Physics— Uspekhi 45 (5) 561 —564 (2002)

© 2002 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

METHODOLOGICAL NOTES

PACS numbers: 01.50.Pa, 04.80.Cc, 06.20.Jr

Measuring the gravitational constant in a university laboratory

N S Stepanov, A V Shisharin

DOI: 10.1070/PU2002v045n05ABEH001066

Contents

. Introduction
. Description of the setup and measurement method
. Calculating the gravity constant
. Conclusion
References

B W N -

Abstract. A setup for measuring the gravitational constant in a
university laboratory is described. The setup includes a torsion
pendulum which swings under the action of gravitational attrac-
tion from test masses whose positions are made to change
periodically in phase with pendulum oscillations by a special
device. The gravity constant is calculated from the amplitude of
steady-state oscillations. The experimental and calculation
procedure is discussed and measurement errors are estimated.

1. Introduction

It is well known that measurements of the so-called world
constants (the speed of light, the electron charge, the Planck
constant, the gravitational constant) are extremely important
and methods and devices allowing an increase of the precision
of the measurements are continuously upgraded. The basic
methods of these measurements are discussed in the courses
of general physics, and some of them are included in
university laboratory experiments. These are, for example,
setups reproducing Millican’s experiments on measuring the
electron charge, the Frank and Hertz experiments on
measuring the Planck constant, and some laboratory meth-
ods of measuring the speed of light.

Measurements of the Newton gravitational constant G
have their own specialty. Although the first rather precise
measurements of the gravity constant using a ‘torsion
balance” were performed by Cavendish as early as at the
close of the 18th century and many other more precise
experiments were carried out later on (see, for example,
Ref. [1]), until recently no devices adapted for a university
laboratory experiment had been proposed. This is explained
first of all by the very high sensitivity the measuring device
should have to measure the fairly small gravity forces, which
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makes the device vulnerable to the different external noises
unavoidable in a student laboratory. In particular, in the
torsion balance a suspension wire with a very small torsion
modulus D is required, so various shocks, air fluxes, etc.,
induce fluctuations of the initial position (or, in terms of the
measurement technique, the ‘null drift’ typical for high-
sensitivity devices) and make the adjustment procedure very
complicated. It is also clear that the method of measuring G
by static deviations of test masses employed in Cavendish’s
and some other experiments demands heavy test masses and
bulky setups unacceptable in a university laboratory. Starting
from Heyl (1930), the gravity constant has been precisely
measured most often by a tiny change in the oscillation period
when the line connecting the test masses turns relative to the
torsion pendulum. In the last years, sufficiently compact
setups of this type have been elaborated which can in
principle be used in university laboratories. However, they
require rather costly auxiliary equipment (locating the torsion
pendulum in vacuum, special thin-beam lasers to measure
small turns, precise control of the oscillation period, etc.) As
far as the authors know, at least Russian universities have no
such devices at their disposal, and current advertisements [1]
provide no detailed information on the construction and
parameters of the setups, which could help in reproducing
them.

In this connection, we describe in this note a device
elaborated by us which does not need such complications
and nonetheless, over a reasonable time (of no more than two
hours, including acquaintance with the device and experi-
mental procedure), is capable of making measurements
allowing the gravity constant to be determined with an
acceptable accuracy for the student laboratory of at least
10— 15%.

2. Description of the setup
and measurement method

The general view of the setup is shown in Fig. 1. Its overall
dimensions do not exceed 1.4 m in height and 40 cm in
breadth, soitis easily installed on a standard laboratory table.
As in the experiments mentioned above, the setup basically
includes the torsion balance in the form of a ‘dumbbell’
consisting of two identical leaden masses m (secured on a
light bar of organic glass) and vertically suspended on a thin
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Figure 1. Scheme of the setup: / — pendulum suspension thread, 2 —
protection tube, 3 — masses m of the pendulum, 4 — attractive masses M,
5 — the pendulum rod, 6 — additional masses Am providing the quasi-
elasticity of the system, 7 — guide tracks for rolling masses M, 8, 9— crude
and fine null adjustment screws, /0 — pendulum oscillation period smooth
regulation screw, // — rubber pear, /2 — ocular lens, /3 — illuminating
beam, /4 — pendulum mirror, /5 — reflecting mirror with focusing lens.

thread. In the experiment, the setup allows heavier masses M
(also made of lead) to approach each of the masses m
alternatively from different sides, which causes resonant
amplification of the oscillations. In our setup we (arbitra-
rily) used m =0.28 kg, M =2.24 kg, the length of the
pendulum shoulder /= 7.5 cm, the distance (gap) between
masses m and M at the closest approach d = 1.2 cm. The
gravitational constant value can in principle be derived from
the dynamics of amplification of the induced oscillations, i.e.
from the temporal dependence of their amplitude 4¢(7), or,
which is more simple, from the oscillation amplitude in the
steady-state regime (see below). The principal advantage of
such a resonant method compared to Heyl’s method is that
here it is not necessary to measure very small corrections to
the proper oscillation period and hence there is no need to use
high-precision measuring devices (at least for educational
purposes).

Let us turn to Fig. 1 and note some features of the setup
and measurement procedure. The pendulum deviation angle
O(t) during oscillations is fixed by the scale /2 through a
spyglass (not shown in the figure) using the illumination

beam /3. A normal lamp with collimator or something else
can be used as the light source (not shown in the figure). The
beam reflected from the mirror /4 is directed toward the scale
12 located on the other side from the pendulum by means of
the auxiliary mirror 75 with a focusing lens. The scale grade is
determined using additional calibrating devices, also not
shown in the figure, so the scale grade should made known
to students beforehand.

The torsion pendulum is under atmospheric pressure,
although surrounded by a transparent casing of organic
glass to protect from external air fluxes. The core idea in the
setup construction is to overcome the ‘null drift” mentioned
above. Indeed, if no special care is taken, even in the absence
of air fluxes the rest-tensions of the thread, small changes in
temperature and humidity lead to random ‘going-offs’ of the
pendulum. In order to eliminate them we used a suspension
made of multi-thread (specially untwisted) kapron with a
negligible torsion modulus; the restoring torque Mp = —DO
determining the ‘quasi-elasticity’ of the setup with respect to
turns around the vertical axis relative to the initial position
was produced by means of additional light masses 5 with
Am < mattached by kapron threads across the pendulum rod
(see Fig. 1). This means is also convenient because by
choosing these masses (we took Am = 1.5 g) and adjusting
their suspension by means of the screw /0 one can vary the
effective torsion modulus D of the setup and consequently the
period of proper oscillation of the pendulum 7. It is
convenient to take 7= 30—60 s so that during the labora-
tory experiment one can measure a sufficient number (some
tens) of periods and, in particular, to realize the steady-state
regime of the induced oscillations. As a result, our setup
allows one to practically avoid the zero point fluctuations and
to fix it to the scale center by means of regulation screws 8§ and
9 (see Fig. 1). At the same time, for small oscillation
amplitudes |O(r)| <m/2 the linear law of elasticity
Mp = —DO holds. So the process of pendulum oscillations
can be described by the usual equation of a linear oscillator
with damping

MGI(Z) ’ (])

O +250 + wj =

where 7is the moment of inertia of the pendulum (1 = 2m/?),
w} = D/I, Mg(t) = 2IFG(¢) is the torque of gravitational
forces Fg depending on the position of masses M, J is the
damping coefficient.

Parameters @y and J in Eqn (1) can be determined in a
preliminary experiment by observing decaying free oscilla-
tions of the pendulum at Mg(¢) = 0. To excite the latter, a
tube is mounted to the setup casing (see Fig. 1), through which
an air stream taking the system out of equilibrium is directed
by the rubber pear /7. As is well known, the solution of
Eqn (1) at Mg(¢) = 0 has the form [2]

O(1) = A(t)cos (wt + ¢y),  A(t) = Agexp (—01), (2)

where w = (w% — 52)1/ 2 , Ao, ¢, are the initial amplitude and
phase, respectively. For sufficiently high oscillator quality
(Q = /26 > 1) we have w = wy = 2n/T. By watching the
damping oscillations through the spyglass, it is easy to
determine both their period 7= 2n/w and the time constant
7 = 6 ! [according to (2), this constant is the e-folding time of
the amplitude A(¢)]. The example of the resulting plot A(¢) is
shown in Fig. 2; here T = 56.3s,7 = 7.87, Q = 24.5.
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Figure 2. Plot A(¢) in the regime of damping free oscillations (experi-
ment).

As follows from the above considerations, the main
experiment consists in observing and registering the process
of the resonant amplification of the torsion pendulum
induced oscillations by the periodical shifting of the positions
of the attractive masses M. The form of the masses is
unimportant, for example, in our setup the test masses had a
cylindrical shape with flat butt-ends, i.e. like thick disks or
washers of radius R and thickness H = R = 4 cm (for heavy
masses M) and & = r = 2 cm (for light masses m, see Fig. 1).
This somewhat complicates the expression for the attraction
force between masses M and m at their close approach, since
the well-known Newton formula Fg = GMmr;z, where r. is
the distance between the centers of the masses is not valid any
more. However, having such forms allows the system
sensitivity to increase as at given values of M and m and the
minimal distance d between them (determined by the setup
construction) the gravitational attraction force Fg increases
(by 1.5 times in our case, see below). There are other
advantages of such a form of masses: at d < R, the force Fg
stays constant with a high accuracy for the entire range of
O(t); moreover, masses of cylindric form are easier to
manufacture than strictly spherical masses.

In order that masses M can be displaced without use of
the experimentor’s hands, they are installed on special light
guide plates 7 (see Fig. 1), which change their slope by
means of a special electro-mechanical device (not shown in
the figure) such that the masses M roll from one position to
another simultaneously and in the counter-phase to be
alternatively near one or another mass m. The rolling time
in our setup is about 2 s, which is more than one order
shorter than the proper oscillation period T, a few
additional seconds are taken to lift the corresponding mass
before rolling down. Clearly, the most effective oscillation
amplification occurs if the mass M attracts the pendulum to
one side during one half period and to the opposite side
during the other half period. Here the change in the mass
position should be made in such a way that each time the
oscillations start at the most remote position of the mass m
relative to the nearby attracting mass M. The plot Ms()
then looks like a meander (Fig. 3); the oscillation amplitude
Ag(t) then will steadily grow and over the time interval
t>1=20"" will reach the maximum steady-state value Ap,.
For example, for zero initial conditions, obviously, the
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Figure 3. Plot of the torque M () (a) and oscillograms of oscillations (b) in
the steady-state regime.

40

20

Ag x 10*

10 -

I I I I
0 5 10 15 20 1/T

Figure 4. Plot A(¢) in the resonant amplification regime (experiment).

dependence A¢(¢) will have the form [2]

AG(t) = Am[l - exp(fél)] . (3)

The gravitational constant G can be easily expressed
through the quantity A4, (see below) which can be measured
either directly (provided that the observation time ¢ > 1) or
calculated by formula (3) through the measured previously
value of A (¢) and the known damping coefficient § = ¢!
An example of a realistic A(7) found in experiment is shown
in Fig. 4. Note that here the steady-state oscillation amplitude
Ap, is about 3.2 x 1073 rad, which is about Q = 24.5 times
larger than the static response for the same force F,; such a
response could be only marginally detected by this device.

3. Calculating the gravitational constant

The gravitational constant G can be most easily derived from
the measured induced oscillation amplitude A4,, when the
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torque Mg(¢) in Eqn (1) can be approximated by a meander,
i.e. Mg = £ M, depending on the half-period (see Fig. 3). For
an optimal phasing of displacement of masses M (see above)
in one half-period when the pendulum turns through the
angle 24 at the expense of work done by the force Fg, the
oscillation energy increases by the amount

AW =2MGA, (4)

where M = 2/F;. Over the same time interval, the relative
dissipative energy losses are (see Ref. [2])

N 2m
Lﬁizar:%}, (5)

where the oscillation energy stored relates to the amplitude 4
by the expression W = (1/2)DA? = (1/2)Iw*A?. The energy
balance in the steady-state regime then implies (with account
for I = 2ml?)

F; = g mlwd Ay, . (6)

On the other hand, the gravitation attraction force
between masses M and m can be written as

Mm

C

where r. is the distance between the disk centers and the
coefficient k (form-factor) takes into account the deviation of
mass forms from spheres and dependsonr. (at H < re k — 1).
A direct calculation using the Newton law for point-like
masses for the given setup parameters (H= R =4 cm,
h=r=2cm, d=12 cm, r. =4.2 cm) yields k= 0.66;
incidentally, the value of Fg here is as small as 1.6 x 1078 N.
Note that although here k& < 1, the utilization of cylindrical
masses is advantageous compared to spherical bodies of the
same masses M and m since it allows the distance r. between
the centers of mass of the bodies to decrease. Indeed, in the
last case, the equality of volumes implies that these masses
would haveradii R; =~ 0.91R, r; =~ 0.91r, respectively, and for
the same gap d=12 cm r. would be
Ry +r; +d=~ 6.6 cm, so the attraction force, as was noted
above, would be smaller (by 1.6 times in our case). As a result,
by equating (6) and (7), we ultimately arrive at the expression
for calculating the gravity constant from this experiment:

relp =

néwlrf
G= 2km

A . (8)

For example, substituting A, and @ from plots shown in
Fig. 3 yields G = 6.6 x 1078 cm3 g~! s7!, i.e. the error in this
case is less than 3%. On average, the measurement error in
performing the experiment by unpracticed students is
expected to be less than 10—15%.

The error in calculating G is first of all due to random
errors of experimental determination of w, §, and A4, entering
Eqn (8). The measurement error for , as is usual for devices
with light spot indication, is determined by the relation of the
light spot width and the indicator scale gradation value. As
the value of T'is determined by the moments of the pendulum
crossing zero positions over many (ten and more) periods, this
error does not exceed 1%. The error in measuring the
amplitude A, proves larger because this quantity is regis-
tered at the moments of maximum pendulum displacements

where the angular velocity of oscillations is small; the limiting
error in our setup is around 6%, but by statistical averaging
over several measurements it can be reduced by about two
times. The determination error of the damping coefficient &
turns out to be of the same order as it relates to dispersion of
the measured values of A;(7). As for additional errors due to
the deviation of the real dependence M () from meander and
inaccuracy in fixing moments of extreme pendulum displace-
ments, when the relay controlling the position of masses M
switches, they prove insignificant (less than 1%) because in
these positions the pendulum angular velocity is small and the
contribution from these factors in the energy equation (4) is
also negligible. An error of about the same order appears due
to geometrical factors (inaccuracy in the values of /, H, R and
the pendulum moment of inertia).

4. Conclusion

From the methodical point of view, the utilization of this
setup in the university laboratory is most relevant in the
section “Oscillations and waves”, i.e. in the 2nd year of
education, when free and induced oscillations of different
nature are discussed (as we did at the University of Nizhnii
Novgorod), although the standard university courses of
physics consider the gravity forces as early as in the st year
of education. Incidentally, the contents of laboratory tasks
here can be made very different, for example, by ‘turning on’
the induced oscillation amplification not starting from zero
conditions but after some arbitrary kick, including with an
amplitude exceeding that of the steady-state oscillations (this
allows to somewhat decrease the rms error of A and G ). We
argue that such a laboratory work that does not include
complex devices can be reproduced and successfully per-
formed in other universities as well. Moreover, being
sufficiently compact, after some modification it can also be
used for lecture experiments demonstrating gravitation
forces.

The work was done with support from RFBR grant for
leading scientific schools No. 0015-96741 and Special Federal
Program No. A0047/0570 “The Joint Educational-Scientific
Center of the University of Nizhnii Novgorod and Institutes
of the Russian Academy of Sciences”.
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