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Abstract. In the present paper we discuss various aspects of the
’t Hooft model for two-dimensional QCD in the limit of an
infinite number of colors in the Coulomb gauge. The properties
of mesonic excitations are addressed, with special attention paid
to the pionic one. The twofold role of the pion is discussed: being
a genuine ¢q state it is also a Goldstone boson of two-dimen-
sional QCD. In particular, it is demonstrated explicitly how the
soft-pion theorems are satisfied. It is pointed out that the
Coulomb-gauge choice seems to be indispensable in studies of
hadronic observables with the pions involved.

1. Introduction

Two-dimensional QCD in the limit N. — oo (the 't Hooft
model [1]) was first considered in 70s. Since then the 't Hooft
model has been widely used as a toy laboratory for studies of
various aspects of strong interactions. The theory is relatively
simple, as there are no transverse gluons in two dimensions;
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moreover, in the large- N, limit only planar graphs (Fig. 1) are
to be summed up, and the theory is exactly solvable.
Nevertheless, this is a truly relativistic field theory which has
a nontrivial content, resembling in such a way a realistic
QCDy case. Indeed,

1) the theory exhibits confinement and it is possible to
demonstrate explicitly the existence of the discrete spectrum
of the quark-antiquark bound states;

2) Poincaré invariance is maintained;

3) chiral symmetry is spontaneously broken;

4) the Goldstone boson responsible for the chiral
symmetry breaking is in the ¢g ground state.

The first point is an almost trivial statement, since the
Coulomb force is confining in two dimensions.

The second item is of paramount significance for hadronic
spectroscopy. It was demonstrated explicitly in Ref. [2] that, if
a nonabelian theory is quantized in the explicitly noncovar-
iant gauge, special care should be taken of the Lorentz
invariance. The quantum Poincaré algebra is closed only in
the color-singlet sector, which means that the spectrum can be

a b

Figure 1. Planar (a) and nonplanar, suppressed by N, (b) diagrams.




348 Yu S Kalashnikova, A V Nefed’ev

Physics— Uspekhi 45 (4)

evaluated in an arbitrary frame including, for example, the
center-of-mass frame as well as the infinite-momentum one.

The chiral issue was historically a bit controversial. The
initial studies in QCD, were performed in the light-cone
gauge. The pioneering paper [1] was followed by detailed
studies of spectra and wave functions of mesons as well as
hadronic interactions [3, 4]. A bit later an alternative
approach was suggested, based on the Coulomb gauge
Ay = 0 [2]. The main advantage of the light-cone quantiza-
tion is the considerable simplification of the spectra calcula-
tions, but straightforward analysis gives the perturbative
vacuum. The more technically involved version [2] yields a
nontrivial vacuum, and it appears that a nonzero quark
condensate exists for the massless quarks [5]. The latter
feature is confirmed by the sum rule calculations in the light-
cone gauge [6, 7]. At the hadronic level the apparent
discrepancies are connected with a peculiar form of the
pionic wave function near the chiral limit in the light-cone
quantization, as is discussed in Ref. [6], and will be explicitly
demonstrated below. That is why one is forced to employ the
sum rules and the Operator Product Expansion (OPE) to
arrive at reliable results in the pionic physics and the vacuum
structure [6]. On the contrary, the choice of the Coulomb
gauge does not lead to drastic singularities and enables one to
treat the pions on the same footing as other mesons. The
conceptual difficulties of the light-cone quantization were
resolved in the formulation using finite intervals [8], where the
equivalence of both versions was demonstrated explicitly,
clarifying the relationship between the light-cone and the
equal-time quantization.

Since then a lot of work in two-dimensional QCD has
been done, employing the light-cone gauge. Among the
questions discussed are the general properties of the OPE [6,
9] and heavy quark expansion and duality [10]. The calcula-
tions of spectra were performed in the framework of the so-
called discretized light-cone quantization beyond the
N, — oo limit [11]. A separate fascinating issue are the
studies of QCD, with adjoint fermions [12]. In the present
paper we discuss the properties of vacuum and low-lying
mesonic states built of light quarks in the Coulomb gauge,
with special attention paid to the chiral issues of the theory.

Quantization on the light-cone allows one to establish an
obvious connection with the dynamics of the parton model,
while quantization on the ordinary time hypersurface is
natural for another important branch of phenomenology,
the constituent quark model. Indeed, the spectrum of QCD,
is discrete, and the N, — oo limit suppresses additional quark
pair creation, so that the 't Hooft model is nothing but a
constituent quark model exactly derived from a nontrivial
relativistic quantum field theory.

In the constituent quark models the confinement is
usually modeled by a potential force. Then the gross features
of the light quarkonia spectra and decays are described
surprisingly well with the exception of the pion. Since one
cannot include chiral symmetry breaking (CSB) effects into
the constituent picture, there is no hope of reproducing the
pion as the Goldstone boson, and soft pion theorems cannot
be satisfied within any naive quark model picture.

The CSB phenomena follow from the most general
symmetry considerations and have nothing to do with the
particular mechanism of the confinement. One possible way
to include the soft pions into the quark model is to introduce
quarks and pions on an equal footing, as is done in the chiral
quark models (see, e.g., Ref. [13] and references therein).

Nevertheless, there are some results from the lattice simula-
tions [14] demonstrating that the confinement and the CSB
phenomena are present in the confining phase and disappear
in unison above the deconfinement temperature; so both
phenomena are interrelated dynamically.

A model was suggested many years ago [15], which
connects the confinement and CSB (see also Ref. [16], where
similar ideas were employed). The main ingredient of this
model is an instantaneous three-dimensional oscillator
confining force. Such a force does not follow from QCD
and, in addition, there is no gauge and Lorentz invariance in
this approach. An important development was suggested in
Ref. [17], where the QCD vacuum is parametrized by a set of
gauge and Lorentz invariant nonperturbative gluonic corre-
lators which are responsible for both the area law and the
chiral condensate formation. The quark model which follows
from such an approach should be able to reproduce, inter alia,
all pion properties. In this regard it is instructive to study an
exactly solvable theory with confinement and CSB, and the
’t Hooft model is a perfect toy laboratory for such studies.

Before proceeding further we would like to note that the
large-N¢ limit is essential in establishing the chiral properties
of QCD; [18]. The Coleman theorem [19] prohibits CSB for
any finite number of degrees of freedom in a two-dimensional
theory. It means that limits N; — co and m, — 0 are not
interchangeable. There is no contradiction with the Coleman
theorem if one considers the weak coupling regime where
my > g ~ 1/y/Ng, i.e., the limit of an infinite number of colors
is taken first (see Ref. [6] for the detailed discussion of this
issue as well as of the other phase of the theory which
corresponds to the strong coupling regime m, < g). The
theory is given by the Lagrangian

1

L(x) = =7 Fu(0)F, (x) + q(x)(iD —m) g(x), (L.1)

DA = (all - igAZ[a) s
and the large- N, limit implies that

2
N,
= %Nc:)oo const . (1.2)

Our convention for y matrices is

N=B=o03, y=li02, ys=a=7 =01. (1.3)

The theory is gauged by the condition

Al(Xo,X) ZO7 (14)

so that the only nontrivial correlator of the gluonic fields, the
gluon propagator, takes the form

Dgl (xo — yo,x —y) = D = (xo — yo,x —y) =0,

(1.5)

and the infrared singularity is regularized by the principal
value prescription, i.e., by means of an appropriate number of
subtractions, for example,

1
Dg (xo — yo,x — y) = -3 8 1x — y[ 8(xo — o) ,

dk dk
Jm Flk) — f oo
_ [@%)2 [F(k) = F(p) = F'(p) (k= p) = ... ], (1.6)

yielding a linear confinement for the interquark interaction
mediated by the two-dimensional gluon.
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The paper is organized as follows. In Section 2 a
Hamiltonian approach to QCD; in the Coulomb gauge is
developed. The bosonization of the model is performed
explicitly in the large-N. limit, and a generalized Bogolyu-
bov—Valatin transformation is employed to construct the
composite operators creating and annihilating bosons. The
pion wave function is found explicitly and the chiral proper-
ties of the theory are discussed. In Section 3 a matrix
formalism is presented, a matrix bound-state equation is
derived with special attention paid to the problem of the
truncated Hilbert space and Hermiticity. We clarify the role
of the backward motion of the ¢g pair in the meson. The
current conservation and the Ward identities are discussed as
well as the pionic vertex. Section 4 is devoted to strong
hadronic decays, where we check the low-energy theorems,
including the ‘Adler zero’ selfconsistency condition. Con-
cluding remarks are given in Section 5.

2. Hamiltonian approach

As is known from the pioneering work [1], the physical
degrees of freedom in two-dimensional QCD in the weak-
coupling regime are ¢g mesons. It would be quite natural then
to reformulate the model entirely in terms of compound
mesonic states, introducing a nonperturbative vacuum and
creation and annihilation operators for the mesons, as
excitations over this vacuum. The most natural framework
for such a task is the Hamiltonian approach to the model,
which we develop in this section. ! Note that this is possible in
a selfconsistent form due to an instantaneous type of the
interaction induced by Eqns (1.5).

This section is organized as follows. In Section 2.1 we start
from the Hamiltonian of the model in the Coulomb gauge,
introduce dressed quark fields and, following Ref. [2], derive a
gap equation (also known as mass-gap equation). We discuss
the numerical solution to the gap equation found in Ref. [5].
Section 2.2 is devoted to investigation of the vacuum energy
and identification of the chirally-symmetric and nonsym-
metric vacua. In Section 2.3 we introduce two-particle
operators and perform a generalized Bololyubov transfor-
mation to diagonalize the Hamiltonian of the model in the
mesonic sector. In Section 2.4 we discuss properties and
solutions of the bound-state equation, which appears as a
consequence of the second Bogolyubov transformation. A
special solution to the bound-state equation, the massless
chiral pion, is found analytically and investigated in
Section 2.5. An issue connected to the locality and the
Lorentz nature of confining interaction in two-dimensional
QCD is discussed in Sections 2.6 and 2.7. In conclusion we
turn to the chiral properties of the model and this is the
subject of Section 2.8.

2.1 Dressed quarks and the mass-gap equation
Starting from the Lagrangian (1.1) and following the standard
rules one arrives at the Hamiltonian of the theory in the form

.0
- | dxq+<z,x>(— ivs a‘Fm”/o) g(1.)
2

2 2

(2.1)

! The Hamiltonian approach to two-dimensional QCD in the light-cone
gauge was developed in Ref. [20].

& [ axarg 0 ate 0 4" 00 g(0.) Lot

Note that only the four-quark interaction enters the Hamil-
tonian (2.1) and this is a reflection of the fact stated in the
introduction that the only nontrivial gluonic correlator is the
gluonic propagator (1.5).

In four-dimensional QCD, possessing a much more
complicated vacuum structure, correlators of all orders
should appear, which gives rise to an infinite number of
terms with four-quark, six-quark, etc. interactions in the
Hamiltonian. In the meantime, it is reasonable to truncate
the QCD,4 Hamiltonian at the four-quark interaction level,
which corresponds to the bilocal approximation, when only
the (4A) correlator is left. > The interested reader can find a
detailed review of the given approach in Ref. [22].

The ‘dressed’ quark field ¢(x) in Eqn (2.1) is defined as
follows [2]:

Gui(t, x)= J% exp(ikx) [by(k, 1) ui(k)+ d (—k, 1) vi(—k)],

2n
(2.2)
bu(t,k) |0) = dy(1,—k)[0) = 0, b, (1,k)[0) = |g),

d;r([: _k) ‘0> = |Q> ) (23)

{ba(1,p) b (1,9) } = {du(t, —p) dj; (1, —q) } =213 (p — q) Oup,
(2.4)

T(k) = exp {—% 9(k)y1]7 (2.5)
where 6 plays the role of the Bogolyubov—Valatin angle.
Greek and Latin letters denote color and spinor indices,
respectively. Strong interaction between quarks implies that
the true vacuum state is described by a nontrivial 0, whereas
excitations over it bring a positive contribution to the energy.

In what follows we shall omit the explicit dependence of
operators on time. It can easily be restored at any inter-
mediate step, thus giving, for example,

ba(t, p) = bu(p) exp [ —iE(p) 1],

dy(t,—p) = dy(—p)exp [iE(p) 1] , (2.6)

where E(p) is the dispersive law of the dressed quark (to be
defined later).

The Hamiltonian (2.1) normally ordered in the basis (2.3)
splits into three parts (L is the one-dimensional volume):

H=LN. &+ :Hy: +:Hy:, (2.7)
where
Ev= J% Tr{(vsp + my) A-(p)
Y dk
o PR CER ) (8

2 Irreducible averages (cumulants) are meant here, which are defined as
((0)) = (0),((0107)) = (0102) — (01)(0,) etc. [21]. Due to the Lorentz
and the color invariances of the QCD vacuum (4j) =0 and, hence,
((A547)) = (45.47).

ety nty
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is the vacuum energy density,
N 0
Hy: = [ dx:gf (x)| —lys — ax ™o gi(x):
Jd, xdy ¥ = ‘Jdk:qf(x)

x [A4 (k) — A_(K)]qi(y): exp [ik(x — )]

is quadratic in quark fields, whereas the : Hy: part contains
four of them,

(2.9)

|x — |
R
(2.10)

2
Hy: = —%J dxdy :q"(x) t%9(x) g" (v) t“g(»):

We have introduced projectors onto positive and negative
states for convenience:
VO +
A+(p) = T(P) T (p).
One comment on the role played by different parts of the
Hamiltonian (2.7) is in order. The first term in Eqn (2.7)
defines the energy of the vacuum which is to be minimized.
The :H,: part describes ‘dressing’ of quarks, so that an
alternative approach to minimizing &, is the requirement
that : H,: be diagonal in terms of the quark creation and
annihilation operators, or, equivalently, that the anomalous
Bogolyubov term be absent. No matter which way is used, the
resulting equations for the Bogolyubov— Valatin angle 6(p)
and the dispersive law for the dressed quarks read [2]

(2.11)

E(p)cost(p) =m +% ][ T f 0’ cos 0(k) ,
(2.12)

. ) dk .
E(p)sinf(p) =p +§ ][ 7 )2 sin0(k) ,
which can be reformulated in the form of the gap equation for
the angle 0(p):

peos 0(p) — msin 0(p) = é } sin [0(p) — 0(k)] .

dk
(p—k)’
(2.13)

If a solution for (p) is known, E(p) can be easily found from
the relation

E(p) =mcos0(p) + psin0(p)
+5 f % cos [0(p) — 0(k)] .

The gap equation (2.13) is subject to numerical investigation
which was performed in Ref. [5]. The results for 6(p) and E(p)
are given in Fig. 2.

Notice several important properties of the functions 0(p)
and E(p):

(1) 6(p) is odd, whereas E(p) is even:

0(=p) = —0(p), E(-p)=E(p);

(2.14)

(2.15)

(2) solution for 0(p) remains nontrivial even in the chiral
limit, m = 0, and so does the solution for the dispersive law
(see Fig. 2);

(3) the function E(p) is not positively defined, as might be
naively expected (see Fig. 2).

The formal reason for the last property comes from the
regularization prescription (1.6), which defines the way of
subtracting an infinite self-energy constant. Thus a divergent
integral of positively defined functions might lead to a
negative result after the proper regularization.

One can easily check that

0(p —0)~p, 00)>0, (2.16)
J:fCOS@
B R e
=m 2.[0 2 ST e~ m 80(0), (2.17)

so that £(0) becomes negative for m smaller than some critical
value m..

This does not lead to a disaster as, according to the
findings of Ref. [2], only the color-singlet sector of the theory
is Lorentz covariant, whereas the quark sector is not color-
singlet and, hence, it may not be Lorentz covariant. Never-
theless, one has to be especially careful shifting the poles in the
quark propagator, paying attention to the sign of the product
of E(p) and the infinitely small positive constant ¢ [2].

0 0.5 1.0 /2
X

10
E(x)
5 —
2.11
m=0 018 100
I 1 1
0 0.5 1.0 /2

X

Figure 2. Numerical solutions for the Bogolyubov angle 0(p) and the dressed quark dispersive law E(p) for different values of the quark mass. The plots

are taken from Ref. [5], where x comes from the change of variable p =

(x), all dimensional quantities are given in the proper units of (2 )1/ 2
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Note that a simple analytical solution to the gap equation
(2.13) in the chiral limit was found in Ref. [2], which reads

E(p) = [p|— P

T

0(p) = 5 segnp, 7 (2.18)

Ipl’

where the symbol P stands for the principal value prescrip-
tion. It is clearly seen from Eqn (2.18) that for this solution
E(p) is not positively defined either.

The two solutions to the gap equation in the chiral limit,
the one given by Eqn (2.18) and the other, depicted in Fig. 2,
define two different phases of the theory. The chiral symmetry
is broken in the latter case only, whereas in the former one it
remains unbroken.

It was demonstrated in Ref. [23] that the analytical
solution (2.18) possesses infinite energy compared to the
numerical chirally-nonsymmetric one given in Fig. 2. Thus
the chiral symmetry is never restored in the 't Hooft model
and there is only one phase of the theory with chiral symmetry
spontaneously broken (see the next section for the details).
Thus, solution (2.18) is unphysical, but we still prefer to keep
it to exemplify some statements concerning the chiral proper-
ties of the model. In the next section we discuss this issue in
more detail.

Performing all necessary calculations with the precautions
discussed above, one arrives at the Hamiltonian of the model
which is diagonal with respect to the dressed quarks basis.
The contribution of the : Hy: part of the Hamiltonian (2.7) is
suppressed by an extra factor 1/4/N, and thus it can be
neglected in the single-quark sector of the theory:

dk
2n

Hi= LNGE, + Jf () [bF (k) ba (k) + d (—K) do(—K)].

(2.19)

Note that the result (2.19) itself has practically no value as
it deals with the gauge- and Lorentz-noncovariant sector. The
most important result of this section is the gap equation (2.13)
and the numerical solution to it depicted in Fig. 2. They will
be used intensively in what follows.

2.2 The vacuum energy.
Chirally-symmetric and nonsymmetric vacua
Let us return to the gap equation (2.13) and discuss an
alternative way of deriving it — namely, the minimization of
the vacuum energy (2.8) [23]. We consider the case of massless
quarks (m = 0).

It is convenient to introduce an excess of the vacuum
energy density for the theory with interaction over the free-
theory one:

AE[0] = 6,10~ 0] = = [ 32 psin0lp) ]

,LJM
) (p— e

where O (p) = (n/2) sgnp corresponds to the free (y = 0)
massless theory.

cos [0(p) — 0(k)] , (2.20)

3 In fact, any odd function 0(p) with an arbitrary number of jumps from
n/2 to —n/2 and back also satisfies the gap equation (2.13) [2]. Meanwhile
solutions of such a type do not reduce to the free theory when 7 tends to
zero and they will not be discussed.

The gap equation, following from the minimization
procedure,

0

readily reproduces Eqn (2.13).

To ensure that the solution to Eqn (2.13) indeed minimizes
the vacuum energy we use the following approach [23]. Let
O(p) be the solution to Eqn (2.21) corresponding to the
minimum of AE,. Then 0(p/A) stretched with an arbitrary
parameter 4 should enlarge the energy (2.20). Naive dimen-
sional analysis demonstrates that A, scales with 4 as

(2.21)

A&, :% C14% —yCy, (2.22)
with Cj, being positive constants. Then the stable solution is
provided by 4y minimizing the energy (2.22), i.e., by 4y = 0,
which corresponds either to the free massless theory, giving
A&, =0, or to the analytic solution (2.18). Both solutions
correspond to the preserved chiral symmetry. Thus one arrives
at a discouraging conclusion that there is no nontrivial
chirally-nonsymmetric solution to the gap equation (2.13).

In the meantime, the naive analysis performed above
completely ignores the fact that the vacuum energy (2.20) is
logarithmically infrared divergent due to the second term.
Introducing a cut-off and repeating the same steps, one can
conclude that the correct dependence of the vacuum energy
on the scale parameter A4 is as follows:

A&, :% C1A? —yCyln 4 +9C3 (2.23)
instead of the naive form (2.22). The constant Cj is
proportional to the logarithm of the cut-off and can be
removed by an infinite renormalization.

Note that the second term in Eqn (2.20) cannot be made
convergent both in the infrared and in the ultraviolet
simultaneously. Indeed, one can remove the infrared diver-
gence in Eqn (2.20), subtracting the energy corresponding to
the solution (2.18) instead of the free one. Then the resulting
integral appears ultraviolet logarithmically divergent and
leads to the same relation (2.23) but with the infinite constant
C; containing the logarithm of the ultraviolet cut-off.

The function (2.23) always has a minimum at

| C
Ao = Véa

which corresponds to the nontrivial solution of the gap
equation found numerically in Ref. [5] and depicted in Fig. 2.
In the meantime, from the form of the function (2.23) one can
see the logarithmic growth of the energy in approaching the
solution (2.18), which, as was discussed above, corresponds to
Ay =0.

Thus ones arrives at the conclusion, already mentioned
above, that the vacuum energy corresponding to the chirally-
symmetric solution (2.18) is infinite compared to that for the
chirally-nonsymmetric one depicted in Fig. 24 and, hence, no
phase transition of the chiral symmetry restoration is possible
in the 't Hooft model.

(2.24)

4 Once the logarithmically divergent term in Eqn (2.23) is proportional to
the coupling constant 7, then there is no problem with the free limit of the
theory, which also corresponds to 4y = 0. Indeed, when 7y tends to zero the
logarithmic term in Eqn (2.23) disappears, so that, as defined by
Eqn (2.20), the vacuum energy of the free theory is zero.
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Itis instructive to note that the very fact of the existence of
the chirally-nonsymmetric nontrivial solution to the gap
equation (2.13) is yet another consequence of the infrared
behavior of the 't Hooft model discussed above. Indeed, the
gap equation (2.13) was derived neglecting all effects of the
fermionic vacuum polarization [creation and annihilation
fermionic operators introduced in Eqn (2.3) correspond to
the so-called BCS approximation]. In the meantime, the chiral
symmetry can be spontaneously broken in the other two-
dimensional models for QCD, like the Gross—Neveu one [24,
25], but in order to have a nonzero chiral condensate one has
to go beyond BCS level, summing up fermionic bubbles,
whereas the equation similar to Eqn (2.13) has only a trivial
chirally-symmetric solution, giving (g¢) = 0.

2.3 Generalized Bogolyubov transformation

and mesonic compound states

In the previous section the first two terms of the Hamiltonian
(2.7) were considered. Let us turn to the third part, : Hy:. With
the substituted solution for the dressed the quarks, it
describes the interaction between them, which leads to the
formation of the ¢g bound states — mesons. In this section
we are to diagonalize the Hamiltonian (2.7) in the color-
singlet mesonic sector of the theory. To this end we introduce
compound operators which act on colorless pairs of quarks
and antiquarks [8, 26]:

1

Blp.r') == b))
N 1 + ]

M(p.p) = %ﬁ d(—) ba(),

M*(p.pl) = Jﬁvcb:md:(—m,

with the commutation relations being
[M(p,p') M*(q.4)] = (21)* 8(p' — ¢') 3(p — q)
D) 30 ) + Bl 1) 50— )}
2000w —d) o — ),
[B(p,p')B(q,4")]
= = (B30 =) = B4 ) 30~ )} = 0.
[D(p,p") D(¢,4)]
~ = (D) 3(0'=4)= Dla. ) Sp = )} = 0,

[B(p,p’)M(q7 q’)] = —%M(Cj’]’/) op—1q) N:oo 0,
(2.26)
(B r )M 0.4)] == M )30 =4) = 0.
[Dp.p)M(q,q)] = - \/2;—0 M@'.q)op — )~ 0.
[D(p,p') M*(q,4)] = ;;— M (p,q) o0 ~q) = 0.

With the new operators substituted, the Hamiltonian (2.7)
takes the form

H = LN&E, + /Ny J% E(R){B(k,k) + D(k,k))}

v dpdkdQ 0(p)—0(k) . 0(Q—p)—0(Q—k)
3G e
><{M+(p,p—Q)D(k—Q,k)+M+(p—Q,p)B(k—Q,k)
— B(p,p— Q) M(k — Q,k) — D(p,p — Q) M(k,k — Q)}

V) ~00) , /@ =) ~0@ =

X {B(p_ Q’p)B(k’k_Q) +D(p7p_ Q)D(k_ Q’k)
+M*(p—Q,p) M(k — Q,k)+M*(p,p — Q) M(k,k — Q)}

0(p) = 0(k) . 0(Q —p) —0(Q — k)
5 sin 3

x {B(p,p — Q) D(k,k — Q) + B(p — Q.p) D(k — Q.k)
+ M(pvp - Q) M(kf ka)Jr M+(p 7Q7p) M+(kak7 Q)} )
(2.27)

—+ cos

+ sin

where the : H, : and : H,4 : terms should have the same order in
powers of N and thus act together as opposed to the one-
body sector, where : Hy: was suppressed as 1/+/N..

A crucial step we are to perform now is to note that in the
mesonic sector of the theory one cannot create and annihilate
isolated quarks and antiquarks. Only colorless ¢g pairs can
appear, so that, creating a quark, we have to create an
accompanying antiquark and, vice versa, for each created
antiquark we have an extra quark. Thus the operators (2.25)
cannot be independent. Indeed, it is easy to check that the
substitution

1 d /!
B(p,p') = \/VJ% M*(q",p) M(q",p"),
’ 1 dq” + " ;o
D0t = | S M eI MEL ) 23)
C

satisfies the commutation relations (2.26).
Now one can neglect a number of terms in the Hamilto-
nian (2.27) and arrive at a simplified expression

H= LN.£, +[ ?ZQT;Z” {[B) + EQ - p)
X M (o= Q.p) Mlp—0p) =} | r fkk)z

X [2C(p.k,0) M (p — 0.p) Mk — 0,F)

+8(p,k, Q) (M(p,p — Q) M(k — Q,k)

M pp - QM (k= 0.0}, (2.29)
where
Clp.k,0) = cos 1) . 0(k) .02 ~p) . 0k
(2.30)
S(p.k, )= sin "2~ 0K) 4 0@ —p) 00— k)

2 2
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The operators M and M create and annihilate quark-
antiquark pairs, which are not mesons yet since Hamiltonian
(2.29) is not diagonal in terms of these operators. Symboli-
cally the operator structure of the Hamiltonian (2.29),

H~H0+AM+M+%B(M+M++MM), (2.31)
resembles the one appearing in the theory of Bose gas with
interaction, where the last term on the r.h.s. describes
interaction between particles and leads to appearing of
quasiparticles diagonalizing the Hamiltonian. Thus
Eqn (2.29) is subject to another Bogolyubov transformation.
Once operators M+ and M obey the Bose statistics, then the
general form of the transformation is expected to be

m =uM +vM™T,

mt=uM*+ oM (2.32)
with « and v obeying the standard bosonic condition
w1 =1. (2.33)

Of course, one needs to generalize transformations (2.32),
(2.33) in order to take into account the nonlocality of the
objects involved. Such a generalization takes the form [26]:

MI=J%{M+(11*Q7(1)</)’1(617Q)+M(q,q*Q)</>’i(q7Q)},
(2.34)
J q{ M(q—0,9) ¢" (¢, 0)+M (¢, — 0) 9" (¢,0)},

M(p—P,p) = {m.(P) ¢'.(p, P) — m} (P) 0" (p, P)},
n>0
(2.35)
M(p—P,p)" = {m (P) ' (p,P) — mu(P) @" (p, P)},
n>0

where ¢ stand for Bogolyubov-like functions # and v, so it is
not a surprise that they obey the following orthonormality
and completeness conditions, which are nothing but the
generalization of (2.33):

’1([7, Q) (PT(,])> Q)} = Oum,
(2.36)
dp m n m
[$2 1010 00070.0) .00 9707, 0)) =0,

[$2 [0, 0 200,00 -

NgE

[QD:_ (]77 Q) (p’j- (kv Q) _(pfi (pv Q) QD’L

Il
S

(2.37)

NgE

[(/)1(])7 Q) (P’i (k7 Q)_ (P’i O’v Q) (PZ_ (k7 Q)] =

Il
S

n

The functions ¢/, play the role of the meson wave
functions, moreover, one can easily establish the physical
meaning of both. Namely, ¢, describes the motion forward
in time of the ¢¢ pair inside meson, whereas ¢” is responsible
for its motion backward in time. We shall return to this issue
later on when discussing the properties of the bound-state
equation.

The physical meaning of the transformation (2.34) is quite
obvious. Indeed, in the theory with a nontrivial vacuum there
are two ways to produce a quark —antiquark bound state. The

(k, 0)] =2md(p — k),

first way, which works no matter if the vacuum is trivial or
not, is to create the ¢g pair directly, by means of the operator
M™T ~ btd*. In the meantime, if the vacuum is nontrivial and
contains the chiral condensate (gg) #0, then one can
‘borrow’ a finite number of correlated quark —antiquark
pairs from the vacuum and to remove redundant particles,
using the annihilation operator M ~ db. The wave functions
¢, describe the contributions of these two procedures. It
follows immediately from such a consideration that, e.g., for
the case of massive quarks ¢_ should be small since the
condensate of heavy quarks is suppressed by the large quark
mass.

It is easy to check that operators (2.34) obey the standard
bosonic commutation relations,

[m"(Q) m;(Q,)] = 27'CO(Q - Q,) 5nm )

(2.38)
[mn(Q) mm(Q,)] = [m;:—(Q) m;:—,(Q,)] = Ov
and diagonalize the Hamiltonian (2.29):
H= LN.E, + Z |52 oormit@imie). @)

if the wave functions ¢, are solutions to the bound-state
equation which we discuss in the next section. The vacuum
energy in Eqn (2.39) contains extra contributions compared
to thatin Eqn (2.29), besides that the vacuum structure itself'is
changed, so that the real vacuum of the theory, |Q), differs
from |0) introduced in Eqn (2.3) and they are related through
a unitary transformation.

2.4 The bound-state equation

and properties of the mesonic wave functions

As in case of the first Bogolyubov transformation performed
in Section 2.1, when the gap equation (2.13) appeared as a
condition of the Hamiltonian diagonalization, the second,
generalized, Bogolyubov transformation described in the
previous section also leads to an equation defining the
Bogolyubov-like functions ¢’.. This is nothing but the
bound-state equation for the mesonic spectrum of the model
[2:°

[E(p) + E(Q — p) — Qo] ¢.,(Q,p)
C dk

=Y m [C(p’ k, Q) §D+(Q7k)_ S(p7 k, Q) q)—(Qv k)]’
(2.40)
[E(p) + E(Q — p) + Qo] ¢_(Q.p)
dk
:y]f o [k Q)0 (.0~ Sk Q) 0. (0.1

STt is straightforward to generalize the bound-state equation (2.40) for the
case of a many-flavor theory. One needs to make the following modifica-
tions:

E(p) — En(p), E(Q-p)— E(Q—p), 0. — o1,

C(pvkv Q) = Chpy (]), k, Q)

= cos 0r, (p) — Or, (K) cos 0, (Q —p) — 0, (Q — k) ’
2 2
S(p.k, Q) = S, (p, k, Q)
—in 0 (p) — Bf, (k) sin 0r,(0 —p) — 0,(0 — k)
2 k)

where f} and f; stand for different quark flavors.
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Figure 3. ¢, and ¢_ components of the ground-state wave function in the meson rest frame for different masses of the quark taken from Ref. [5]. Note that
¢ are even functions of p for the ground state. The variable x comes from the change p = tan(x), all dimensional quantities are given in the proper units

of (29)'/2.

Unfortunately, analytical investigation of the system
(2.40) is possible only in some specific cases (we discuss one
of them in the next section), so that it is rather subject to
numerical studies. In Fig. 3 taken from paper [5] we give
numerical solutions for the ground state for different quark
masses. It is clearly seen that the ¢_ component of the
mesonic wave function is suppressed for large masses of the
quark in full agreement with the consideration presented
above. It is also suppressed for highly excited states [3].
Indeed, the case of higher excitations is very close to the
quasiclassical regime, where the answers for the spectra
coincide with those of the quantum mechanical problem of
the two-dimensional string with quarks at the ends [27],
which, in turn, is reduced to a quark potential model.

Let us demonstrate how the celebrated "t Hooft equation
comes out from Eqns (2.40) [2]. In the above mentioned paper
the Lorentz covariance was proved for the color-singlet sector
of the theory, so that the spectrum of mass of the ¢gg bound
states, following from Eqns (2.40), should not change when
one performs boosts, even for the limiting case of the boost
into the infinite-momentum frame, P — oo. One can easily
verify that in this case S(p,k,Q) — 0, whereas C(p,k, Q)
turns into a step-like function, so that the region of
integration on the r.h.s. of (2.40) shrinks to a finite interval,
0<x<1, with x=p/P being the share of the total
momentum carried by the quark (the ’t Hooft variable). The
¢_ component of the wave function dies out, and the system
(2.40) reduces to a single equation for ¢ :

Mp(x) = (’”2 —n e 2“’)w<x>

X 1—x

- 27][(}:1—{6)2 (), (2.41)
(p(x) = (_;EIOIC <\/%<P+(P,Q)> ) (242)

coinciding with the one derived by ’t Hooft in Ref. [1].

For further references we give here a couple of properties
of the wave functions ¢’} :

PL(pF P, FP) = ¢L(p,£P), (2.43)

(/)’zt(_pv _P) = 77/1(/7,;1& (1)7 P)7 (244)
and the parity of the state is (—1)”"“. The latter property
allows one to classify all mesonic states into two groups: odd
states, pions, with 1, = 1, and even states, ¢’s, with 57, = —1.
The odd and the even states follow one by one in the spectrum
starting from the lowest state, which is odd and it is expected
to be massless in the chiral limit. This state is nothing but the
celebrated chiral pion.

2.5 Pionic solution

In this section we return to the bound-state equation (2.40)
and find an exact solution to it. Indeed, one can easily check
that the set of the following two functions

?L(p, Q)

v (D) 00 ) 0)),
(2.45)

NAQ) =20 (246)

satisfies the system (2.40) if the quark mass is put to zero. This
solution turns out to be massless and thus it is nothing but the
chiral pion — the lowest negative-parity state in the spectrum
(see the discussion at the end of the previous section). As one
should anticipate, the norm of this state (2.46) vanishes in the
pion rest frame, whereas in the infinite momentum frame this
solution reads

2
¢"(r.Q) ;= 0. oL Q) Qjoo\/z7 0<p<0,
(2.47)
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and, after an appropriate rescaling [see Eqn (2.42)], gives
¢(x) =1, i.e., turns into the pionic solution found in
Refs [1, 3].

2.6 The one-particle limit

and nonpotential quark dynamics

Let us consider a heavy-light system containing a static
antiquark source placed at the origin and a light quark. The
most straightforward way to derive the bound-state equation
for this system is to take the one-body limit of the system
(2.40). For the infinitely heavy flavor one has (see footnote 5)

Efz (p) = mg, — 00, COS ()fz = 17 Sin ()fz = 07 (Pf,lfz =0,

(2.48)
then the coefficients in Eqns (2.40) become:
0 — 0, (k
Cflfz(paka Q) = COs Mv Sflfz(paka Q) =0.
(2.49)

From now on, in this section, we shall suppress all flavor
indices, having in mind that the angle 6(p) and the dispersive
law E(p) are for the light quark.

The system (2.40) reduces to a single equation [28]:
dk 0(p) — 0(k)

. k)2 cos 3 o(k),

so(p) = E(p) o(p) — v}
(2.50)

where ¢ = ¢, &= Qg — my,.

Note that the interaction in Eqn (2.50), given by the
integral term on the r.h.s., is essentially nonlocal and,
moreover, there is no parameter (except the mass of the
quark) which could allow one to treat this nonlocality
perturbatively, expanding the cosine under the integral.
Meanwhile, if the quark is also heavy, then the cosine reduces
to unity and Eqn (2.50) can be simplified even more, yielding
the local linearly rising potential between the constituents:

[Eo(p) +7Ix]] 0(x) = 20(x),
2

Eo(p)zx/mzm+p—+...

2m

(2.51)

2.7 A heavy-light system in the modified Fock-Schwinger
gauge and the Lorentz nature of confinement
To get a deeper insight into the structure of the interaction in
the "t Hooft model we discuss another way to derive the one-
particle limit (2.50) of the bound-state equation (2.40), based
on the Schwinger — Dyson equation for QCD; in the modified
Fock — Schwinger gauge (Balitsky gauge) [28]. The advantage
of this approach is the possibility of its generalization to
QCDy if an appropriate model for the QCD vacuum is used
[17].

First of all, note that the Coulomb gauge condition,
Ay (x9,x) =0, does not fix the gauge completely allowing
purely time-dependent gauge transformations. To fix the
residual invariance we impose an extra condition®,
Ao(xg,x =0) =0, which obviously breaks translational
invariance, but turns out very convenient if an infinitely

©1In 3 + 1 this gauge is usually introduced via conditions 4§(x,,0) = 0 and
XA“(x9,x) = 0[29].

heavy (static) particle is involved. In the case of the system
containing a light quark and a static antiquark source the
origin can be associated with the latter, which appears to play
an extremely passive role in the interaction providing the
white color of the entire object. The Green’s function of the
static antiquark is independent of the gluonic field in this
gauge, Sp(x,y|4) = Sp(x — »), and takes the form:

So(x) = ()| ! £I0 h(xp) exp (M)

1 —1
+ Yo

0(x0) exp (—iMxg)|0(x), (2.52)

where 1 denotes unity in the color space. The Green’s function
(2.52) also contains an infinite set of corrections of the form

1 dil
M dxn
which die out in the limit M — oo.

The Green’s function of the colorless ¢Q system can be
written in the following form:

! . i

d(x—y),

+1J dxy(i0 —m — /i)lp}
X P (x) Sg(x = ) ¥(»),

so that it turns out possible to integrate out the gluonic field
arriving at a Schwinger — Dyson equation for the light-quark
Green’s function S(x, y):

(i, — m) S(x,y) — (211)2"/J d?z7,S(x, 2) 7o Doo (x, 2)
x S(z,y) = 6@ (x — ). (2.54)

(2.53)

Note that

1

SCey) = Sa(x0)
possesses all properties of the full gQ Green’s function due to
the passive role of the antiquark discussed above. Then both
one-particle (e.g., the chiral condensate) as well as two-
particle (e.g., the spectrum of bound states) properties of the
system can be extracted from the single function S(x, y).

Special attention is to be payed to the gluonic propagator
Doo(x, ), which looks similar to that in the Coulomb gauge
(1.5) but contains extra terms breaking the translational
invariance and encoding the light-quark interaction with the
static antiquark,

- i
Doo(x0 — yo,x,y) = —5 (|x —y| = Ix[ = [y]) 6(x0 — yo)

= K(x,») 0(x0 — o) (2.55)
or in the momentum space:
K(p.q) =KV (p,q)+KP(p,q), (2.56)
i
KD (p,q) = -9,
i i

where we have separated the local and the nonlocal parts.
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From now on two different strategies can be adopted,
which finally lead to the same equation for the spectrum of the
heavy-light system. The first approach is based on a
diagrammatic technique with two different internal lines
prescribed to the local and the nonlocal parts of the kernel
[28]. It turns out that, in spite of the nonlinearity of the Eqn
(2.54), the two parts of the kernel can be considered separately
due to very peculiar properties of rainbow diagrams [28].
Thus the local part K1) defines the mass operator X (p), which
can be naturally parametrized by means of the dressed quark
dispersive law E(p) and the chiral angle 0(p):

2(p)=[E(p) cosO(p) — m|+ 7, [E(p) sinb(p) — p], (2.58)

with the system of coupled equations (2.12) being the
selfconsistency condition of such a parametrization. Then
the nonlocal part K@ eventually gives the bound-state
equation (see Ref. [28] for the details).

Here we choose the other strategy based on the Foldy—
Wouthoysen transformation of Eqn (2.54) [30]. First, we
rewrite this equation in the momentum space and use a
spectral decomposition for the light-quark Green’s function:

S(q10, 91,920, q2) = 21 (q10 — g20)
(+) —(+) (=) — ()
. (an (9) 90” (@2) | 5~ o0 (1) 9 (qz)>7

q1o — &, +10 qio + &, —10

£,>0 £,<0

(2.59)
where the positive- and the negative-energy solutions (p,(ft)
have been introduced.

To proceed further we assume that a Foldy — Wouthoysen
operator,

To(p) =exp (=3 0601 ),

diagonalizing Eqn (2.54), exists and that the angle O is the
same for all n’s. With such an assumption one has

o0 =) Te0)(g). o) = ) 7o) ().

(2.60)

[ 52 640) h(0) = om0 ) = 20000 — ),
(2.61)

so that the following relation holds true for the Green’s
function (2,59):
do .
Jﬁ S(w,q1,q2) = —iné(q1 — q2)
x [cos Or(q1) — 7, sinO(q1)],  (2.62)

where v = q10 — 420-

The Schwinger — Dyson equation (2.54) then reduces to a
Dirac-type equation in the Hamiltonian form:

(ap -+ Bm) 0(p) — 2 [ da dk [Bos Oe(q) + xsin O]

x K(p—q,k—q) (pg(k) = sn(pg . (2.63)

The local part of the interaction in Eqn (2.63), generated
by KU, leads to dressing of the light quark described by the
Bogolyubov—Valatin angle 0(p) and the dressed quark
dispersive law E(p) obeying the system (2.12). Therefore,
one comes to the conclusion that the Foldy angle Op(p)
coincides with the Bogolyubov—Valatin one,

05 (p) = 0(p). (2.64)

The nonlocal part of the interaction in Eqn (2.63), which
stems from K@, is also diagonalized then, so that one ends
with a Schrédinger-type equation

ndhlp) = E) ohr) — ] f"k>2 cos 2—0E)

oy (k),
(2.65)

which coincides with Eqn (2.50).

Comparing bound-state equation (2.65) with (2.40) one
finds that ¢° plays the role of the ¢, component of the heavy-
light system wave functions, whereas ¢_ vanishes due to
presence of the infinitely massive antiquark. Thus relations
(2.61) follow immediately from Eqns (2.36) and (2.37) with all
¢@_’s put to zero.

It is instructive to note that in the Coulomb (as well as
Balitsky) gauge the 't Hoof model is totally defined by only
one nontrivial function 0(p), solution to the gap equation
(2.13), which plays a threefold role:

it defines the Bogolyubov— Valatin transformation from
bare to dressed quarks;

it gives the Foldy angle, which diagonalizes the interquark
interaction in the model;

it entirely defines all quantities in the model, including the
bound-state equation.

Several comments concerning Eqn (2.54) are in order
here. The first one deals with the generalization of (2.54) to
the four-dimensional case. The attentive reader may notice
that the only two-dimensional constituent of Eqn (2.54) is the
gluonic propagator Dy, (x,z) taken in the form (2.55). The
equation itself survives in the case of QCDy, if one has an
appropriate form of the bilocal gluonic correlator 15,“, (x,z)in
the given gauge, and some arguments exist why higher order
correlators, which lead to many-fermion vertices higher than
four, can be neglected (see Ref. [31] for details).

Another interesting issue concerning Eqn (2.54) is that
one cannot simplify the interaction kernel substituting

70870 — Y0 S0%0 5 (2.66)

as proposed in Ref. [32]. The reason for this failure is
discussed in detail in Ref. [33] and comes from the fact that
the real parameter defining the substitution (2.66), with the
consequent expanding of Sy in powers of the one-dimensional
momentum, is the product of the quark mass and the gluonic
correlation length. The latter parameter also defines the
radius of the string formed between the color constituents in
the theory. A simple dimensional analysis demonstrates that
strings are infinitely thin in 1+ 1, as the system has too low a
dimension to allow them to swell.

One can arrive at the same conclusion inspecting the two-
dimensional correlator

(FF) =Tr <FAW(X) D(x,y) Fprr(y) @(y,x)>,

where @(x,y) is the standard parallel transporter along an
arbitrary path between the points x and y, which provides the
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gauge invariance of the entire nonlocal object [21] (see also the
review paper [22] for the detailed description of the forma-
lism). Using the gluonic propagator (1.5), one easily finds that
(FF) is proportional to the two-dimensional J-function in the
configuration space:

(FF) < 8¥(x ), (2.67)
i.e., it has zero correlation length T,. Thus the product mT,
is identically zero in two-dimensional QCD, which makes
the interaction essentially nonlocal and the quark dynamics
becomes not potential [33, 30].

Finally, Eqn (2.63) answers, at least in QCD,, the long-
standing question on the Lorentz nature of confinement. One
should distinguish between the Lorentz structure of the
confining interaction which is of the 7y, x y, type [see
Eqn (2.54)] and the effective interaction, which enters the
Dirac-like equation (2.63), describing the bound-state pro-
blem. As is clearly seen from Eqn (2.63), the latter contains
only effective scalar (terms ~ y,) and space vector (terms
~ Y071 = Vs) interactions.

2.8 The chiral properties of the model

in the Hamiltonian approach

In this section we discuss the chiral properties of the model
which are highly nontrivial and in many features resemble
those of four-dimensional QCD.

Most studies of the 't Hooft model have been performed in
the light-cone gauge, 4_ = 0, which leads to a perturbative
vacuum and to a simpler bound-state equation. In the
meantime, one has to employ rather sophisticated methods
to discuss the chiral limit of the model, when all functions and
distributions become extremely singular, and the whole range
of the 't Hooft variable definition (0 < x < 1) is squeezed to
small intervals near the boundary points x =0 and x =1,
which deliver all nontrivial content of the theory.

The Hamiltonian approach in the Coulomb gauge
developed above is free of this drawback. Indeed, to calculate
a matrix element of any operator between mesonic states, the
only relevant ones in the weak regime of the model, one is to
rewrite the above-mentioned operator in terms of operators
m™ and m introduced in Eqns (2.34) and to use the second
quantization technique to evaluate directly the matrix
element. The result is always expressed in terms of trigono-
metric functions of the angle 0(p) and integrals of them, which
can be worked out analytically in some cases, or treated
numerically. Anyway, with the numerical solution for 6(p)
found in Ref. [5] any value in the model appears calculable.

Let us make just one more comment concerning the
vacuum of the theory. As was mentioned above, the true
vacuum of the model is the mesonic one annihilated by the
mesonic operators,

my(P)|Q) =0, (2.68)
for any n and any total momentum P. By a unitary
transformation this state is related to the quark vacuum
defined by relations (2.3):

|Q) = U|0) . (2.69)
Despite the fact that the explicit form of the operator U is

unknown, the difference between the averages calculated with
the help of the mesonic and the quark vacua turns out to be

suppressed in the large- N, limit, so that it plays the role of a
small correction and, hence, lies beyond the scope of the
present paper. Thus for practical calculations one is free to
use any of the above two vacua.

2.8.1 The chiral condensate. A crucial test for the chiral
symmetry, to see if it is spontaneously broken or not, is the
chiral condensate (Gg). If this average does not vanish for the
vacuum state, then the whole tower of physical states will lack
the chiral symmetry respected by the Hamiltonian of the
theory, so that this symmetry appears spontaneously broken.
For the simplest case of only one quark flavor the chiral
symmetry breaking reads U(1), x U(1), — U(1),, and it is
very important that the U(1) , invariance is broken sponta-
neously in the 't Hooft model, in contrast to QCD,4 where this
breaking is explicit due to the axial anomaly. Indeed, the two-
dimensional anomaly is proportional to the color trace of the
colored object Fox &uw k), which obviously vanishes (in the
meantime, the axial anomaly does exist in the two-dimen-
sional QED, known as the Schwinger model, where no color
trace should be taken).

Now we are in a position to evaluate the chiral condensate
for the 't Hooft model. Following the general approach
described at the beginning of this section, one can find

(@) = (2l 7(x) ¢ (x) |2) = (0/a:(x)4"(x)]0)

+00
=N, J% Tr{yA-(k)} = —&J dkcos (k).
2n T Jo

(2.70)

It is instructive to arrive at the same result using another
approach — namely, the definition of the condensate via the
light-quark Green’s function. In spite of the fact that the
single quark Green’s function is a gauge variant object and,
hence, it is not physical by itself, when taken with the
coinciding arguments and summed up over the colors, it
readily gives the chiral condensate ’

(Gg) = =i Tr_S3(x.0). @)

Once relation (2.71) is gauge invariant, then let us choose
the modified Fock —Schwinger gauge discussed above. The
quark Green’s function

1
S(X,y) = ﬁ S;(.X’y)

is the solution to Eqn (2.54) [28]. Using its spectral decom-
position in the coordinate space,

S(xo — yo,x,¥)
= =i YL () exp [—iea(xo — y0)]0(x0 —0)

+i U ()P () expliga(xo—10)] 0(v0—x0), (2.72)

7 Special care should be taken at the both stages. Indeed, the Green’s
function contains a discontinuity at x = y, so that one should approach
this limit either from the side of larger, or smaller y’s. On the other hand, if
the condensate is calculated beyond the chiral limit, then the logarithmi-
cally-ultraviolet-divergent perturbative contribution, proportional to the
quark mass, should be subtracted from Eqn (2.71).



358 Yu S Kalashnikova, A V Nefed’ev

Physics— Uspekhi 45 (4)

0 = [ 5L o) exwip). (2.73)

where ¢, are the eigenenergies defined by Eqn (2.65),
substituting the Foldy-rotated wave functions (2.60)

o0 = T 7 0) = ) 70 o)
0 (2.74)
o0 =T 0 0 = A0 70 ()

and, finally, using the simplified completeness condition
(2.61) for the set {@%(p)}, one reproduces the result (2.70)
[28].

It is easily seen from definition (2.71) that diagrammati-
cally the chiral condensate can be represented as a closed
fermion line which begins and ends at the coinciding points.
Thus both the motion forward in time (the positive-energy
solutions) and that backward in time (the negative-energy
solutions), are equally important for the condensate. At first
glance this statement contradicts the observation made
above, that all ¢_ components vanish for the heavy-light
system. The solution of this problem can be found in
properties of the bound-state equation (2.40). Indeed, there
are, in fact, two sets of solutions to the system (2.40), with
Qo > 0and Qp < 0, trivially connected with one another:

@"(p, P) = 9" (p, P), ¢~"(p,P) = ¢"(p, P), (2.75)

where positive n’s numerate states with Qyp > 0, and negative
n’s are prescribed to the states with Qp < 0. Therefore, these
are ¢."(p, P) = ¢" (p, P) (n > 0) to vanish for the heavy-light
system, whereas the two remaining wave functions
@="(p, P) = ¢".(p, P) describe the propagation of the ¢Q
system either forward or backward in time without Zitterbe-
wegung. They both contribute on equal footing to the chiral
condensate (2.71).

From Eqn (2.70) one can see that the properties of the
solution for 6 to the gap equation (2.13) are of paramount
importance for the chiral symmetry breaking. If the integral
on the r.h.s. in Eqn (2.70) vanishes, then we are in the phase of
the theory with the restored chiral symmetry.

It was mentioned in Section 2.1 that there exist two
different solutions to the gap equation (2.13) in the chiral
limit. One of them, found analytically in Ref. [2], gives
|0(p)| = m/2 and, hence, cos 0(p) = 0 everywhere, so that the
chiral condensate (2.70) vanishes for this solution (as was
discussed above, this phase has an infinite energy and, hence,
is never realized). Luckily it is not so for the numerical
solution found in Ref. [5] and depicted in Fig. 2. Substituting
it into Eqn (2.70) and working out the integral numerically
one finds

<qq>m:0 =-0.29 NC\/271 (276)

that coincides with the results found in Ref. [6].® The chiral
symmetry is spontaneously broken in this phase of the theory

8 The corresponding result from Ref. [6] reads

NSy
(449) =0 = 76
that numerically coincides with Eqn (2.76), thus giving evidence that

various integrals of 6 can be found not only numerically, but also in the
form of irrational numbers.

and the pion, found in the Section 2.5, is, indeed, the
corresponding Goldstone boson. Note that the chiral con-
densate for the 't Hooft model is known analytically for any
value of the quark mass [7].

Now we can return to formula (2.23) for the vacuum
energy and to rewrite it using more physically transparent
language. Indeed, applying the same transformation,
O(p) — 0(p/A), to the chiral condensate (2.70), one easily
finds that 2 = (gq) scales linearly with 4:

2 — AX, (2.77)

so that the mute parameter 4 can be changed for the chiral
condensate and relation (2.23) can be written as

2
e }(E) -

where the minimum of the vacuum energy is reached for
2 = X, given by Eqn (2.76).
If the quark mass does not vanish, then the vacuum energy
density (2.78) acquires an extra contribution:
S0 X

Agv—>A(€V+mVLZ—O,

(2.78)

= »C!
ZO :|+/ 3

(2.79)

which explicitly breaks the invariance of A&, with respect to
the change 2 — —2X. Then the lowest (pionic) excitation over
the vacuum with the wrong sign of the condensate acquires an
imaginary mass and becomes a tachyon as follows immedi-
ately from the Gell-Mann—Oakes—Renner relation [see
Eqn (3.20)].

The minimization procedure for the vacuum energy in
presence of the mass term (2.79) leads to a more complicated
equation for X, so that Xy does not provide the minimum
anymore.

2.8.2 The pion decay constant. In this section we derive the
decay constant f; for the chiral pion. Using the standard
definition for it,

(25(](Q)) = x0, ﬁ exp(—iQx), (2.80)
where
T (x) = q(x) 7,759(x), (2.81)

one can calculate the matrix element explicitly using the
technique described above, so that the result reads

fo=y=

= (2.82)

Note that the pion decay constant (2.82) is dimensionless
in the 't Hooft model, which drastically differs in this point
from QCDy, where this constant is dimensional and appears
rather small at the hadronic scale (93 MeV). Thus in the four-
dimensional case the pion decay constant defines a new scale
for the effective low-energy QCD — the chiral perturbation
theory, which cannot be developed in the 't Hooft model in
view of the dimensionlessness of f.

2.8.3 Partial conservation of the axial-vector current. In this
section we derive explicitly the partial conservation of the
axial-vector current (PCAC) relation for the ’t Hooft model.
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Starting from the definition of the axial-vector current
(2.81), we use representation (2.2) for the quark fields and
introduce bosonic operators (2.25) after an appropriate
ordering of the antiquark creation and annihilation opera-
tors d* and d. Leaving only the leading terms in the 1/N;
expansion, one arrives at

I3 = Ne j% v (k) 7,750 (—H)
- \/-J

X 7;[?5 v (717

exp —iPx)[M™*(p,p— P)u"(p — P)

)+ M(p—P,p) vt (P—p)yysulp)]. (2.83)

The explicit form of the quark amplitudes u and v given by
Eqn (2.5) together with the definition of the mesonic creation
and annihilation operators (2.34) allows one to proceed
further and to rewrite the components of the axial-vector
current in the form

_2\/_J Ny exp(—iPx)

ma(P) = m; (~P)] |32 o, PU. P), (284)

3
Il
o

—2\FJ Ny exp (—iPx)

<3 () + -] [S2 el Phn(p, P), (285)

n=0
1
Julp, P) =5 [0(p, P) = 9" (p, P)],
1
&(p, P) =5 [0/ (0, P) + 9" (p, P)]. (2.86)
From (2.36) one easily finds that
W oo P a0 P) = [ 1o, P en(p, P) = L 5
‘[E gn(p7 )fn(P; ) = J%fn(pa )gn(pv ) = Z )
(2.87)

i.e., in the chiral limit the axial-vector current couples only to
pions, and it can be written as

J:(x) = i\/% Ou Jg \/%5 [exp (—iPx) my(P)
+ exp (iPx) mf (P)] = i/z 0, ¥x(x),

where the second-quantized wave function of the pion in the
coordinate space ¥ (x) is introduced.

Relation (2.88) is nothing but the celebrated PCAC,
whose operator form is usually formulated as a hypothesis
in QCDy. In the 't Hooft model the latter can be proved
explicitly and the Hamiltonian approach to the model turns
out to be the most natural environment for this task.

Itis instructive to note that the form of the pionic solution
can be easily guessed even before the :Hy: part of the
Hamiltonian is taken into account. Indeed, if the chiral
symmetry is spontaneously broken, then the corresponding
charge does not commute with the Hamiltonian:

(2.88)

[OsH] #0, (2.89)

~ [ axsi,

so that, if the Hamiltonian is diagonalized in the quark sector,
then Qs contains an anomalous term:

Os ~ J% [b*(p)d"(—p) + d(—p) b(p)] cos O(p), (2.90)

with the coefficient cos f(p) being the pion wave function
itself in the rest frame [see Eqns (2.45) and (3.24)].

3. Matrix approach

In spite of evident technical advantages and the physical
transparency of the Hamiltonian approach developed and
exploited in the previous section, it has a number of
disadvantages. Among them are the rather tedious algebra
and not straightforward connection to the diagrammatic
technique which is very convenient in studies of a variety of
hadronic processes. In the present section we develop a matrix
approach to the 't Hooft model, which allows one to simplify
considerably investigations of some phenomena, e.g., this
technique will be effectively used in the next section, where the
Ward identities and the strong hadronic decays are discussed.

The section is organized as follows. In Section 3.1,
following paper [2], we introduce the matrix wave function
and derive the bound-state equation for it. In Section 3.2 we
study properties of the matrix Hamiltonian — namely, its
Hermiticity and the Hilbert space of its definition. Chiral
properties of the 't Hooft model are the subject of the
Section 3.3. We establish the Gell—-Mann—Oakes—Renner
relation, discuss the pionic wave function beyond the chiral
limit, and return to the calculation of the pion decay
constant. In the subsequent Sections 3.4—3.6 we derive the
quark-quark scattering amplitude and Ward identities for
the vector and axial-vector currents and find the pionic
vertex, respectively.

3.1 Matrix wave functions

and matrix bound state equation

In this section we briefly recall the method and the results of

paper [2] based on the diagrammatic approach to the theory.
At the first step we define the mass operator X as a sum of

planar diagrams (see Fig. 4) which contribute to the dressed

quark propagator S(p,):°

1

S(Pp)zm, (3.1)
) = 3 [ oStk .- (32)

Note that due to the instantaneous type of the interaction
the integration over k( is trivial and the mass operator
depends only on the spatial component of the momentum.
Using the same parametrization as in Eqn (2.58) one
immediately arrives at the gap equation in the form (2.13)
and the definition of E(p) via 0(p) coinciding with (2.14).

As the second step a homogeneous Bethe-—Salpeter
equation is used, which is diagrammatically represented in
Fig. 5 and defines the spectrum of the quark-antiquark
bound-states. The fat lines denote the dressed quark propa-
gators (3.1) whereas the meson-quark-antiquark vertices are

° We use the argument p,, as a shorthand notation for (po, p). If not stated
explicitly, then a dependence only on the one-dimensional spatial
momentum is meant, like in Z(p).
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Figure 4. Graphical representation of the equations for the dressed quark propagator and the quark mass operator.

described by the function I'(p, P). It is also convenient to
introduce a modified vertex I'(p,, P,),

I(pu, P) = ~iy S(p) I (p, P) S(p — P, (3-3)

and a matrix wave function ®(p, Q) defined in the standard
way [2]:

dm
2n

dpo

20.0)= | T2 Fip 0= | 52 o = Q0.0 0)- (34)

The equation corresponding to the diagrams in Fig. 5
reads

- iy [ dkodk
F@;uQu): ﬁ[ 0

(p — k)z S(-pu) Vof(kuv Qu) VOS(pu - Qn) s

(3.5)

or, after integrating both sides of this equation over py,
introduction of the wave function @ according to relation
(3.4), and performing simple algebraic transformations, one
arrives at the bound-state equation in the matrix form:

Qo ®(p, Q)= (ysp + vom) @(p, Q)
—@(p, 0)[ys(Q — p) +7om]
+«/ji A, (k) @(p, 0) A_(Q — k)
—k? T

— Ay (p) P(k,0) A_(Q —p)
—A_(k) d(p, Q) A,(Q — k)

+4-(p) #(k, 0) 4:(Q — p)] | (3.6)

where we used projectors (2.11) and the matrix wave function
is parametrized as

1+
2 0 y5g0+(paQ)

#(0.0) =70

0 0.0)) T, (37)

When written in components, Eqn (3.6) readily repro-
duces the bound-state equation (2.40) for the functions ¢

Figure 5. Graphical representation for the Bethe —Salpeter equation (3.5).

derived earlier in the framework of the Hamiltonian
approach to the model.

In conclusion we give the connection between the meson-
quark-antiquark vertex I'(p, P) and the matrix wave function

&(p, P):
dk &k, P)

F(I’vP):Jzn “/omm

F( 7P):70F+(]77P)V07
(3.8)

where the vertices I and T stand for the incoming and the
outgoing mesons, respectively. It is easy to check that, with
such a definition, relation (3.4) is satisfied automatically (see
also Appendix A for the properties of I and I').

3.2 Truncated Hilbert space
and the problem of Hermiticity
In this section we discuss properties of the matrix bound-state
equation (3.6), but let us make a comment concerning its
scalar form (2.40) first. As stated before, the norm of the wave
functions ¢, (2.36) is defined in an unusual way. Indeed, the
sign minus between its ‘+’ and ‘-’ parts appears quite
naturally in the Bogolyubov-like approach developed above,
but it looks somewhat surprising in the context of the
standard Hamiltonian technique.

Besides, it is easy to check that, if the matrix bound-state
equation (3.6) is written in the Schrédinger-like form,

X q"l _ Aq’z—
é((/)’i =7 o)’

then the corresponding Hamiltonian H appears non-Hermi-
tian. The following two questions should be discussed in this
connection: i) what is the reason for this? and ii) does this not
lead to a disaster and are the eigenenergies of this equation
still real?

The answer to the first question becomes clear if one
notices that the matrix wave function (3.7) satisfies the
following condition:

A (p) ®(p, Q) A(Q —p)
=A-(p) P(p,0)A-(Q—p) =0,

(3.9)

(3.10)

so the phase space is truncated and the Hamiltonian H acts in
a subspace, that also explains the distorted norm (2.36).

In the meantime, the second question concerning the
spectrum persists. In order to answer it, let us integrate both
sides of Eqn (3.6) over p, do the same for the complex
conjugated equation, and take an appropriate linear combi-
nation. Then one arrives at the relation

+00 d
> (@5~ o) 5L 10t 0.0)070,0)

B (. 0) " (0] =0, (.11)
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which immediately leads to the following two conclusions:

0 =0y (3.12)

and

J% [0 (p, Q) 9" (p, Q) — ¢" (P, Q) ¢" (P, Q)] = Sum;,
(3.13)

|S210.0.0) 675 0) - 0" (.0 07(7.0)] = 0.

It has already been mentioned (Section 2.8.1) that
solutions of the system (2.40) appear in pairs: for each
eigenvalue Qf with the eigenfunction (@', ¢") there exists
another eigenvalue, —Qf, with the eigenfunction (¢”, ¢").
With this symmetry, Eqn (3.13) can be rewritten in the form
(2.36) where only positive eigenvalues enter. ' Similarly in
attempts to construct the Green’s function for the system
(2.40) the completeness (2.37) can be derived.

Let us introduce operators C and S:

(,,Eikk)z C(S) (p.k, P)F(k,P) (3.14)

for an arbitrary function F(p, P) with C(p,k, P) and S(p, k, P)

defined in Eqns (2.30). Then the matrix Hamiltonian H can
be written in the form

,_(K-C S A 5
H:( : A>=V0(K—C)+V1S,

C(8) F(p, P) = vJ

(3.15)
-S -K+¢C

where K = E(p) + E(P — p) is the kinetic energy. This is the
term proportional to y; in Eqn (3.15), which makes the
Hamiltonian H non-Hermitian.

The symmetry property of the solution with respect to
interchange of the plus and the minus components of the wave
function discussed above follows immediately from the fact
that H anticommutes with s, so that if

v= ()
¢_
is the eigenfunction corresponding to the eigenvalue Q,, then

V= (o)

is also a solution with the eigenvalue —Q:

HY' = Hys = —ysHY = —ysQ0h = — QoY (3.16)

_ Moreover, the eigenstate problem (3.9) for the operator
‘H can be formulated now in the form of an effective Dirac-
type equation

[o(K =€) + 718 = Qo] =0, (3.17)
where, as before,
= QD+ 1
v (%) ' (3.18)

10 Tf not stated explicitly, we use the symbol >, for summation over
positive n’s only.

Mapping of the quark-antiquark bound-states problem to
the properties of the fermionic-type equation (3.17) may be
continued, which is, however, beyond the scope of the present

paper.

3.3 The chiral properties of the model in the matrix
approach

In this section we return to the chiral properties of the 't Hooft
model and discuss some of them in the framework of the
matrix formalism.

In Appendix A we collect formulae useful for various
calculations in the suggested approach. They are entirely
based on the definition of the matrix wave function (3.7)
and properties of the matrix bound-state equation (3.6).

3.3.1 The Gell-Mann — Qakes — Renner relation and the mass of
the pion. In order to demonstrate how the matrix approach
works in practice let us derive the Gell-Mann—Oakes—
Renner relation for the 't Hooft model. We slightly relax the
chiral limit introducing a small quark mass m. The matrix
bound-state equation (3.6) is the main object of investigation
now. We multiply it by y,7s, take trace over spinor indices and
integrate both sides of the resulting equation over the
momentum p. A number of terms containing projectors A,
disappear and the result reads

d d
Qo Jz—ﬁ Sp [1075@(p, Q)] — sz_i Sp [11752(, Q)]

= —ZmJ% Sp [”/sdj(l’v Q)] :

If one uses the definition of the matrix wave function and
substitutes the pion solution (2.45) into it, then relation (3.19)
simplifies even more and takes the form:

f‘n:ZMr% = _2m<qq>7

(3.19)

(3.20)

in which one can easily recognize the celebrated Gell-Mann —
Oakes— Renner relation [34]. This defines the mass of the pion
near the chiral limit:

M= 2mJ dp cos O(p) . (3.21)
0
With the help of the numerical solution for 0(p) (see Fig. 2
and footnote 8) one can find

2n2m2y

Note that in the case of the chirally invariant vacuum, i.e.,
for the analytic solution (2.18), Eqn (3.20) is trivial as both
sides vanish simultaneously.

(3.22)

3.3.2 The pionic solution beyond the chiral limit. With the pion
mass (3.22) on hand we are in a position to go slightly beyond
the chiral limit and to study the pionic solution in the rest
frame. A simple analysis demonstrates that in the pion rest
frame the functions g.(p, P) and fr(p, P) defined in Eqns
(2.86) behave like

gu(p, P =0) x cos@(p)—&-O(MTf/z),

1
vV My

fa(p, P =0) o O(/My). (3.23)
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M A(x)/ cos0O(x)

0.28

0.26

0.24

Figure 6. Numerical solution for the function 4 and the ratio of the subleading term in Eqn (3.24) to the leading one for m = 0.18. As before, variable x

comes from the change p = tan(x): all dimensional quantities are given in proper units of (2y)

1/2

Therefore, the leading correction to the pion wave
function comes from f(p,P) and ¢%(p,P=0) can be
parametrized in the form [see Eqn (2.45)]:

- 0
oL.p=0) =8, | s Vi )| 529

where we have extracted the explicit dependence of the
coefficients on the small pion mass, so that the unknown
correction function 4(p) [note that A(p) has the same parity
as cosf(p), i.e., it is even] does not depend on M,. The
dimensionless norm N, is

N = 4J§_: A(p) cos 0(p) (3.25)
providing the correct normalization for ¢7 .

Substituting Eqn (3.24) into (2.40), one arrives at a system
of two equations, the first of which is satisfied identically due
to Eqns (2.12), whereas the other one defines the correction
function 4(p):

L cos0(p) — p A(p) sind(p)

2
- % } (pfikk)z [4(p) = 4(K)] cos [0(p) — 0(k)]. (3.26)

Equation (3.26) is subject to numerical studies which are
beyond the scope of the present paper.

Exact numerical solutions for the pion wave functions in
the rest frame for several values of the quark mass taken from
Ref. [5] are given in Fig. 3, so that the function 4(p) can be
extracted directly from these data. In Figure 6 we give the
form of the function 4(p) and the ratio of the correction
defined by A(p) to the leading term in Eqn (3.24) for m = 0.18
(in units of 1/2y). One can see from the right plot in Fig. 6 that
for the given value of the quark mass the correction is of order
one third at largest and decreases with the growth of the
argument.

3.3.3 The pion decay constant revisited. In this section we give
another example of calculations using the matrix approach —
namely, we calculate the pion decay constant once again,
which comes now from the fish-like diagram depicted in
Fig. 7b.

YuVs

p—P

Figure 7. Meson-vector (a) and meson-axial-vector (b) current couplings.

The matrix element written for this diagram reads

_

TR

2

x J P

(2m)

where the factor —iy/y/N, comes from the vertex, whereas N,
and (—1) are due to the fermionic loop. Working out the

integral over py and using relations (6.7) and (6.8), one arrives
at a simple formula:

% Nc(_l)

Sp [S(p) T'u(p, P) S(p — P) 7,75) (3.27)

d
Ay =/ Ne J?ﬁ Sp [(Dn(p, P) 7;4"/5] (3.28)

Then, on substituting the explicit form of the matrix wave
function @,, putting m = 0, and, finally, on taking the
integral over p by means of the orthogonality condition
(2.36), one finds this matrix element in the chiral limit to be

[ N¢ 1
A’ufé,m ?P’uﬁ

Comparing expression (2.29) with the definition of the
decay constant for the nth meson,

(3.29)

A,u. :.f;’lP[t 'P,,(O) ) (330)
one can easily conclude that in the chiral limit
N
;7 = Onr\/ —> 31
fo = o[~ (331)

that coincides with relation (2.80).
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3.4 Quark-quark scattering amplitude
In this section we come to calculation of one of the most
fundamental objects in the theory — the quark-quark
scattering amplitude. If known, this object allows one to
define the dressed current vertices and thus to investigate such
properties of the theory as Ward identities, current conserva-
tion laws, etc.

The equation for this object is given in the diagrammatic
form in Fig. 8 and reads

1 :
5,7 . o o
ry lmﬂ(P ky Pu) = =ig” (70)i (00)em —— (1), (1)

vk
9 d%q 1
N J @07 (r—q)°

d,y0
(v0)is Sst(q) F;O/i,ln (q,k. Py)

X Sur(q = P) (20)m (1), ()5 (3.32)
where Greek and Latin letters stand for the color and the
spinor indices, respectively. Then one can separate the color
structure of I':

F’X(s,“//;

1 1
ik, im K 5% 5}- Fik,lmy (333)

and itis also convenient to introduce a new function I" defined
as

fs/c,lr(q;uk: P/l.) - Ssr(q) F[k,/n(% k: Pu) Snr(q - P) . (334)

m, B ko m, ) m, )
p—P\4-F k—P
P k

Figure 8. Graphical representation of the quark-quark scattering ampli-
tude.

Due to the instantaneous type of the interaction induced
by the two-dimensional gluon, it is also useful to define the
amplitude @ as an integral of I" over ¢o:

d -
Jﬂ Fsk,lr(q;ukapu) = q)sk,lr(%kapu) .

o (3.35)

Then the equation for the new function is

2'\
% (70)i (70

<[ [ 50 St - )]
i

y {i[i—[: Sa(p) S (p — P)] .

(pa/c, Ib(P; ka P;t) =

(VO)is (?0)/‘)71 (pS}\', /"(q7 k7 P,u)

(3.36)

The object in the square brackets can be easily integrated
out using formula (6.1) and the result reads

J 929 () Sl — P) = (A+(Ep(3) iola%(é@p) f) 70) b

(A4-(P) 70) ; (A4 (P = P)70) .y
E(p)+ E(P—p)+ Py .

_|_

(3.37)

The simplest way to proceed further is to guess the general
structure of the amplitude @ to be

gps‘/c, lr(q: k7 Pu) = PO pr )
— 1o

(3.38)

n=—00

so that after some algebraic transformations with the use of
the matrix bound-state equation (3.6) one arrives at

< AL (p.P) A (P p)
2 ik P)[ Ep) + E(P—p)— Py

~A-(p) qﬁ”(p,P)/u(P—p)}
E(p)+E(P_p)+PO ab
_ (mhy {<A+<p>)u, (A-(P=p))y
(p—k)?* | E(@)+EP—p)—P
_ (4-()) . (A+(P_1’))kb]
E(p)+EP—-p)+Py |

We parametrize the function 3" (p, P) in the form:

7'(p, P) = 2my J dg ‘(/;(q’ql; )

with " (p, P) being a new unknown function. Substituting
Eqn (3.40) into (3.39), we arrive at two simple equations
defining " (p, P):

3 sp v

n=-—00

n=—0oC

(3.39)

, (3.40)

P) ¥ (p,P)] = £216(p — q) . (3.41)

With the help of the formulae from the Appendix the
following solution to these equations can be found

" (p, P) =sgnn @ (p, P), (3.42)
and, hence,
D" (q, P
7" (p, P) =2my sgnnJ dg iz) , (3.43)
»—q)

that gives for the quark-quark scattering amplitude [35]:
2mi 2miy
r - k)

_1/22 Pn

+1«/2; PO T Pg (A/()I:n(P*paP) yo)im

tk Im (P k P ) (VO)zl (/O)Am

F;1(P,P))i,,, (F"(k7 P))k[

X (VOFH(P - k7 P) VO)kjv (344)
where the sum over mesons ), counts only positive
excitation numbers with n > 0.

A couple of comments concerning the solution (3.44) are
in order. First of all, note that once the wave function @”"
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. . . N , noo__ 1
contains only symmetric matrices y, and ys then @, = @},
and, hence,

Fik,lm(p>ka P,u) = le,ki (P,]Q P;l) . (345)

The other comment concerns the form of the solution (3.44).
One can see that the quark-quark scattering goes through the
formation of a one-meson intermediate state and that the last
two terms in Eqn (3.44) give nothing but the sum over the full
mesonic propagators.

Thus, we end with an effective diagrammatic technique
which involves the dressed quark propagator (3.1) [see (6.1)
for its ultimate form], the dressed meson-quark-antiquark
amplitude (I’ for the incoming and I” for the outgoing mesons
given by Eqn (3.8)), the dressed quark-antiquark scattering
amplitude (3.44) and the constant —iy/y/N, which is to be
inserted into every vertex where a meson couples to a quark-
antiquark pair. In addition, each quark loop brings two extra
factors, the standard fermionic (—1) and N, from the color
trace. One can use these ingredients as bricks for building any
hadronic process in the theory.

3.5 Vector and axial-vector current conservation.

Ward identities

As stated in the previous section, with the quark-quark
scattering amplitude on hand we are in a position to study
the properties of currents in the 't Hooft model. Let us prove
the current conservation first. For the vector current we are
interested in the matrix element

VM =(Qlqy,q|M.P), (3.46)

depicted in Fig. 7a.
On writing the corresponding matrix element and per-
forming the integration over the energy py, one finds

s ' dp
*W\/ﬁcjz—)z
_\/7J psp( Dy (p, P)).

Sp (S(p_ P)W/uS(p) FM(p7 P))

(3.47)

It is easy to check that, multiplying the bound-state
equation (3.6) by y,v/N./2m, taking the trace over the spinor
indices, and integrating all terms of the resulting equation
over the momentum p, one arrives at the relation:

POM{\/VCJS—T’; Sp (0@ u(p, P))]
—P{Jﬁc [ 52 s (v@M(p,P»} —0. (3.48)

Combining it with the definition (3.48), one finds that the
vector current is conserved:

PV —pPrM=0. (3.49)
Similarly, defining the axial-vector current as
AN (P) = (Q]qy,7541 M, P), (3.50)

i.e., using the diagram in Fig. 7b and performing the same
steps concerning the bound-state equation as before, but with

the evident change y, — 7, in the multiplier, one can derive
the axial-vector current divergency in the form
M M M dk
Py Ay" — PAY = —2my/ N, o Sp

(7sPum) » (3.51)

which turns into the axial-vector-current conservation law in
the chiral limit.

Itis instructive to see how the same relations appear in the
Hamiltonian approach. We shall concentrate only on the
vector current conservation law as a similar analysis for the
axial-vector current is straightforward then.

We start from the definition of the vector current:

Ju(x) = (3.52)

q(x) v, q(x),

and reformulate it in terms of mesonic creation and annihila-
tion operators: !!

X) = 2@}% exp(iPx) Z exp(—iP{xo) my(P)

d
« Jz—: (p, P)fo(p, P) + hec.., (3.53)

=24/N, J exp(iPx) Zexp —iPgxg) my, (P)

d
x jz—rfﬁl@, P)so(p. P) + he., (354

where f,(p, P) and g,(p, P) are introduced in Eqn (2.86),
whereas f; and gy are other notations for the pion wave
functions f; and g;.

Then calculating the corresponding matrix element
explicitly one finds

PV —

— 2/, J P guilp. P) folp. P)

PvM =i(Q0,J,(0)|M, P)

— Pfu(p,P)go(p, P)] =0,

where the r.h.s. of this equation vanishes due to the bound-
state equation (2.40) or (3.6).

Now we turn to the investigation of the mesonic form-
factors defined by the diagram depicted in Fig. 9, but we
need to know the dressed current-quark-antiquark vertices
first.

Let us start from the vector current. The corresponding
expression for the diagrams given in Fig. 10 reads

(3.55)

Figure 9. Graphical representation of the mesonic form-factor.

I Note that we have restored the explicit dependence of operators m, on
time in the form m, (xg, P) = exp(—iP(xo) m,(P) with Pjj being the energy
of the nth mesonic state moving with the total momentum P.
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Up W;L

Figure 10. Graphical representation of the dressed vector current-quark-
antiquark vertex.

. 2
0810, P} =005 [ 5 w016,

X Sbc(q - P) Ff/z,ltﬁjy(%pa P) = vkléﬁ ’ (356)

where, as before, the color indices are denoted by Greek
symbols, whereas Latin ones stand for the spinor indices.
Substituting the explicit form of the quark-quark scattering
amplitude '/ (¢,p, P) from Eqn (3.56) into (3.44), one
finds [35]

Uﬂ(p7 P,U) = lyu

Lu(p, P) Jﬂ i
Py ) 2 Sp (7, @u(q, P))

Yo La(P—p,P)yy [ dg
WZ P()—I—P" ESP(V;L@:(P—%P))

(3.57)

After tedious but straightforward calculations using the
explicit form of the matrix bound-state equation (3.6) and the
matrix wave function (3.7) the following relation can be
proved:

—iP,v(p,P) =S (p)-S'(p—P), (3.58)
which is nothing but the vector Ward identity for the "t Hooft
model (a similar expression in the light-cone gauge was
derived in Ref. [4]).

Now it is a simple task to substitute the solution (3.58)
into the matrix element written for the diagram in Fig. 9 with
the vector current instead of the curly line and to arrive at the
vector current conservation law:

0u(M,P|v,M',P")=0,

0, =P~ P. (3.59)

Similar calculations give the following results for the
axial-vector current in the chiral limit [35]:
n(]’ P) J dg

au(p, Pu)=17,ys + WZ 7 P (7475 Pulq, P))

20ln(P—p.P)y [ dg
-1 Zvj Sp(yWSQ') (P— LLP)),
(3.60)
—iPya,(p,P) =S~ (p)ys + 758~ (p = P), (3.61)
Q,(M,P|a,|M',P'")=0, Q,=P,—P), (3.62)

Relation (3.61) plays the role of the axial-vector Ward
identity.

In conclusion let us note that one could arrive at the
same results using the Hamiltonian approach but at the
price of a much more complicated algebra and a much less

transparent interpretation of the results in terms of Feyn-
man diagrams.

3.6 The pionic vertex

The general structure of the mesonic vertex can be consider-
ably simplified in case of the pion, since the explicit form of
the pionic wave function is known. Indeed, substituting the
solution (2.45) into the matrix form (3.7) and then into the
definition (3.8), one easily finds [35]

Ta(p, P)=S7'(p) (1 +75) — (1 =75) S

“Ip—P). (3.63)

It is also instructive to compare formula (3.63) with the
Ward identities for the vector and axial-vector currents
derived in the previous section, Eqns (3.58) and (3.61),
respectively. As a result, one finds the following relation for
the pionic vertex [35]:

I'y(p, P) = —iP,v,(p, P) —iP, a,(p, P). (3.64)

Note that it is not a surprise that the pion couples not only
to the axial-vector, but to the vector current as well. The
reason is that in the two-dimensional theory the axial-vector
and the vector currents are dual to one another:

) = e (),

(3.65)
where ¢, is the totally-antisymmetric Levy —Civita tensor in
two dimensions.

4. Strong decays

This section is devoted to the investigation of hadronic
processes in the 't Hooft model using the example decay
A — B+ C.InSections 4.1 and 4.2 we derive the amplitude of
such a decay using the Hamiltonian and matrix approach,
respectively. We discuss its properties and correspondence
with nonrelativistic models. Section 4.3 is devoted to
derivation and justification of the two-dimensional Adler
selfconsistency condition (‘Adler zero’).

4.1 Suppressed terms in the Hamiltonian
In Section 2 we developed the Hamiltonian approach to
QCD; and diagonalized the Hamiltonian of the model in the
mesonic sector. Now let us turn to corrections to the
Hamiltonian (2.39) suppressed by powers of N, in the
denominator.

The leading correction is of order O(1/+/N.) and it comes
from the terms containing the products MB, MD, M* B, and
M D of the operators introduced in Eqns (2.25):

_ 7 [ dpdkdgdQ  0(p) - 0(k)
A= \/VJ enip k2 2
s 1@~ 00 1)

x [M*(p,p— Q) M (k— Q. q) M(k, q)
+M*(p—Q,p) M*(q,k — Q) M(g, k)
Mk - Q,k)

Mk,k = Q)]

— M (q,p) M(q,p — Q)

- M*(p,q) M(p— Q.q) (4.1)
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where M and M can be defined through the meson creation
and annihilation operators [see also Eqns (2.39)]:

o0

> [my (ke — p) ' (k. k — p)

n=0
- mn(p - k) @’1(17:17 - k)} 3

M+(p7k) =

o (4.2)
M (p,k) = [ma(k — p) @'} (k, k= p)
n=0

my(p—k)o" (p,p— k)] .

As is easily seen from Eqn (4.1), this correction describes
vertices with three mesons involved.

4.2 A — B+ C decay amplitude

Now we are in a position to study the hadronic processes in
the 't Hooft model. Strong decays 4 — B+ C are of most
interest to us [35]. As mentioned before, in the leading order
in N. the 't Hooft model describes free mesons [see
Eqn (2.39)], whereas the interaction between them is hidden
in the suppressed terms partially restored in the Section 4.1.

Thus we expect the amplitude M(4 — B+ C) to be of
order 1/y/N., whereas M(4A + B — C+ D) ~ 1/N¢. In this
section we study the influence of the backward motion
described by the ¢_ component of the mesonic wave
function on the above mentioned amplitude.

The Hamiltonian approach developed before gives the
most straightforward way to calculate the amplitude of the
strong decay since one just needs to evaluate the following
matrix element:

M(A — B+ C) = (B(Pg) C(Pc)|H+ AH|A(P4))

= (B(Pp) C(Pc)|AH |A(P4)) . (4.3)

With the help of the explicit form of the operator AH given
in Eqn (4.1) one easily finds the general form of the amplitude
in terms of mesonic wave functions in the rest frame of the
decaying particle 4 (P4 =0, P = —P¢ = p) to be (see also
Ref. [36] where a six-term decay amplitude is discussed):

Y dkdg
% { = ¢k +p,0) 0 (k+p,0)

x [e(=p,q,k) 9$ (g, —p) + s(=p, 4, k) €]
— @7t (k+p,0) oS (k,=p)[c(p, g + p.k +p) 95 (g + P, D)
+5(p,q +pk+p) 9% (q+p.p)]
— ¢$(k,=p) 9% (k+ p,p) [5(0,¢ + p,k + p) 91 (g + p, 0)
+¢(0,q+p.k+p) 9 (¢ +p,0)]
+ ¢Sk, —p) 9% (k + p,p) [¢(0,q + p, k +p) 97 (q + p,0)
+5(0,q +p,k+p) o (g +p,0)]
@ (k+p,0) o< (k,—p) [s(p, ¢ + P,k +p) % (¢ +p,p)
+e(p,q+p.k+p) 92 (g +p,p)]
+ ol (k+p,0) % (k + p,p)[s(—p,q, k) 05 (¢, —p)

+e(=p.q.k) 0 (q,~p)] } + (B Copo—p),  (44)

where
c(p, ¢, k) = cos 0<k>; 0(q) . O —k) - (pfq>,
i 0K) —0(q) O(p— k)_e(p 9)
s(pquk):SHl 3 5

In spite of its frightening appearance, the amplitude (4.4)
has a very simple structure. Indeed, it contains six terms, i.e.,
three times more than one could naively expect and this is
entirely due to the presence of the ¢_ component in the
mesonic wave function. If one neglects the backward motion
contributions in the amplitude (4.4) and inserts the nonrela-
tivistic values of the angle 0 (cos0(p) = 1, sin0(p) = p/m),
then it reproduces the standard quark-model decay amplitude
due to the OGE Coulomb interaction [37] adapted to the two-
dimensional case. It is clear, however, that the substitution of
the nonrelativistic angle is not justified for kinematical
reasons.

One can arrive at exactly the same expression for the
amplitude using the matrix approach and writing the matrix
element for the diagrams depicted in Fig. 11:

) d’k
M(A— B+ C) = \;/N_CJQ % Sp [T a(k + Pg, Py)
x S(k — Pc) Felk, Pe) S(k) T g(k + Pg, Pg) S(k + Pp)]
+(B<~C). (4.5)

In the meantime, the matrix approach proves more
convenient in studies of the decay amplitude (4.4), (4.5), so
we stick with it in the Section 4.3 considering pions in the final
state.

M(A—>B+C)=

Figure 11. Graphical representation of the amplitude for the decay
A— B+ C.

4.3 Adler selfconsistency condition
In this section we have one more careful look at the pions —
namely, at their role in hadronic processes. We remind the
reader that these are the pions to suffer most drastically from
the presence of the backward motion of the ¢g pair described
by the ¢_ component of the wave function. On the other
hand, hadronic processes with pions in the final state have
been much better investigated experimentally, so that any
theoretical hint as to how the chiral nature of the pion affects
hadronic decays is of paramount importance. The 't Hooft
model for two-dimensional QCD is a source of such hints.
Thus let the meson B be the pion. We substitute the
explicit form of the pionic vertex (3.63) into expression (4.5)
and after simple algebraic exercises arrive at the striking

conclusion that [35]
MA—-1+C)=0 (4.6)

in the chiral limit. Note that this result could be anticipated in
view of the identification (3.64) and the current conservation
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laws (3.59) and (3.62). Condition (4.6) is nothing but the two-
dimensional analogue of the celebrated Adler selfconsistency
condition for amplitudes with soft pions involved [38]. It is
not surprise that it holds true for any value of the pion
momentum as, in view of the dimensionlessness of the pion
decay constant f;, there is no soft scale in the model which
could play the role of the edge for this condition.

Let us conclude with a couple of comments concerning
condition (4.6). First of all, the pion turns out sterile, at least
in the subleading order in N.. On the other hand, applying the
above qualitative analysis concerning the dimension of f;,
one can extend condition (4.6) to the case of any hadronic
process with pions involved, so that the pion is completely
decoupled from the spectrum in the chiral limit in all orders in
N..

The formal reason for condition (4.6) is the totally
destructive interference between the ¢, and the ¢_ compo-
nents of the pionic wave function. They were found to be of
the same order of magnitude and, hence, all six terms of the
amplitude (4.4) are equally important in establishing condi-
tion (4.6). The latter observation automatically invalidates
any attempts to describe the pion in the framework of a
constituent quark model when the ¢_ component is
completely lost. It seems quite improbable that the above
drawback of the quark models in QCD5, as well as in QCDy,
could be cured by simple prescriptions, like multiplying the
naive 2-term amplitude by extra ‘magic’ factors [36] or
whatever.

5. Conclusions

The phenomenological successes of quark models do tell us
that the constituent quarks are the correct degrees of freedom
in the nonperturbative domain. In these models the lowest 'S
qq state exists on the same footing as other mesons. As was
already mentioned, there are no direct indications that the
confinement and the chiral symmetry breaking are interre-
lated in the case of QCDy,. Nevertheless, if such a scenario
does not take place, then one easily runs into trouble with
constituent models: two pions exist, one is a quark bound
state, and the other one is responsible for the chiral symmetry
breaking. Of course, a roundabout way is to disregard quark
models completely. However, it is more economical to
organize the confinement and the chiral symmetry breaking
due to one and the same mechanism.

Developing such an approach for QCDy4 is not a
straightforward task. Models [15, 16] incorporate the main
ingredients, the gap equation similar to (2.13) and the Bethe-
Salpeter equation similar to (2.40). The existence of the
chirally-noninvariant solution of the gap equation implies
the existence of the Goldstone boson as the lowest ¢g state.
The ¢ and ¢_ components of its wave function are equal to
each other in the mesonic rest frame, the axial-vector current
is conserved in the chiral limit, and all the relations of the
current algebra are satisfied. In the meantime, the role of the
¢_ component of the wave functions for all other mesons is
less drastic, and parity degeneracy is restored for higher
quarkonia [15].

Unfortunately, all these nice features persist at the price of
confining the interaction employed, chosen as the time
component of a vector force. First, such a model is not
covariant, that prevents one from proceeding further along
the lines described above. In particular, one cannot make
Lorentz boosts within this model and cannot describe the

strong decays. Another drawback is even more important —
namely, the interaction is not compatible with the area law for
the isolated Wilson loop. This point holds true not only for
the model [15] where the interaction potential is the three-
dimensional oscillator. It is also so for rather sophisticated
models with linear confinement too (see, e.g., Ref. [39]). The
reason is that the area law yields a linear confining potential
only for heavy constituents. Besides that, the last, but not the
least, objection is the lack of gauge invariance in such models.

An approach suggested in Ref. [17] is rather promising in
all these respects. The confining interaction employed there is
given by a set of gluonic field-strength correlators, which
produce the area law. These correlators are Lorentz covariant
by construction, and gauge invariance is preserved too. The
latter is ensured by using the generalized Fock —Schwinger
gauge (Balitsky gauge), which leads to gluonic correlators
explicitly dependent on the reference contour and, as a
consequence, explicitly translationally noninvariant. A sim-
ple two-dimensional example of such a correlator is given by
expression (2.55).

The problem is very technically involved due to this fact,
but at the same time it is very physically transparent. Indeed,
an interaction of such a kind describes the string which is
developed between the constituents (for recent progress in
this direction see Ref. [40]). On the other hand, the same
correlators are responsible for the chiral condensate forma-
tion [17]. We expect that the quark model following from such
a formalism would be able to describe gg bound states
including the pion.

In conclusion, we state once more that a reasonable model
in four dimensions is welcome in order to find the pionic
solution playing the twofold role: being a true ¢g state itis also
the Goldstone boson. In our opinion the two-dimensional
’t Hooft model gives a brilliant example of how this could
happen in nature.
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6. Appendix

In this appendix we collect some formulae useful for the
matrix approach.

The dressed quark Green’s function (3.1) can be rewritten
in a more convenient form if the projectors (2.11) are
introduced:

A-(p) 0

o A+(P) Y
S) O po+ E(p) —ie

" po— E(p) +ie

(6.1)

As mentioned before, one should be careful with the sign
of the dispersive law E(p) and keep the product ¢E(p), when
combining the two fractions in Eqn (6.1) together [2]. The
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propagator (6.1) contains all radiative corrections and should
be assigned to the internal quark lines (fat lines in diagrams).

We find it useful to split the matrix wave function (3.7)
into two pieces by means of the projectors (2.11): 12

@y (p, P) = Ay(p) P(p, P) A3(P —p) ,
¢(p7P):¢l7(177P)+¢ﬁ(P7P)7 (62)
where either n = +, ij = —, or, vice versa, 1 = —, ij = +.

Then the completeness condition for @’s reads
> Sp (@1 (p, P) (g, P) — @2 (p, P) " (g, P)]
n

=2nd(p—q), (6.3)

which can be easily derived, using the corresponding proper-
ties of the functions ¢, and the relation

Sp [@)" (p. P) ¥ (q. P)] = @)y(p, P) ¢}y (q, P)

0(p) ; 0q) 9L ~p) ; 0(P —q)
0(p) —0(g) . O0(P—p)—0(P—q)

— Oy Sin 7 sin 5

X |0y cOS

(6.4)

We also give two formulae useful for the derivation of the
quark-quark scattering amplitude:

®,"(p, P) =n, @) (P—p,P), (6.5)
Sp [¢”+(P - D P) (p;n(P -4, P)]
= 1,1, Sp[@"" (p, P) @' (q, P)],  (6.6)

where n and 7 are defined above and 7, is connected to the
spatial parity of the state [see Eqn (2.44)].

The next two formulae come out directly from the bound-
state equation (2.40):

4 (P) Vol (p, P) A5(p — P)yo

[E(P)JrE(P p) = nPo] Ay(p) @(p, P) Ay(p — P)

~2 |

% [E(p) + (P~ p) 7o) @,(p. P). (67)
Ap = PVl (. P) Ay (p)
=1 () + (P~ p) + 1)
x Ay(p = P) 0@ (p, P) A43(p) 7o
:% [E(p) + E(P — p) +1Po] 7@ (p, P) 7o, (6.8)

whereas with the help of relations (2.43) and (2.44) one finds

Iy(P—p,P)=n,70T_u(p,P)pp- (6.9)

12 In this appendix we suppress the index numbering the mesonic states,
keeping it only when necessary.
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