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Abstract. A theory of diffraction is presented which system-
atically employs the wave approach used in the Kirchhoff meth-
od and, unlike the Kirchhoff integral, does not have severe
applicability limitations. The diffraction problem is solved by
using the Hertz vector instead of the field vector used in the
Kirchhoff integral. The basic diffraction problems for linearly,
radially, and azimuthally polarized radiation are solved analy-
tically. The key qualitative feature of the solutions is the pre-
sence of ‘poles’ — zero field points within the diffraction pattern
of light and dark fringes. The poles lie along the direction of the
electric field vector. The solutions obtained satisfy the Maxwell
equations and the reciprocity principle.

1. Introduction

The most general and rigorous approach to diffraction
problems is to solve Maxwell’s vector equations for appro-
priate boundary conditions. This approach has been
described many times (see, e.g., [1-5]). However, the
mathematical difficulties it involves put strong limits on the
practical application of the solutions it yields. Thus, even a
formally rigorous solution for diffraction from a circular hole
[6, 7] is practically impossible to use because of the poor
convergence of the series that represent the solution [1, 3, 8].
In solving specific real-life problems, physical simplifications
and approximate calculations are usually employed.
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There are many methods available by which diffraction
problems can be solved approximately based on Huygens’
principle. These methods generally combine the ideas of
geometrical optics with the wave approach and are exempli-
fied by the classic Fresnel zone method. Among other similar
methods, the Debye method for sharply focused fields should
be noted [4]. The semi-empirical approaches underlying these
methods strictly limit their range of applicability.

The Kirchhoff method for describing the electromagnetic
field employs the pure wave approach to the diffraction
problem. The scalar Kirchhoff integral is derived from the
wave equations and strict mathematical logic [4, 9—11].
However, as is well known, the domain of applicability of
the scalar Kirchhoff integral is also very narrow — for purely
physical reasons relating to the way in which the problem is
formulated.

The scalar wave equation for a field in free space — the
equation employed in deriving the Kirchhoff integral —
a priori gives no information on the way in which the field
changes its direction. As for a scalar equation for the Green’s
function, this yields just a simple spherical wave from a point
source with a uniformly directed field. However, since the
electromagnetic field is transverse, no such wave can exist.
Formally, the field the wave equation yields is not equivalent
to that given by Maxwell’s equations, and an ‘independent’
component-for-component scalar approach is invalid for a
vector problem. Hence, a solution based on the scalar
Kirchhoff integral does not satisfy the Maxwell equation
divE =0, and the approximate diffraction pattern so
obtained is only correct in a small solid angle. There is only
one, very special case (discussed in Section 3), where the scalar
Kirchhoff integral can be used without the restrictions
mentioned above.

An extension of the Kirchhoff method to vector fields is
the so-called Kirchhoff — Kottler integral [4, 9, 11, 12], whose
idea is generally that the scalar Kirchhoff integral is applied to
the components of the field and the solutions obtained are
then added as vectors. Because this approach is empirical, the
authors of the classic monograph [9] point out, it admits of no
physical interpretation and leads to solutions inconsistent
with the Maxwell equation divE = 0. The shortcomings of
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the scalar method that are mentioned above all go over
automatically to the Kirchhoff—Kottler integral, so the
solutions it yields are approximate and are only valid over a
limited range of problem parameters and over a narrow
region of the diffraction pattern. Formal aspects of the
correct methods for the ‘scalarization’ of vector electrody-
namic equations are discussed, in particular, in Ref [13].

Kottler (see Refs [14—16]) introduced an additional
contour integral (along the edges of the hole) into the
solution procedure — to account for the electrical and
magnetic charges distributed along the hole’s contour. The
reader is referred to Ref. [4] for a logical explanation of this
idea. A frequently employed approach to diffraction pro-
blems is to take the unperturbed field of the incident wave as a
prescribed field on the aperture. The region of applicability of
the method is then kr > 1, ka > 1, where k is the wave vector,
a is the characteristic size of the aperture, and r the distance
from the edge of the aperture to the point of observation.
Employing the contour integral also enables one to calculate
the diffraction field at small distances from the diaphragm
edge — the region where field distortions cannot be ignored.
Still, introducing the contour integral does not make up for
the Kirchhoff method’s inherent shortcomings, namely a
scalar integral and an vector extension.

The purpose of this paper is twofold. The first is to
develop a physically justified and mathematically correct
vector theory of diffraction, which relies on the logic of the
Kirchhoff method and has no stringent applicability limits
inherent to the Kirchhoff integral. The second purpose is to
use this theory to obtain analytical solutions for a number of
key diffraction problems.

2. General approach

The fundamental physical restrictions inherent in the Kirch-
hoff method can be avoided by using the polarization
potential or the Hertz vector Z [11] instead of the fields —
analogous to the theory of antennas, for example.

It is known that Z(r, 1), like electric and magnetic fields,
satisfies the wave equation [JZ = 0 and is related to the fields
E and H by the equations

1 0Z
E=rotrotZ, H=-rot—. (1)
c ot

There is an important point to make here about the wave
equation solution obtained using the Hertz vector. The fields
found from Eqns (1) automatically satisfy the Maxwell
equation divE =0 [5]. The inconsistency inherent in the
conventional Kirchhoff method is absent in this approach.

An expression for the electromagnetic field of a radiating
dipole p = p, exp(—iw?) is obtained from the solution of the
wave equation with a dipole source [11]

exp(—iw? + ikr)

Z =p, P

()

The polarization potential of a dipole wave is parallel to
P, and is transferred by a spherical wave (Fig. 1). Of the two
scalar wave equations employed in the Kirchhoff method,
one — the inhomogeneous equation for the Green’s
function — may be given a quite certain physical inter-
pretation when written for Z: it describes the field produced
by a real, point source of electromagnetic radiation. The
known expressions for the electric and magnetic fields of a

Wave front

Figure 1. Radiating dipole: (a) electric and magnetic field distributions; (b)
Hertz vector distribution.

radiating dipole are obtained by substituting Eqn (2) into
Eqn (1); the dipole wave is illustrated in Fig. 1.

Noting that the polarization potential of a dipole wave
retains its direction at various points in space, we see that the
case of linearly polarized radiation incident on the aperture
can be treated by applying the scalar equations to Z. The
scalar Kirchhoff integral written for Z then contains vector
information about the diffraction pattern field.

This makes it possible to write down the integral for Z
without any approximations related to the inhomogeneity of
the vector function, and to obtain the fields E and H by simple
differentiation. This approach is extended in a natural way to
the general case with the field direction distributed arbitrarily
over the aperture.

Thus, the vector diffraction problem for linearly polarized
radiation is solved based on the scalar Kirchhoff integral [11]
written for the Hertz vector,

Z(r) = L/ [G(nV)Zy — Zy(nVG)] dS". (3)

Here, Z(r’) is the Hertz vector distribution over the
surface under the consideration S’; Z(r) is the Hertz
vector at the point of observation; n is the unit normal
to the surface of a given field at the aperture; and
G(r,r’) =exp [ik(k —r’)]/Ir —r'| is the Green’s function
of the scalar wave equation.

Let us consider the important and practical case of a plane
linearly polarized wave diffracted by the aperture. In this case
Zo(r’) and Ey(r’) at the surface S’ are related by the simple
equation Eo(r’) = —k?>Zy(r'). Noting this, Eqn (3) becomes

Z)=-e i3 dn dn
where ey is a unit vector in the field direction, and d/dn s the
derivative in the directionn, d/dn =nV.

To calculate the diffraction pattern, one must now
evaluate the integral in expression (4), write Z in vector form
with the same unit vector as in the filed Ey, and, finally,
calculate the field itself from formulas (1). The solution
obtained for the plane incident wave, Eqn (4), makes it
possible to solve the problem in the general case as well.

Turning now back to the question of scalarization of the
vector electrodynamic equations [13], we conclude that the
above treatment of the diffraction problem is yet another
‘physical’ scalarization approach. In the general case of a
three- dimensional vector field, the vector diffraction problem
for linearly polarized radiation should be solved for each of
the components separately. As indicated above, this problem

1 d d
J {G—EO—EO—G ds’, (4)
S/
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reduces to a scalar integral using the Hertz vector. The
solutions of the problem are valid throughout the entire
space and satisfy Maxwell’s equations; therefore, the diffrac-
tion fields from each of the components can be added as
vectors.

Let us now discuss the validity limits of the method. Since
the field specified on the aperture is taken to be edge-
unperturbed, the hole size should obey the condition ka > 1
typical of such situations. A good agreement between such
calculations and their exact counterparts is usually achieved
for ka =5 [10]. As for the distances r to the point of
observation, the wave zone approximation kr > 1 is usually
employed. Farther away from the edge of the hole, field
distortions on the diaphragm edges cannot be ignored
whatever the size of the hole. In all of the problems discussed
below we adopt a more restrictive assumption r > @, which
enables analytical formulas to be obtained.

In what follows, several examples of the diffraction of
light from holes of different shape in a nontransparent screen
are given to illustrate the method proposed. In all cases, the
field on the aperture is assumed to be prescribed, and the
surface S’ covering the aperture is taken to be flat, the vector
n in formulas (3) and (4) being directed along the z axis. The
plane xz is the incidence plane of radiation in all cases. For
diffraction from a slit and from rectangular and circular
holes, two possible field directions are considered, in and
normal to the incidence plane. On this basis, the solution for
any field direction can be constructed.

3. Diffraction of radiation from an infinite slit

Let us consider an ideally conducting screen lying in the xy
plane, with a y-aligned slit of width 2Ax in it. Incident on the
slit is a linearly polarized plane wave traveling in the xz plane
at an angle 0, with respect to the z axis,

Ey = egEyexp [i(kx x4+ k. z')]
= egEp exp (ikx’ sin0p) exp (ikz’ cos ).

The time factor exp(—iw¢) is omitted for brevity, e is a unit
vector in the field direction.

The vector Z, Eqn (4), has the same direction, namely that
of Eg, at all points. The scalar integral (4) is evaluated by a
standard procedure. In the wave zone kp > 1, the integral for

the Hertz vector has the form
Ax exp (ik(p — p’

exp(ikx”sin ) P2 =21)
—Ax p—p

Var. 5

Here, p — p' = \/(x — x')* + 22, p is the radius vector to the

point under consideration, and Ax is the slit width. The
approximation Ax < p leads to the analytical solution

Z:_Senwm(
o

i
A
k°[

X (cos@o+

sin
cos Oy + cos 0) Sz ;

L

¥ = Ax (sin0 —sin 6;) . (6)

Here, we have transformed to the coordinates p and 0 (0 being
measured from the z axis) and introduced the dimensionless
parameters

_ KB _

Z:ZF07 S=2kAx, Ax=kAx, p=kp.

This approximation differs markedly from that of Kirch-
hoff in that it does not put a limit on the angle and potentially
contains information on how the local direction of the
diffraction field depends on the direction of the initial field.

If the field E is perpendicular to the plane of incidence
(Eo||y), then in vector form we have Z = Z(x,z)e,. The
calculation of the field from the formula (1) was carried out
in Cartesian coordinates. The procedure of taking the rotor is
simplified considerably by considering the order of magni-
tude of the derivatives of the multipliers in Eqn (6). Because of
the factor k = 2m/A, the derivative of the exponential with
respect to the coordinate is maximum on the order of
magnitude. The same factor also appears in the derivative of
% — but this time with a coefficient of the type Ax/p, which is
small because of the approximations we have adopted. The
expression for E in this case takes the simple form

EZE(]ZC},, (7)

with Z defined by Eqn (6). Expression (7), quite under-
standably, is identical to that obtained from the usual scalar
Kirchhoff integral. Only in this special and unique case does
the usual method give a solution satisfying the equation
divE = 0.

Accordingly, for the field Ey in the plane of incidence
(Eg L y), the polarization potential has the form
Z = Z(x,z)(eycosOy —e.sinby), and Eqn (1) yields the
following expression for the electric field:

E = Eycos(0 — 0) Zey . (8)

Figure 2. Diffraction of linearly polarized light from an infinite slit:
arrangement, notation, and the computationally synthesized diffraction
pattern. The direction of the diffraction field is shown for various field
directions at the slit. The angle of incidence is zero.
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Figure 3. Diffraction of linearly polarized field from an infinite slit for two
polarization directions relative to the slit and for various slit widths. The
angle of incidence is zero.

The direction of the diffracted field given by Eqns (7) and
(8)isillustrated in Fig. 2, and the field amplitude distributions
calculated from Eqns (7) and (8) are shown for zero angle of
incidence in Fig. 3. The figures clearly show the following
qualitative feature of the results obtained. In the case where
E, L y, the diffraction field at 0 = n/2, i.e., along the screen,
is zero for any slit width. There is no radiation in the direction
of the initial field. The amplitude of the diffraction field for
6 = /2 depends on the slit width. If the width is a multiple of
the wavelength, the field vanishes; if the width equals an odd
number of half-widths, the field along the screen is nonzero.

Figure 4 illustrates the calculations for an angle of
incidence of 72°. A characteristic feature of the case Ey L y
is the presence of an additional zero-field point at
0 =6y — /2 [see Eqn (8)]. This ‘pole’ is located along the
direction of the field.

1 |EJ, rel. units
0

L],

-90 0 90

I

0
-90 —60 =30 0 30 60 90
0, deg

Figure 4. Diffraction of linearly polarized light from an infinite slit for two
polarization directions relative to the slit and for a slit width 2Ax = 24.
The angle of incidence is 72°.

For 6y =0 and 0 — 0, formulas (7) and (8) go over to
classical ones.

Based on Eqns (7) and (8) we have obtained, it is possible
to revise the formula for the simplest diffraction grating
formed by parallel slits cut in a nontransparent screen. It is
known that the formula for the light that has passed through
such a grating has two terms: a term for single slit diffraction,
and an expression related to the collective effect of diffraction

from many slits. The formula for this grating will then take
into account the polarization of the radiation.

4. Diffraction of linearly polarized radiation
from rectangular and circular holes

The orientation of the screen with respect to the coordinate
axes is the same as for the slit case. The holes are centered at
the origin. The dimensions of the rectangular hole are 2a and
2b along the axes x and y, respectively, and the radius of the
circular hole is rg. The formulas both for Z and E for
diffraction from the rectangular holes are derived similarly
to those above, giving

E= E()Zi(r7 ¢, 0)q(p,0),
Z(r, o, 0) =—iS M (COS 0 + cos 0) sin y, SIn y, ’
" Yo Ib
(9a)

%, = d(sinOcos ¢ —sinby), y, =bsinOsing,
S=4dab, a=ka, b=kb, 7F=kr.

The form of the vector function q(¢, ) depends on the
field direction at the hole and is given in the table.

Table.

Field Ey Vector Z Vector q (¢, 0)

Eolly

EO 1 y

Z-e, e cos 0sin ¢ + e, cos ¢

Z - (excosby —e.sinly) ep(sinOsin by + cos O cos @ cosy) —

— e, sin ¢ cos O

As for the integral of type (5) for a circular hole, it reduces
to
Z= —i Ey(cos by + cos G)M
P

frg (2T
X J J exp {ikr’(sin 0 cos ¢’ — sinOcos(p — ¢')) }
0 Jo

xr'de'dr’.
The expression in round brackets in the integrand can be
written in the form M cos(¢p + ¢'), where

M = \/(Sin 0o — sin 0 cos @)* + (sin Osin p)?

sin fy — sin 6 cos ¢ sin 0sin ¢
cos @ = =—

7 , sing i

The calculation then proceeds as before, giving the following
expressions for the Hertz vector Z and the electric field E:

E= EOZ_(r: @, 9) q((ﬂ, 9) y

. . o exp(iF Ji(FoM
Z(r,p,0) = —lem (cos Oy + cos ) %,

(90)

M= \/sin2072sin0sin()()cos<p+sin2()07
_ k2
Z=7Z=—,

S():TEFOZ, f:kl”, o :kl’o.
Ey



May, 2002

Dipole-wave theory of electromagnetic diffraction 557

222\

AT X
ey
4£:§I‘§§§$§§§§Z%ﬁ§y” "A“‘MAM\
L5555 ‘:‘:§§ 1 Ay S SRS
S NS

R 2

<2

508
LA

Figure 5. Diffraction of linearly polarized field from a circular hole for hole
radius ro = 2and Ey L y: (a) field amplitude distribution, (b) topology of
the zero-field fringes and the pole (solid circle). The open circle is the
position of the field maximum.
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Figure 6. Diffraction of linearly polarized field from a circular hole for hole
radius ro = A and Eq|| y: (a) field amplitude distribution, (b) topology of
the zero-field fringes and the poles. The open circle is the position of the
field maximum.

The form of the vector function q(¢, 0) is the same as for the
rectangular hole and is determined by the formulas listed in
the table.

A notable feature of the above results is the presence in the
diffraction pattern of so-called ‘poles’, zero-field points
located along the direction of Eg. For Ey|| y, there are two
such points, with coordinates ¢ = +n/2, 0 =mn/2. For
E¢ L y, there is only one such point on the hemisphere of
observation, ¢ =7, 0 =1/2 — 0.

Let us illustrate the results obtained from Eqns (9a) and
(9b). The formation of the poles is the responsibility of the
expression for q(0,¢), and the form of this latter is
independent of the shape of the hole. In Fig. 5a the
distribution of the field amplitude over the hemisphere 0, ¢
for diffraction from a circular hole is shown [Eqn (9b)], for an
angle of incidence of 57°, and Ey L y. Figure 5b shows the
fringes and zero field points. Figure 6 shows, for comparison,
the results of similar calculations for Eg||y, all other
conditions being equal. In terms of ‘poles,” the diffraction
pattern from a rectangular hole, Eqn (9a), is similar, but the
topology of dark and bright fringes is, naturally, different
from that for the circular case (Fig. 7).
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Figure 7. Diffraction of linearly polarized field from a rectangular hole
with dimensions « = b = Afor Ey L y: (a) field amplitude distribution, (b)
the topology of the zero-field fringes and the pole (solid circle). The open
circle is the position of the field maximum.

The diffraction formulas for rectangular and circular
holes, developed based on the electrodynamic formulation
of Huygens’ principle (i.e., on ED theory) [10], fail to describe
the ‘poles’ associated with the direction of the field Eq. ED-
theory solutions to some diffraction problems are inconsis-
tent with the reciprocity principle. This fact was commented
upon as follows in Ref [10]: ““This inconsistency is character-
istic of a number of problems in which surface currents are
given by the formula j = ¢/(2n) - [nHy].” As for the present
method, all the solutions above are consistent with the
reciprocity principle. For ¢ = 0 and ¢ = w, the angles 6 and
0y are interchangeable.

In this section we have discussed in detail some aspects of
the physics involved in the appearance in the diffraction
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pattern of zero-field points depending on the direction of the
field at the aperture. But besides correctly accounting for this
phenomenon, our formulas contain other useful information.
They differ significantly from known ones in that they not
only describe the qualitative features of the diffraction
pattern (zero-field points) but also offer much better
quantitative results for the distribution of field in the
pattern. Accurate quantitative information is very important
in this case: for example, the direction of the maximum
diffraction field 0,,,x generally does not coincide with 0y; the
difference 0y — Omax depends on the angle of incidence and
may be as high as 10°.

5. Diffraction of azimuthally polarized radiation
from a circular slit

Noting that the azimuthal and radial polarization modes are
well known in the theory of waveguides and open resonators,
let us consider the diffraction of light with this polarization
from a circular slit of radius ry and width Ar. The angle of
incidence is assumed to be zero, 6, = 0.

Assuming that Zy = Z, exp(ikz) e, it is readily shown by
directly substituting Z, into Eqn (1) that the relation
Eo(r') = k*Zo(r') holds here too. When taking the rotor in
cylindrical coordinates, it should be noted that there is in this
case only one — ¢ — nonzero vector component, and that
this latter depends (through the exponential) on the coordi-
nate z alone. Following the already familiar pattern and
assuming Arg < ry < r we arrive at

exp(ikr)
kr
where the well-known transformations [17]

7= k*2mroAr)(1 + cos 0) Ji(krgsin0)e,,

kz(

2n
J sin(nf) exp (ircos(f — 7)) df = 2mi"J, (1) sin(ny),

0

Jzn cos(nf) exp(ircos(B — 7)) df = 2mi"J, () cos(my)
0

have been used. In this case the field determined by Eqn (1) is
conveniently calculated in spherical coordinates, giving

E=ES) —— exp( ) (1+cos0)J(Fosin0)e,, (10)

where Sy = 2nk? roAr, 7 = kr, 7o = kro. Along the polar axis,
for 6 = 0, the field is zero. The magnitude of the field along

|E|, rel. units
1.0

ro =232

ro = 3.124

90 60 30 0 30 60 90
0, deg 0, deg

Figure 8. Diffraction of azimuthally polarized field from a circular slit for
two slit radii.

the screen, for § = /2, depends on the slit radius and may or
may not be zero (Fig. 8).

6. Diffraction of radially polarized radiation
from a circular slit

Let us assume that Zy = Z, exp(ikz) e, within the circular slit;
substitution into Eqn (1) then leads again to the relation
Eo(r') = k*Zy(r"). The rotor is conveniently taken in cylind-
rical coordinates because we have only one nonzero vector
component, p (which depends only on the coordinate z
through the exponential). The solution for the Hertz vector
in this case has a similar form:

E

7= k—g (kK*2mroAr) <1

. SXP (1k\/p + 22 )
kit

z )
/p2 72
o P
1 (kl() p2 22) €.

The above form has been adapted to the calculation of the
electric field from Eqn (1) in the cylindrical coordinate
system, giving

E=E)S) —~ exp( ) (1 + cos 0) cos 0 J; (7 sin 0)

X {cos@e,, + {_;f sin9}ez} .
Fsin 0

For convenience we have here introduced natural notation in
terms of r = /p? + z2 and the polar angle 0 measured from
the vertical axis. It is convenient to decompose the above
expression into two parts, a field in the meridional direction
and a field along the z axis. The latter has a phase shift of /2:

Ey = E Sy M(14—0050)0039]1(1‘})% (11)
F
_ Ji(9
E. 1— Ey Sy ——= exp(lr) (14 cos0) 1(9 ) e.. (12)
0
Here, the dimensionless quantities ¥ = rysinf, 7= kr,

7o = kro have been introduced. The field distribution from
formulas (11) and (12) is given in Fig. 9. The purely

|EJ, rel. units
o ro = 24
Eg:Eeg E:=E0e_.
- 0.5 |
1 1 | —
90 60 30 0 30 60 90
0, deg 0, deg

Figure 9. Diffraction of a radially polarized field from a circular slit. On the
left is the component of the field Ey directed along the meridian. On the
right is the longitudinal component of the field E., directed along the =z
axis. The meridional and longitudinal field components differ in phase by
n/2. The relative scale of the two curves is arbitrary.
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longitudinal component of the field, Eqn (12), is small in
magnitude (due to the factor r/r), but the maximum of the
field is on the axis, where the meridional component, Eqn (11),
is zero.

7. Conclusion

We have developed a method for solving diffraction problems
based on the use of the Hertz vector in the Kirchhoff integral.
With this approach, there are no stringent applicability limits
inherent to the Kirchhoff integral. For the case of a plane
wave incident on the aperture, the task of finding the solution
is considerably simplified. Over the entire range of polar
angles from 0 to 90° and for large distances from the aperture,
analytical solutions have been obtained for basic diffraction
problems, namely, the diffraction of linearly polarized
radiation from an infinite slit and rectangular and circular
holes for any angle of incidence and any polarization
direction, and the diffraction of radiation with azimuthal
and radial polarization from a circular slit. It is shown that a
qualitative feature of the diffraction pattern obtained using
the vector approach is the presence of ‘poles’ — zero-field
points against the usual diffraction pattern of bright and dark
fringes. The solutions satisfy Maxwell’s equations and the
reciprocity principle.

The author is grateful to A V Nesterov for fruitful
discussions.
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