., its direction is
indefinite (this is known as frustration).

As a result, the classical �S!1� ground state of the
system is a 120� structure (Figs 12b, 12c). This state turns out
to be degenerate, however: the exchange energy for the spin
configurations in Figs 12b and 12c is the same, but these are
different configurations. When going counterclockwise, two
neighboring spins form angles of 120� (b) and 240� (c). This
difference is described by the chirality vector

C123 � S1 � S2 � S2 � S3 � S3 � S1 : �95�

Just in a manner of speaking, the configurations in Figs 12b
and 12c have a positive and a negative chirality. Clearly, in the
general case, the vectors S1, S2, andS3 do not necessarily lie in
the plane of the paper. Therefore, the chirality vector C123 for
the 120� structure may have any direction Ð but the
degeneracy does remain.

Thus, triangular-lattice antiferromagnets differ funda-
mentally from ordinary ferro- or antiferromagnets, where
specifying the spin on one site fully determines the structure.
With triangular-lattice antiferromagnets, specifying the spin
direction on one site implies two possible structures. One is
the so-called dual lattice, with sites at the centers of the
triangles (Fig. 12d). The chirality in this case will behave
exactly as the Ising spin, i.e., will assume two different values,
`�' and `ÿ'. It is these considerations that led Kawamura
[56 ± 59] to the idea of a new universality class in second-order
phase transitions.
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Figure 11. (a) Neutron scattering from spin waves in the amorphous alloy

Fe50Ni22Cr10P18: solid circles, total scattering intensity; open circles, the

chiral part of scattering; dashed line, the contour of the direct beam.

(b) Temperature dependence of the spin-wave stiffness as a function of

t � jTc ÿ T j=Tc obtained from measurements of the cutoff angle #0 near
the Curie temperature: 1, Fe50Ni22Cr10P18; 2, Fe48Ni34P18; x is the

exponent in the expression D � D0t x [84].
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As is well known, in the modern theory of second-order
phase transitions the critical exponents of fluctuating quan-
tities are determined only by the order-parameter dimension-
ality n [the so-called O�n� universality class] [76, 77]. For
Heisenberg magnets, n � 3; for XY systems, n � 2. In the
former case, the order parameter symmetry is that of a sphere
of unit radius [SO(3)]; in the latter, that of a circle �S1�. In
triangular lattice antiferromagnets, the two-fold degeneracy
due to chirality changes the order parameter symmetry to
Z2 � SO�3� and Z2S1 in the former and latter cases, respec-
tively, where Z2 is a two-element group corresponding to the
Ising spin. A similar situation exists in spiral magnets, where
the group Z2 is responsible for two possible directions of the
spiral's rotation (see Section 4).

Thus, according to Refs [56 ± 59], triangular-lattice anti-
ferromagnets and spiral magnets should belong to the chiral
universality classes O�3� and O�2�. The former is realized for
an isotropic Heisenberg interaction; the latter, in the presence
of a strong easy-plane anisotropy (XY model). Accordingly,
the critical exponents of heat capacity, magnetization,
susceptibility, and correlation length �a; b; g; n� should differ
from those in Heisenberg magnets, XY ferro-, and XY anti-
ferromagnets.

Monte Carlo calculations and those using the extension of
spatial dimensionality (4ÿ e expansion) and the 1=n expan-
sion have confirmed this conclusion [56 ± 59]. An especially
large difference is found for the heat capacity exponents:
a � 0:24� 0:08 �n � 3� and a � 0:34� 0:06 �n � 2� for chiral
universality, to be compared with a � ÿ0:12 and a � ÿ0:02,
respectively, for commonmagnetic materials. This prediction
agrees well with numerous experiments (see Ref. [59] for a
review).

However, Kawamura's results have been repeatedly
questioned based on renormalization-group and numerical
calculations [106 ± 109], although in the latter case the critical
exponents differed only a little from those of Refs [56 ± 59].
The main conclusion of these calculations is essentially that
what actually occurs is a first-order phase transition, but very
close to a second-order transition. Also, rather exotic
statements have been made that temperatures for transitions
to chiral and antiferromagnetic states do not coincide and
that the correlation-length exponents for chiral and anti-
ferromagnetic fluctuations are different. To verify all this
would require an accuracy that is beyond the reach of current
experiments.

The most intriguing qualitative result of Refs [56 ± 59] is
that, along with the antiferromagnetism vector, spin chirality
is a critical quantity, its fluctuations being determined by the
new critical exponents bc, gc, and nc. The exponent bc
characterizing the temperature dependence of chirality
below TN is not necessarily equal to 2b as the naive picture
of Section 4 suggests.

As already noted, the exponent bc can be determined from
the temperature dependence of that part of scattering
intensity below TN that is proportional to P0. The exponents
nc and gc, however, are much more difficult to determine
because this requires a knowledge of theT andQ dependences
of the four-spin correlator (77). At the same time, by studying
the temperature dependence of dynamic chirality, the sum
gc � bc � jc can be determined. To see this, note that,
according to Eqn (80), this dependence goes as tÿjc , with
jc � nc�3ÿ Dc�. Recalling that gc � nc�2ÿ Zc� and
bc � nc Dc � nc�1� Zc�=2 in accord with scaling theory, we
immediately obtain that jc � bc � gc. Thus, using polarized

neutrons, two out of the three chiral critical indices can be
determined.

On the other hand, if the scaling picture holds for
triangular-lattice antiferromagnets, then [56 ± 59]

a� 2bc � gc � 2 �96�

(where a � 2ÿ 3n is the heat capacity exponent), from which
it follows that nc � n. Thus, we see that, based on the scaling
approach and using the polarized neutron technique, all
critical exponents can be found. Note that the exponent jc

determines the dimensionality of the field conjugate to the
chirality operator (76). For an XY system, it has been shown
[110] that a magnetic field in the XY plane suppresses chiral
fluctuations and a triangular-lattice antiferromagnet
becomes an ordinary antiferromagnet with a two-dimen-
sional order parameter, provided

gmBH4TNtjc=2 : �97�

The first object to be chosen for the experimental study of
chirality in triangular-lattice antiferromagnets was the XY
antiferromagnet CsMnBr3. This compound has a hexagonal
structure of symmetry P63=mmc1. Antiferromagnetism in the
ab plane occurs atTN � 8:3K. This phase transition has been
studied in detail experimentally [111 ± 116]. The table below
lists the experimental values of the critical exponents for the
heat capacity, correlation length, susceptibility, and magne-
tization of the sublattices (a, n, g, and b, respectively). The last
three exponents were determined from the data on the
scattering of nonpolarized neutrons. The Monte Carlo
results (obtained in Refs [57, 108]) agree well with experi-
ment. Nonelastic neutron scattering also yields the dynamical
critical exponent z � 1:47�6� [116].

The phase diagram of CsMnBr3 in a magnetic field was
obtained experimentally in Refs [117, 118]. It is shown that if
the field is perpendicular to the hexagonal axis ĉ, then the
point �H � 0, T � TN� is tetracritical. IfH k ĉ, the symmetry
of the system does not change and the field does not affect the
critical behavior. Heat capacity measurements have con-
firmed this conclusion [114].

In CsMnBr3, the 120
� structure corresponded to the wave

vector k � �1=3; 1=3; 0�. In Refs [54, 60 ± 63], static and
dynamic chirality was measured for the Bragg position
Q � �1=3; 1=3; 1�.

Static chirality measurements were made on two samples
having dimensions 10� 3� 5 mm (crystal 1) and
10� 2� 2 mm (crystal 2). In both cases, the population
difference nR ÿ nL of chiral domains was nonzero, reaching
10% for the smaller crystal (2). As discussed in Section 4, if

Table. Calculated (Monte Carlo) critical exponents of XY triangular-
lattice antiferromagnets and experimental critical exponents for CsMnBr3
at TN � 8:3 K.

Calculation [57, 108] Experiment

a
n
g
b
nc
gc
bc
jc

0.34(6), 0.46(10)
0.54(2), 0.50(1)
1.13(5), 1.03(4)
0.253(10), 0.24(2)
0.55(2), 0.55(1)
0.77(5), 0.90(2)
0.45(2), 0.38(2)
1.22(6), 1.28(9)

0.39(9) [111], 0.40(5) [112]
0.54(3) [113], 0.57(3) [114]
1.01(8) [113], 1.10(5) [114]
0.21(2) [113], 0.25(1) [115]

0.84(7) [63]
0.44(2) [63]
1.29(7) [61, 63]
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the population difference occurs by chance, it is of order
Nÿ1=2, where N is the total number of domains. The volume
of an individual domain in this case should be about 0.4 mm3.
The results of static chirality measurements are shown in
Fig. 13. On this basis, the value bc � 0:44�2� has been
proposed [63]. Since the strong quasi-elastic scattering is
independent of P0, it has been impossible to determine the
magnetization exponent b and to verify whether the relation
bc � 2b holds. Other studies show, however, that it does,
within the errors (see table).

Analysis of experimental results on dynamic chirality
essentially relies on the data of Ref. [116], in which it is
shown that the energy dependence of inelastic scattering at
T � TN �q > K� is fit by the Lorentzian G=�o2 � G 2

q �.
Assuming the same dependence for all q, for the suscept-
ibility in Eqn (80) we obtain

w�q;o� � Z

q 2 � K 2

iGq

o� iGq
; �98�

where, as usual, we have written the static factor in the
Ornstein ± Zernicke form.

Then, for dynamic chirality we find

C�q;o� �
�

K 2

q 2 � K 2

�2�
iGq

o� iGq

�2
CgmBHo
T 3
Ntjc

; �99�

from which we have for the polarization-dependent contribu-
tion to the scattering intensity

DI � A

�
K 2

q 2 � K 2

�2 o=G�
1� �o=G�2�2 ; �100�

where A � tÿjc . The corresponding experimental results are
shown in Fig. 14. It turned out that for t > 0:1 the exponent
jc � 1:28�7�. Using this value of jc and the earlier obtained
value of bc, we find that gc � jc ÿ bc � 0:84�7�. Taking the
value a � 0:40�5� from the table, we obtain a� 2bc � gc �
2:12�9�, which agrees within the error of the measurement
with the scaling relation (96).

The kink at t � 0:1 in the A�t� dependence in Fig. 14 is
presumably due to the finite momentum resolution of the

experiment, which has the consequence that what one
measures is in fact the intensity DI integrated over q dq
between zero and qmax. If qmax < K, the integration gives
nothing. For qmax 4K, however, the integral is dominated
by q � K, and the factor

�
K 2=�q 2� K 2��2 in Eqn (100) is

replaced by a quantity of order K 2. Therefore, the t
dependence of DI should necessarily change with decreasing
temperature. Noting that K 2 � t g, for small t we have
DI � tÿx, where for two experimental values of g from the
table the quantity x � jc ÿ g takes the values 0.28(11) and
0.24(9), which agree well with x � 0:3 from Ref. [63].

Reference [54] reports a similar study on the quasi-one-
dimensional triangular-lattice antiferromagnet CsNiCl3 with
S � 1. This compound has a very complex phase diagram
[110]. However, for a field B > Bm � 2:25 T along the ĉ axis,
the phase transition to the ordered phase belongs to the same
chiral XY universality class as that in CsMnBr3. The
measured value of the critical exponent, jc � 1:24�7�, is also
close to the theoretical values given in the table, and the
dependence A�t� has a kink at t � 0:1, presumably of the
same nature as in CsMnBr3. In a field B � 1 T < Bm, the o
dependence of dynamic chirality is different; in particular, it
shows extrema at o 6� 0, which correspond to Holdane
excitations characteristic of one-dimensional chains of S � 1
spins.

Reference [54] also presents preliminary results on
dynamic chirality in holmium. It is found that the exponent
value is jc � 1:58�4�, which disagrees strongly with the
theoretical prediction for an XY system. The reason for this
is still unclear.

Thus, we see that even the early polarized neutron
experiments on spin chirality produced nontrivial results.

101

DI

100

10ÿ3 10ÿ2 10ÿ1 t

60
DI
40

20

0

0.32 0.33 0,.4 x

DI / t0:45

Figure 13. Dependence of DI � I" ÿ I# on t for T < TN in CsMnBr3: I"
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There is no doubt the method will be in wide use in the near
future.

9. Nuclear ±magnetic interference
in elastic scattering

We discuss here some of the results from magnetic studies
using the interference of nuclear and magnetic scattering (see
also Section 10). Since the magnetic scattering amplitude is
proportional to the neutron spin, the cross section of
polarized neutrons has an interference contribution, which
can lead to a scattering-induced polarization and its rotation.

Clearly, such interference only occurs if the state of the
scattering sample is characterized by some kind of axial
vector, for example, magnetization. For elastic scattering,
the axial vector must be t-odd in order that the cross section
remain unchanged and the polarization of the scattered
neutrons change sign on reversal of time. The Dzya-
loshinski|̄ ±Moriya interaction cannot lead to elastic inter-
ference. For inelastic scattering, the situation is different,
because the difference in the t-parity of axial vectors is
compensated by the o-parity of the corresponding correla-
tion functions Ð similar to what occurs in chiral scattering
[see Eqns (49) and (50)].

Nuclear ±magnetic interference takes place only if both
types of scattering occur in the same region of Q space. For
elastic scattering, this can occur in two cases: (1) small-angle
scattering in disordered systems, and (2) scattering in crystals
with zero-wave-vector magnetic structure (ferromagnets,
paramagnetic materials in an external field, antiferromag-
nets with kAF � 0). Using Eqns (20), (21), and (30), we obtain

sQ � NÿQNQ �M?
ÿQM

?
Q � P0�NÿQM?

Q �M?
ÿQNQ�

� i �P0Q̂�
ÿ�MÿQ �MQ�Q̂

�
; �101�

PsQ � NÿQNQP0 �M?
ÿQ�M?

QP0� � �P0M
?
ÿQ�M?

Q

ÿ �M?
ÿQM

?
Q �P0 ÿ iQ̂

ÿ�MÿQ �MQ�Q̂� �NÿQM?
Q

�M?
ÿQNQ � i

��NÿQM?
Q ÿM?

ÿQNQ� � P0

�
; �102�

where the angle brackets denoting thermodynamic averaging
have been omitted for brevity.

Equations (101) and (102) should also be averaged over
the domain structure of the sample. In the case of small angle
scattering in disordered media, an average over the spatial
disorder must also be done. As a result, the interference terms
are nonzero in a region of Q space determined by either a
nuclear or magnetic subsystem, whichever is larger-scale.
Small-angle interference will not be considered here, though;
this subject has been widely discussed elsewhere (see, e.g.,
Refs [119, 120] and references cited therein).

In the case of crystals, NQ and M?Q are the nuclear and
magnetic structure factors of the chemical unit cell, so that the
standard factor

��2p�3=v0� d�Qÿ s� insuring the Bragg
condition is omitted in Eqns (101) and (102).

Elastic nuclear ±magnetic interference in ferromagnets.
The polarization effect due to Bragg scattering in ferro-
magnets is the first classical example of nuclear ±magnetic
interference [121]. This interference is currently used for
producing monochromatic beams of polarized neutrons. In
a ferromagnet with one atom per unit cell, the scattering
amplitude of neutrons with spins parallel ��� and antiparallel
�ÿ� to the sample magnetization m̂ is

f� � ÿ
�
b� rF �Q� �S

�
1ÿ �Q̂m̂�2�	 ; �103�

where �S is the average atomic spin. IfQ and �S are chosen such
that the amplitude fÿ is zero, then only the neutrons polarized
along the field undergo Bragg scattering. A case in point is the
alloy Co92Fe8. On the contrary, for the Heusler alloy, the
reflection (111) leads to scattering with polarization antipar-
allel to the field [47].

Magnetic-density maps. If a paramagnetic crystal is placed
in a magnetic field, the electron shells of its atoms are slightly
magnetized. As a result, the scattering has a contribution that
depends on the relative orientation of the neutron spin and
the magnetic field [122]. Usually, the quantity studied is the
ratio of the scattering intensity of the neutrons polarized
along the field to that of the neutrons polarized opposite to
the field, the so-called flipper ratio 2,

R � s ���Q

s �ÿ�Q

� jNQj2 � 2ReNQMQ sin2 a� jMQj2 sin2 a
jNQj2 ÿ 2ReNQMQ sin2 a� jMQj2 sin2 a

� 1� 4Re
NQMQ sin2 a

jNQj2
: �104�

Here, MQ is the magnetic structure factor of the unit cell
directed along the field, and a is the angle between the field
and the vectorQ.

The approximate equality sign in Eqn (104) holds because
jMQj5 jNQj in the paramagnetic phase. Experimentally, one
studies the ratio R for a large number of Bragg reflections s.
Knowing the structure of the crystal, we can generally
calculate the values of Ns. Therefore, experiment makes it
possible to find a set of values of Ms related to the magnetic
(spin) densityM�r� by the Fourier transform

Ms �
�
dr exp �isr�M�r� ; �105�

where the integration is performed over the unit cell.
The inverse Fourier transform yields, in principle, the

distribution of the spin densityM�r�. This transform is known
to be unstable, however: small experimental errors and the
final set of reflections s to be measured lead to uncontrolled
errors in M�r�. Therefore, a technique for the regularization
of the inverse transformwas suggested [123, 124], which came
to be known as the maximum entropy method. In this way,
spin-density maps of a large number of chemical compounds
have been found (see, e.g., Refs [125, 126] and papers from the
PNCMI-98 conference [Physica B 267 ± 268 (1999)].

In the present review, the corresponding results are not
discussed in detail, the more so that the author is not a
specialist in this field. As an example, let us discuss the spin-
density data on CuGeO3 [126]. This compound has received
much attention in recent years because of the two phenomena
it exhibits, namely, a spin-Peierls transition that doubles the a
and b periods, and a spin excitation gap at T < 14 K [127,
128].

Above TSP, the structure of CuGeO3 belongs to the space
group Pbmm and has a unit cell (Fig. 15) with two formula
units [129]. A characteristic feature of the structure are the
rings of ions Cu2� with S � 1=2 along the c axis, each
surrounded by four oxygen ions O2ÿ (O2 in the figure). The
spin-Peierls transition consists of the dimerization of the
chains, which is accompanied by the appearance of a gap

2 The intensities in question are measured with the flipper turned either on

or off.
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DSP � 2:0� 0:05 meV in the spin excitation spectrum at
T5TSP and by the doubling of the period along the a and c
axes [127 ± 131].

Figure 16 taken from Ref. [126] shows spin-density
maps obtained by the maximum-entropy method for
CuGe0.997Si0.003O3 for B � 4:6 T, T � 15 K, and
TSP � 12 K. The magnetic moments of the ions were found
to be (in Bohr magnetons)

mCu � 0:0078�5� ; mGe � 0:0027�4� ;
mO1 � 0:049�7� ; mO2 � ÿ0:0001�5� :

As we should expect, the magnetization is mostly localized on
copper ions. The Ge4� and O1 ions are also magnetized fairly
strongly, so that mGe � mO1 > mCu. The O2 ions responsible
for in-chain superexchange were found to remain nonmagne-
tized.

This result appears unexpected at first sight because one
would expect the spin density to be maximum on oxygen ions
O2 responsible for the superexchange along the chains (where
it is the strongest). Note, however, that what is actually of
relevance in the study of the local magnetization of ions in a
magnetic field is not the value of the noncompensated spin
density on a site but rather to what extent it is magnetized by
the external field, i.e., the magnetic softness. Only in the limit
of isolated spins is the local magnetization proportional to the
free-ion magnetization S�S� 1�gmBH=3T. At high tempera-

tures and in the tight-binding approximation, it should be
proportional to �Tÿ TCW�ÿ1 rather than to T ÿ1, where TCW

is the Curie ±Weiss temperature. In the intermediate cases,
detailed system-specific calculations are needed. To our
knowledge, there have been no studies on this subject. Nor
have the temperature and field dependence of local magneti-
zations been investigated.

At the same time, the large magnetization of O1 andGe4�

ions observed in experiment raise an interesting physical
problem. Superexchange via these ions should lead to the
Dzyaloshinski|̄ ±Moriya interaction with the vectorD having
components along the a and c axes. This can easily be shown
by using Moskvin's rule [132], according to which the
direction of the Dzyaloshinski|̄ vector is determined by the
product of the radius vectors directed from the intermediate
ions, where superexchange takes place, to magnetic ions.

In our case, the intermediate ions are O1 and Ge4�. In the
former case, the vectorD is along the c axis; in the latter, it has
components along the a and c axes. For the ion pairs (Cu I,
Cu II) and (Cu II, Cu I 0) shown in Fig. 15, the Dzyaloshinski|̄
vectors have different directions, and, hence, no chiral
scattering occurs (see Section 5). Because of the high
magnetic susceptibility of O1 and Ge4� ions (see above), one
should expect an anomalously large Dzyaloshinski|̄ ±Moriya
interaction and, hence, considerable nuclear ±magnetic inter-
ference in the inelastic scattering of polarized neutrons. The
search for such interference is currently fully underway at the
Laue ±Langevin Institute (L-P Regnault, F Tasset et al.).

Antiferromagnets with kAF � 0. In the simplest case of
collinear antiferromagnets with one magnetic atom per unit
cell, there is no need to perform polarization analysis to
determine the magnetic structure. It suffices to investigate
several additional Bragg reflections that arise below the NeÂ el
temperature TN. In more complicated cases, this may prove
insufficient: for every magnetic reflection, the vectorM?

Q has
two components in the plane perpendicular to the vector Q,
and these may be complex-valued. The cross section of
nonpolarized neutrons is determined by the quantity jM?

Q j2.
Therefore, it does not contain all the necessary information
on the magnetic structure.

Spherical neutron polarization (3D polarization analysis
for large-angle scattering) open new possibilities for research
into the magnetic structure of complex antiferromagnets [4,
10, 11, 133 ± 136]. This method has already yielded the
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Figure 15. Unit cell of CuGeO3 above TSP � 14:3 K. The arrows indicate

the direction of ion displacements leading to period doubling along the a

and c axes.
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Figure 16. Projections of spin density and atomic positions along the a, b, and c axes (from left to right). Density levels lie betweenÿ0:03 and 0.27 mB=nm
in 0.02 mB=nm steps. Dashed and solid lines correspond to negative and positive spin densities. T � 15 K, B � 4:6 T, TSP � 12 K.
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structure of CuO, UGePt, U14Au51 and other antiferro-
magnets (see, Refs [133 ± 136] and references cited therein).

In the case of antiferromagnets with kAF � 0, with the
magnetic and nuclear reflections coinciding, the interference
of the nuclear andmagnetic scattering enables the decoding of
magnetic structures. At the same time, the domain structure
and the effect of external influences on it can be studied.

Spherical neutron polarimetry generally uses the right-
hand coordinate system with axes x k Q and y lying in the
plane of scattering and the z axis perpendicular to this plane.
In this system, the vectorM?

Q lies in the yz plane, and we will
henceforth omit the superscript `?' since M?

Q has no
x component. Noting also that NÿQ;MÿQ � N �Q;M

�
Q and

dropping the subscriptQ, Eqns (101) and (102) become [136]

s � jNj2 � jMj2 � P0�R ch � R In� ;
Pr � �S� A�P0 � P1 ; �106�
P1 � ÿR ch � R In :

Here, the symmetric and antisymmetric second-rank tensors
acting on the initial polarization P0 have the form

S�
jNj2 ÿ jMyj2 ÿ jMzj2 0 0

0 jNj2 ÿ jMzj2 � jMyj2 M �
yMz �M �

z My

0 M �
yMz �M �

z My jNj2 ÿ jMyj2 � jMzj2

��������
�������� ;

A �
0 2 ImN �Mz ÿ2 ImN �My

ÿ2 ImN �Mz 0 0
2 ImN �My 0 0

������
������ :

(107)

The vector R ch �M � �M is along the axis x, and R In �
2ReN �M. Clearly, the tensor S can be reduced to a diagonal
form by rotating the coordinate system in the yz plane.

As already noted, Eqns (106) should be averaged over the
domain structure of the sample. For the case of chiral
domains, this averaging was discussed in Section 4, where it
was shown, in particular, that torsional strain in holmium
changes the relative population of the right and left domains.
Let us here discuss the results on the domain structure in
Cr2O3, a classical antiferromagnet with kAF � 0 [44, 69, 135]
with an R�3c structure. The unit cell here has four Cr2� ions,
with spins along the trigonal axis as shown in Fig. 17. Thus we
have two possible types of antiferromagnetic domains, which
transform into one another on time reversal R (180�

domains).
On the other hand, the spin structure remains unchanged

by the transformation IR, where I is inversion. Therefore, the
Cr2O3 crystal is magnetoelectric, i.e., its free energy has the
term [44]

Fme � ÿakEcHc ÿ a?�ExHx � EyHy� ; �108�
with c parallel to the trigonal axis. Themagnetoelectric tensor
components ak;? change sign on time reversal and, hence,
should be proportional to the antiferromagnetism vector.
Therefore, cooling the system below TN in parallel magnetic
and electric field leads to one of the two domain structures
shown in Fig. 17.

Spherical neutron polarimetry has experimentally con-
firmed this theoretical prediction [69, 135]. A Cr2O3 crystal
was oriented so that its trigonal axis c lied in the scattering
plane. In this case,Mz � 0, and from Eqns (106) and (107) we
find

My � 4irF �Q�Se�1� exp �inl�� sin �2plz� � ieM0 : �109�

Here, l is the Miller index along the axis c, z is the position of
the chromium ion on this axis, S is its spin, and e is the domain
type �e � �1�.

Thus, we see that the magnetic structure factor of the unit
cell is an imaginary quantity. The nuclear structural factorNQ

is real because the chemical unit cell has a center of inversion.
As a result, the cross section is independent of the initial
polarization P0, and the components of the S and A tensors
are

Sxx � Szz � 1ÿ g 2

1� g 2
; Syy � 1; Axz � ÿAzx � ÿ iZg

1� g 2
;

�110�

where g �M0=NQ, and Z � n� ÿ nÿ is the relative population
of the domains with e � 1 and e � ÿ1 (see Fig. 17). From
Eqns (110) it follows that scattering rotates the polarization
vector only if Z 6� 0, i.e., if the domain populations differ.

In a Cr2O3 crystal at T � 290 K, the value of g for the
reflection �1; 0; �2� is 1. In this case, a single-domain sample
should rotate the polarization of scattered neutrons 90� in
the xz plane. In Refs [69, 135], it is shown that cooling a
crystal of Cr2O3 below TN � 310 K in the fields E �
750 V mmÿ1 and B � 0:68 T parallel to the trigonal axis
does indeed lead to such polarization rotation, i.e., produces
a single-domain sample, the type of domain depending on
the relative orientation of the E and H fields as shown in
Fig. 17.

Perhaps the most complex example of the use of spherical
neutron polarimetry is the decoding of noncollinear magnetic
structure in U14Au51. This is a heavy-fermion antiferro-
magnet with TN � 22 K. The coefficient g in the heat
capacity expression C � gT is 300 mJ Kÿ2 molÿ1. U14Au51
has a hexagonal structure P6=m, in which uranium atoms
occupy three different positions: U1, U2, and U3. It turned
out that U3 atoms do not possess a magnetic moment, and
that the moments of the atoms U1 and U2 are oriented as

E H

E

H

3=4

1=2

1=4

z

e � ÿ1 e � 1

Figure 17.Two possible spin orientations for chromium ions in the unit cell

of Cr2O3 and the relative E and H field orientations leading to them on

cooling below TN [69, 136]. The center of inversion is denoted by a cross.
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shown in Fig. 18. The determination of this structure was
discussed in detail elsewhere [136].

10. Nuclear ±magnetic interference
in inelastic scattering

The application of polarized neutrons in magnetic studies is
limited by factors related to the intensity of neutron beams.
Inelastic scattering requires much higher intensities than
elastic scattering. This essentially explains why, despite
intensive efforts, such interference has not yet been observed.

On the other hand, the discovery of inelastic interference
is obviously just around the corner, and it is necessary to
understand exactly how it comes about. We explain this
below following mainly Refs [22, 23] and omitting technical
details (which can be found in Ref. [22]). It turns out that
inelastic interference is a consequence of the spin ± lattice
interaction, in which a phonon or other lattice excitation
transforms to an excitation of the spin subsystem and,
depending on the symmetry of the problem, various inter-
ference terms in Eqns (20) and (21) survive.

In the case of elastic interference, things are very simple:
the vector hM?

Q i should be different from zero, and the
nuclear and magnetic scattering should occur in one and the
same region of space. It may happen, though, that long-range
magnetic order does not exist at all but inelastic interference is
possible. This situation is close to that of chiral scattering in
the paramagnetic phase treated in Section 5. Because of the
Dzyaloshinski|̄ ±Moriya interaction, there is an axial vector
D in the system, whose `wrong' t-parity is compensated by the
corresponding o-parity of the functions hNÿQ;MQi00o and
hMÿQ;NQi00o [see Eqns (20), (21), and (49)]. Such a situation
occurs in the spin-Peierls compound CuGeO3 mentioned
above. Needless to say, inelastic interference should also
exist in ordered magnetic materials. Let us determine the
conditions for occurrence of this inelastic interference and
find out what kind of information its study can provide.

According to Eqns (20) and (21), the interference
contribution to the inelastic scattering cross section and the
polarization of scattering neutrons can be written in the form

sI�Q;o� � rF �Q� kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
R��Q;o� � P0 ;

PIs�Q;o� � rF �Q� kf
ki

�
1ÿ exp

�
ÿo
T

��ÿ1
� �R��Q;o� � i

�
Rÿ�Q;o� � P0

�	
; �111�

R��Q;o� � hNÿQ;S?Q i00o � hS?ÿQNQi00o : �112�

Thus, inelastic interference occurs if the generalized
susceptibility hNÿQ;SQio is nonzero. This requires the
presence of spin ± lattice interaction, which causes the spin
subsystem and the lattice vibrations to exchange excitations.
Below, the exchange and Dzyaloshinski|̄ ±Moriya interac-
tions are considered. For either of them, the coupling of the
spin degrees of freedom with lattice vibrations is due to the
latter modulating the exchange integral J or the Dzya-
loshinski|̄ vector D.

The exchange and Dzyaloshinski|̄ ±Moriya interactions
can be written as

VSL � 1

2

X
m1;m2

V ab
m1m2

S a
m1
S b
m2
; �113�

where V ab
m1m2

is either J b
m1m2

dab or D g
m1m2

egab. Using the
standard procedure of perturbation theory [89], it is found
that to first order in VLS [22, 23]

hNÿQSQio � Nÿ1=2
X

n;m1;m2

bn


exp �ÿiQRn�;V ab

m1m2

�
o

� hS a
m1
S b
m2
;SQio : �114�

Here, the expression of the first angle bracket is nonzero
only because of the lattice vibrations, which modulate both
Rn and V.

Although somewhat unwieldy, expression (114) has a
simple physical meaning: it describes the transformation of a
spin excitation to a phonon due to the spin ± lattice interac-
tion. The vectors R� can then be represented schematically as
the graphical equation

R� � ��� � ÿÿÿ�ÿÿÿ � ��� ; �115�

in which the wavy and dashed lines describe the propagation
of a phonon and a spin excitation, respectively, and the solid
circles indicate the spin ± lattice interaction.

From Eqn (114), it is seen that inelastic interference, like
dynamic chirality, is also related to three-spin susceptibilities.
Physically, these susceptibilities are different, however: from
Eqn (114) it follows that the spinsSm1

andSm2
correspond to a

single time, whereas in the case of dynamic chirality all the
three times are different [see Eqn (64)]. We will assume that
the magnetic field is H � 0 in the discussion below.

The three-spin susceptibility in Eqn (114) is clearly a third-
rank pseudotensor. In the paramagnetic phase, which has no
preferred direction, it can only be proportional to the
antisymmetric unit pseudotensor eabg. Therefore, in the case
of the exchange interaction, inelastic interference is absent,
and for the Dzyaloshinski|̄ ±Moriya interaction (114) we can
write

hNÿQSQio �
1

2

X
m1;m2

hNÿQ;Dm1m2
io Tm1m2

�Q;o� : �116�

Here, Tm1m2
�Q;o� is the coordinate part of the susceptibility.

The ordered phase has an axial vector m̂ �m̂ 2 � 1�, which
determines the direction of magnetization and that of the
antiferromagnetism vector. Therefore, the three-spin suscept-
ibility is proportional to the pseudotensor m̂gdab, and
Eqn (116) becomes

hNÿQ;SQio �
1

2

X
m1 ;m2

hNÿQ; Jm1m2
io

�Sm1

Sm2
�;SQ

�
o ; �117�

with the spin susceptibility vector along m̂.

U1 for z � 1=2

U2 for z � 0

Figure 18. Projection onto the �0; 0; 1� plane of the magnetic structure of

Ub14Au51, showing the relative orientation of the magnetic moments of

atoms U1 and U2 [137].
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In both cases, the interference is related to the modula-
tion of Rn and V by lattice vibrations. Expanding these for
small displacements u from the equilibrium position, we
obtain

hNÿQSQi � ÿNÿ1=2
X
n

bn exp �ÿiQRn� �iQr� hu r
n ; u

j
j io

� V
ab;j
m1m2; j

hS a
m1
S b
m2
;SQio : �118�

Now, theRn are the equilibrium positions of the sites, V
ab;j
m1m2; j

are the coefficients of the expansion of V ab
m1m2

in the
displacements uj of the ions involved in superexchange, and,
finally, the hu r

m; u
j
j io describe the propagation of phonons

from site m to site j.
For future convenience, we rewrite Eqn (118) in momen-

tum space. We define the Fourier transform for un and Sm as
follows:

unn � Nÿ1=2
X
k

exp �ikRn� ukn ;
�119�

Smm � Nÿ1=2
X
k

exp �ikRm�Skm :

Here, Rn and Rm determine the positions of unit cells, and n
and m label nuclei and spins within a cell.

We obtain [22, 23]

hNÿQ;SQio � iNÿ1=2
X

n; m1; m2; nj; k1; k2

bn exp �ÿiQrn�Q r

�Drj
nnj �Q;o�V ab;j

m1m2; nj
�k1; k2� dk1�k2;Q�s hS a

k1m1
S b
k2 m2

;SÿQmio :
�120�

In Eqn (120), s is the reciprocal-lattice vector, nj labels ions
along the path of superexchange,

V ab;j
m1m2; nj

�k1; k2� dk1�k2;Q�s
� Nÿ1

X
j;m1;m2

exp �ÿiQRj � ik1Rm1
� ik2Rm2

�V ab;j
m1m1 ;m2m2 ; jnj

;

�121�
and the phonon Green's function is defined in a standard
manner as

D
rj
n 0n�Q;o� �

X
l

e �ln 0r�Q� elnj�Q�
�
M
�
o2 ÿ o2

l�Q�
�	ÿ1

;

�122�

where the elnj�Q� are the phonons' polarization vectors,M is
the unit-cell mass, and l labels the branches of the spectrum.

Paramagnetic phase. From time-reversal symmetry for
H � 0, we obtain hNÿQ;SQio � ÿhSQ;NÿQio, and we have
for Eqn (114)

R��Q;o� � �R��ÿQ;o� : �123�

It follows that for a crystal with a center of inversion we have
R� � 0 and that Rÿ�Q;o� is an even function of Q. The
interference cross section is therefore zero, so that scattering
can produce no polarization. Also, from Eqn (19), Rÿ�Q;o�
is an even function of o. In the absence of a center of
symmetry, the vectors R� and Rÿ are both nonzero, and
R� is an odd function of o.

We next apply our general results to CuGeO3. In this
material, there is no long-range magnetic order, and spin
fluctuations at all temperatures have the paramagnetic
symmetry which we have discussed above. Due to the
presence of a center of symmetry, we have R� � 0, and Rÿ
is an even function of Q. As already mentioned, the
Dzyaloshinski|̄ vector in CuGeO3 is due to the interaction of
the neighboring copper chains along the axis b, and, besides,
there are reasons to expect that the vector is anomalously
large. This makes the CuGeO3 crystal a good candidate for
nuclear ±magnetic interference3.

Systems with long-range magnetic order. The calculation
of the three-spin susceptibility for CuGeO3 is the most
complicated problem. In the case of ordered magnetic
materials, it is easier to solve, because one can employ the
theory of spin waves Ð although even here one is faced with
theoretical difficulties, yet to be solved, related to the infrared
divergence of longitudinal (along the axial vector) spin
fluctuations.

Now, following Refs [23, 33], we describe briefly the main
theoretical results for ferromagnets and antiferromagnets
with kAF � 0. Only centrosymmetric crystals will be consid-
ered.

Ferromagnets .Here, the only nonzero vector in Eqn (111)
is R�, so the cross section depends on P0. If Q ? m̂, the
polarization dependence of the cross section is determined by
the interference, and there is no chiral contribution in this case
[see Eqn (24)]. Using the standard theory of spin waves [101],
it is easily shown that the three-spin correlator in Eqn (117)
describes a process in which a phonon transforms into two
spin waves.

In the exchange approximation, when the number of spin
waves is conserved, interference disappears at T � 0. If the
magnetic dipole interaction, which violates the conservation
of total spin, is introduced, then the inelastic interference does
not disappear even at T � 0. In this case, for o! 0, an
infrared divergence appears, similar to that occurring for
longitudinal magnetization fluctuations studied theoretically
in Ref. [137] and experimentally in CdCr2Se4 in Ref. [138].

It should also be observed that since spin excitations for a
given q are much softer than acoustic phonons, the terms o2

in the phonon Green's functionsD�Q;o� in Eqn (120) can be
dropped, thus giving rise to the factor qÿ2, which acts to
increase interference at small q. The reader is referred to
Ref. [33] for formulas for inelastic interference in ferro-
magnets with the dipole interaction.

Antiferromagnets with kAF � 0. In this subsection, we
limit ourselves to magnetoelectric crystals. As already noted,
magnetoelectric materials are invariant under the transfor-
mation RI, where I is inversion and R is time reversal.
Equation (18) becomes

hAÿQ;BQio � �hBÿQAQio : �124�

It immediately follows from this thatR� � 0 inEqn (111) and
that the antisymmetric part of the susceptibility is zero, i.e.,
chirality contributes nothing to scattering. Thus, the cross
section does not depend on P0, and scattering cannot lead to
polarization.

3 Below TSP, a second-order axis appears, passing through the middle of

the straight line between Cu2� ions on the a axis. As a result, a vector D

along the b axismay appear. The interaction of copper ions along the axis a
is weak, however, so this possibility is not considered here.
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Note that if we take the axis z to be along the
magnetization of the crystal's sublattices, then the suscept-
ibility acquires a nondiagonal part such that Im wxy�Q;o� �
ÿIm w xy�ÿQ;ÿo�. This follows from Eqns (19) and (124).
Calculations for BaNi2(PO4)2 based on spin-wave theory
show that Im w xy�Q;o� � ÿIm wxy�ÿQ;ÿo�, i.e., the neu-
tron-scattering cross section has a Q-odd contribution.
Inelastic interference splits into two parts, in one of which
the spins m1 and m2 belong to a single sublattice, and in the
second, to different sublattices. It can be shown that the
former contribution isQ-odd, while the second isQ-even. The
reason is the different relative orientation of spins in these two
cases.

As noted in Section 9, the reversal of time relates two
possible types of antiferromagnetic domains with e � �1 (see
Fig. 17). Using Eqn (18), we obtain

R ���ÿ �Q;o� � R �ÿ�ÿ �ÿQ;o� ; �125�

which implies that at equal domain populations the inelastic
interference should be an even function of the momentum
transfer Q.

Further analysis of the problem requires allowance for
special features of the particular material or class ofmaterials,
which is beyond the scope of this review. Preliminary results
for a quasi-two-dimensional antiferromagnet BaNi2(PO4)2
can be found in Ref. [23]. Note only that, as in the case of
ferromagnets, at small q the phononGreen's function yields a
gain factor proportional to qÿ2.

11. Conclusions

We conclude the review with the following remarks.
1. We have deliberately excluded from consideration

studies based on the separation of the nuclear and magnetic
contributions by measuring the spin-flip and non-spin-flip
neutron scattering. The separation method has produced a
plethora of results which cover a wide variety of magnetic
systems and simply cannot be analyzed within a single
framework.

2. Hopefully we have clearly enough expressed our view
that the scattering of polarized neutrons leads to new and
interesting phenomena if an axial vector of some kind exists in
the system. We illustrate this point using the magnetic field,
Dzyaloshinski|̄ ±Moriya interactions, and torsional strain as
examples.

3. The scattering of polarized neutrons in a magnetic field
allows the study of a new physical phenomenon of three-spin
chiral fluctuations (dynamical chirality). Such fluctuations
occur in any strongly correlated spin system except Ising
systems. So far, the three-spin chiral fluctuations have been
studied only for ferromagnets and chiral antiferromagnets
(CsMnBr3, etc.). In both types of materials, nontrivial
information was obtained. In the coming years, new and
important results will undoubtedly be obtained by this
method. Of great interest is dynamic chirality in the quantum
limit, in which the energy transfer is large in comparison with
the temperature. In this connection, the spin-Peierls com-
pound CuGeO3, with a complex phase diagram in a magnetic
field, is a suitable candidate.

4. The Dzyaloshinski|̄ ±Moriya interaction is currently
receiving attention in connection with the study of low-
dimensional systems without long-range order. Polarized
neutrons allow incommensurate spin fluctuations to be

effectively studied. Unfortunately, such experiments are still
lacking.

5. Nuclear ±magnetic interference in the elastic scattering
of polarized neutrons enables the study of the magnetic
structure of a material. Of special note are magnetization
maps, which are obtained from scattering studies in a
magnetic field. In our opinion, the theoretical interpretation
of these maps has not been currently given adequate attention
in spite of the fact that they give important information on the
properties of strongly correlated electronic systems. In this
connection, the investigation of the temperature evolution of
these maps is important.

6. A number of examples presented in this review show
that polarized-neutron scattering can give insight into how
the domain structure of an antiferromagnet is affected by
external conditions such as strain and a combination of
electric and magnetic fields. The domains studied are usually
nonthermodynamic domains, whose formation does not
involve energy gain as is the case in ferromagnets. Essen-
tially, we are dealing with metastable macroscopic inhomo-
geneities, whose origin is unclear. A systematic study along
these lines would be of interest.

7. In the case of inelastic scattering, nuclear ±magnetic
interference has not yet been observed. The study of spin-
lattice interactions is a new and promising area requiring
combined efforts of experimenters and theorists.

8. The limited space of the review prevented us from
addressing questions related to the small-angle scattering of
polarized neutrons and to their depolarization in scattering.

9. Throughout the review, we have used the Born
approximation in writing scattering amplitudes. For nuclear
scattering, this approximation is exact provided experimental
scattering lengths bn are used. For magnetic scattering, this is
not the case. As first shown in Ref. [140], corrections to the
Born amplitude are on the order of kr0 � 10ÿ4ÿ10ÿ5, where
r0 � 2:8� 10ÿ13 cm is the classical radius of the electron.
These corrections, however, lead to a term in the cross section
that is proportional toP0�kf � k0� [86, 87] and increases as the
softness of the system increases. This is confirmed experimen-
tally for critical scattering in iron [141]. One should expect
that in soft enoughmagneticmaterials this contribution to the
cross section may be as large as a few percent, and its
experimental study is of great interest.
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