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Abstract. Peculiarities of the behavior of Kkinetic coefficients,
like thermal conductivity, electric conductivity, and thermoelec-
tric power, in isotopically disordered materials are reviewed in
detail. New experimental and theoretical results on the isotope
effects in the thermal conductivity of diamond, Ge, and Si
semiconductors are presented. The suppression effect of pho-
non-drag thermopower in the isotopically disordered Ge crys-
tals is discussed. The influence of dynamic and static crystal
lattice deformations on the electric conductivity of metals as
well as on the ordinary phonon spectrum deformations is con-
sidered.

1. Introduction

Generally speaking, the problem of the effects of isotopic
disorder on the kinetic coefficients of crystals has not been
studied in too much detail. For example, until quite recently
one would find in the scientific literature just a few papers
containing experimental findings concerned with the investi-
gations of peculiarities of the behavior of thermal conductivity
and thermoelectric power of semiconductors or of the electric
resistance of metals. This is primarily due to the considerable
difficulties in the preparation of chemically pure and practi-
cally perfect single crystals with the ‘hand-made’ isotopic
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composition, including the case of highly enriched systems.
Naturally, the practical absence of experimental data ham-
pered theoretical developments based essentially on the
classical works by I Ya Pomeranchuk.

In 1990s, through the joint effort of specialists from
Russia, USA, Germany and Japan, bulk single crystals of
diamond, germanium and silicon with different isotopic
compositions were grown. Specimens of these and other
semiconductors were used for experimental and theoretical
studies of the effects of isotopic composition on the phonon
and electronic spectra, on structural properties, as well as
thermal conductivity and thermoelectric power. Notice that
the studies of thermal conductivity were also concerned with
the issues related to the high anisotropy of the germanium and
silicon phonon spectra, the interference between different
mechanisms of phonon scattering, the clarification of the role
of acoustical and optical modes. This review is mainly
devoted to the analysis of results on the kinetics of these
phenomena.

We also included in this review the material on the electric
resistivity p of isotopically disordered metals. In the first place
we discuss the experimental data on cadmium and lithium,
obtained at the Russian Research Centre “Kurchatov
Institute” in the 1970s and 80s. Observe that lithium metal
has been theoretically studied rather well and has a relatively
simple structure of Fermi surface (FS). This allowed separa-
tion of the contributions into p coming from the isotopic
deformation of the phonon spectrum (the first-order effect in
AM), and from the effect of ‘masking’ of the fine structure of
the nonequilibrium electron distribution function (‘hot spots’
on FS) through the presence of chemical impurities. In
addition, in this review we discuss the topic of influence of
static disorder, caused by the dynamicisotopic disordering, on
the residual resistivity of practically chemically pure metals.
Apparently, a similar effect was observed by Zernov and
Sharvin in tin single crystals.
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2. Isotopic disorder effects in the phonon
thermal conductivity of nonmetals

Crystals constituted by a mixture of isotopes exhibit dynamic
disorder because of the different masses of the same atoms at
different lattice sites — the amplitude and the phase of
oscillations of the ‘impurity’ isotope are not similar to those
of the isotopes that form the crystal matrix. This dynamic
disorder breaks the translational symmetry of the lattice, and
so phonons are no longer the pure cigenstates of the crystal
harmonic Hamiltonian. The influence of impurity isotopes on
the phonons can be described in terms of the temperature-
independent isotope scattering of phonons. It turns out that
for chemically pure and structurally perfect dielectric crystals
this isotope scattering may play the definitive role in thermal
conductivity at low temperatures. It is interesting that the
concrete theoretical estimates [1, 2] of such a role of isotope
scattering were made before the first experiment of Geballe
and Hull [3] that discovered the isotope effect in germanium
thermal conductivity. Dynamic disordering in crystals also
leads to static disorder — fluctuating fields of static lattice
deformations. Scattering of phonons by such lattice distor-
tions around the isotopic impurity in conventional nonquan-
tum crystals is much less than the scattering caused by the
dynamic disorder.

In practice, the analysis of experimental data usually relies
on the simplified phenomenological approaches based on the
relaxation time approximation and assuming independence
of the different processes of nonequilibrium phonon scatter-
ing [4]. For example, the low-temperature thermal conductiv-
ity of not highly pure crystals is often very adequately
described with the so-called Debye model (see, for example,
Ref. [5]) which only considers the resistive phonon scattering
processes — that is, processes that do not conserve the
momentum in the phonon subsystem: scattering of phonons
by the boundaries of the specimen, by lattice defects and
impurities (including isotopes), and the inelastic anharmonic
transitions accompanying umklapp processes (U-processes).
In the case of near-perfect (structurally) single crystals with a
high degree of isotope enrichment, which are the object of our
attention in this review, the stationary distribution of none-
quilibrium phonons may be to a large extent determined, in
addition to the resistive processes, also by the nonresistive
anharmonic nonumklapp processes (N-processes). The role
of N-processes becomes especially important at low tempera-
tures, when the U-processes freeze out, and the thermal
conductivity passes through a maximum. Several theoretical
models taking into account the special role of normal
processes in heat conduction were proposed with this aim in
view (see, for example, a brief review in Berman’s paper [5]).
The most successful proved to be the Callaway theory [6]
which makes it relatively easy to evaluate the importance of
different phonon scattering processes.

The thermal conductivity tensor in its most general form is
represented by the Kubo formula which involves the pair
correlation function constructed in terms of operators of
phonon heat flux (see, for example, monograph [7]). Making
use of the Kubo formula, the problem of heat conduction can
be reduced in the first approximation to solving the equation
of the kinetic type. In principle, it is possible then to take into
account the corrections to the standard kinetic equation (see,
for example, Ref. [8]). The most general method of solving the
kinetic equation is the moments method [9]. It ought to be
noted that the straightforward solution of the kinetic

equation is associated with extremely cumbersome calcula-
tions because the scattering operator contains terms describ-
ing the anharmonic interaction of phonons. Sometimes the
solution of the kinetic equation is sought by the iterative
method [10—12]. Recently, with the advent of powerful
supercomputers, numerical methods of molecular dynamics
started to develop, based on the Kubo formalism [13-16].
Even with the modern supercomputers, however, such
calculations take a plenty of time.

In this section we start off with presenting the main results
of the Callaway theory, and then discuss the experimental
findings. The main attention is paid to the role of isotope
scattering process, and to the role of anharmonism. Along
with the single-mode approximation which does not distin-
guish between longitudinal and transverse phonons, we also
use the two-mode model which allows one to take into
account the high anisotropy of the phonon spectrum. In
addition, we discuss the experiments for germanium and
silicon, based on the results obtained by the straightforward
solution of the kinetic equation. The harmonic and anhar-
monic interactions of phonons are described in this case with
the contemporary phenomenological models. In particular,
we use this approach when discussing the effects of optical
phonons on the behavior of %(7). In Appendix A we present
the consistent procedure for the selection of symmetrized
linearly independent moments for crystals displaying differ-
ent symmetry.

2.1 The Callaway model: single-mode case
2.1.1 Basic relations. The analysis of experimental data on the
lattice thermal conductivity is often based on the Callaway
theory [6] which takes into account the various processes of
phonon relaxation (see also Refs [4, 17]). The Callaway theory
takes into consideration the nontrivial role of N-processes
and gives a relatively simple formula for thermal conductivity
that involves the relaxation rates for a number of processes.
The formula of interest is derived under certain simplifying
assumptions which generally restrict the applicability of the
theory by the region of low temperatures. To be more precise,
the phonon modes are described in the Debye approximation,
and no distinction is made between longitudinal (/) and
transverse () modes. At the same time, the relaxation rates
of phonon modes are expressed as simple power functions of
frequency and temperature. In particular, it was assumed that
the relaxation rate due to isotopes is proportional to w*. The
expressions for relaxation rates of N- and U-processes include
parameters found by fitting the experimental dependences.
One important advantage of the Callaway theory is that it
yields correct results in the known limiting cases of strong
normal processes and frequency-independent resistive pro-
cesses.

According to the Callaway theory, thermal conductivity is
given by a formula of the type

#(T) =% + %2, (2.1)
where
x1 = GT?(z¢), (2.2a)
3 2
iy = G e/ (2.2b)
(tc/(NTR))
_ kg
2
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and vy is the average velocity of sound. By ¢!, tz! and t! we
denoted the combined relaxation rate of phonons, the total
relaxation rate of resistive processes, and the rate of
nonresistive normal anharmonic processes, so that

ol =1 (2.3)

The symbol (.. .) is interpreted as follows

Tn/T 4 exp x

<f>:L mf(x)d*

The first term »; in the Callaway formula (2.1) is standard (or
regular), whereas the additional term ; describes the specific
role of normal anharmonic processes.

In the situation when the resistive processes dominate
(T~ > 7tR), the principal term in expression (2.1) for thermal
conductivity is the first one. Alternatively, in very pure
crystals at low temperatures, when thermal conductivity
reaches its highest value, the intensity of resistive processes
is less than that of the N-processes. In such a situation, at
™~ < Tr and 7¢ — 1N, the behavior of thermal conductivity is
determined by the second term x,, and the thermal resistance
is given by

1 <TR1>
W=—=_ R/ _ W,
% GT31)? 2. W

J

(2.4)

where 1! = 3777

From the last relatlon we see that in the case under
consideration the thermal resistance W shows no explicit
dependence on the normal processes. Furthermore, the
contributions into W from different resistive processes add
up. Observe that the quantity » o x, essentially depends on
the degree of isotopic disorder in the lattice, which explains
the strong suppression of thermal conductivity in the
neighborhood of the maximum even at low concentrations
of the ‘impurity’ isotopes (see specific examples below).

Let us look at the explicit expressions for the relaxation
rates. First, for the boundary scattering in the regime of
diffuse reflection of phonons from the specimen surface we
have

o' =l ), (2.52)
where
1
v = 3 [2v7" + o] (2.5b)

Here, /. is the Casimir length, and / is the specimen length (the
direction of propagation of heat flux). For a specimen of
rectangular cross section with the area S, the Casimir length is
I, = 1.12+/S (see, for example, Refs [18, 19]).

The scattering processes related to isotopic disorder are
characterized by the relaxation rate 7,/ which has the

following form (see, for example, Ref. [4 ])ISO

F199]
Tiso = 627060 p( )

where & =3, ¢;(AM;/M)* is the parameter of isotopic
disorder, Qo is the volume per one atom, and p(w) is the
density of phonon states of all modes. In the single-mode
Callaway model, the phonons are described in the Debye

approximation. Since t;;] ~ @?p(w), in the Debye approx-

(2.6a)

imation, when p(w) ~ w?, expression (2.6) rearranges to a
well-known ‘Rayleigh-type’ formula [20]

—1 22 QO 4

(2.6b)

In crystals with strong lattice anharmonism and in
quantum crystals, the scattering of phonons by lattice
deformations near the isotopic impurity may be important
(see a brief review in Ref. [21]). If the lattice irregularity due to
the fields of near-impurity static displacements is taken into
account, formula (2.6b) for the scattering rate holds, but the
disorder parameter increases and assumes the following form

[20, 22]
. 2
4 &)
r

) A
N

Here, the parameters Ag;/¢ and Ar;/r describe the relative
variations of the local force constants and the influence of the
static atomic displacements, and y is the Griineisen constant.
Itis interesting that in the circumstances of strong anharmon-
ism the rate of phonon isotope scattering depends on
temperature and decreases with increasing temperature. The
source of this temperature dependence is the second term in
expression (2.7). In the classical limit we have&f — &, i.e. this
quantity is determined by the measure of disorder arising
from the fluctuation of mass from one lattice site to another.

Now let us turn to the description of anharmonic
processes for longitudinal and transverse phonon modes.
The relaxation rates due to U-processes for the phonon
modes are represented in the form

B
T>7 i:l7l’

where m = 1-3. In the region of high temperatures we have
t%?il ~ ?T.

The situation with the relaxation rates attributed to the
normal three-phonon processes is as follows. As is well
known, there is the problem of relaxation of the long-wave
longitudinal phonons. Namely, in the isotropic medium the
laws of conservation of energy and momentum forbid
processes that could involve three phonons belonging to the
same branch. In this connection, the theory considers the
processes of Herring [23] and Simons [24, 25]. In the case of
Herring processes, the deviation of a real crystal symmetry
from isotropic is taken into account explicitly, so that the
degeneration of the acoustic transverse branches becomes
possible. Depending on the crystal symmetry, the degeneracy
locus may be a surface, a line, or simply points. The locus may
extend to the band boundaries. In the neighborhood of the
degeneracy points the conservation laws hold, and the
interaction is possible between a low-frequency /-phonon
and a ¢;-phonon of one of the degenerate branches with the
formation of a #,-phonon of another degenerate branch (the
t) branch lies above the 7, branch). The smallness of the phase
volume for similar almost-degenerate frequencies gives the
corresponding relatively high powers of the frequency of a
longitudinal phonon in the expressions for the inverse
relaxation time.

In the case of Simons processes we are dealing with the
interaction between a low-frequency longitudinal phonon
and a thermal longitudinal phonon with the formation of a

2.7)

r@fl = A%)wZT’” exp (— (2.8)
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phonon of the same polarization. As noted above, for
isotropic medium such a process is not allowed. However, it
can be realized if we take into account the finite lifetime of a
thermal phonon.

Asarule, the analysis of experiments is based on Herring’s
relaxation mechanism [23]. Then for cubic crystals the
relaxation rates of normal processes are given by the relations

7 = AlwT?, (2.9a)
I (2.9b)

Detailed expressions for the relaxation rates in the case of
Simons mechanism can be found in Refs [26, 27].

It should be emphasized that the use of Eqns (2.8) and
(2.9) for 18)71 and rl(\'l)*l effectively restricts the applicability
of the theory by the region of relatively low temperatures of
the order of temperature 7Ty of the maximum thermal
conductivity. And indeed, at T > Tm.x the exponential
dependence on T for r%)_l must be replaced by the power-
type dependence. At the same time, the dependence of r&')*l
on T'is also changed: rl(\l,)*l ~T.

In the above discussion we have neglected the contribu-
tion from optical modes. This problem is dealt with in
Refs [28, 29] (see also Section 2.3).

The above formulas for thermal conductivity in the
Callaway theory imply that the phonon spectrum can be
described in the so-called single-mode approximation.
Roughly speaking, the implication is that the heat is
transferred mainly by the longitudinal modes. One can
extend the theory to the case of crystals with highly
anisotropic phonon spectrum and consider the partial
contributions into » from the modes of different polarization
(see Section 2.2).

2.1.2 Thermal conductivity of lithium fluoride. First experi-
ments with controlled variation of the isotopic composition
of crystals were done by Berman with colleagues [30] using
lithium fluoride (LiF). The experimental results were inter-
preted in Ref. [31] based on the simplified Callaway model
(without the additional term x;). Satisfactory agreement was
only obtained when the isotopic disorder parameter was five
times the calculated value. Later on, the measurements with
LiF were performed for a number of specimens with different
content of lithium isotopes °Li and "Li (from 0.01 to 50%) in
the broad temperature range from 1 to 300 K [32] (Fig. 1). The
steady longitudinal heat flux method was used in the course of
measurements, and the error in the definition of the absolute
value of thermal conductivity did not exceed ~ 5% for
T <200 K. It was found that in the neighborhood of
maximum the thermal conductivity of chemically very pure
crystals changes dramatically with the concentration of
isotopes. This result was later confirmed by Thacher [33].
Theoretical analysis of measured data in Ref. [32] was
performed using the complete single-mode Callaway model.
The rate of isotope scattering was found by the Klemens
formula (2.6b), with the exception of two isotopically most
pure specimens in which the phonon scattering by the residual
chemical impurities dominates over the scattering by iso-
topes. For this reason, the rate of scattering by point defects
was selected so as to tally the calculated and the experimental
values of thermal conductivity. The parameters of three-
phonon scattering processes, as well as boundary and
dislocation scattering, were determined by fitting the model

100
OLi, 7Li;_F

—_
(=

Thermal conductivity, W cm~! K~!

—

0.1

Temperature, K

Figure 1. Thermal conductivity vs. temperature for LiF crystals with a
different content of lithium isotope °Li: A — 0.01%, & — 0.02%, x —
4.6%, o — 25.0%, + — 50.1%, e — 90.4%. Symbols represent
experimental measurements; solid curves are calculated from the com-
plete Callaway model. Data for the naturally occurring species (~ 7.4%
6Li) is not included, since they are close to those for the LiF specimen with
90.4% SLi (Lc = 0.51 cm, Tp = 730 K, vs = 5.0 x 10® cm s~1) [32].

in with the experimental data at low temperatures (below
100 K), and only one set of these parameters was used for all
specimens. As seen from Fig. 1, the model selected gives
adequate description of the experimental data at low
temperatures. According to the complete Callaway model,
the high sensitivity of thermal conductivity of very pure
specimens to isotopic impurities is conditioned by the sharp
concentration dependence of the additional term 3, in the
neighborhood of the maximum. Theoretical findings clearly
illustrating this effect in LiF are presented in Fig. 2.

Unfortunately, the dependence of the relaxation rate 7}
of phonons on polarization vectors was not taken into
account in Ref. [32]. Because of this, the description of t; /!
is, generally speaking, not correct. The matter is that in the
diatomic lattice of LiF with the much different masses of
components, the light atoms of lithium (whose isotopic
composition was varied) vibrate mainly in the optical
modes. Their role in the formation of the acoustical part of
the spectrum is not much pronounced. The corresponding
effect on ;! is just the one taken into account by the
polarization vectors. Because of this, the quantitative
estimates for the relaxation rates of thermal phonons in LiF
need to be specified more exactly.

2.1.3 Thermal conductivity of diamond. Recently, the experi-
mental data on thermal conductivity of diamonds with
different isotopic composition were gathered [34—38]. Mea-
surements were performed in the temperature range from
104 to 1200 K with different experimental techniques: optical
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Figure 2. Temperature dependences of terms % (7') and %, (7") of the total
thermal conductivity of LiF in the complete Callaway model at different
rates of isotope scattering: 7! = Aiso T*x*, x = liw/ksT. Solid lines
represent x,(7), dashed lines %; (7). In both the families of curves, the
top line corresponds to A4j5, = 0; the transition at fixed temperature to the
next line below corresponds to the increase of Ajs, in the sequence 0.02;
0.05;0.5; 1.0; 2.0 s~! K=*[32].

mirage [34, 37], pulse (optical or laser) heating [35, 36], and
temperature wave (variant ‘3w’) [38]. They indicated that
thermal conductivity of diamond enriched to 99.9% !2C
isotope is 50% higher than thermal conductivity of natural
diamond (98.9% '2C) and at room temperature is the highest
among any natural or man-made materials. The temperature
dependence of thermal conductivity of diamond crystals is
shown in Fig. 3, and Fig. 4 displays thermal conductivity
versus the concentration of 3C isotope at fixed temperature.

In 1914, P Debye gave a qualitative explanation of the
high thermal conductivity of diamond [40]. The reason is that
diamond has exceptionally strong interatomic bonds, low
atomic mass, and simple lattice structure with a weak
anharmonism. According to the theory of Leibfried and
Schlémann [41] (see also Ref. [39]), thermal conductivity at
T > Tp can be represented as

1/3 TI%

where B is the constant that does not depend on the
properties of the material, and y is the Griineisen constant.
It immediately follows that the value of thermal conductiv-
ity is determined by the factor MQ'/3 T3, the latter being the
largest for crystals made up of light elements with strong
interatomic bonds, inasmuch as the term 77, dominates. Of
all the solids it is diamond that has the highest Debye
temperature Tp =~ 1845 K. Because of this, the room

Points for natural isotopic composition (1.1% '3C) are marked with black
squares, and light squares mark the points for the enriched crystal (0.1%
13C) [37]. The diagram also includes data from Ref. [39] (circles) and
Ref. [38] (crosses). Solid lines are the result of fitting in the Callaway model
[6] to the experimental data. Inset shows the results of model calculations
of »(T) for diamond crystals with different concentrations of '3C.

1000

100

Thermal conductivity, W ecm~! K-!

—_
(=]

0.001 0.01 0.1 1 10 100
13C concentration, %

Figure 4. Diamond thermal conductivity vs. the concentration of '3C
isotope at different temperatures. Symbols denote experimental data; solid
curves were calculated from the Callaway theory [37].

temperature for diamond is a low temperature, and hence
the three-phonon processes with the quasi-momentum
umklapp, which constrain thermal conductivity of most
nonmetallic crystals at room temperature, are to a large
extent ‘frozen-out’. Thermal conductivity of diamond at
room temperature, as opposed to many other materials, is
mainly conditioned by the normal three-phonon processes
and scattering from the lattice defects, including the
‘impurity’ isotopes.

The analysis of experimental data in the framework of the
Callaway theory [6] was performed by Wei et al. [37] using the
essentially single-mode approximation. It turned out that
with proper selection of the frequency dependences for the
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anharmonic processes it is possible to obtain good approx-
imate formulas of thermal conductivity as a function of both
the temperature and concentration (see Figs 3 and 4). A
noticeable increase in thermal conductivity of isotopically
enriched diamond at room temperature occurs against the
background of considerable impact of normal processes on
the phonon relaxation.

Using equations (2.24) that follow one can give a
straightforward explanation of the considerable change in
thermal conductivity of highly enriched diamond crystals at
room temperature. Over this region 7y < g and ¢ — 7. In
such a situation, expression (2.4) holds for thermal conduc-
tivity. This circumstance was noted in Refs [42, 43] (see also
Ref. [5]). Then it is possible to explicitly single out the
contribution to thermal resistance AW, associated with
isotope scattering. Figure 5, reproduced from Ref. [42],
illustrates the corresponding results of calculating thermal
conductivity of diamond with different isotopic compositions
in the single-mode approximation. We notice that the
experimental data for the concentrations 0.07 and 0.5% 3C
is adequately explained by isotope scattering.

36

[N} [\] [o8)
N o] NS

Thermal conductivity, W em~! K~!

3
(=]

0 0.2 0.4 0.6 0.8 1.0
13C concentration, %

Figure 5. Diamond thermal conductivity vs. the concentration of '3C
isotope. Symbols denote experimental data [34]; solid curve is calculated
[42]. T =300 K, Tp = 1845 K, v = 1.18 x 10° cm s~

2.2 Extended Callaway model: anisotropic spectrum
2.2.1 Basic relations. In the case of crystals with highly
anisotropic phonon spectrum, like germanium and silicon,
owing to the difference in the dispersion of longitudinal and
transverse branches of the phonon spectrum, the expressions
for relaxation time and rate turn out to be essentially different
for phonons of different polarizations. Because of this, for the
description of crystal thermal conductivity at temperatures
near the maximum of %(7) and above, in place of the single-
mode approximation one should rather use representations
that explicitly take such an anisotropy into account. The
generalized expression for x(7) was proposed by Asen-
Palmer et al. [44] in the context of theory [6]. The partial
contributions from longitudinal (/) and transverse () modes
were taken into consideration.

For a cubic crystal, in the case when the temperature
gradient exists along one of the crystallographic axes, thermal

conductivity is defined as follows

%= +x, (2.10)
4 , NOYRUIS
i =y T [<18)> + —fl,)c 0. (>i) (2.11)
2Ry (1 /(tNTR))

Here, i =1, [; v; is the group velocity of sound, and 7y; is
2/3 or 1/3 for transverse and longitudinal modes, respec-
tively. Angle brackets denote the following integral

THIT exp x

)= | fi(x)dx,

Jo (expx — 1)
where the upper limit is Tg) = hw;/kg, and ; is the Debye
frequency for i-polarization.

Assuming that different relaxation mechanisms of non-
equilibrium phonons act independently of one another, we
find

W= e

(2.12)
In Eqn (2.12), 14, Tiso and r%) are the relaxation times of
phonons due, respectively, to scattering by the sample
boundaries, elastic scattering brought on by isotopic dis-
order, and inelastic anharmonic umklapp processes. Notice
that the frequency dependence of the rate of transverse mode
isotope scattering in germanium and silicon is, generally
speaking, unconventional. Since 7] ~ @?p(w), in the
domain of strong frequency dependence of z-modes the
scattering rate changes faster than w*. For example, in the
case of germanium the partial spectrum of these modes has a
sharp peak at 2.4 THz. The spectrum of /-modes is localized
here at much higher frequencies ~ 6 THz [45]. Nevertheless,
since the theoretical lattice dynamics is described in Debye
approximation, the rate t;;! was chosen in the form (2.6b).
The parameters of isotope scattering have not been varied in
the calculations.

Recall also that in the case when the N-processes proceed
slower than the resistive processes of phonon scattering, it is
the first term in Eqn (2.1) that dominates. Otherwise the
thermal conductivity is determined by the second term.

2.2.2 Thermal conductivity of germanium and silicon. The
effect of isotopic disorder on thermal conductivity was first
discovered by Geballe and Hull [3], who found that thermal
conductivity of germanium crystal enriched to 95.8% 7*Ge
isotope is at maximum about 3 times as high as that of the
germanium crystal with natural isotopic composition. The
isotopic disorder parameter for the enriched specimen was
about 15 times less than that for the specimen of natural
origin. It is interesting to note that J Callaway in paper [6],
where he formulated his theory of lattice thermal conductiv-
ity, provided quite a good theoretical description of experi-
mental data gathered in Ref. [3] for the temperature range
between 3 and 100 K using the single-mode approximation,
with the exception of the region near the maximum of thermal
conductivity. One of the main reasons for the discrepancy
between the theory and experiment was the inadequate
employment of the Debye model for germanium, which is a
material with strong dispersion of transverse phonons. A
similar situation is observed with silicon. Later on Holland
[46] gave a good description of experimental data on
germanium thermal conductivity in a broad temperature
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range, including the results on the isotopically modified
germanium from Ref. [3]. He used the model that only
included the ‘regular’ term x;(7) (thus disregarding the
normal processes) with separate contributions from the
different phonon branches. Because of this, his magnitudes
for the relaxation times are wrong. The high-precision
measurement results on thermal conductivity of germanium
crystals with different isotopic compositions, including the
nearly monoisotope sample in 7°Ge with the enrichment of
99.99%, were reported recently in Ref. [47] over a broad
temperature range from 2 to 300 K (Fig. 6). Measurements
were performed with samples having the shape of rectangular
parallelepipeds with sizes 0.25 x 0.25 x 4.0 cm, using the
steady-state longitudinal heat flux method. The measure-
ment error in the absolute value of thermal conductivity did
not exceed 2% for 7 < 200 K. For the isotopically pure
germanium sample (99.99% 7°Ge), the thermal conductivity
at maximum is about 110 W ecm~! K~! at the temperature of
15 K, which is greater by a factor of approximately 8.1 than
the corresponding value for germanium of natural isotopic
composition. Hence it follows that in natural germanium at
temperatures near the thermal conductivity maximum the
thermal resistance is practically entirely (by 85%) determined
by phonon scattering from isotopes. At room temperature,
thermal conductivity of 7°Ge sample is 20% higher than that
of natural germanium, and within experimental accuracy it
coincides with the appropriate magnitude of the specimen
with 96.3% 7°Ge.

100 £ 7°Ge(99.99 %)
3 0Ge(96.3 %)
natGe
10

Thermal conductivity, W cm~! K~!

—_
—_
(=]
—_
(=3
S

Temperature, K

Figure 6. Thermal conductivity vs. temperature along the [100] axis of
germanium single crystals with different isotopic compositions [47];
Lc=028cm, Tp =375 K, and v, = 3.5 x 10° cm s~

Measurements of x(7) performed with a unique crystal
(99.99% °Ge) and with other germanium crystals with
controlled isotopic composition allowed the researchers to
study in detail the isotope effect on thermal conductivity [44,
47]. The parameters of studied specimens are given in Tables 1
and 2.

Description of boundary and isotope scattering in
Ref. [44] was based on equations (2.5) and (2.6). It turned
out that in the context of extended Callaway model the
temperature dependence of crystal thermal conductivity can
be adequately described using one and the same set of fitting
parameters for anharmonic processes for all germanium

Table 1. Isotopic composition of germanium specimens studied in
Refs [44, 47].

Specimen  7°Ge,  ?Ge, 3Ge, ™#Ge, 7°Ge, &, M,
% % % % % 1075 am.u.
70Ge(99.99) >99.99 <0.01 0.00 0.00 0.00 0.008 69.924

70Ge(96.3) 96.3 2.1 0.1 1.2 0.3 7.75  70.035
70Ge(95.6) 95.6 38 0.0 0.6 0.0 4.84  70.02
74Ge 0.7 1.1 1,6 95.8 0.8 3.69  73.87
76Ge 0.0 0.1 0.2 13.7  86.0 8.76  75.64
natGel 21.23  27.66 7.73 3594 7.44 589 72.59
natGe2 21.23  27.66 7.73 3594 744 589 72.59
70/76Ge 43 2 0 7 48 154 73.12

Table 2. Geometry of germanium specimens studied in Refs [44, 47].
(Symbol O denotes the crystallographic axis whose direction is close to the
longer edge of the specimen; 7 is the angle between the edge and the axis in
degrees.)

Specimen o/1 a, mm b, mm [, mm
70Ge(99.99) 100/6 2.20 2.50 40
70Ge(96.3) 100 2.50 2.50 40
70Ge(95.6) 110/27 1.25 1.49 14
74Ge 100/0 1.57 1.30 25.4
76Ge 100/2 1.27 2.54 35
natGel 100/0 2.46 2.50 40
natGe2 100/0 1.30 1.30 15
70/76Ge 110/11 2.02 2.00 23

specimens. Namely, it was found that

AV =2x10"K*, AV =1x10" K™,

AV =2x102 sK3, A4V =5%x10"sK?, (2.13)

B =55K, B =180 K.

The values of B correlate with the Debye temperatures for ¢
and /modes, and to an order of magnitude are equal to 7 ,g) /2.

Figure 7 shows experimental data for germanium samples
with different isotopic compositions and the results of
theoretical fitting using the extended Callaway model —
that is, with separated contributions from different phonon
polarizations for both the regular term »; and the additional
term x,.

According to the results obtained for the partial relaxa-
tion times, over the entire temperature range the behavior of
»(T) is essentially determined by the normal anharmonic
processes. The inclusion of U-processes proceeded with the
participation of longitudinal modes allows one to correctly
describe the decline of thermal conductivity to the right of the
maximum. The inclusion of partial contributions from ¢ and /
modes into x%(T') also permits description of the nontrivial
change in the location of the maximum of crystal thermal
conductivity as the isotopic composition is varied (see
Section 2.2.3).

Observe also that the description of experimental data
using the common set of parameters in the region of the
maximum of %(7") at T ~ Ty for the highly enriched
samples is not so good as that for the specimen with natural
isotopic composition and the specimen containing 50%7°Ge
and 50%76Ge. This is apparently related to the fact that at
T ~ Tmax there occurs interference between the process of
scattering by isotopes and the anharmonic process of phonon
scattering, whereas the Callaway theory treats the different
scattering processes as independent ones.
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Figure 7. Thermal conductivity of germanium single crystals with different isotopic compositions. Symbols denote experimental data; solid curves are
theoretical results [44]. Experimental data for the 7*Ge sample were taken from Ref. [3].

The measurements of thermal conductivity of bulk silicon
crystal isotopically enriched to 99.86% 28Si were reported in
Ref. [48]. Thermal conductivity was measured by the steady-
state longitudinal heat flow method with rod-shaped speci-
mens over the temperature range from 2 to 310 K. The

specimen enriched with 28Si isotope had an average diameter
of 0.237 cm and a length of about 3 cm, while the
corresponding dimensions of the specimen with natural
isotopic composition were 0.245 and ~ 2.6 cm. The experi-
mental results obtained are shown in Fig. 8. The same figure
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Figure 8. Isotope effect in the silicon thermal conductivity [48]: @ and o —
experimental data for bulk silicon single crystals isotopically enriched to
99.86% 28Si, and natural silicon; w and A — experimental data for films of
28Si and natural Si from Ref. [49]; x — recommended values for natural
silicon from handbook [50]. Thin solid and dashed lines denote theoretical
results for 28Si and natural Si from Ref. [49]. Thick solid line shows the
calculated result based on the same model and produced using the real
parameter &2 = 2.33 x 106 for a silicon specimen with high concentration
of 28Si. For natural Si, the parameter is & = 201 x 107,

also demonstrates the data on thermal conductivity of thin
silicon films with different isotopic compositions, measured
earlier in Ref. [49] by an optical pump-and-probe method.
The data obtained by different methods coincide at the
higher temperatures, but in the vicinity of 100 K, where the
optical measurements are less reliable, the discrepancy is
quite considerable. According to the authors of paper [48],
the experimental accuracy for bulk specimens is within
10%, with the exception of the neighborhood of the
maximum of thermal conductivity, where the error may be
as large as 25%.

We emphasize the unexpectedly high experimental values
of thermal conductivity of the isotopically enriched bulk
silicon crystal. At maximum, for example, the thermal
conductivity of an enriched crystal is approximately 6 times
that of natural silicon, and at room temperature it is 60%
higher than the thermal conductivity of natural silicon. We
believe that there results call for independent verification.

As already indicated, for germanium and silicon, accord-
ing to neutron experiments in units of ion plasma frequency,
the phonon dispersion curves are very close throughout the
entire volume of Brillouin zone [51]. On the basis of
theoretical estimates, the parameters of the effective force
interaction are also close in magnitude. This allows determi-
nation of the parameters of the anharmonic relaxation
processes for silicon using the results for germanium. Here
in the first place we ought to take into account the
renormalization of the effective Debye temperatures:
Tn(Si)/Tn(Ge) = 1.75. In addition, we note that the para-
meter Ay is defined in the following way

y2

Ao —1
NS MaTS

Taking advantage of the closeness of the effective Griineisen
parameters, the lattice constants and the force constants, we
find that An(Si)/An(Ge) =~ (MSi/MGe)‘W. In other words,
for estimates we only need to take into consideration the
distinction between the masses of germanium and silicon
atoms. As far as the parameter Ay is concerned, its
dependence on Tp is determined by the following circum-
stance. Namely, the matrix element squared for the anhar-
monic phonon process must be proportional to the product of
energies of the corresponding modes. Then two of the three
phonons have the energy of the order of 7Y, and so
Ag) x T]()’)fz. This procedure for finding the anharmonic
parameters of silicon allowed the researchers to provide a
satisfactory description of experimental findings for the
samples of natural composition and those enriched to
99.9% 28Si [48, 49].

We also used the values of anharmonic parameters (2.13)
quoted above for discussing the experimental results on
germanium thermoelectric power (see Section 3).

2.2.3 Thermal conductivity of germanium near the maximum.
Figure 9 gives theoretical data that illustrate the temperature
dependence of thermal conductivity of #- and /-modes in
germanium crystals with different isotopic compositions.
The curves pass through the maxima at T, é{lx =18 K and
Té{ﬁx =12 K for the 7°Ge (99.99%) specimen. In this
situation, the main contribution to »(7) directly at
maximum of total thermal conductivity is associated with
the I-modes. The contributions from ‘fast’ long-wave (¢;) and
‘slow’ short-wave (#;) transverse phonons are comparable.
However, in the thermal conductivity of the 7°Ge(96.3%)
specimen it is the 7;-modes that dominate, because the
contributions from /-modes and #-modes are to a large
extent suppressed because of the isotope scattering. This
circumstance also accounts for the decrease of the tempera-
ture at the maximum of the curve by ~ 4 K for 7°Ge(96.3%)
as compared with 7°Ge(99.99%) [52]. In the case of natural
germanium, in the situation of sufficiently strong isotope
scattering, the role of /-modes slightly increases compared to
t-modes, and the maximum shifts by fractions of kelvin
towards the higher temperatures.

Figure 8 shows theoretical data for silicon with the high
concentration of 28Si, reproduced from paper [49]. The
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Figure 9. Contributions of transverse and longitudinal phonons to the
thermal conductivity of germanium single crystal with the enrichment to
99.99% 7°Ge (solid lines) and 96.3% 7°Ge (dashed lines) [52].
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procedure of their obtaining is described in Section 2.3. For
silicon, the effective Debye temperature is 1.75 times as high
as that for germanium. Because of this, the temperatures
TIE{QX and T,(Tf;x of the maxima of partial thermal conductivities
are higher by about 10 K.

Attention is drawn to the fact that the location of the
maximum of thermal conductivity depends considerably on
the quality of surface finishing. For germanium, the role of
diffuse and mirror scattering of phonons at the specimen
boundaries was analyzed in Refs [44, 53]. In perfect highly
enriched specimens at 7 > 4 K, the phonon flow deviates
from the Knudsen pattern, when the collisions are mostly
with the walls. These deviations were explained (and
supported with quantitative estimates) with reference to the
fact that the phonon gas starts to feature the viscous Poiseuille
flow [53]. The crux of a matter is that in the case of rather
perfect monoisotopic crystals the effects of static defects and
isotopic disorder on the structure of the nonequilibrium
phonon distribution function is disguised by the anharmonic
N-processes. In such a case, only the processes of phonon
scattering by the walls of the specimen are resistive. However,
owing to the more frequent nonresistive N-processes the
transport mean free path of phonons increases effectively as
~ d? /In. Earlier, the switch to the Poiseuille flow was clearly
observed only in crystals of solid helium. The issue of the
manifestation of the hydrodynamic regime in connection with
the problem of second sound has been analyzed for NaF and
Bi crystals, in which the mechanism of isotope scattering is
not present. The corresponding results are discussed in the
book by Berman [17].

2.2.4 Effects of isotopic disorder on the phonon scattering
umklapp processes. In the theoretical analysis of the
experiments in the context of an extended Callaway model
we assumed above that different processes of nonequili-
brium phonon scattering are independent. In general, the
description of experiments is fairly satisfactory. However, a
systematic discrepancy was discovered in Ref. [44] between
the theory and experiment to the right of the maximum of
thermal conductivity for isotopic mixtures of germanium,
namely, for the natural composition and for the specimen
with the ultimate isotopic disorder, containing 7°Ge and
76Ge isotopes in 50/50 proportion.

Using relations (2.10)—(2.12), we additionally analyzed
the experimental results for the temperatures below 60 K and
refined the values of parameters governing inelastic anhar-
monic phonon scattering. It turned out that as the isotopic
disorder (i.e. the parameter &) increases, the intensity of
anharmonic umklapp processes also enhances. Then the
exponential factor B in expression (2.8) for the relaxation
rate t(;! decreases, and the preexponential factor 4 increases.
This result may be interpreted as follows. In a regular
monoisotopic lattice over the temperature range where the
inelastic U-processes freeze out, the stationary momentum
distribution @(q) of phonons must be anisotropic. This is
because the nonequilibrium phonons, in accordance with the
variational principle, must leave those regions of the Brillouin
zone where their scattering is most efficient. In crystals with
isotopic disorder, the elastic isotropic scattering by isotopes
suppresses the anisotropy of the distribution @(q), making it
‘more isotropic’. As a result, the intensity of U-processes
enhances with the increasing parameter &>

Recall that the problem of the specific role of the
longitudinal long-wave phonons in crystal thermal conduc-

tivity was raised already in work [54]. In Ref. [23] (see also
book [9]), it was demonstrated that in real anisotropic
crystals there are certain regions in the quasi-momentum
space, in which such /-phonons may decay through the
processes of the type [+t — t”. For t-modes such
processes are also possible in the case of an isotropic
system. Then, according to the variational principle, in the
ideal system the nonequilibrium phonons must be distrib-
uted in the Brillouin zone in such a way as to partly
suppress the role of the above processes. It is interesting
that, according to our results, the transition from the
practically regular 7°Ge(99.99%) specimen to isotopically
contaminated samples shortens the lifetime of /-modes more
considerably than that of /~modes.

In this way, the analysis of experimental data for
germanium crystals with different isotopic compositions
reveals that in the neighborhood of the maximum of thermal
conductivity the intensity of the anharmonic umklapp
processes increases with the parameter of isotopic disorder
&%, This means that — at least near the thermal conductivity
maximum — the elastic phonon scattering due to isotopic
disorder and inelastic anharmonic scattering umklapp pro-
cesses are not independent.

2.3 Variational method

2.3.1 Variational principle. In the framework of the kinetic
equation, the consistent theory of phonon thermal conduc-
tion was constructed by J Ziman based on the variational
principle. This theory is presented in his classical monograph
[9], and has not lost its relevance ever since.

The kinetic equation in this theory is linearized by
replacing in the field term the occupation numbers n(/) for
the phonon modes by their equilibrium values ng(/)
(I = {q, j}). Simultaneously, the function &,(/) characteriz-
ing small deviations from equilibrium appears in the collision
integral. To the lowest order with respect to the temperature
gradient we get

oT,
0z
The function @, therewith satisfies the equation of the form

n(l) = no(l) + ®-(1ne(1) [no(1) + 1]

. (2.14)

X.(1) = — ZJ dq'P(L1") b.(1'), (2.15)
where
X.(l) = Z(:gfz) no(1) [mo(1) + 1]w. (1) - (2.16)

The factor P(/,/’) is the matrix element of the operator of
scattering taken over states /and /’. According to the principle
of microscopic reversibility, one finds P(/,!') = P(!',/). In
our present case the operator P consists of three terms which
describe the phonon scattering by the boundaries of the
specimen, the anharmonic interaction, and the effect of
isotopic disorder.

Let us write out explicitly that part of P(/,/’) which
characterizes the isotope scattering. Then we have [20]

0 £2
SP(,1') = 80—;2

x 8[o(l) — ()] .

o(Do(I)|e(D)e(!")Pro(1) [no(l") + 1]

(2.17)
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The thermal conductivity is given by the equality

2
SRS [dann o).

J

#(T) =

(2.18)

Following Ziman, we define the thermal resistance
W = 1/ in the form

8w X, JJ dq dg' @(1) P, 1) (1)
~ kgT? (3, ) dax(n)o(1))’ '

Observe that, in accordance with the variational principle, the
function @.(/) satisfying the kinetic equation (2.15) realizes
the minimum of expression (2.19).

As a rule, the trial function is selected in the form of
expansion over a given set of functions {¢,} with the
coefficients #, that have to be found. The corresponding set
of equations in 7, takes the form

X, = ZPrr’nr’ )
Py

where X, and P,,, are the matrix elements of the operators X
and P in the set of functions {¢, }. The procedure for selecting
the functions in the moments method is described in
Appendix A.

(2.19)

(2.20)

2.3.2 Thermal conductivity of germanium and silicon. Results
obtained by solving the kinetic equation. In the case of
germanium and silicon crystals, to the best of our knowledge
there are only two papers [55] and [56] in which the Ziman
theory was applied for calculating the microscopic thermal
conductivity. Interesting and informative calculations for
germanium were carried out by Hamilton and Parrott [55]
with detailed consideration of the role of the different types of
anharmonic N- and U-processes (t+t—1[, t+[—1,
!+ 11— ). At the same time, phonon scattering by bound-
aries and isotopes was also taken into account. The isotropic
continual model was used by the authors for the analytic
description of both the phonons and the anharmonic
interaction. The contribution from the optical modes was
not analyzed. The kinetic equation was solved in the multi-
moment approximation, assuming that

’

cD: 7':_2 ]r<i> .
(q,)) q;n, o

A few first terms were retained in the power series expansion
in moments.

According to results obtained in work [55], the dominant
role in the thermal conductivity of germanium is played by the
transverse phonons. In the temperature range to the right of
the maximum, the contributions from N- and U-processes
become equivalent already at the temperatures close to 60 K.
As the temperature further increases, the umklapp processes
start to dominate. The contribution from isotope scattering at
different temperatures was also determined in this study for
germanium crystal with natural isotopic composition.

Thermal conductivity of germanium and silicon crystals
with different isotopic compositions was also studied in
great detail in Ref. [12]. The authors developed the model of
anisotropic pair interatomic interaction and used it for
describing the phonon spectra, thermal expansion, and
anharmonic interaction of phonons. The kinetic equation
was solved by the iterative method. In doing so the role of

acoustical and optical modes of longitudinal and transverse
types was analyzed in detail. It was found that to the right
of the maximum the contributions from the acoustical
t- and /-modes into %(7) are of the same order of
magnitude. The contribution from the optical modes into
relaxation of acoustic phonons becomes important already
at T > 100 K, which agrees with the results of work [56] (see
Table 3). For natural germanium, the contributions from
phonon scattering by the boundary and by the isotopes are
small, about 10% of the total thermal resistance at 100 K,
and 3% at 300 K.

Table 3. Thermal conductivity (W ecm~' K~!) of germanium with a natural
isotopic composition. x, is the thermal conductivity with the inclusion of
contributions from both acoustic and optical phonons to the three-
phonon processes; xpiso 1S the thermal conductivity with due account of
only scattering by the boundaries and by the isotopes; xacoust 1S the thermal
conductivity disregarding the scattering by optical phonons [12].

T.K 10 20 30 40 60 80 100 300 500 900

Hall 99 103 8.6 6.78 4.63 3.08 221 0.55 0.31 0.16

Abtiso 10.0 12.1 145 16.1 17.7 183 19.5 23.0 234 241

Hacoust 99 103 8.6 6.78 490 3.52 249 0.85 0.52 0.29

As indicated above, measurements of thermal conductiv-
ity of thin silicon films with different isotopic compositions in
the temperature range from 100 to 375 K were performed
recently in Ref. [49] for the first time. Theoretical analysis of
the data under consideration was carried out in Ref. [56]. The
contribution to thermal resistance due to the isotope scatter-
ing was evaluated using relations (2.19) and (2.17). It is
significant that the calculations have been performed based
on the real spectrum of phonons and, which is most
important, the sensible form of the distribution function ¢
of nonequilibrium phonons. In the first place, the authors
used the function @ in the standard form

®,(l) x g . (2.21)
Selected in this way, however, the function @ is not periodical,
and fails to correctly describe the contribution from the
optical phonons (for which the group velocity may be
negative). Generally speaking, the form of & that satisfies
the necessary requirements is the following

&.(1) x o(l)v,. (2.22)

Figure 10 depicts four theoretical curves and the experi-
mental data from Ref. [56]. Curves 4 and B, C and D were
plotted using the phonon distributions in the forms (2.21) and
(2.22) with and without regard for the contributions from
optical phonons. It is interesting that fairly reasonable
agreement with the experiment at 7= 250—-300 K occurs
when @, is selected in the form of relation (2.22), when the
contribution from optical phonons is taken into account (and
turns out to be quite considerable). At 7 <240 K, the
agreement with the experiment is not satisfactory. Observe
that in the context of the isotropic continuum approximation
[9]at T = Tp, when

Q& Tp

AW = (2.23)
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Figure 10. Thermal resistance of silicon due to isotope scattering as a
function of temperature. Symbols denote experimental results from
Ref. [49]; solid line (‘theory’) shows the results of calculations using the
Ziman theory in the Debye approximation. Curves 4 and B correspond to
the stationary distribution of nonequilibrium phonons in the form ¢ « ¢.,
with and without regard for the contribution from optical phonons.
Curves C and D correspond to the distribution @; < w(/)v.(/), again
with and without allowance for the contribution from optical modes.

it is also possible to qualitatively describe the scale of
variation due to isotope scattering.

In the context of the variational procedure we have also
analyzed the experimental data obtained for germanium in
the range of relatively high temperatures. The corresponding
results for thermal conductivity » and the contribution from
the isotope scattering mechanism to thermal resistance AW
are presented in Table 4.

Table 4. Thermal conductivity % (W cm~! K~'), and thermal resistance
AW (W~ cm K) due to the isotope scattering in germanium crystals.

62
T.K 8 x 1078 7.75 x 1073 58.9 x 1073 154 x 1073
% % AW % AW % AW
300 0.697  0.695 0.004 0.590 0.260 0.537  0.43
250 0.862  0.844 0.029 0.795 0.258 0.628  0.44
200 1.14 1.105 0.028 0.889 0.248 0.753  0.45
150 1.70 1.62  0.030 1.230 0.223 0981 043

As in the above-considered case with silicon, the contribu-
tion into thermal resistance due to isotope scattering was
evaluated with the aid of relations (2.19) and (2.17). The
phonon spectrum was described using the bond-charge model
in the version presented in Ref. [57]. Earlier we applied this
model to studying the effects of isotopic composition on the
lattice constant and the linear thermal expansion coefficient
in the case of germanium and silicon [58, 59]. Calculations
were performed employing the representation @; o< w(/) v.(/)
for the nonequilibrium part of the phonon distribution
function, with and without regard for the contribution from
optical modes.

We found that the value of AW was 0.20 W~!cmK
without regard for the contribution from the optical modes,
and 0.32 W' cm K when this contribution was taken into
account. The experimental value of AW is 0.26 W~ cm K.

Note also the interesting result that follows from the data
presented in Table 4. We found thatat 7= 150,200 and 250 K
the points for the impurity-related part of thermal resistance
AW for 7°Ge (96.3%) specimens and those of the natural
isotopic composition within the experimental accuracy fall on
the straight line passing through the origin of coordinates. In
other words, the relation AW ~ &2 holds true. At the same
time, the data for the 7%7°Ge specimen (with 50/50 propor-
tion) do not fall on the straight line. The experimental values
of AW are much lower than the theoretical values. Recall that
a similar situation was encountered in the analysis of spectra
of neutron inelastic scattering. It is possible that in the case of
70/76Ge mixture the deviation of AW from a linear dependence
is caused by the effect of local ordering of light and heavy
isotopes.

The results of Refs [12, 44, 55, 56] indicate that to the
right of the maximum of »(7) at temperatures T > Tp/6,
the anharmonic processes of scattering of different types
(i.e. U- and N-processes simultaneously) are effective, and the
heat transfer therewith involves all groups of phonons. The
influence of isotope scattering is not too large. Such a
situation, in principle, does not give any good reason for the
existence in the Brillouin zone of certain ‘hot” domains within
which the nonequilibrium phonons are scattered most
efficiently through the anharmonic interaction. Accordingly,
the standard Ziman distribution @.(/) < ¢. should give a
satisfactory description of the real phonon distribution with
respect to momenta. Then, however, according to the theory,
the contribution from the isotopes into thermal resistance
must actually be described by relations (2.17), (2.19). To get
an estimate, one can use the formulas that correspond to the
case of isotropic continuum and only take into account the
contribution from the acoustic modes. We have at this rate

T ETY T 5 (en/w) (1) 1)) 1 (18 T)
) - - - 3 ,
2h Vg T Zj((T/Tg))z'-]i])(Tl()/)/T))

i ()
N(ﬂ) :JTD M Xexpx
" r 0 (expx — 1)

2.4 Lifetime of high-frequency phonons

Klemens [60] called attention to the fact that in isotopically
pure silicon, even though the calculations of thermal con-
ductivity due to thermal phonons featured slow growth, the
mean free path of high-frequency ‘superthermal’ phonons
may increase considerably at T < Ty = 22 K. This effect is
due to the following circumstances. The rate of scattering by
isotopes, according to Eqn (2.6b), is proportional to the
phonon frequency to the fourth power. The conventional
heat transfer is dominated by phonons with frequencies
corresponding to the temperature energy equivalent of 47 —
thatis, at 20 K the heat is mainly transferred by phonons with
an energy of about 80 K. If the energy supply to the silicon
crystal (for example, under illumination with laser) gives rise
to high-frequency phonons at the boundary of the Brillouin
zone with the energy of ~ 220 K, then isotopes may reduce
their mean free path by a factor of 60 (!) as compared with the
mean free path of thermal phonons. Such a problem of
propagation of high-frequency phonons in silicon and
germanium crystals was considered by Maris [61]. The effects
of elastic scattering by isotopes on the propagation of
acoustic phonons in silicon were the subject of theoretical
analysis by Tamura et al. [62].

(2.24)



May, 2002

Kinetic coefficients in isotopically disordered crystals 539

3. Thermoelectric power of semiconductors
with isotopic disorder

3.1 Phonon-drag thermopower

Classification of thermoelectric phenomena is usually based
on the phenomenological transport theory. Let the specimen,
in addition to the electric field, have also the temperature
gradient. It has been known that the components of vectors of
current density j; and heat flux density ¢; are expressed in
terms of the components of vectors of temperature gradient
0T/0x; and the generalized electric field E' = E + Vpu/e,
where u is the chemical potential of charge carriers. We have
(see, for example, book [9]) the following relationships

) oT
Ji = oiEy — ek v

(3.1)

gi = ik Jk — %ik o (3.2)
Here o, &, Tk, and s;; are the components of tensors of
electric conductivity, thermoelectric power, Peltier coeffi-
cient, and thermal conductivity. Also, i,k = Xx,y,z and
summation is taken over the twice repeating Cartesian
indices. Recall that if the total electric current in the specimen
is zero and there exists the temperature gradient VT # 0, then
thermoelectric field E/ = o;!e; 0T/0x; is generated (the
Seebeck effect, O = ¢~ '¢ is the thermopower). Alternatively,
if the temperature is kept constant along the specimen
(VT = 0), then the passage of electric current j causes the
thermal flux ¢; = m; ji to flow through a specimen (the Peltier
effect).

Let us discuss the Seebeck effect. Direct action of the
electric field and the temperature gradient on the electron
subsystem gives rise to the drift jy,;; and diffusion jy; charge
fluxes. The temperature gradient also produces the flow of
phonons that move from the hot end of the specimen to the
cold. Solely through the electron —phonon interaction (EPI),
the phonons drag the charge carriers with themselves, thus
increasing the thermoelectric current. This contribution into
the current is jgrag. Observe that in this particular situation the
total flux of charge carriers is zero: j = ity + Jarag + Jair = 0
(Fig. 11).

In the case of standard semiconductors, the dimensions of
the electron and the hole parts of Fermi surface are small
compared with the radius of the Debye phonon sphere.
Accordingly, when we talk about EPI, the laws of conserva-
tion of energy and momentum restrict from above the
momentum p of phonons that can interact with charge
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Figure 11. Charge fluxes in conductors that give rise to thermoelectric
power.
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Figure 12. Scheme of the main processes of momentum relaxation in the
system of electrons and phonons in the presence of temperature gradient.

carriers, namely, p < 2k, where k is the modulus of the
electron wave vector. Thus, most of the phonons do not
directly interact with the charge carriers. The ‘electron
phonons’ can be scattered by charge carriers, whereas the
rest are referred to as ‘thermal phonons’. By definition, the
electron phonons are long-wave, and therefore their relaxa-
tion times should be greater than those of thermal phonons. It
is the nonequilibrium nature of such electron phonons (which
is proportional to their relaxation times) that defines the
magnitude of phonon-drag thermoelectric power.

Recall that even today there still are unresolved problems
related to attenuation of long-wave phonons. In principle, the
studies of thermoelectric power may throw some light on
these issues.

Figure 12 depicts the scheme illustrating different scatter-
ing processes in the system of electrons and phonons, when
there occurs a finite temperature gradient lengthwise of the
sample. Such processes ensure both the relaxation of
momentum received by the subsystems from the external
field, and the redistribution of momentum between the
subsystems. The main relaxation process for electrons is
their scattering by impurities. For phonons, the following
processes are important: scattering by the sample boundaries
and point defects, and the Herring or Simons phonon-—
phonon scattering (these processes ensure relaxation of the
total momentum of quasi-particles). At the same time, the
electron—phonon scattering processes only result in the
redistribution of momentum between electrons and phonons.

As indicated above, the current of charged particles is
determined by the contributions from the drift and diffusion
motion of electrons, and the contribution from the drag of
electrons by phonons. Accordingly, thermoelectric power can
be represented, generally speaking, as a sum of two terms:
O = Quir + Qdrag, Where Qg is the diffusion thermoelectric
power, and Qgra, 18 the phonon-drag thermoelectric power.

In the regime of impurity conduction, the diffusion
thermoelectric power steadily increases with temperature,
mainly because of the temperature dependence of chemical
potential u(7) (the system of charge carriers is described by
the Boltzmann distribution, and therefore u is several orders
of magnitude greater than in metals). Phonon-drag thermo-
electric power Qgrag prevails at low temperatures. Since the
electrons only interact with the long-wave phonons, the
temperature dependence Qgrag(T) is determined by the
interaction of these phonons with the boundaries of the
specimen and with the short-wave phonons, to which they
transfer their momentum. At very low temperatures, the main
role for the electron phonons is played by the processes of
their scattering by the boundary, and the redistribution of
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momentum through EPI between the subsystems of quasi-
particles is suppressed. A similar situation is observed at
relatively high temperatures, when the intensity of anharmo-
nic umklapp processes of the short-wave phonon interaction
is increased. Broadly speaking, the maximum of Qg falls
within the temperature range where the normal anharmonic
processes prevail.

In the general case, the system of kinetic equations for
electrons and phonons has not been solved. The results for
certain particular cases are discussed in the monographs [9,
63—-60].

Observe that Geballe and Hull [67] as early as 1954
discovered a considerable increase of thermoelectric power
in germanium and the nonmonotonic behavior of Q(7) at low
temperatures. Shortly thereafter, C Herring constructed his
theory of thermoelectric power in semiconductors [68] and
interpreted the results reported in paper [67] as the effect of
hole drag in germanium. We ought to emphasize, however,
that Gurevich [69] was the first to demonstrate that the
nonequilibrium phonon distribution at VT = 0 at certain
conditions may play an important role in thermoelectric
phenomena. Of recent studies concerned with the effect of
electron drag we point to Refs [70, 71] which report the
temperature dependence Q(7) in HgSe and HgSe:Fe crystals.

The effect of isotopic composition on thermoelectric
power was the subject of just a few papers. Below we shall
be mainly concerned with the experimental data. Then we
discuss two possible scenarios for the dependence of Q on the
isotopic disorder parameter &2: the two-step electron—
phonon drag, and the renormalization of anharmonic
attenuation of long-wave phonons in the regime of weak
localization.

3.2 Germanium crystal thermopower

To the best of our knowledge, the effects of isotopic
composition and isotopic disorder on thermoelectric power
in crystals were studied so far in two papers [72, 73]. The
temperature dependence Q(T) was studied by Oskotskii et al.
[72] in tellurium specimens, one of which had the natural
composition of isotopes, while the other was enriched with
128Te to 92% and had the isotopic disorder parameter &
being smaller by the factor of 7.5 than that for the natural
tellurium specimen. The isotopic composition was found to
have no effect on the drag thermoelectric power over the
temperature range from 4 to 50 K. The results of studying
thermoelectric power of perfect germanium single crystals
with three different isotopic compositions: natural, and
highly enriched to 96.6% and 99.99% with 7°Ge were
reported by Taldenkov et al. [73]. The specimens had the
shape of a rectangular parallelepiped with the dimensions of
about 0.25 x 0.25 x 4 cm. The absolute measurements of
thermoelectric power were carried out by the stationary
temperature gradient method in the temperature range from
10 to 300 K.

It should be emphasized that for the studied germanium
specimens of both p and n types, the difference of
concentrations of donor and acceptor impurities was
led — ¢a] < 10" cm™3. With such low concentrations, as is
well known [64, 67], the absolute magnitude of drag
thermoelectric power exhibits practically no dependence
on the number of electrically active impurities, and |Qqrag
at maximum must be close for the specimens of p and n
types (Fig. 13). This allows us to compare data for all
specimens under investigation, irrespective of the direction
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Figure 13. Dependence of the absolute value of the Peltier coefficient
component due to the phonon drag for germanium single crystals of p type
(a) and n type (b) on the concentration of acceptors and donors at different
temperatures [67].

of the temperature gradient relative to crystallographic
axes.

Experimental results in Fig. 14a for thermoelectric power
Q(T) were reproduced from Refs [73, 74]. They quite convin-
cingly demonstrate the dependence of thermoelectric power
on the measure of isotopic disorder &2, The increase of Q(T)
with the decreasing &> occurs over the temperature range
T < 70 K, where the thermoelectric power is mainly deter-
mined by the drag effect of charge carriers by phonons. At
higher temperatures, when the diffusion component of
thermoelectric power depending on the band parameters of
the semiconductor dominates, the thermoelectric power is
about the same for all the specimens.

Figure 14b shows the temperature dependence of the
absolute value of the Peltier coefficient n(7)= Q(T)T
calculated from the experimental data on thermoelectric
power for all specimens under investigation.The Peltier
coefficient is directly seen to exhibit a strong dependence on
&. To wit, as the concentration of 7°Ge isotope increases, the
maximum of |n(7)| increases too — that is, the drag effect
becomes stronger.

3.3 Herring’s drag thermopower

Let us consider a semiconductor with one type of carriers
without degeneration and assume the presence of simple band
structure. As already indicated, the electrons directly interact
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Figure 14. Temperature dependence of thermoelectric power (a) and
absolute value of the Peltier coefficient (b) for germanium single crystals
with different isotopic compositions [73, 74]: o — 7°Ge(99.99 %) [100];
o — 79Ge(96.3 %) [100]; A — 7°Ge(99.99 %) [111]; v — "Ge [100]; o —
nalGe [111].

only with the long-wave phonons (electron phonons). Their
effective relaxation times 7p, (¢), generally speaking, are much
greater than those of thermal phonons. Accordingly, in the
calculation of phonon-drag thermoelectric power in the first
approximation the direct contribution from thermal phonons
can be neglected: their drift velocity is assumed to be close to
zero. The main scattering processes for the long-wave
phonons are the anharmonic normal collisions with thermal
phonons and the interaction with the sample boundary. The
corresponding part of Qpy is called the Herring’s drag
thermoelectric power, and denoted by QS?.

In the temperature range where the N-processes dom-
inate, the Herring thermoelectric power is defined as

Q(H) - k_B m*vo :Eph

h — bl
P e kgT tep

(3.3)

where m* and v, are the effective mass and the group velocity
of an electron, respectively. We confine ourselves to consider-
ing the contribution from the longitudinal phonons, for
which the mean relaxation time is given by

2k

- 1
Tph = WJO (34)

dgg*tin ().

where r]gﬁ)(q) is the phonon relaxation time due to the

anharmonic three-phonon N-processes, and 7., is the
relaxation time of electrons due to their interaction with
phonons (see detailed discussion in Refs [64, 72]).

From expressions (3.3), (3.4) it follows that the behavior

of phonon-drag thermoelectric power Q ';) is determined by

(N) v .
the dependence of 7’ on the temperature and momentum:
tph ~ T°7¢/. Observe that from the condition of convergence
of the integral over dg emerges linkage with the problem of
phonon attenuation. Namely, in the case of Pomeranchuk
scenario [54], when j=4, the thermoelectric power is
Oph = 00; in the case of Herring scenario [23], when the
phonons interacting in the anharmonic manner have differ-
ent polarizations and j = 2, the thermoelectric power Qpy, is
finite. There also is the Simons scenario [24, 25], where j = 1
(in this case the attenuation of short-wave phonons is taken
into account, which makes possible the processes of the type
I+l =Lt+t—1).

Let us establish the relationship between the wave vector k
from equation (3.3), which characterizes the upper limit of
spectrum of electron phonons, and the Debye vector ¢gp. By
definition, one has

vV 3}’}’!* kB T

k~
7 y 4D

I
=

(3.5)

In the case of germanium, the effective electron mass is
m, ~0.1m. So k ~ 2 x 105 T'/2 and in the low-temperature
range (7 < 50 K) one finds

k<107%gp. (3.6)

Now let us compare the mean free paths LEXN)(Z ) as restricted
by the anharmonic normal processes according to the Herring
mechanism, with the mean free path Lj,, determined by the
standard isotope scattering. We use the results of studies
concerned with germanium [44] [see relations (2.13)]. Then we
have

(N) o\’ (90’
Ly (1)o<10*1(7> (7) a

At temperatures 7 <20—30 K, near the maximum of
phonon-drag thermoelectric power, the following relation
LXN)(I) o 10%(gp/q)*a occurs for germanium. The mean
free paths delimited by isotope scattering are

1 (gp !
Liso 0<2—62<?> a

The concrete values of mean free paths Lj, for the specimens
with natural isotopic composition and those enriched to
96.6% in 7°Ge to an order of magnitude are 103(gp/q)*a
and 106(qD/q)4a, respective]l\y. From expressions (3.6)—(3.8)
follow that the inequality Lg ) < Lis, 1s fulfilled for mean free
paths in the case of electron phonons, and in consequence the
isotopic disorder in the standard theory has not to influence
those part of the thermoelectric power that results from the
Herring’s drag.

Observe that to the left of the maximum the quantity
M(T) decreases with the temperature, as ~ T 0=/,

Oph

(3.7)

(3.8)

j=1,2. At the lowest temperatures, the main role belongs

to the phonon scattering by the boundary of the specimen. In
such a situation Q(ED ~ dT3?, where d is the characteristic
diameter of the specimen (for details see Refs [64, 66]).



542 A P Zhernov, A V Inyushkin

Physics— Uspekhi 45 (5)

3.4 Two-step drag

In the analysis of the Herring type drag we assumed that the
interaction with thermal phonons leads to the dissipation of
momentum of the electron phonons. In reality, as has been
first noted in Ref. [75] (see also paper [76]), the anharmonic
interaction between the phonons (when the N-processes
dominate) should give rise to a situation when the non-
equilibrium thermal phonons drag the electron phonons,
and the fluxes of phonons of the two groups flow with the
same drift velocity. In such a case, the drag of charge carriers
by phonons may occur in two stages: the carriers are dragged
by the electron phonons, which in turn are dragged by
thermal phonons.

In the situation of two-step phonon drag, the contribution
to the thermoelectric power due to the nonequilibrium
electron phonons is supplemented by the contribution from
the nonequilibrium thermal phonons, which may be decisive.
To an order of magnitude one has [75]

~ o (T) + 1 (T)

OT= (01 + Q)T ~-" (3.9)

Te-p

Observe that in perfect single crystals the measure of
departure from equilibrium for thermal phonons is deter-
mined by the relaxation time r;l;)(T ) with respect to the
anharmonic scattering umklapp processes. Thermoelectric
power may then depend exponentially on the temperature.
In semiconductors with isotopic disorder, the nonequilibrium
character of thermal phonons must be suppressed through
Rayleigh type scattering. Thus, the two-step phonon-drag
thermoelectric power Q, as opposed to the Herring type
thermoelectric power Q") depends on the measure of
isotopic disorder & It is interesting that with finite ¢* the
dependence of Q on T'is again a power function.

For L%ermanium, it is possible to evaluate the mean free
path Lg (1) of longitudinal thermal phonons, delimited by
the anharmonic scattering umklapp processes, using numer-
ical parameters (2.13). It turns out then that

2
(U _3( ¢gp 330 180
LA>([)O(]5>< 10 3(7) Texp T a

for thermal phonons (¢ > 2k). In the neighborhood of the
maximum of Q at T'= 20(30) K we have

LY(1) 103(102)("—D>2a

(3.10)

q

Now let us define the effective phonon mean free path
LIW(T) = w3 A(T) as

I [dq CylvgLy)™ _ 0
Z_USW7 Cq—hwqﬁnq.

Comparing LXN)(Z) from Eqn (3.7) and LXD(Z) from
Eqn (3.10), and getting an estimate for L]()ﬁ) (T), we find that
to an order of magnitude rg) (7T) > rg}? (T). This means that
the contribution to Q from thermal phonons owing to the
two-step drag is finite but not decisive.

In Ref. [76], the expressions for Q; and @, are more
rigorous than in Ref. [75], and the analysis of these
expressions led to the conclusion that, in principle, the two-
step phonon drag may dominate in the total thermoelectric
power. Such a situation, however, is rather unlikely when the

(3.11)

electron phonons are scattered through the Herring mechan-
ism. If phonon scattering occurs through the Simons
mechanism, then, according to Ref. [76], “one may hope for
the experimental discovery of drag effect in classical semi-
conductors”.

3.5 Weak localization regime
One of the mechanisms that may lead to the dependence of
phonon thermoelectric power on the mass of isotopes is the
specific anharmonic scattering mechanism studied in
Ref. [77]. This paper discussed the influence of fluctuations
of the phonon density in the regime of weak localization on
the anharmonic interaction. Attenuation of long-wave
phonons was evaluated with due account of the fact that a
two-phonon coherent state arises in virtual states in the
anharmonic diagrams. The analysis was performed in the
general case in the approximation of diagonal disorder. It is
shown that for {w,k} — 0 a significant contribution to the
relevant mass operator is associated with the processes
described by the diagram depicted in Fig. 15. Here 75 is the
cubic anharmonic vertex. Thin line denotes the one-particle
Green function Gy of the phonon mode with the quasi-
momentum k. Symbol U stands for the diffusion vertex. The
latter occurs in the equation for the two-particle Green
function and is defined by the set of standard fan-shaped
diagrams (see the details in Ref. [77]).

The diagram presented in Fig. 15 corresponds to the
analytical expression of the form
+00 1

da)l

(i) _
Za (k) = Jm [~ exp(—pan)

3
XY Brg, kg Flo, 015k, q)) Qpl((qu,ql,—k - (312

qq;

Here the notation was used:

F(U),U)l;k7q1) = G:k+ql (U) - CU[)G_;] (CO - U‘)l)

x U(g; w,01) G7y (01) Gy (1), (3.13)

where the Green function Gy, is defined as

Gitw) = (-t -1 ) R

and 7jso () is the phonon relaxation time due to the isotopic
disorder.
We select the anharmonic vertex in the form
«/(3)

By keyey = 7iy3wk|wkzwk3> V3= V<2)3/2 .

(3.14)

(3.15)

oLk —q

o —op,q—k o — wy,—q,

Figure 15. Anharmonic diagram with processes of coherent inverse
phonon scattering in the weak localization regime.
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For the diffusion vertex, in the fan approximation we arrive at
the following chain of equalities:

-1

Ulq; 0,0) = {1——2le 0) Gy, _q(0 — @)

~22.(0) 2@ D@ g -1 19

Here, Dy = (1/3)v*1is, is the diffusion coefficient, and v s the
group velocity of the phonon mode.

Using relations (3.12), (3.14) and (3.16), we may demon-
strate that the partial inverse relaxation time for the long-
wave phonons (w < wp), which is due to the specific
anharmonic processes, to an order of magnitude is deter-
mined by the relation

1. Imz! w?
NS <a_2>w (3.17)
For the mean free path we have
. 1 2
LY x— “—> %D a. (3.18)

Hence follows that the phonon free paths for germanium
crystals with natural isotopic composition and with enrich-
ment to 96% in 7°Ge are 10%(gp/q)a and 10°(gp/q)a,
respectively.

From comparison between relations (3.7) and (3.18) we
find that for germanium crystals with natural isotopic
composition the phonon free paths due to standard and
specific anharmonic relaxation processes are of the same
order of magnitude. Therefore, in such a situation the
isotopic disorder may also indirectly affect the thermo-
electric power.

Let us now summarize the above discussion. In the case of
chemically pure single crystals of germanium with different
isotopic compositions, the strong dependence of Q on the
parameter &2 was found experimentally in the temperature
range dominated by the drag thermoelectric power. We
discussed two mechanisms — the manifestation of elastic
Rayleigh scattering processes in the two-step phonon drag,
and the renormalization of the anharmonic phonon attenua-
tion in the weak localization regime. These two mechanisms,
broadly speaking, lead to the decrease of Q with increasing &2.
However, the specific mechanism of suppression of phonon-
drag processes still awaits detailed theoretical analysis.

4. Isotope effects in the electric resistance
of metals

Isotope effects in the phonon electric resistivity p of metals are
mainly due to the change in the phonon spectrum brought on
by the isotopic replacement of lattice atoms. In chemically
pure substances, finite resistance also arises because of the
static disturbances of the crystal lattice near isotopic impu-
rities. In addition, the isotope effects, in principle, may
influence the phonon-drag processes. It is usually assumed
that the role of isotopes in the properties of the electron
subsystem of metal (the shape of a Fermi surface, the
dispersion law) ought to be secondary.

Observe that in the region of relatively high temperatures
(T = Tp/3) the resistance ceases to depend on the isotopic

composition, because the electron—phonon interaction is
quasi-elastic, and hence

p x <u2(l =0)).

4.1 Effect of deformation of phonon spectrum because

of the change of isotopic composition

Yu Kagan and one of the authors demonstrated in Ref. [78]
that in the general case of monoatomic crystals with the mean
atomic masses M. and MY ), the isotope effect in the phonon
resistivity of metal is described by the universal relation of the

form
2 0
M. M
M@,T’),/ﬁ, —T,/%. (4.1)
M. M

Equation (4.1) was actually obtained for the monoatomic
cubic crystals. As a matter of fact, this formula has a wider
range of applicability and holds true for crystals with
arbitrary symmetry. This circumstance is related to the fact
that the polarization vectors in monoatomic crystals, unlike
the phonon frequencies, do not depend on the atomic mass
(see Appendix B). The expression of the type (4.1) is valid for
the individual components of the electric conductivity tensor
reduced to the major axes. Relation (4.1) is also found in the
context of Bloch — Griineisen theory, according to which (see,
for example, book [9])

p(M, T)4<T2)5Js(;];>p(TD),

J(r%) - J/ = 1>[Zlnfzexp<—zn |

Here, the parameter p(7p) is the resistivity in the classical
limit at 7= Tp, and p(Tp) o« MT5>. In the low-temperature
range, when p obeys Bloch’s law, from Eqns (4.1), (4.2) it
follows that p oc M>T3. So that the isotope effect in the
resistance is described by the relation

(4.2a)

(4.2b)

M£2) _ M£'>
(1)
C

p(ME, T) —p(M", T)

p(MD, T) h 43

In this way, the change in the phonon spectrum owing to the
isotopic substitution leads to the linear effect with respect to
the mass difference at low temperatures. It is interesting that
the resistance in the case of a heavy isotope is higher than in
the case of a light isotope. Generally speaking, the isotope
effect may be as large as 10%. At higher temperatures, as
indicated above, the resistance ceases to depend on the mass
of the lattice atoms, and hence on the isotopic composition.
It should be emphasized that the main contribution to the
resistivity p(7T') of simple metals with the one-sheet Fermi
surface (alkali metals, aluminium) comes from the electron
scattering umklapp processes (U-processes). At low tempera-
tures, when the long-wave phonons are only excited, the
umklapp transitions are only possible for the electrons
located on the isolated ‘hot spots’ of the Fermi surface (i.e.
in the domains where the electron relaxation rate is at a
maximum). Such transitions occur with the participation of
phonons with a certain characteristic frequency o, (qmin)
(Fig. 16). In such a situation, the resistivity may vary
according to the exponential law: p(7T) ~ exp(—fiwy, /ksT),
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Figure 16. Electron—phonon umklapp processes in the scheme of repeat-
ing bands.

and the effect of deformation of the phonon spectrum
brought on by the isotopes must be heightened.

Observe that in the case of electric conductivity the fine
structure of the nonequilibrium electron distribution function
is determined by the anisotropy of the electron—phonon
interaction due to the umklapp processes. The anisotropy of
the phonon spectrum sharpens the singularities of the
distribution function.

For most metals, the Fermi surface consists of many
sheets and is very complicated. Division of the electron—
phonon processes into the normal processes and umklapp
processes does not cover the entire diversity of possibilities.
We must also consider the scattering processes in which the
nonequilibrium electrons either stay on the same sheet of the
Fermi surface or move from one sheet to another. Such
processes are usually referred to as, respectively, intrasheet
and intersheet processes. Notice that the intersheet processes
give rise to a specific anisotropy of electron—phonon
interaction, caused by the local peculiarities of the Fermi
surface topology.

There are several types of peculiarities innate to the
Fermi surface: (1) regions of closest approach of the sheets
in fixed directions, so that the gap between the sheets
remains finite (gap case), and (2) conical points of contact
of sheets (zero-gap case). Such points occur for those parts
of the Fermi surface where the spin—orbit interaction owing
to a crystal symmetry does not remove the degeneration in
the electron spectrum. All metals with the HCP (hexagonal
close packing) structure necessarily exhibit degeneracy.
Peculiar features of the electron spectrum also include thin
bridges, very small split-off cavities, narrow layers of open
trajectories (see details in monograph [79]). For the elec-
tron—phonon intersheet transitions the law of conservation
of momentum is expressed as follows: k, = k; +q + Qy»,
where Q,, is the distance between the centers of the sheets 1
and 2. In the region of approach of the sheets the electron
may be efficiently scattered to large angles at relatively low
temperatures. Such processes freeze out at such 7 for which
the momentum of acoustic phonons with the frequency
o(q) < kgT/h satisfies the condition ¢ < 8k (where ok is
the gap width). Accordingly, we may speak again of hot
spots, this time, however, on separate sheets. In such a
situation the effect of isotopes may once again be more
pronounced than it would follow from formula (4.3).

The results of just a few experimental studies concerned
with the isotope effects in the resistance of metals have been
published. In the earlier works, the linear isotope effect was
studied with lithium [80—82] and cadmium samples [83].
Figure 17 depicts the temperature dependence of the
resistance of lithium isotopes, and Fig. 18 illustrates the

R(T)/R(293 K)
T

0 100 200 300
Temperature, K

Figure 17. Experimental temperature dependences of electric resistance of
SLi and 7Li isotopes [82]. Typical dimensions of the specimen are:
L =25 cm, @= 1 mm, RRR (°Li) &~ 590, RRR ("Li) ~ 730.
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Figure 18. Temperature dependence of the relative change of electric
resistivity of cadmium samples with different isotopic compositions;
n=[p:(T) — p;(0)]/[p1(T) — p,(0)] — 1, where p; is the resistivity of the
specimen with a given isotopic composition, normalized to its resistivity at
T =291 K; p, is the same for the specimen with the least isotopic mass
M. =108.2 am.u. [83]. Typical dimensions of the specimen are:
L =60 cm, &= 0.65 mm, RRR ~ 300—400.

relative variation of the resistance of cadmium isotopes. The
results of these experimental studies agree well with the theory
at temperatures above about 20 K, where chemical impurities
have little effect on the temperature dependence of the
resistance.

Accurate measurements of the resistance of lithium
isotopes °Li, 7Li, and the isotopic alloy 7*°Li at low
temperatures, carried out in Ref. [84], allowed separation of
the effects caused by chemical impurities from the isotope
effects. Observe that isotopic substitution leads to the
deformation of phonon spectrum, which, as demonstrated
above, changes the temperature dependence of electric
resistivity at low temperatures (Fig. 19). Chemical impuri-
ties, in turn, create static disordering in the lattice. Elastic
phonon scattering by point defects in lithium, whose Fermi
surface is nearly spherical, may be approximately regarded as
isotropic. Accordingly, for T < Tp the impurities suppress
the fine structure of the nonequilibrium part of the electron
distribution function &fx, characteristic of a perfect crystal,
which originally arises because of the anisotropic inelastic
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Figure 19. Temperature dependence of the isotope effect on electric
resistivity for ‘pure’ lithium specimens with °Li and 7Li isotopes;
nan = ('p = °p)/p [84].

scattering umklapp processes. The dependence p(7) is also
altered as a result of this impact (see, for example, the review
by Bass [85]). Observe that for lithium both these effects must
have an important bearing on the dependence of p on 7.
Figures 20 and 21 show theoretical data on the change in
the nonequilibrium part of the electron distribution function
6fx on the Fermi surface (FS) in a regular crystal. The trivial
dependence &fy ~ k, is illustrated in Fig. 20. The nontrivial
dependence of 6fx on kg is described by the function of the

type
~ Ofu(kr)

= — —
g1

3y (kp) k. .

Stereographic projections of the curves dg,(kr) = const for
three values of the temperature are depicted in Fig. 21. ‘Hot
spots’ on FS occur in the region near the point (110). As
follows from the diagram corresponding to the temperature
T/Tp = 0.05 at which the umklapp processes freeze out, the
value of dg, is the lowest at kg € (110). The nonequilibrium
electrons ‘leave’ that region of FS where they are scattered
most efficiently. At temperatures 7/7p =0.02 and
T/Tp = 0.2, which are lower and higher than 7/Tp = 0.05,

(010)

(011)

(001)

(100)

36 (101) 54
— 0, deg

18 72

Figure 20. Stereographic projections of the curves k, = const; points are
the nodes of the quadrature grid for the irreducible part of the Brillouin
zone [86].

temperature to the residual resistance RRR =800), ’Li
(RRR =1000), Li (RRR =370), and the alloy of isotopes
7+6Li (44.5% SLi and 55.5% 7Li, RRR = 650) were studied in
Ref. [84]. The specimens were prepared in the form of a wire
approximately 30 cm in length and 0.5 mm in diameter. The
resistivity was measured by the standard four-probe method
using direct current. The experimental data for the isotope
effect 75, = ("0 — %) /% in the most chemically pure speci-
mens (RRR = 1000) are depicted in Fig. 19 with the solid line.
The dashed line in the same diagram shows theoretical results
obtained from the universal relation

where 7' =T./"M/°M. We notice that theoretical and
experimental curves lie close to each other.

Figure 22 shows the curves for specimens with a relatively
high content of chemical impurities. In this case the experi-
mental curves 2 and 3, which describe the isotope effect on p
in the mixture of isotopes:

the role of U-processes in the electric resistance is less n = "0 —Cp (4.4a)
important. Accordingly, the value of 3g, at kg € (110) is less 5p 7
(in magnitude). Tp—T+6p

Four groups of lithium specimens with varying degree of n' = 5 ) (4.4b)
chemical purity: °Li (ratio of the resistance at room p

(010) 72 T/Tp = 0.02 (010) 72 T/Tp = 0.05 (010)

(011)

(100)  (001)

\%deg
(110)

) 18

Figure 21. Angular structure of the nonequilibrium electron distribution g(kg) for lithium.
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Figure 22. Temperature dependence of the change in electric resistivity
n(T) of lithium caused by the isotope effect and the phenomenon of
isotropization. Solid curves are plotted from experiments, and dashed
from calculations: 7 Mim = (oim = '0)/70. 2 — Nhrs theor =
(0 =%0)/%, 3 — Mypweor =0 =""p)/ 0. 4 — u'=
(M9 = 99)/°p = tljps + i S— 1" = (o =77%p)/Tp = nixyy + i, [84].

do not fit in with the theoretical curves 4 and 5 calculated
from the universal relation. The reason is that a 7*°Li
specimen differed from 7Li and °Li ones not only in the
isotopic composition but also in chemical purity: the 7+6Li
specimen was less chemically pure than the 7Li and °Li
specimens. The influence of dfy isotropization with foreign
impurities on the resistivity p(7) is described by the para-
meter 1, = ("pim — 'p)/7p which defines the relative differ-
ence in the resistivities of ‘dirty’ and ‘pure’ ’Li specimens. The
corresponding curve in Fig. 22 is marked with the number /.
Taking the impurities into account, in place of expressions
(4.4) we get

(4.5a)
(4.5b)

' = ans + Wi

" =ty = Mim -
In other words, curves 4 and 5 can be represented as the sum
and the difference of the curve / and curves 2 and 3.

In this way, the isotopic lithium alloys were employed for
observing a significant change in p(7") caused both by the
isotopic deformation of the phonon spectrum and by the
partial suppression of the fine structure of the nonequilibrium

part of the electron distribution function dfx owing to the
phonon elastic scattering by foreign chemical impurities.

4.2 Residual resistivity

Now let us discuss the issue of the residual electric resistance
of chemically pure metals comprising the mixtures of
isotopes. For qualitative approach, we assume that the
electron Fermi surface is nearly spherical. Then for the
description of the residual resistivity we can use the expres-
sion of the form (see, for example, book [9])

_m 1 L_mkFJIdi i35()
Pr  ne? Tiso’ Tiso 7T5h3.Qo 0 2kp 2kg V-

(4.6)

Here we used the following notation: e and m are the
elementary charge and the electron mass, n is the electron
density, q is the scattering vector, and kg is the electron
momentum on the Fermi surface. Also, the factor S(q) that

characterizes the elastic Born scattering of electrons in the
lattice with a dynamic and static disorder is defined as

S(@) = 3 explia(Ra — Ra)] Vala) V(@)

nn’

(4.7a)

where R, = R + ¢, and V,(q) is the Fourier component of
the electron —ion pseudopotential.

The pseudopotential V7, which describes the electron
scattering from the nth ion, is the product of the static part
Vo, whose value does not change from one lattice site to
another, and the dynamic Debye—Waller (DW) factor
Wa(q) = ((qua(0))*) depending on the mass of the vibrating
atom:

Va(q) = Vo(q) exp {— WT@} ; (4.7b)

so that the difference V, — Vy is nonzero and leads to a finite
resistivity together with the field of static displacements.

Since the dynamic and static displacements are small
compared with the interatomic spacing, we may expand the
exponents in formulas (4.7) and keep only the first three
terms. The terms that contain delta-function with respect to
momentum do not give rise to electric resistance. Accord-
ingly, the scattering of the conduction electrons is described
by the expression of the form [87]

St~ 3 { 3 A A7 (@) + (66 (@) a€ @)

[l @) 4w - (@ @) am] . @

The explicit expression for the spatial Fourier component of
static displacements {(q) was obtained in the review [88, see
Section 3]. As far as the dynamic factor is concerned, in the
ideal lattice W, does not depend on the nodal index n. Because
of this, it is the Fourier component of the quantity
AWy = Wo(AM #0) — Wo(AM = 0) that occurs in Eqn
(4.8). We have then

1 .
AW(q) = Nz exp [1qR,<10)] AW,
n
1 M vs o
== ; exp [iqR] ¢’ AK

1 AM

o ofs
= _Eq&q/i M, Z Zojnaras -
q,/1)2

(4.9)

From the arguments put forward above it follows that the
first term in formula (4.8) describes scattering due to the
difference between the dynamic Debye — Waller factors of the
matrix atom and the isotopic impurity, the second term
describes scattering by near-impurity static displacements,
and the third term bears the responsibility for the interference
scattering.

If the impurities are regarded as isolated, then in the
calculation of resistivity the quantity 1/Nin Eqn (4.8) must be
replaced with the defect concentration c¢. In the case of
isotopic mixture in place of ¢ we have the isotopic disorder
parameter &2

We use the simplest model of the linear atomic chain (see
relations (3.15) and (3.16) from Section 3 of the review [88])
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and evaluate the quantities AW(g) and ¢{(¢q). Relying on
expression (4.9) and Eqn (3.13) from Ref. [88], we may show,
in the first place, that

AW(q) x —% «q*l?. (4.10)

At the same time, using Eqns (3.13a) —(3.13d) from the review

[88], we get
gt(q) o — 2 2 MM oy &l (4.11)
2 Wyq 2fy

Hence it follows that in the region of small and intermediate
values of the scattering vector q, where the potential V;,(q) is
not small, it is the phonon scattering caused by static
deformation of the lattice that dominates. In the range of ¢
close to 2kg (i.e. at large scattering angles), when
Va(2kg) < Vy(qg = 0), the contribution from scattering
caused by the difference of the dynamic factors W, may be
important as well.

In the framework of the microscopic theory of kinetic
coefficients relating to regular metals [89], the calculations of
residual resistivity for lithium, which has two stable isotopes
6Liand 7Li, were carried out in Ref. [87]. It was estimated that
the contributions to p,, associated with the difference in the
dynamic amplitudes of the electron—ion interaction and with
the fields of the static displacements near impurities, differ
approximately by a factor of five. The contribution caused by
a lattice distortion here dominates.

Notice that in weak metallic solutions with the standard
substitution impurities the residual resistivity is determined
via the processes of electron scattering by the defects, which
result from the difference of static amplitudes. The contribu-
tion to p, owing to phonon scattering by matrix atoms
displaced near a defect is relatively small. The exception are
the isoelectronic weak solutions, where the inclusion of lattice
distortion into consideration may change p, by several tens of
percent (see, for example, Ref. [90]). It is only in the case of
chemically pure metals with isotopic impurities that scatter-
ing processes related to static displacements may prevail.

Isotopic disorder in the lattice restricts the mean free path
of the conduction electrons. It is well knows that in the
nontransition metals at room temperature the free path is
determined by electron scattering from phonons, and (see, for
example, book [9]) Apy ~ 50 T,/ T, where Ty, is the melting
point. The value of Apy is several hundred angstroms. At
absolute zero temperature, in a metal with isotopic disorder
the mean free path Aj, associated with scattering caused by
the difference of dynamic amplitudes and static displace-
ments, to an order of magnitude is given by

1121 Vo(2kp) \?
Aiso ~ = - = ———2) App,
T (R) r<Vo<q=0>) h

(4.12)
where Y takes care of the resistance increase because of static
displacements. To an order of magnitude, the estimate
(?)/1*> ~ 1073 is valid. In the case of natural isotopic
mixtures of such metals as lithium, zinc and tin, we have
&> 10" For molybdenum, & ~ 6x10*. For these metals
Ajso ~ 0.1 cm, and disregarding the distortion (Y'=1) —
Aiso ~ 1 cm. Estimates show that in the case of strongly
disordered isotopic mixtures — for example, mixtures of
equal amounts of two isotopes — the mean free paths Ajs,
may decrease more than tenfold owing to the increase in the
isotopic disorder parameter &2

I Pomeranchuk was the first to point out in paper [91] that
chemically pure metals, which contain different isotopes at
lattice points, at zero temperature will exhibit finite residual
resistivity p, because of the dynamic disorder. According to
his theory, the resistance arises in a higher order with respect
to the electron—ion interaction than in the Born approxima-
tion. The isotope effect is due to the fact that the phonons
arising in virtual states in the scattering of electrons experi-
ence the influence of isotopic disorder. The resistivity p/
corresponding to this process is proportional to the para-
meter of the electron—ion interaction to the fourth power. As
compared with Eqn (4.6), the expression for p/ contains an
additional term [V (2kg)/ el:]z (where cg is the Fermi energy)
which for the normal metals is very small (see, for example,
Ref. [92]). Because of this, the contribution to the electric
resistance due to the process proposed by Pomeranchuk [91]
is apparently insignificant.

Kagan and one of the authors demonstrated in Ref. [7§]
that a finite resistivity p, in the lattice with isotopic disorder
exists already in the Born approximation. Namely, the true
pseudopotential a, of electron scattering by nth ion is the
product of the static part V, and the Debye—Waller factor.
As a result, the difference V, — Vy is nonzero, and the
residual resistivity appears already in the standard approx-
imation. The effects on p, of the fields of static displacements
{Ca}, which arise near the isotopic impurities, was analyzed in
Ref. [87]. The contribution related to the difference in the
dynamic factors was also taken into account.

To the best of our knowledge, the problem of residual
electric resistance in isotopically inhomogeneous metal has
previously been studied experimentally only by Zernov and
Sharvin [93] with tin of natural isotopic composition.
Measurements of the resistance of several single-crystal tin
specimens of varying degree of purity were performed with
contactless method based on measuring the moment of forces
acting on the spherical specimen in rotating magnetic field.
The diameter of the tin spheres was about 12.6 mm. The mean
free path of the electrons at T'— 0, which was about 3 mm in
the purest of all the specimens, may be restricted by scattering
from isotopes, because the theory [87] predicts the value of 1
to 10 mm. Detailed comparison with the theory requires
measurement data for specimens with different isotopic
compositions.

5. Conclusions

In the past decade, interesting and important results have
been obtained in the study of the effects of isotopic disorder
on the kinetic coefficients. In the first place we should
mention the studies of thermal conductivity »(7"), where the
influence of isotopic disordering of the crystal lattice is the
strongest. The experiments have been performed with perfect
single crystals of carbon, germanium, and silicon with
different isotopic compositions, including highly enriched
crystals, in a wide temperature range. It was found that at
room temperature the phonon scattering from the fluctua-
tions of isotopic mass restricts considerably the thermal
conductivity in crystals with natural isotopic composition.
For germanium and silicon, the change of x»(7) at the
maximum at low temperatures depending on the measure of
isotopic disorder &> was studied. As far as the theory of lattice
thermal conductivity is concerned, the phenomenological
Callaway model which takes into account the anharmonic
N- and U-processes has been extended to the case of systems
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with strongly anisotropic phonon spectrum. This model has
been used for studying the role of different processes of
phonon scattering. Thermal conductivity of germanium and
silicon was also considered in the context of microscopic
approach based on the straightforward solution of the kinetic
equation. A significant contribution from optical modes to
heat transfer was discovered. The fine structure of the
nonequilibrium phonon distribution function is also impor-
tant here.

Theoretical calculations performed so far permit us to
describe the effects of isotopic disorder on the behavior of
%(T') both at the maximum and at room temperature only at
the qualitative level. Considerable quantitative discrepancy
between the theory and experiment calls for more advanced
theoretical treatment, and in particular the study of the role of
anisotropy in elastic phonon scattering by isotopes.

Along with the heat transfer, where the isotopic disorder-
ing may lower the thermal conductivity by as much as an
order of magnitude at low temperatures, studies have begun
of the isotope effects on thermoelectric power Q(7) in
semiconductors. In the case of low temperatures, where the
main contribution to thermoelectric power comes from the
electron drag by long-wave phonons, the Rayleigh type
scattering processes (~ w*) are not efficient for these
phonons, and the quantity Q(7') should not depend on the
measure of isotopic disorder &2. The experiment revealed,
however, that in germanium crystals the magnitude of
thermoelectric power decreases considerably as & increases.
Such a behavior may be attributed to the suppression of the
two-step drag processes because of the isotopic disorder.
Other scenarios are also possible — for example, the
manifestation of weak localization processes in the anharmo-
nic phonon gas. As yet, there is no detailed theoretical
treatment of the results of this experiment, based on the
microscopic models for germanium. Observe that theoretical
analysis ought to be performed with due account for the
anisotropy of the phonon spectrum and inclusion of two
groups of phonons (/- and -modes). Also, the availability for
charge carriers of the electron and hole sheets of the Fermi
surface must be explicitly taken into account. The interference
between elastic and inelastic scattering processes which
considerably modify the steady distributions of electrons
and phonons may also be important. Note that in this case it
is also necessary to take into consideration the elastic
scattering of electrons from static displacements which arise
in crystals with several different isotopes.

The isotope effects in the electric resistivity p(7) of metals
are generally small. Observation of the linear (with respect to
the isotope mass difference) effect due to the distortion of the
phonon spectrum under changes of the isotopic composition
is hindered by foreign impurity atoms which initiate the
suppression of the fine structure of the nonequilibrium
electron distribution function. As far as the effects of the
second order are concerned, they lead to a finite electric
resistivity p, for T — 0. According to theoretical evaluations,
elastic scattering of electrons by static displacements near the
isotopes in chemically pure compounds may determine the
magnitude of the resistivity p,.

Modification of properties of single crystals, like changing
their thermal conductivity, by controlling the proportion of
isotopes is becoming a useful method in the production of
materials for various applications. For example, the isotopi-
cally enriched diamond proved to be a much better mono-
chromator of synchrotron radiation than natural diamond

[94]. A dramatic increase in the thermal conductivity of
isotopically enriched silicon, declared by Ruf and colleagues
[48], prompted an attempt to put this material to commercial
use in microelectronics (see the appropriate information on
the site of ISONICS company at http://www.isonics.com).

New high-precision data have been published in the past
10 or 15 years on the effects of isotopic composition of
semiconductors on their structural properties and electron
spectrum. This discussion, however, goes beyond the scope of
our review. Let us just remark that the review of first (mainly
experimental) data concerning isotope effects on structural
properties of solids was done by V S Kagan in 1962 [95].
Isotopic effects on the electron spectrum of semiconductors
are discussed in Refs [96—100].

In conclusion, let us make a few general remarks. From
theoretical standpoint, the study of isotope effects in solids is
a highly intriguing task. In most cases the change of the
isotopic mass is a small parameter of the theory, which gives
the opportunity of performing a consistent analytical renor-
malization of a given physical quantity in the form of a
functional of the spectral characteristics of the regular crystal.
This allows one to make detailed calculations based on the
tested microscopic models with the known values of para-
meters. Oftentimes, the isotopic shifts of concrete physical
quantities are determined by more or less equal contributions
from different effects. This calls for special care in the
calculations. It ought to be mentioned also that the study of
isotope effects resulting from isotope substitution is often a
good touchstone for more general theories and theoretical
models.

As for the experiments concerned with the study of
isotope effects on the properties of solids, it must be said
that they are, as a rule, expensive and laborious, and also
difficult to set up because of the need for relatively large
amounts of stable isotopes. In the past, the facilities for
separation of isotopes used to work almost exclusively for
the military applications, which limited the availability of
isotopes for scientific purposes. After the end of the cold war,
however, the situation changed, and new stable isotopes have
become available. Russian and Western scientists were able to
join their efforts in the studies of isotope effects in solids, and
this cooperation proved to be very advantageous and
successful. Considerable progress has been made in the
production of chemically very pure and structurally almost
defect-free semiconductor crystals with the predetermined
isotopic composition, including highly enriched (almost
single-isotope) crystals and materials with highest possible
isotopic disorder. For example, large single crystals of
diamond, germanium and silicon were fabricated. Extensive
studies of isotope effects on static, dynamic and kinetic
properties allowed development and validation of various
experimental and theoretical approaches, while accomplish-
ing important practical tasks. We may say that now a new
direction appeared in applied physics — isotopic engineering
of materials [97, 101, 102].

Many specialists from various countries have contributed
to the study of isotope effects in solids — far too many to be
named here. We can only try to name those whose contribu-
tion is really outstanding — Professor M Cardona and his
group from Max-Planck-Institut fiir Festkorperforschung in
Stuttgart (lattice constant, phonon and electron spectra of
semiconductors, thermal conductivity), Professor E E Haller
and K Ito (Lawrence Berkeley National Laboratory, USA —
growing of germanium crystals with different isotopic
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compositions and study of their properties), T Anthony and
W Banholzer (General Electric Company — growing of
isotopically modified diamonds and study of their proper-
ties), Professor V I Ozhogin (Kurchatov Institute, Moscow —
isotopes for semiconductor materials and study of isotope
effects).
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6. Appendices

Appendix A. Selection of moments

At low temperatures, the phonon—phonon transitions are
essentially inelastic. Since only the phonons with small quasi-
momenta are excited, the umklapp transitions are possible for
the nonequilibrium modes that occur only in a certain part of
the Brillouin zone. As a result, the transition probability
P(1,1") in the regular crystal must depend both on the absolute
values of q and q' and on their relative orientation in the space
of a reciprocal lattice. The normal processes ensure the
availability of a finite number of nonequilibrium modes in
the region of their most efficient umklapp scattering. The
presence of different isotopes in the lattice, from which the
phonons experience elastic scattering, gives additional iso-
tropization to the nonequilibrium phonon distribution
function @(/). Such an isotropization occurs at temperatures
when the rates of inelastic scattering by phonons and elastic
scattering by impurities are equal to an order of magnitude. In
the case of strong anisotropy of the phonon spectrum (like in
germanium), which is associated with the weakly disperse
transverse modes, the elastic scattering due to isotopic
disorder is also found essentially anisotropic (see, for
example, Ref. [45]). Therefore, at low temperatures, because
of the U-processes and spectrum anisotropy, it is basically
important to explicitly take into account the nonstandard
structure of the distribution function @(/). As indicated
above, at T > Tp/6 the anharmonic scattering processes of
different types are efficient, and all groups of phonons are
excited. The role of isotope scattering is then minor. In such a
situation, even the standard distribution ®,(/) o< v.(l)
ought to give an adequate description of the actual distribu-
tion with respect to momenta. However, the strong aniso-
tropy of the phonon spectrum can affect the distribution
function @ in this case as well.

In view of this, we would like to present the regular
method for construction of linearly independent moments
that occur in the expansions for the stationary distribution
@,(I). By definition, @,(I) = w(l)®,(I) is a periodical
piecewise-continuous function with the lattice spacing as a
period and exhibiting the point symmetry group of the
crystal. Function ® Sl ) can be expanded in terms of the
functions g™ (1), j&’ (q). Then the moment g\ is trans-
formed according to the vector representation and char-
acterizes the angular dependence of the distribution. The
moments of the type f/'-(r’)(q) = (¢/qp)”" (a = 0,n,) account
for the dependence of the distribution on |q|. If q is given
outside the first Brillouin zone, then we must consider the
quantity q + B, where B is one of the vectors of the reci-
procal lattice.

According to the Riesz— Fischer theorem, if {¢(r)} is the
complete orthonormal set of functions, and the sequence of
numbers 7, is such that the series Y °° 2 converges, then
oW 4+ 1,0 + ... converges on average to ®. According to
the uniqueness theorem, {#,} specify uniquely ®(q) almost
everywhere in the domain of definition. In particular, if ®(q)
is continuous, then it is continuous everywhere.

Let us consider the moments of the type gEf”J in greater
detail. They are assumed to exhibit the same properties as the
components v*(/) =0w(l)/0¢* of the vector of group
velocity. For convenience of notation we shall drop the
mode polarization index j in this section.

On the strength of these arguments, for the moments
describing the angular dependence of @,(q) it will be
convenient to select functions of the form

g;im)(q) — »U(il> . U(ij)7

. b h+b+...+i=m, (A1)
where i; are integers. In the case of cubic crystal, at the
symmetry transformations G € O), the component v, (k) is
transformed as the basis function of the irreducible represen-
tation v = Fj,. The moments (A.1) atn # 1 realize the basis of
the reducible representation F,, which is the direct product of

n representations I'y:

r, :éf\,.
i=1

As for the function @,, it is transformed according to the
irreducible representation Fj,. Therefore, from the set of
moments (A.1) which form the bases of representations
(A.2), we must select the functions whose symmetry type is
Fla.

In the case of metal with cubic symmetry, the required
moments can be found with the aid of the projection
operators

POAL o
=—> 1,(G)G.
g8 %

(A2)

(A.3)

Here, f, is the dimension of the irreducible representation v,
and y,(G) is the character of the irreducible representation v
for G. We have

(A4)

where g, is the basis function of the reducible representation
r,,.

Bearing in mind that the components v, vy, and v. of the
group velocity are transformed under the action of G as the
coordinates x, y, and z, we use (A.3) and (A.4) for finding the
functions g, in a straightforward manner.

The total number of linearly independent functions of the
form (A.1) for a certain m is (m + 1)(m + 2)/2. The number
of linearly independent moments of the type {g&'”’ } that occur
in the expansion for &,(q) is much less. This latter number is
given by the multiplicity of occurrence of the vth representa-
tion of m, in the reducible representation I, . If we know the
characters [¢"]G of the representation I',,, then

& = P(v)gn s

m = S et (O, (A53)
C

where g¢ and g are the numbers of elements in class C and in
the group, respectively. By definition, the representation I,
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realized by the functions of the form vff,‘) . v§j7> is symme-

trical with respect to all indices «; ...o;. The characters for
such representations are found from the following formula
[93]

?(G) ... 1"(G)
(G=» =———"=2 -~ A.6
'] {pz} p112pa! .. onpy! (A-6)
In (A.6), p; are positive integers. Symbol {...} denotes
summation over all possible sets of p; that satisfy the
condition

pL+2p+...+np,=n.

Table A.1 gives the characters of tensor representations
Iy = @', I'1, for cubic crystals; m specifies the multiplicity
of occurrence of I'}, in I, and in the equivalent bases (set of
linearly independent moments) of the irreducible representa-
tion I'y,.

Table A.1. Characters of tensor representations I',, and the equivalent
bases for the irreducible representation I'j,. m is the multiplicity of
occurrence of I'y, in I, for the group Oy,

n Class m Bases
E 3C} 6Cy 6Cy 8Cs
1 3 -3 1 -1 0 1 X

[\S)

3 w -2 0 =2 X3, x(y? + 2%)

5 21 -3 1 =3 0 4 X5, 307+ 22, x0* + 24,
xy222
7 36 -4 0 -4 0 6 X, x4 22),5 3(er“)
x(0 +28), x(r*27 + 724,
X3z

9 5 -5 1 =5 1 9 X0, X7+ 22), ¥+ Y,
X300 +28), x(08 + 28),
x(y720 +y02%),
B+ )2), B2,
xptz

In addition to crystals with a cubic structure, we shall
also consider crystals with hexagonal and tetragonal
structures, which possess the point symmetry of groups
D¢, and Dy, respectively. The coordinate z along the
symmetry axis of the fourth order for group Dy, and of
the sixth order for Dg,, realizes the one-dimensional
irreducible representation denoted by 4,, for both groups,
and the coordinates x and y are the bases of the two-
dimensional irreducible representations (Ej, for Dg;, and E,
for Dy;). For this reason, the polynomials of the form xiyjzk
can be represented as the product of functions from the
bases of tensor representations I, = ®;7:1A2u and I'),, =
X', (Ey, or E,). The representation I', for all n is one-
dimensional; z for even n is the basis of 4;,, and for odd n
the basis of A4,,. Table A.2 gives the characters of
representations I, for Dg, and Dg,, and the equivalent
bases of representations 41, and Ej, (or E,).

Tables in Ref. [96] give explicit formulas for the simplest
vector functions A(k) compatible with the symmetry of
crystals and textures, with the results for most of the crystal
classes and textures. Using these tables, one can find the first
two or three additional angular moments.

Observe that when the distribution is selected in the form

@-(1) = v:(l) o(l) Fi(q) ,

Table A.2. Characters of tensor representations I', and I',, and the
equivalent bases for irreducible representations Aj, (n even) and E,
(n odd) for groups Dy, and Dg,. Class for Dy, is marked with asterisk.

Class Dy;,/Dg;, Bases
n
E° G5 2GC; 2G5 2Cs 2U5 2U; Dap Den
E G 30, 3U,
1 2 =2 -1 0 1 0 0 X X
2 3 30 -1 0o 1 1 (x* + %) (x? 4+ %)
3 4 -4 1 0 -1 0 0 X2, X3 x(x% 4 %)
4 5 5 -1 1 -1 1 1 x34x4+0 2+)2)°
5 6 -6 0 0 0 0 0 xHxtx x(x2+7)%
(v = 3x%)
6 7 7 1 —1 1 1 1 xHA2+)%, (2477
O 420 X0 — 15x4)°+
F15x2p* — 0
7 8 =8 -1 0 1 0 0 x4  x(x2+17)°,
xy0, X7 X (xt + T4,
xy? (v = 3x%)x
x(x* +37)

by and large the description of the angular dependence can be
given in terms of harmonics. They are represented as a
combination of spherical harmonics and exhibit the appro-
priate crystal symmetry. Such harmonics for hexagonal,
tetragonal and trigonal crystals are defined in Ref. [97].

Sets of moments of symmetrized and linearly independent
{g1 } can also be used in the problems of electric conductivity.
In particular, they have been used for analyzing the low-
temperature electric resistance of metal lithium with the one-
sheet Fermi surface. It was assumed that the structure of
lithium was cubic. The following moments were taken into
account in the solution of the kinetic equation for defining the
fine angular structure of the nonequilibrium part of the
electron distribution function:

sznaa
=Z%nm
=D v,
g =l + o+ o) g(n),
5):21;;%,
gi) (03 + 0 + %) gs(m)
=Zwv
o

g¥ =@+ +od) g,

(1)

&y —gv

(n) Y

where v, is the electron group velocity, and n is the unit vector
in the direction of an external field [98, 99].

Notice that in the theory of electric conductivity in the
general case of multisheet Fermi surfaces, as a rule, the Fermi-
surface harmonics are utilized (see, for example, monographs
[98, 99]).

Appendix B. Polarization vectors in a monoatomic lattice

Let us consider the basic equation used for defining the
eigenfrequencies w(/) and the polarization vectors e(k | /)
for the vibrational modes / = {q, j} (q is the quasi-momen-
tum, j is the polarization index) for the monoatomic crystal
with an arbitrary isotopic composition (marked with super-
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script ¢). We have
wi(l) ek 1)

Z ¢, (k

e (K'|1). (A7)

Here, @, (kk' | q) is the dynamic matrix of the crystal, o and
o' are the Cartesian indices, k is the number of atomic
position in the elementary cell. Matrix @ is given by the
expression

1 -
o (k! | q) =— %, (k" | q)

m'k") exp[ig(RY — RY)]. (A.8)

NM po
In this equation ¢, (mk, m’k’) is the matrix of the second-
order force parameters, m is the lattice point vector, and N is
the number of elementary cells. Observe that the matrix @
does not depend on the mean mass M..
As demonstrated in our study [88], in the case of a
monoatomic crystal the frequencies of vibrational modes
obey the relationship

dinwl(l) AM\® AM (i)
dln M, *_HO((MC) "M 7) (A.9)
Hence it follows that
wc(l) = w(l)M;'?. (A.10)

By definition, the value of w(/) does not depend on M..
Now we substitute (A.10) into (A.7). Using also relation
(A.8), we get

WD) ek [ 1) = @5, (kk' | q) e (k' | 1). (A.11)

ko

From this equation it is immediately seen that, unlike the
phonon frequencies, the polarization vectors e(k | 1) do not
depend on the mass for a particular isotopic composition.
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