
Abstract. A comparative analysis of various forms of the Max-
well equations for condensed matter is presented. It is shown
that the so-called Casimir form contains enough information to
solve any electromagnetic problem. The Landau ±Lifshitz form
intended for describingmedia with spatial dispersion requires an
additional constitutive equation for the surface current, which
does not set an additional boundary condition but acts as a
replacement of usual Maxwell's continuity conditions for tan-
gential field components.

1. Introduction

The creation of chiral, percolation, and other types of new
artificial materials challenged the researchers to develop an
adequate description of phenomena observed in these
materials. The important factors a new theory is to account
for are themultipole interaction and retardation effects on the
inhomogeneity scale. Previous theories of this kind described
phenomena occurring in crystalline or diluted systems [1 ± 4].
Unfortunately, these theories only treated small effects in
terms of perturbation theoryÐan approach allowing one not
to bother much about the rigorous definition of the quantities
and concepts used. Today, we cannot indulge in this liberty
anymore. This is particularly true for the description of chiral
media. There are currently two scientific schools employing
two different forms of the Maxwell equations: one proposed
by Landau and Lifshitz, and the other by Born and Fedorov.
When the general aspects of spatial dispersion are discussed,
the former is often referred to as a Casimir form and even
though it is harder to justify, we will show below that it
provides a more simple and consistent description of many
phenomena.

2. Various forms of the Maxwell equations
in material media

At high frequencies, electromagnetic field disturbances due
to the presence of the medium microinhomogeneities 1 may
be of a solenoidal nature [5]. As a consequence, the
induced currents Ð whether displacement [6] or conduc-
tion ones [7, 8] Ð lead to the artificial magnetization of the
heterogeneous medium, even though the medium is a
locally nonpermeable. On the other hand, the external
field of a plane wave is of solenoidal character in itself.
On going over to a macroscopic picture of electromagnetic
phenomena in microinhomogeneous media, it is essential to
distinguish between the solenoidal nature of the external
field and that associated with the inhomogeneity of the
medium [5]. Besides, introducing the permittivity and
permeability concepts in a consistent way requires the
decomposition of the induced current into two parts, each
accounting either for the magnetization or the electric
polarization only. What makes this decomposition proble-
matic is that there are generally different scales on which
the material properties of the medium fluctuate. The
current at a given point may at one and the same time
contribute to the electric polarization on one scale, and to
the magnetization on another [9]. Until recently, both the
procedures appeared to be not only cumbersome but
ambiguous as well [5, 10]. To avoid all these problems,
Landau and Lifshitz [5] (see also books [10, 11]) suggested
incorporating all the induced currents into the generalized
polarization as follows:

j � qPLL

qt
� 1

4p
q�DLL ÿ E�

qt
; �1�

where DLL � E� 4pPLL, PLL, and E are the macroscopic
values of the generalized induction, generalized polarization,
and electric field intensity, respectively. To close the Maxwell
equations, a constitutive equation relating PLL or DLL to E
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1 By microinhomogeneity we mean such changes in material parameters

for which the spatial scale is small compared with the wavelength in

vacuum but large enough for the usual Maxwell constitutive equations to

be employed.



must be added. In the general case these relations will be
nonlocal [5, 11]. For time-harmonic fields 2, the most general
form of a linear constitutive equation is given by

DLL
i �o; r� �

�
eLLi j �r; r 0;o�Ej�r 0;o� dV 0 : �2�

Generally speaking (see, for example, Ref. [39]),PLL andDLL

may depend not only on the electric field but also with the
magnetic field (Fig. 1) and even depend on the spatial
derivatives (Fig. 2) of the magnetic field. Reducing the
constitutive equation to the form (2) implies that both the
magnetic field and all its spatial derivatives can be expressed
in terms of the electric field using the Maxwell equations.
These latter, as is well known, have a scale of length all their
ownÐ thewavelengthÐwhichmay appear as a parameter in
the expression for the kernel in Eqn (2). This makes eLLi j in
Eqn (2) a fairly complex operator reflecting not only the
properties of the medium but those of the Maxwell equations
as well.

For a translationally invariant (and, of necessity, infinite)
medium one can introduce the permittivity tensor dependent
on the frequency and the wave vector as follows

eLLi j �k;o� �
�1
0

dt
�
d�rÿ r 0�

� �eLLi j �rÿ r 0; t� exp�iotÿ ik�rÿ r 0��	 : �3�

It is the latter dependence which gave the name `spatial
dispersion' to the effects related to the nonlocality of
constitutive equations.

Thus, the Landau ±Lifshitz (LL) form of the Maxwell
equations links only three fields, namely, DLL, E, and B:

ei j lkjEl � k0Bi ; �4�

ei j lkjBl � k0D
LL
i � ÿi 4p

c
� jext�i ; �5�

kiBi � 0 ; ikiD
LL
i � 4prext ; �6�

where k0 � o=c.
If it is possible in the process of homogenization to

decompose the induced current into the average, eddy, and
saddle-shaped parts (Fig. 3), then the Casimir form of the
constitutive equations can be employed. This approach uses
the following representation of the macroscopic current [9,
12]:

j � qP
qt
ÿ
�
HH � qQ̂

qt

�
� c�HH�M� ; �7�

where j,P, and Q̂ are the macroscopic densities of current and
of the electric dipole and electric quadrupolemoments, andM
is the macroscopic density of the magnetic dipole moment.
The polarization current qP=qt is an average of the induced
current (Fig. 3a). The magnetization current c�HH�M�
includes all the microscopic currents that close up in the
volume of averaging (Fig. 3b). The quadrupole part of the
current, ÿ�HH � �qQ̂=qt��, contains the remaining part of the
induced currents, namely, the microscopic currents which
originate and terminate at the walls of the volume of
averaging (Fig. 3c) and that part of the currents closed within
the volume whose magnetic moments are mutually compen-
sated for. This qualitative picture illustrates the rigorous
mathematical fact that any vector field Ji can be represented
in the form

Ji � cei j k
q
qxj

�
1

2c
eklmxlJm

�
� q
qxk

�
1

2
�xi Jk � xk Ji�

�
ÿ xi

q
qxk

Jk :

Of course, the current distribution may also possess higher
moments but, as discussed in Ref. [9], these can be neglected if
the homogenization procedure is considered as averaging
over a physically infinitesimal volume. Notice that Eqn (7) is
not a truncated perturbation series but a rigorous result (cf.
Ref. [9]) of the unique decomposition of the macroscopic
current. Moreover, on each scale of averaging (see Ref. [9] for
more details) the quantities P, Q̂, and M are calculated from
the standard formulas for the electric dipole, electric quadru-
pole, and magnetic dipole moments taken about the centre of
the volume [12]:

q
qt

P � ÿ
�
�xdiv J� d3x ;

q
qt

Qi j � 1

2

�
�xi Jj � xj Ji� d3x ;

M � 1

2c

�
�x� J� d3x :

2 Fields are assumed to vary with time as exp�ÿiot�.

Figure 1. Placing chiral particles in a magnetic field parallel to their axis

induces an electric dipole moment in them.

Figure 2. Inclusion with a dipole moment proportional to the spatial

derivative of an alternating magnetic field. The arrows indicate the

instantaneous values of the field.
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The next step is, first, to introduce the magnetic field H
and the permeability m:

H � Bÿ 4pM ; B � mH ; �8�
and, second, to redefine the electric displacement [9, 12 ± 15]:

DC � E� 4pPÿ 4p�HH � Q̂� : �9�

Finally, the resulting Maxwell equations take the Casimir (C)
form traditionally used for the case of negligible spatial
dispersion:

ei j l kjHl � k0D
C
i � ÿi

4p
c
� jext�i ; ei j l kjEl ÿ k0Bi � 0 ;

�10�
kjBj � 0 ; ikjD

C
j � 4prext : �11�

In the framework of the C form, the relationship between the
macroscopic moment densities and macroscopic fields may
also be nonlocal, viz.

DC
i �t; r� �

�1
0

�
eCi j�r; r 0; t�Ej�r 0; tÿ t� dV 0 dt ; �12�

Bi�t; r� �
�1
0

�
mCi j�r; r 0; t�Hj�r 0; tÿ t� dV 0 dt : �13�

Since no simplifying assumptions have beenmade thus far
in deriving the LL and C forms, these forms should yield an
equivalent description of the phenomena. In other words, a
relation should exist between the tensor in Eqn (3) and the
Fourier transforms of the tensors in Eqns (12) and (13).

EliminatingDC
i ,D

LL
i , andHi from theMaxwell equations

and assuming that the fields E and B are identical in both
forms Ð which is a not quite evident assumption and will be
discussed below Ð we obtain the following relationship
between the LL and C tensor forms (for the sake of
convenience, Fourier representation of variables is used, see
Ref. [16]):

eLLi j � eCi j � kÿ20 ei l mej n p kl kn
�
dmp ÿ �mCmp�ÿ1

�
: �14�

Depending on the authors' personal preferences (see the
discussion in Ref. [17]), relation (14) is treated differently in
the scientific literature. First, it is often viewed as expressing
the equivalence of the two forms of the constitutive equations
[5, 10, 11]. It is then assumed that in the isotropic case eCi j and
mCi j are in fact scalars, and eLLi j is considered to be a tensor
whose structure is determined by the wave vector

eLLi j �o; k� � eLL tr�o; k�
�
di j ÿ ki kj

k 2

�
� eLL l�o; k� ki kj

k 2
; �15�

with eLL tr�o; k� and eLL l�o; k� being scalars. In this case we
have two LL parameters and two C parameters and can
establish a one-to-one correspondence between these para-
meters [10, 18]:

eLL l�o; k� � eC�o; k� ;

1ÿ 1

mC�o; k� �
k20
k2
ÿ
eLL tr�o; k� ÿ eLL l�o; k�� : �16�

In spite of the apparent equivalence of these forms, using the
LL representation presents some difficulties. In particular, to
solve the dispersion equation in the C form, viz.

k2 � k20e
C�o; k� mC�o; k� ;

we must define the square root as a regular single-valued
function. To do this it suffices to take a cut along the negative
real axis and calculate the square root for the permittivity and
permeability of the medium separately [19]:

k � k0

�����������������
eC�o; k�

q ������������������
mC�o; k�

q
:

Defining the square root in this way ensures physically correct
solutions both for active and passive media (including
Veselago media [38] with e 0, m 0, and k 0 being negative).

When dealing with the dispersion equation3

k2 � k20e
LL tr�o; k�

obtained within the framework of an LL form, it is necessary
each time to redefine the square root

k � k0

����������������������
eLL tr�o; k�

q
for finding a physically correct solution. To describe active
and passive media in which the permittivity and permeability
have their real parts positive, we must take a cut along the
negative real axis. When the permittivity and permeability of
the medium have negative real parts (see Ref. [38]), a cut
should be taken along the positive real axis. But this is very
inconvenient.

The situation becomes even more troublesome if, follow-
ing Refs [16, 20], we assume that the C-form permittivity is
also a tensor:

eCi j�o; k� � eC tr�o; k�
�
di j ÿ ki kj

k2

�
� eC l�o; k� ki kj

k2
;
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Figure 3. Schematic of the induced current decomposition into the average (a), eddy (b), and saddle-shaped (c) currents.

3 Relation (16) simplifies to eLL tr�o; k� � eC�o; k� mC�o; k� for waves

propagating in a space free of the external sources.
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where eC tr�o; k� and eC l�o; k� are the scalars which generally
differ from both eLL tr�o; k� and eLL l�o; k�. It has been
hypothesized [16] that the permeability of the medium may
also be a tensor with a similar structure, viz.

mCi j�o; k� � mC tr�o; k�
�
di j ÿ ki kj

k2

�
� mC l�o; k� ki kj

k2
: �17�

Relation (14) under the assumptions (15) ± (17) becomes
(see also Ref. [37])

eLL l�o; k� � eC l�o; k� ; �18�

eLL tr�o; k� � eC tr�o; k� �
�
k

k0

�2ÿ
1ÿ mC tr�o; k�ÿ1� : �19�

We see that the assumption of the C-form permittivity
(permeability) with a tensor structure implies that Eqn (14)
relates twoLLparameters and three C parameters, a situation
which makes this equation irreversible. Whereas knowing the
C-form permittivity (permeability) allows one to reconstruct
the LL-form permittivity, the inverse problem of reconstruct-
ing the C properties from their LL counterparts cannot be
solved. The researchers who take this view believe that the C
and LL forms are not equivalent. Some authors [16, 20, 37]
show a preference for the LL form and consider the
irreversibility of Eqn (14) as a consequence of the lack of
uniqueness in expansion (7). In other words, they consider the
LL form to be more general.

It is noteworthy that the quantity mC l�o; k� did not enter
into relations (18), (19). This is most likely due to the scalar
nature of the permeability [20, 37]. Indeed, since

klBl � mC tr

�
kl dl m ÿ kl

kl km
k2

�
Hm � mC lkl

kl km
k2

Hm

� mC lkmHm � 0 ;

it follows that either

kmHm � 0 �20�

or

mC l � 0 : �21�

If equality (20) holds true, thenwe need only one scalar mC tr to
describe the fields, because

Bl � mC tr

�
dl m ÿ kl km

k2

�
Hm � mC l kl km

k2
Hm � mC trHl :

Equality (21) is identical to the magnetostatic wave excitation
condition [21]. It is well known that these waves do not carry
an electric field and are described by the reduced system of
equations

HH � B � 0 ; �HH�H� � 0 :

The absence of the electric field implies that �HH� E� � 0 and
hence that the transverse component of the magnetic field
also vanishes. ForHtr 6� 0 this is possible only when mC tr � 0.
In other words, the condition for the excitation of magneto-
static waves entails the equality mC l � mC tr. It is unlikely that
these two quantities are equal only at a fixed frequency and
differ at others. The fact that the longitudinal and transverse

components of the permeabilities are equal implies that the
C-form permeability is a scalar.

The last remark does not solve the problem concerned,
because we still have two LL and three C parameters on our
hands.

Note here that the reference to an ambiguous character of
the representation (7) [16, 20, 37] is unconvincing because of
the conditions for the unique decomposition (7) 4 being
presented in Ref. [9]. If the conditions of Ref. [9] are not
met, the fields in a homogeneous system turn out not to be
invariant with respect to averaging over the volume and hence
the use of Maxwell's macroscopic constitutive equations
becomes problematic. Thus, when the conditions set in
Ref. [9] are fulfilled, the arguments of the authors of
Refs [16, 20] fail to explain the irreversible nature of
Eqn (14). To elucidate the cause of the irreversibility, it is
appropriate now to look at the opinions of a third group of
researchers.

This group [22 ± 24] considers the C form to be the most
general. Their arguments are as follows. It is well known that
the C form of the Maxwell equations is invariant under a
Serdyukov ±Fedorov transformation [20, 22 ± 24], i.e. one
can introduce a pair of fields Q and F and redefine the fields
entering into the Maxwell equations in such a way that these
new fields satisfy the same equations:

D 0 � D� rotQ ; H 0 � H� 1

c

q
qt

Q ; �22�

B 0 � B� rotF ; E 0 � E� 1

c

q
qt

F : �23�

Clearly, the new primed fields are related by novel
constitutive equations and satisfy different boundary condi-
tions at the interface [22, 23]. In terms of the Serdyukov ±
Fedorov transformation, the transition from the C to the
LL form is equivalent to settingQ �M andF � 0. The vector
Q is chosen in such a way that H 0 � B (see Refs [20, 25]).
Thus, the LL form is a special case of the C form. As a
consequence, only when the C-form boundary conditions are
known, the correct LL-form boundary equations can be
obtained [22, 23]. It is assumed that the C-form boundary
conditions are identical to the ordinary Maxwell boundary
conditions (the continuity of the tangential components of the
E and H fields).

It should be emphasized that despite the attempts to prove
the equivalence of the two forms by means of redefinitions
[22, 23], the assumptionmade in Refs [20, 22 ± 24] implies that
Eqn (14) is irreversible, because the LL form, unlike the
C form, is not invariant under the Serdyukov ±Fedorov
transformation. To see this, note that the Serdyukov ±
Fedorov transformation in this case is given by

D 0 � D� rotQ ; B 0 � B� 1

c

q
qt

Q ; �24�

B 0 � B� rotF ; E 0 � E� 1

c

q
qt

F : �25�

This means that wemust introduce a relationship between the
vectors Q and F:

c rotF � qQ
qt

;

4 The conditions imposed inRef. [9] imply the existence of a `dividing' scale

ls such that x5 ls 5 l, where x is the maximum scale of inhomogeneity.
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and not only D but also E is changed. Whereas, as noted
above, the field E is assumed to be the same when employing
the C and LL forms.

In our view, the fact that the LL-form boundary
conditions can be obtained from the C-form boundary
conditions and at the same time from a macroscopic theory
leading to the LL form5 makes it possible to obtain the
missing relationship between the C and LL parametersÐ one
which makes Eqn (14) reversible.

To illustrate this point, let us consider a homogeneous
magnetic material, say, a ferrite. We neglect below the
gyrotropy of the material for the sake of clarity.

To obtain the LL form of the constitutive equations, we
must incorporate all the currents into the LL polarization:

q�DLL ÿ E�
qt

� 4pj � 4p
qPC

qt
� 4pc rotM ; �26�

or

DLL � eC�o�E� i
4p
k0

rotM �27�

� eC�o�E� ix�o� rotB �28�

� eC�o�E� x�o�
k0

rot rotE ; �29�

where x�o� � �1ÿ mÿ1�=k0. By applying the Fourier trans-
formation to Eqn (29) we obtain the following constitutive
LL parameters:

eLL tr�o; k� � eC�o� � k2

k0
x�o� ; �30�

eLL l�o; k� � eC�o� : �31�

When using the LL form, we are dealing with a formally
nonmagnetic material and must therefore apply the Maxwell
boundary condition usual for nonmagnetic materials 6. We
will demonstrate this point by taking the constitutive
equation in the form (28). Let us rewrite the Ampere ±
Maxwell equation as follows

rotB � ÿik0DLL � ÿik0
�
e�o�E� ix�o� rotB� : �32�

Transposing the term k0x�o� rotB to the right-hand side we
obtain

rotB � ÿ ik0e�o�
1ÿ k0x�o� E : �33�

Observe that the right-hand side of Eqn (33) does not have
singularities at the surface, so that the standard procedure for
this situation yields the following boundary condition at the

interface:

B1t ÿ B2t � 0 : �34�

The treatment of the present problem using the C form
predicts another form of the boundary condition at the
interface. To obtain this condition we follow the standard
procedure of taking the surface integral of both sides of
Eqn (5) [5]. The surface of integration is bounded by a
rectangular contour having its long sides on either side of
the boundary. The contracting surface is assumed to be
perpendicular to the interface. The surface integral of the
curl of any function transforms into a curvilinear integral.
After contraction of the contour along its short side, the
surface integral containing the electric field vanishes because
the electric field has no singularities at the boundary. Finally,
we obtain the boundary condition in the form [5, 27]

B1t ÿ B2t � ÿ4pM2t : �35�

This relation is identical to the conventionalMaxwell relation
H1t ÿH2t � 0. The cause of the difference between Eqns (34)
and (35) will be discussed below.

The boundary condition (35) is equivalent to the ordinary
Maxwell boundary condition in the presence of a surface
current Ð as indeed it must, because, as is known, even the
uniform magnetization of a medium produces a surface
current (see Fig. 4 and Refs [26, 27]).

Using Eqns (31), (32), the missing condition for the
reversibility of Eqn (14) for ferrite is readily shown to be

eLL tr�o; k� ÿ eLL l�o; k� � k2

k0
x�o� � k2

k20

�
1ÿ �mC tr�ÿ1�: �36�

3. Weak spatial dispersion

In the previous section the equivalence of the LL and C forms
has been proved for the integral form of the constitutive
equations. Actually, the integral form is rarely adapted.
Preference is given for the differential form. Using this latter
form one should be especially careful to avoid trouble.

The presence of an integral in Eqn (2) suggests that its
kernel should decrease with increasing distance q � r 0 ÿ r. If
the size a of an inclusion and the average distance d between

5 The true boundary conditions are derived by considering the behavior of

the fields within a layer near the interface. Clearly, the kernel in Eqn (2)

depends not only on the difference between the arguments, but also on

each of them separately [11].
6 When dealing with nonmagnetic media we need to rely only on one field

when describing the magnetic part of electromagnetic fields. Unfortu-

nately, this field Ð the magnetic induction, physically Ð is usually

denoted by the symbol H and called the magnetic field. This causes no

trouble because m � 1 and hence B � H. However, to emphasize the

physical meaning of the quantity, we follow Landau and Lifshitz [5] and

call it the magnetic induction (thus denoting it by the letter B).

Js

Figure 4.Magnetization of a medium gives rise to a surface current.
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inclusions are much less than the wavelength, then so is the
kernel radius, and the field under the integral can be expanded
in a Taylor series. As a result we arrive at the constitutive
equations in the differential form:

Di�o; r� � eLL�0�i j �o; r�Ej � eLL�1�i j l

qEj

qxl
� eLL�2�i j l m

q2Ej

qxl qxm
� . . . ;

�37�

where the following notation was used: eLL�n�i j l1...ln
�o; r� ��

ei j�r; rÿ r� rl1 . . . rln d
3r.

The incorrect interpretation of this series may be a source
of much trouble. When dealing with the spatial dispersion
effects one should remember that, as mentioned above, there
are at least two geometrical scales involved in the problem:
the size of the inclusion (radius of the kernel) a and the
wavelength. For example, the kernel may be of the form
ei j�r; rÿ r� � exp�ÿr=a� f �r=l�, where the function f can be
expanded in a Laurent series 7.

Thus, the coefficients of the derivatives entering into
Eqn (37) depend on both the scales, but only dependence on
a correspond to the terms appeared in perturbation theory in
ka. The terms with l-dependent coefficients should be
transformed using the Maxwell equation. This point is often
ignored and all the coefficients in Eqn (37) are assumed to be
powers of a. As a consequence, the Fourier transform of the
series (37) is considered as a series in powers of ka. Actually,
the coefficient eLL�n�i j l1... ln

is a heterogeneous polynomial of two
variables:Xm� n

m� 0

c nma
nÿmlm ;

where cnm are the dimensionless coefficients. To obtain a
perturbation series, the terms with m 6� 0 should be trans-
formed, namely, the spatial derivatives of the fields must be
replaced by temporal ones using the Maxwell equations.

As an illustration, let us return to the derivation of the
boundary conditions (34). Expression (29) can be obtained
formally from Eqn (37). In this case Eqn (29) takes the form

eLL�1�i j k � 0 ; �38�

eLL�2�i j kl �
x�o�
k0

ei kmem l j �39�

(see, for instance, Ref. [28]).
At first sight, the distinction between Eqns (27) and (29) is

that we simply rename Eqns (38) and (39). The analysis of a
restricted system shows, however, that the problem goes
deeper. In particular, this distinction leads to different

boundary equations. Indeed, if instead of Eqn (27) we use
expression (28), which is a consequence of Eqn (29), it can be
shown that the jump in the tangential component of magnetic
induction at the interface is always zero. The reason is that
whereas in the LL form we employ only a part of the series
(37), in the C form an exact expression is used.

The most dramatic manifestation of this problem is
encountered in chiral media.

4. Chiral (optically active) media

As is well known, chirality represents a first-order effect (in
ka) [29]. However, retaining only terms with first derivatives
in series (37) and in the series obtained from Eqns (12) and
(13), we can arrive at different conclusions.

The constitutive equations in the LL form are as follows

DLL � eE� g rotE ; �40�

where g is a pseudoscalar [5]. This constitutive equation
predicts that the polarization plane rotates as a plane wave
propagates. When combined with Maxwell's boundary
conditions, the equation predicts that in the case of a
normally incident, linearly polarized plane wave, the
reflected wave will be elliptically polarized. Also, the major
axis of the polarization ellipse undergoes an azimuthal
rotation with respect to the original polarization (the effect
of optical activity on reflection). This behavior is a property
of nonreciprocal media. However, a chiral systemmade up of
reciprocal elements must be reciprocal, too. It has been
suggested [30] that this behavior may relate to the existence
of a transition layer near the interphase surface.

Indeed, the boundary acts to violate the translational
invariance, and the kernel in Eqn (2) depends not only on the
difference of spatial variables but also on where the point of
observation is located. The authors of Ref. [30] accounted for
this circumstance by introducing an additional term into the
constitutive equation:

DLL � eE� g rotE� �grad g� E� : �41�

Unfortunately, the mathematics of Ref. [30] is not rigorous
enough, and this theory can only be considered as phenom-
enological. The effect of the additional term leads to the fact
that the conditions at the boundary differ from the Maxwell
conditions [30]:

B1t ÿ B2t � g
c

qEt

qt
: �42�

Such a boundary condition changes the sign of the angle
through which the axis of the polarization ellipse in the
reflected wave rotates. However, this result, although con-
sistent with the experiment presented in Ref. [30] 8, by no
means settles the problem of nonreciprocity of the effect.

To save the theory, the following generalized form of the
constitutive equation (42) was proposed [11, 32]:

DLL � eE� g1 rotE� �grad g2 � E� ; �43�

7 Composite materials, which are heterogeneous substances, present

multiscale problems, i.e. not only the geometrical sizes involved but also

the wavelengths of waves in the constituents are important. The reason is

that the response of a composite depends not only on the constituent

properties but also on the inclusion shapes. Also, the response of a particle

in an alternating field depends strongly on the incident radiation

wavelength. An example is the case in which the skin effect on an

individual inclusion should be taken into account. Thus, the magnetic

polarizability of a conducting ball depends on the ratio between the ball

radius and the skin depth: a=d � al3=2=
��������
s=c

p
. The latter quantity is the

`wavelength' in the conductor. For instance, at low frequencies

a 0 � ÿa 4lÿ4�s=o�2 � ÿa 4lÿ2�s=c�2. In both cases the powers of a and

l are different, which is just what the present work declares.

8 Notice that the effects we discuss are extremely small for naturally active

materials. In all likelihood, the experiment is being carried out on the limits

of accuracy and so cannot be used for testing the hypotheses. While some

researchers predict reflection-related optical activity [30], others argue that

it is absent [31].
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where it is assumed that g1 � 2g2. This relation between g1
and g2 is obtained from the principle of symmetry of the
coefficients �� E 0i D 00i dv � � E 00i D 0i dv� [33, 34]. The analysis of
the standard procedure of deriving the energy equation [22]
suggests that this equation takes the form of a continuity
equation only if (1) the expressions for the energy density and
the Poynting vector are redefined, and (2) the additional
condition g1 � 2g2 is imposed. Both Eqn (43) and the C form
yield zero reflection-related optical activity when used with
Maxwell's boundary conditions.

Although the Landau ±Lifshitz and Born ±Fedorov
(Casimir) approaches have been successfully reconciled, a
feeling remains that there is something artificial about the
arguments leading to the relation g1 � 2g2. First, this relates
to the possibility of extending the above arguments to the
C form, thus obtaining the `constitutive equations for
inhomogeneous media':

DBF � eE� �eb� rotE� �grad �0:5eb� � E
�
;

BBF � mH� �mb� rotH� �grad �0:5mb� �H
�
:

This provokes novel algebraic exercises but gives no insight
into the physical aspects of the problem. What casts further
doubt on these arguments is, in the author's view, the
following. It is known that the rotation of the plane of
polarization on radiation reflection is the property of
nonreciprocal media [21]. The reason is the presence of a
characteristic vector (the magnetization vector M in ferro-
magnets, and the vector L in antiferromagnets) in the
problem. The presence of a transition layer also introduces
an additional vector into the problem, namely, the gradient of
material parameters. In nonactive media such a gradient is a
polar vector Ð in marked contrast to magnetically ordered
systems, where the vectors M and L are axial. As for the
gradient of a pseudoscalar, it is an axial vector. On the one
hand, the presence of a transition layer could lead to
nonreciprocal effects, but then symmetry arguments require
changing the sign of this gradient for double-primed fields,
i.e. we need to consider a totally different system and hence
obtain little information from the relations obtained. On the
other hand, a composite made up of reciprocal constituents
only must possess the property of reciprocity.

The above discussion shows that the arguments in favor of
introducing an additional term �grad g2 � E� have the nature
of a justification rather than a proof. Because the additional
term �grad g2 � E� is nonzero only near the boundary, it
follows that its introduction is equivalent to introducing an
additional surface current and changing the boundary
conditions. The introduction of the nonreciprocal boundary
condition (42) actually compensates for the nonreciprocal
nature of the constitutive equation (40) 9.

In the author's opinion, the trouble with the application of
the LL form to bounded media is that some first-order terms
(in ka) are omitted in writing the constitutive equations.
Comparing Eqn (40) with the Born ±Fedorov constitutive
equations it is seen that one should retain terms with up to at
least third derivatives in the expansion in the LL form. The
second-order term makes a contribution to the permeability
of a medium: c2 rot rotE � c2k0 rotB � c2�1ÿ 1=m� rotM.
The term with the third derivative is responsible for
chirality: c3 rot rot rotE � c3k0 rot rotB. According to the
arguments put forward at the end of Section 2, the coeffi-
cients of these additional terms are proportional to the
corresponding powers of l.

Using the Born ±Fedorov equations together with Max-
well's boundary equations does not require any major
modifications of the theory (such as the redefinitions of the
Poynting vector and energy density, the reformulation of the
Lorentz lemma, etc.) and yields a satisfactory agreement with
experiment.

5. Conclusions

In conclusion, let us examine the physical meaning of the
fields appearing in the Maxwell equations. Present-day
authors rely almost exclusively on the Rosenfeld postulate.
Rosenfeld's proposal [35] was to define the fields E and B
without solving the Maxwell equations and only considering
the motion of a charged probe particle. Rosenfeld also
assumed that this particle moves under the action of the
Lorentz force F � eE� e�u� B�, where E and B are the fields
occurring in the Maxwell equations [10]. This is undoubtedly
correct for a particle moving in vacuum. Thus, at least in
vacuum we have an independent definition of the fields.
Unfortunately, this definition cannot be applied to con-
densed media. Indeed, any charged particle travelling
through a medium experiences the influence of the latter. To
describe this influence does not mean just substituting
macroscopic fields into the Lorentz force. The particle
polarizes the surrounding medium and loses its energy. This
gives rise to an additional force, and we need the force's
explicit form for applying the Rosenfeld postulate. Unfortu-
nately, this force depends on the form of the constitutive
equations. But these latter, because of the ambiguity
produced by the Serdyukov ± Fedorov transformation,
depend on how the fields are defined. Thus we have a vicious
circle here: the definition of fields in terms of the Lorentz force
is only possible after the fields themselves have been defined.

There is an alternative way to define the fields, which
involves the definition of the boundary conditions. Let us
forget for a moment that we are dealing with heterogeneous
media and recall that the field inside a cavity is E �H� if the
cavity is elongated along the lines of force. If the cavity is
flattened, the field is D �B�. This fact is a consequence of
Maxwell's boundary conditions. Thus, if we assume that
Maxwell's boundary conditions are valid, we have a method
by which all the fields can be measured. Application of the
Serdyukov ±Fedorov transformation leads to a change in the
boundary conditions, and, as a consequence, the fields in the
cavity are no longer equal to those in the medium.

The cavity method provides a consistent definition of
macroscopic fields. Indeed, to solve any electromagnetic
problem for bounded bodies requires matching the fields
outside and inside a body. Specifying boundary conditions is
a necessary and sufficient condition for the solution of this

9 If the constitutive equations are written in the formD � eE� �ebe� rotE,
B � mH� �mbm� rotH (which includes both the LL andC forms), then the

Lorentz lemma reduces to the expression��
4p
c

E 0j 00 ÿ 4p
c

E 00j 0
�
dv � ik0mbm

�ÿ
div �H 00 �H 0�� dv

� ik0ebe

�ÿ
div �E 0 � E 00�� dv :

The right-hand side of this equation vanishes only if bm � be. In the

LL form this relation does not hold because bm � 0, while be � g in this

formulation. I thank B Z Katsenelenbaum for drawing my attention to

this fact (see also Ref. [36]).
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problem. That the cavity-based definition of fields relies on
the same boundary conditions makes these fields measurable,
and the solution of the electromagnetic problem is assigned a
physical meaning.

It is necessary to note thatMaxwell's boundary conditions
are not a consequence of theMaxwell equations being written
in an integral form. There is no rigorous proof that the
Maxwell boundary conditions are a priori valid for fields in
the Casimir or Landau ±Lifshitz representations. The ade-
quacy of Maxwell's boundary conditions can be proved only
experimentally or by a microscopic theory describing the
transition layer structure. Indeed, using boundary condi-
tions of some kind implies that we have by this very fact
defined a method for measuring fields inside the medium and
that at the same time have determined the physicalmeaning of
the fields E and H. The inverse procedure Ð of first
postulating the physical meaning of the fields involved in the
equations and then deriving the boundary conditions Ð is a
vague enough and may lead to erroneous conclusions. For
example, the assumption that the fieldsE andB in theLL form
are identical to those in the C form appears unjustified unless
the equivalence of the corresponding boundary conditions is
proved. When deriving boundary conditions for the C form,
we identify the physical meaning of H in vacuum and that of
H in the medium, whereas for the LL form we must recognize
that in vacuumH � B and identify the physical meaning ofH
in vacuum with that of B � H 0 6� H in the medium.

The author expresses his gratitude to A F Konstantinova
and A N Serdyukov for helpful discussions.

This work was partly supported by RFBR projects 00-15-
96570 and 01-02-17962.
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